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Abstract: This article addresses the estimation of polarization signatures
in the Mueller imaging framework by non-local means filtering. This is an
extension of previous work dealing with Stokes signatures. The extension is
not straightforward because of the gap in complexity between the Mueller
framework and the Stokes framework. The estimation procedure relies on
the Cholesky decomposition of the coherency matrix, thereby ensuring the
physical admissibility of the estimate. We propose an original parameter-
ization of the boundary of the set of Mueller matrices, which makes our
approach possible. The proposed method is fully unsupervised. It allows
noise removal and the preservation of edges. Applications to synthetic as
well as real data are presented.
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1. Introduction

Mueller imaging is facing an ever growing scientific attention owing to the vast amount of
information that it can reveal. In this framework, the Stokes-Mueller formalism linearly links
polarization parameters to raw radiance acquisitions. This observation model is defined pixel-
wise.

Pixelwise data reduction (inversion) approaches are classically used, the system being op-
timized so that the observation matrix (the polarization measurement matrix, PMM) reduces
the impact of noise and system errors. The limitations of classical inversion procedures are
known [1]. Even for a well-calibrated imaging polarimeter, errors and noise may be amplified,
thus yielding unphysical Mueller matrices. Moreover, pixelwise inversion does not account for
the spatial distribution of information. Exploiting the bidimensional structure of the informa-
tion distribution has not been used systematically in the Mueller imaging framework. We note
however that this was partially exploited in [2,3] and fully considered in [4] but in the particular
case of classwise constant signatures.

A joint filtering-estimation procedure has been introduced in [5], to tackle the aforemen-
tioned shortcomings in the Stokes imaging modality. This procedure allows to estimate polar-
ization signatures for Stokes images, while preserving sharp transitions. The procedure is based
on non-local means (NLM) filtering, which is an efficient denoising algorithm that outperforms
popular denoising methods regarding the preservation of sharp edges and fine texture details [6].
It is here extended to the Mueller imaging context: the noise is filtered while yielding physically
admissible Mueller matrices at each pixel location. The proposed joint filtering-estimation pro-
cedure is expressed as a constrained optimization problem. Interestingly, we show that it can
be equivalently seen as a two step method: a filtering stage based on the NLM approach fol-
lowed by an estimation step ensuring physical admissibility. Our algorithm takes advantage of
a nontrivial and original parameterization of the boundary of the set of Mueller matrices.

The article is organized as follows. Section 2 recalls the physical admissibility criteria related
to Mueller matrices as well as the main lines of the approach developed in [5] for the Stokes
imaging case. Section 3 extends the NLM-based polarimetric data reduction method to the
Mueller imaging case. Section 4 deals with the application of the approach to synthetic and real
data. Conclusions are drawn in section 5.

2. Related work

In this section, we briefly recall the physical criteria that must be met by any valid Mueller
matrix. We summarize the approach that has been proposed in the Stokes imaging framework
[5].

2.1. Physical admissibility of Mueller matrices

Whenever Mueller matrices are obtained from noisy polarized raw radiances, it is important to
ensure that the estimation procedure provides physically admissible entities. A physical admis-
sibility criterion for Mueller matrices has to be defined. This issue has been widely addressed in
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the literature where several authors have dealt with the physical admissibility of experimentally
measured Mueller matrices [7–11]. Many criteria have been proposed to assess the validity of
such matrices.

Amongst them, the Jones criterion (also called the criterion for “physical” Mueller matrices)
requires that a Mueller matrix is a linear combination, with non-negative coefficients, of at most
four pure Mueller matrices (a pure Mueller matrix is obtained from a Jones matrix, see [11] for
the complete definition). As stated in [11], the Jones criterion enables to represent a random
assembly of Jones filters, thus covering perhaps every possible case of interest in polarization
optics. Beyond any controversy about such a criterion, we use in the following the Jones crite-
rion so that a Mueller matrix is defined hereafter as a matrix that verifies this criterion. With this
definition, it has been established that a Mueller matrix is admissible if and only if the eigenval-
ues of the related coherency matrix are positive or null [12]. Moreover this criterion allows an
interesting parameterization of the Mueller matrix in terms of Cholesky decomposition. This
parameterization was first used by [13] in a probabilistic context and transferred efficiently to
the Mueller imaging framework [4].

2.2. Joint filtering-estimation of Stokes vectors

In the context of the non-local means filtering of a one-channel noisy image I, the estimate of
the denoised image Inlm at pixel x is a weighted average of all pixels in the image:

∀x ∈ Ω, Inlm(x) = ∑
y∈Ω

w(x,y) I(y)

= argmin
a ∑

y∈Ω
w(x,y) (I(y)−a)2,

(1)

where Ω is the support of the digital image (Ω ⊂ Z
2), and where w(x,y) represents the

similarity between pixels x and y with 0 ≤ w(x,y) ≤ 1, and ∑y w(x,y) = 1. The similar-
ity between two pixels derives from Euclidean distance between patches, a patch being a
square window centered on x or y. More precisely, the similarity w(x,y) is proportional to

exp

(
− 1

β 2

∥∥Px −Py
∥∥2
)

, where Px (resp. Py) is the vectorized set of gray level intensities of

the x-patch (resp. y-patch).
For Stokes imaging, K (K ≥ 4) measured intensities are available at each pixel location.

They can be grouped in a K-component image I = (I(1), I(2), I(3), . . . , I(K)). Denoising I can be
performed for each channel independently as follows:

∀x ∈ Ω, Inlm(x) = ∑
y∈Ω

Dx(y) · I(y)

= argmin
a ∑

y∈Ω
(I(y)−a)t · Dx(y) · (I(y)−a),

(2)

where Dx(y) is a K ×K diagonal matrix. The diagonal element dii (i = 1 . . .K) is the similarity
(or weight) between pixel x and pixel y for the ith channel, ∑y Dx(y) being the identity matrix.
At each pixel location x, the K intensity measurements I(x) are related to the Stokes vector
S(x) by the linear equation I(x)� P ·S(x), where P is the K×4 PMM. Equation (2) becomes:

∀x ∈ Ω, Ŝ(x) = argmin
S

∑
y∈Ω

(I(y)−P ·S)t · Dx(y) · (I(y)−P ·S). (3)

The Stokes vector at pixel x is thereby estimated using the whole set of pixels in the image,
in a filtering-estimation procedure. Since the gradient of Eq. (3) is equal to the gradient of
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||Inlm(x)−P ·S||2 (see [5]), the estimate writes:

∀x ∈ Ω, Ŝ(x) = argmin
S

||Inlm(x)−P ·S||2. (4)

The estimate of Eq. (4) amounts to denoising each channel using a NLM approach, and then
estimating the Stokes vector at each pixel separately using the denoised image. The criterion
of Eq. (4) has a unique minimum which is the pseudo-inverse solution: V̂(x) = (Pt ·P)−1 ·P ·
Inlm(x). However, this solution may not verify the admissibility constraints: V̂(x) may not be a
Stokes vector. The following constrained criterion has been proposed:

∀x ∈ Ω, Ŝ(x) = argmin
S∈B

||Inlm(x)−P ·S||2, (5)

where B is the set of admissible Stokes vectors. Note that optimizing the criterion of Eq. (5)
is equivalent to optimizing the one of Eq. (3) under the physical admissibility constraint since
both criteria are equal up to a constant.

Since the criterion of Eq. (5) is strictly convex, and since B is a convex set, the criterion of
Eq. (5) has a unique minimum. Instead of using a constrained optimization procedure, we use
a much simpler procedure, which was defined in [5]. Convergence to the global minimum is
ensured. It has been made possible thanks to the fact that the boundary ∂B of B can be easily
parameterized.

3. Joint filtering-estimation of Mueller matrices

The filtering-estimation procedure which is suitable for Stokes vectors can be extended to the
case of Mueller matrices provided (i) the criterion related to the estimation of the Mueller
matrix can be written in the form of a weighted least squares problem (see Eq. (3) for the
Stokes vector case), (ii) the Mueller matrix set is a convex set, and (iii) the boundary of the
Mueller matrix set can be parameterized.

3.1. Definition of the criterion

A Mueller imaging polarimeter allows the indirect measurement of the Mueller matrix of each
pixel of the image. The scene is successively illuminated by p (p ≥ 4) independent polarization
states through a polarization state generator (PSG). Each of these states interacts with the object,
thus yielding an outgoing Stokes vector that is sensed through the polarization state analyzer
(PSA) with q independent probing states (q ≥ 4). For each pixel location x of the image, the
p×q intensity measurements I are related to the Mueller matrix M(x) at pixel x by:

I(x) = A ·M(x) ·W (+ noise), (6)

where A and W are the p×4 PSA matrix, and the 4×q PSG matrix, respectively. Equation (6)
can be written as:

I(x) = (Wt ⊗A) ·M(x) (+ noise)
= P ·M(x) (+ noise),

(7)

where the underline symbol is the operator which maps an m×n into an mn×1 vector formed
by stacking up its columns, and ⊗ is the Kronecker product. The known pq× 16 matrix P is
the PMM.

In the context of Mueller imaging, the criterion of Eq. (3) that is suitable for the Stokes case
becomes:

∀x ∈ Ω, M̂(x) = argmin
M

∑
y∈Ω

(I(y)−P ·M)t · Dx(y) · (I(y)−P ·M), (8)
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where Dx(y) is a pq× pq diagonal matrix, ∑y Dx(y) being the identity matrix. The diagonal
element dii (i = 1 . . . pq) is the similarity (or weight) between pixel x and pixel y for the ith

channel. As in the Stokes vector case, the estimate of Eq. (8) is equivalent to:

∀x ∈ Ω, M̂(x) = argmin
M

||Inlm(x)−P ·M||2, (9)

where Inlm is defined as:

∀x ∈ Ω, Inlm(x) = ∑
y∈Ω

Dx(y) · I(y). (10)

Finally, incorporating the physical admissibility constraints in Eq. (8) (or equivalently in
Eq. (9)) leads to:

∀x ∈ Ω, M̂(x) = arg min
M∈B

||Inlm(x)−P ·M||2, (11)

where B denotes in this part the set of admissible Mueller matrices.
The proposed criterion does not depend on the way the weights are computed. Consequently,

an algorithm proposed for a one-channel image and computing the denoised value at a pixel by
linearly combining pixel values of the original image (see Eq. (1)) can be extended to Mueller
images using Eq. (8), or equivalently Eq. (9). Several authors have proposed strategies to de-
termine the weights under various noise distributions (see for example [14]). Therefore, the
proposed approach is well-suited for different kinds of noise distributions and may benefit from
future advances in denoising methods.

3.2. Properties of the Mueller matrix set

There is a one-to-one correspondence between a Mueller matrix M and the system coherency
matrix H, which reads:

M = T ·H, (12)

where T is a 16×16 invertible complex transformation matrix whose expression can be found
for example in [4]. Given that a Mueller matrix M is defined here as a matrix that verifies
the Jones criterion (see Sec. 2.1), M is physically acceptable iff H is positive semidefinite
(H ∈ H 4

+ ) [12]. Since H 4
+ is a convex set, and since the image of a convex set under a linear

transformation is also convex, B is a convex set.
In order to extend the optimization algorithm that was proposed for Stokes vectors, we have

to find a parameterization of the boundary ∂B of B. As ∂B is the image of the boundary ∂H 4
+

of H 4
+ by the linear transformation T, the key point is to define a parameterization for ∂H 4

+ .
To this end, the following property is of great interest.

Property 1: H ∈ ∂H 4
+ iff H ∈ H 4

+ and H is not invertible.

Property 1 is well-known in the case of the set S 4
+ of the symmetric positive semidefinite

(real) matrices. The interior of S 4
+ consists of the positive definite (full-rank) matrices and

all singular positive semidefinite matrices (having at least one null eigenvalue) reside on the
boundary [15, p. 43]. This result can be extended to (complex) Hermitian positive semidefinite
matrices because the eigenvalues of any matrix are continuous functions of the elements of the
matrix [16, p. 36].

Moreover, every H ∈ H 4
+ admits a Cholesky decomposition which reads:

H = ΛΛΛ ·ΛΛΛt , (13)
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where ΛΛΛt is the conjugate transpose of ΛΛΛ. Matrix ΛΛΛ is a lower triangular matrix composed of
16 real parameters {λi},

ΛΛΛ =

⎛
⎜⎜⎝

λ1 0 0 0
λ5 + iλ6 λ2 0 0
λ7 + iλ8 λ9 + iλ10 λ3 0

λ11 + iλ12 λ13 + iλ14 λ15 + iλ16 λ4

⎞
⎟⎟⎠ . (14)

Property 1 and the fact that det(ΛΛΛ ·ΛΛΛt) = (λ1λ2λ3λ4)
2 lead to property 2.

Property 2: ΛΛΛ ·ΛΛΛt ∈ ∂H 4
+ iff at least one value amongst λi (i = 1 . . .4) is null.

Property 2 enables to parameterize ∂H 4
+ , and consequently ∂B, easily. However, the param-

eterization of the boundary ∂H 4
+ related to Property 2 is not practical for use in an optimization

framework because a displacement on ∂B may require to enforce a new λi (i = 1 . . .4) to 0, and
eventually to relax the constraint for another one. A more useful property can be defined to
parameterize ∂H 4

+ .

Property 3: if H ∈ ∂H 4
+ , then there exists ΛΛΛ with λ4 = 0 such that H = ΛΛΛ ·ΛΛΛt .

This property is proved in Appendix A. From Property 3 and from Eq. (12), we derive:

∂B = {M : M = T ·ΛΛΛ ·ΛΛΛt with λ4 = 0}. (15)

Since ∂B can be easily parameterized (Eq. (15)), the optimization algorithm that has been
proposed for Stokes vectors can be extended to Mueller matrices. Optimization of Eq. (11) is
briefly described in the next section.

3.3. Optimization algorithm

Since the criterion of Eq. (11) is strictly convex and B is convex, Eq. (11) has a unique minimum
denoted M�(x).

The optimization algorithm of Eq. (11) proceeds as follows. If the pseudo-inverse solution
V̂(x) ∈ B, then M�(x) = V̂(x). Otherwise, M�(x) belongs to ∂B and can be estimated by using
these two strategies iteratively:

(i) local descent on the boundary ∂B (see property 3):

M̂(x) = T · Λ̂ΛΛ · Λ̂ΛΛt
with Λ̂ΛΛ = arg min

ΛΛΛ,λ4=0
||Inlm(x)−P ·T ·ΛΛΛ ·ΛΛΛt ||2 (16)

(ii) local descent on the interior B̆ of B.

The algorithm is initialized on ∂B, with the orthogonal projection of V̂(x) onto B, and strat-
egy (i) is considered. When a minimum is obtained, computing the gradient of criterion of Eq.
(11) enables to determine if this minimum is the global one or a local one: the gradient gives
the direction of the interior of B iff the minimum is the global one. If this minimum is a lo-
cal one, the criterion can be decreased by entering into B. The descent is then continued with
strategy (ii). In this strategy, the boundary is ensured to be met since there is no local minimum
in B̆. Then, strategy (i) is used again. This procedure is repeated until the global minimum is
reached with strategy (i).
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The optimization algorithm for strategy (i) is a subspace trust region method that is based on
the interior-reflective Newton method described in [17, 18]. For strategy (ii), a simple gradient
approach is used: the maximal admissible step constraining M̂(x) to be a Mueller matrix is
computed at each iteration. The proposed algorithm is finally much simpler than a standard
constrained optimization procedure, and it is ensured to converge to the unique minimum.

Note however that one major problem arises during the implementation of the optimization
algorithm. Strategy (i) is used starting from a Mueller matrix M that belongs to ∂B. This matrix
has been obtained either from the orthogonal projection of V̂(x) onto B, or from strategy (ii)
that is ensured to converge to a Mueller matrix of ∂B. In both cases, starting from M ∈ ∂B,
initialization of strategy (i) requires the determination of ΛΛΛ such that λ4 = 0 and M = T ·ΛΛΛ ·ΛΛΛt .
Due to numerical problems, this computation has to be done carefully (see Appendix B).

Finally, if M̂ denotes the estimated Mueller matrix image, the image Î defined as Î(x) =

P · M̂(x) for each x, can be considered as the denoised version of I. For pq = 16, the images

Î and Inlm differ only for the pixels for which the pseudo-inverse solution does not satisfy the
admissibility constraints.

4. Results

4.1. Results on synthetic data

We synthesized a 256× 256 pixel Mueller image Mgt composed of two distinct regions: (i) a
background with a uniform polarization signature M, and (ii) a 100 pixel radius circle with a
smoothly varying polarized Mueller signature placed in the center of the image (see Fig. 1).
The Mueller matrices of the synthetic target lie on ∂B and even a small noise level may lead to
non physical solutions if one uses the pseudo-inverse approach.

The Mueller matrices are defined randomly based on the λ parameterization with λ4 = 0 as
follows:

• The Mueller matrix associated to the background has been defined by drawing each com-
ponent of ΛΛΛ (except λ4 that is set to 0) according to a normal distribution of standard
deviation 1.

• For the circle, 15 images of size 256×256 (an image for each λi, i 
= 4) are computed by
drawing the value at each pixel according to a normal distribution of standard deviation
1. Each image is then filtered using an isotropic Gaussian filter of standard deviation of 5
pixels, thereby creating 15 smooth images. A constant is then added to each image (each
constant is drawn according to a normal distribution of standard deviation 1).

The Mueller image Mgt can then be computed. A standard observation model was finally used
to generate intensity images Igt

i (i= 1 . . .16) that were degraded by adding white Gaussian noise
of variance σ2.

Since the ground truth is known, estimation accuracy can be evaluated by comparing the
estimated values (the Mueller matrices M̂ and the associated intensity values Î) with the original
ones (Mgt and Igt). The method is first evaluated by comparing the original image Igt (noise-free
intensity image) with its estimation Î using the Peak Signal-to-Noise Ratio (PSNR):

PSNR(Igt , Î) = 10 log10

⎛
⎜⎝ d2

1
16.P ∑16

j=1 α2
j ∑x

(
Igt

j (x)− Î j(x)
)2

⎞
⎟⎠ , (17)

where α j is computed so that the dynamic of α j.I
gt
j is d (for example 255), and where P is the

number of pixels. Complementary to the PSNR, a Mueller matrix dedicated measurement is
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Fig. 1. Mueller image of the synthetic scene. For convenience, 16 images (one for each
channel of the Mueller matrix) are represented on a 4× 4 grid. Row i column j image
corresponds to the mi j Mueller matrix element image.

also used to evaluate the estimation accuracy:

e(Mgt ,M̂) = 100

√
1
P ∑

x

||Mgt(x)−M̂(x)||2
||Mgt(x)||2 . (18)

Four methods, MPI , MPIortho, MPI pro j, and PM are evaluated:

• for MPI : M̂(x) is the pseudo-inverse solution;

• for MPIortho: M̂(x) is the pseudo-inverse solution, further orthogonally projected onto the
Mueller matrix set if it does not verify the admissibility constraints;

• for MPI pro j: M̂(x) is the pseudo-inverse solution, further projected onto the Mueller ma-
trix set if it does not verify the admissibility constraints (the projection is performed
with the proposed optimization algorithm so as to reduce at most the error reconstruction
between the observed measurements and the predicted ones);

• MP is the proposed approach.

Note that the methods MPI , MPIortho, MPI pro j do not use any spatial filtering.
The PSNR (Eq. (17)) and the Mueller matrix estimation error (Eq. (18)) corresponding to

MPI , MPIortho, MPI pro j and MP are given in Tab. 1 for different values of σ (from σ = 0.05 to
1).

Table 1 shows that the proposed approach outperforms the other methods in the particular
context of this experiment. This illustrates the benefit of accounting for spatial information for

#179206 - $15.00 USD Received 2 Nov 2012; revised 7 Dec 2012; accepted 14 Dec 2012; published 13 Feb 2013
(C) 2013 OSA 25 February 2013 / Vol. 21,  No. 4 / OPTICS EXPRESS  4431



Table 1. PSNR (left) and Mueller matrix estimation error (right) obtained with the four
different methods, and for different values of σ . Bold values correspond to the best results.

σ MPI MPIortho MPI pro j MP

0.05 33.09 32.62 33.44 45.35
0.1 27.05 26.28 27.50 41.50
0.5 13.08 10.66 14.19 30.61
1 7.04 3.80 8.78 25.67

σ MPI MPIortho MPI pro j MP

0.05 2.75 2.71 2.57 0.65
0.1 5.50 5.36 4.93 0.89
0.5 27.48 24.83 19.34 3.06
1 54.94 46.97 32.71 5.67

the estimation, and in particular, the efficiency of the NLM approach. The PSNR (left part of
Tab. 1) obtained with the proposed approach is increased of at least 10 dB, and the estimation
error (right part of Tab. 1) is decreased of a factor varying approximately from 4 to 10. The
same conclusion can be drawn from Fig. 2 which presents the Mueller matrix images obtained
from the noisy images (σ = 0.1) with the NLM approach (a), and with MPI (b). Since results
obtained with the methods MPI pro j and MPIortho are visually very similar to Fig. 2(b), they
are not presented here. The channels associated to the third line of the Mueller matrix are for
example noisy with MPI but not with the NLM approach. Besides performing noise reduction,
we can observe that edges have been preserved. This nice property is inherited from NLM
filtering: NLM filtering preserves sharp edges and fine texture details [6].

Finally, amongst the methods which do not consider spatial information, MPI pro j is the one
providing the best results. This shows that the traditional way of projecting onto the Mueller
matrix set (method MPIortho, orthogonal projection) is not an efficient approach, compared to
the proposed method which reduces the most the error reconstruction between the observed
measurements and the predicted ones, while constraining the solution to be physically accept-
able. Note also that MPIortho provides better results than MPI in terms of accuracy of the Mueller
matrix estimation, but less satisfactory results in terms of PSNR. This highlights the fact that
the choice of orthogonal projection is arbitrary.

4.2. Results on real data

To evaluate the potential of the method to handle real images, we used a well-calibrated Mueller
polarimeter [1] to image two real scenes with different kinds of polarization signatures: (i)
the first scene (Fig. 3) corresponds to two shapes made from two different transparent thin
layers (cellophane for wrapping food) sandwiched between two glass sections. This object
is expected to show class-wise constant polarization responses; (ii) the second one consists
of an ensemble of objects (Fig. 4) leading to an image with various polarization responses
and complex geometrical properties. Observations were carried out through a narrow band
interferential filter to ensure that the PMM is known with high accuracy. The Mueller image
was reconstructed from the raw intensity images using MP (the proposed approach) and MPIortho

(the classical pseudo-inverse approach except that the solution is further projected orthogonally
onto the Mueller matrix set if it does not verify the admissibility constraints).

Figure 3 and Fig. 4 present the results for the first scene and second scene respectively.
For both scenes, the images reconstructed by our approach are less noisy than the pseudo-
inverse images. As an example, for the first scene, the information content of some of the
Mueller channels are lost in the projected pseudo-inverse solution (e.g. m11, m12, m21, and m22

element images). In particular, a lot of fine details are definitely lost (channels m12 and m21).
All channels estimated with MPIortho are particularly noisy for the second scene which is not
the case with the proposed approach. For the sake of conciseness, only channels m22 (Fig. 4(a))
and m44 (Fig. 4(c)) are presented. The MPIortho approach propagates intensity noises to the
Mueller channels leading to less workable Mueller images. Results obtained with the second
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(a)

(b)

Fig. 2. Mueller image of the synthetic scene estimated with the proposed (NLM) approach
(a) and pseudo-inverse (b) from the noisy intensity images (σ = 0.1). Data are presented
with the convention used in Fig. 1.
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(a)

(b)

Fig. 3. Mueller image of the first scene estimated with the proposed (NLM) approach (a)
and projected pseudo-inverse (b). Data are presented with the convention used in Fig.
1 except that all channels but m11 have been pixelwise normalized with respect to m11
(mi j(x) = mi j(x)/m11(x)).
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(a)

(b)

(c)

(d)

Fig. 4. Mueller image of the second scene estimated with the proposed (NLM) approach
(left column) and projected pseudo-inverse (right column). For convenience, only channels
m22 (a) and m44 (c) are presented. Images (b) and (d) correspond to a zoom in of (a) and
(c), respectively.
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scene illustrate also the efficiency of the NLM filtering approach to preserve edges and thin
structures (see Fig. 4(b) and (d)).

Since the NLM solution is much less noisy than the projected pseudo-inverse one, it provides
also a better estimation of physical characteristics (e.g. diattenuation, depolorization). Figure
5 shows the mean diattenuation calculated from the MP and the MPIortho solutions for the first
scene. The poor quality of the result obtained with the MPIortho approach can be explained by
the fact that the upper left 2× 2 block of the Mueller matrix is in this case particularly noisy
(see Fig. 3(b)).

More generally, we found that, for all cases considered here, our approach performed bet-
ter than the pseudo-inverse solution that is widely used in Mueller data reduction phase. Our
approach is fully unsupervised and requires no parameter tuning.

Fig. 5. Mean diattenuation of the first scene obtained by the polar decomposition applied
to the NLM (left column) and to the MPIortho solutions (right column).

5. Conclusion

We introduced a new reconstruction-estimation method that allows obtaining Mueller images
from raw measured intensities. The proposed approach performs better than state-of-the-art
methods, while yielding admissible Mueller signatures. The major interest of this study comes
from the association of up-to-date denoising algorithms with physical admissibility criteria
of Mueller channels that allow better exploitation and interpretation of the final images. This
approach turns out to be of great benefit since the reconstructed signature images are little
affected by measurement noise while sharp transitions and thin structures remain preserved.

A. Characterization of the boundary ∂H 4
+ of the set of H-type matrices

The objective of this appendix is to prove property 3 (see page 6), which reads: if H ∈ ∂H 4
+ ,

then there exists ΛΛΛ with λ4 = 0 such that H = ΛΛΛ ·ΛΛΛt .
Let us write

H =

⎛
⎜⎜⎝

h1 h5 − ih6 h7 − ih8 h11 + ih12

h5 + ih6 h2 h9 − ih10 h13 − ih14

h7 + ih8 h9 + ih10 h3 h15 − ih16

h11 − ih12 h13 + ih14 h15 + ih16 h4

⎞
⎟⎟⎠ . (19)

By substituting Eq. (14) and Eq. (19) into Eq. (13), we get a system of equations in λ ’s that
has at least one solution if H ∈ H 4

+ . In practice, there are several solutions when H ∈ H 4
+ . As

an example, if H ∈ H 4
+ and if H is invertible, then the signs of λ1, λ2, λ3, and λ4 can be set

arbitrarily leading to 24 different solutions. In the general case where H ∈ H 4
+ , one possible
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solution in λ ’s writes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 =
√

h1

λi =
hi

λ1
(for i = 5 to 8 and for i = 11 to 12) if λ1 > 0, and 0 otherwise

λ2 =
√

h2 −λ 2
5 −λ 2

6

λ9 =
1
λ2

(h9 −λ5λ7 −λ6λ8) if λ2 > 0, and 0 otherwise

λ10 =
1
λ2

(h18 −λ6λ7 −λ5λ8) if λ2 > 0, and 0 otherwise

λ13 =
1
λ2

(h13 −λ5λ11 −λ6λ12) if λ2 > 0, and 0 otherwise

λ14 =
1
λ2

(h14 +λ6λ11 −λ5λ12) if λ2 > 0, and 0 otherwise

λ3 =
√

h3 −λ 2
7 −λ 2

8 −λ 2
9 −λ 2

10

λ15 =
1
λ3

(h15 −λ7λ11 −λ8λ12 −λ9λ13 −λ10λ14) if λ3 > 0, and 0 otherwise

λ16 =
1
λ3

(h16 +λ8λ11 −λ7λ12 +λ10λ13 −λ9λ14) if λ3 > 0, and 0 otherwise

λ4 =
√

h4 −λ 2
11 −λ 2

12 −λ 2
13 −λ 2

14 −λ 2
15 −λ 2

16

(20)

If H is invertible (λi > 0 for i = 1...4), Eq. (20) can be either obtained by solving the system of
equations in λ ’s directly or by using the algorithm of [19, p. 145]. In [19], the algorithm is de-
scribed for symmetric positive definite (real) matrices but the extension to (complex) Hermitian
positive definite matrices is straightforward.

If H is not invertible (i.e. ∃ i ∈ [1,4] such that λi = 0), the i-th column of ΛΛΛ is set to 0 (see
Eq. (20)). This is justified in [19, p. 148] for real matrices, but the same reasoning applies to
complex ones.

We suppose that H ∈ ∂H 4
+ , which implies that λ1 = 0, or λ2 = 0, or λ3 = 0, or λ4 = 0. In

the following, ΛΛΛ denotes the lower triangular matrix whose elements are defined in Eq. (20).
By construction, ΛΛΛ verifies H = ΛΛΛ ·ΛΛΛt but λ4 may be greater than 0. To obtain a solution with
λ4 = 0, an equivalence class is defined on the set of the lower triangular matrices (see Eq. (14)):
ΛΛΛa and ΛΛΛb are equivalent if there exists an orthonormal matrix R such that ΛΛΛa =ΛΛΛb ·R. Matrices
ΛΛΛa and ΛΛΛb correspond then to the same underlying coherency matrix ΛΛΛa ·ΛΛΛa

t = ΛΛΛb ·ΛΛΛb
t , and

consequently to the same Mueller matrix. If H ∈ ∂H 4
+ , we show hereafter that we can find in

the class of ΛΛΛ a matrix with λ4 = 0. Three cases have to be considered, depending on which λi

vanishes:

1. if H is such that λ1 = 0 then from Eq. (20), we have:

ΛΛΛ =

⎛
⎜⎜⎝

0 0 0 0
0 λ2 0 0
0 λ9 + iλ10 λ3 0
0 λ13 + iλ14 λ15 + iλ16 λ4

⎞
⎟⎟⎠ , (21)

with H = ΛΛΛ ·ΛΛΛt . A matrix equivalent to ΛΛΛ can be derived from ΛΛΛ by swapping its first
and last columns. This can be formally defined as follows: ΛΛΛ is equivalent to ΛΛΛ ·R, with

R =

⎛
⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ . (22)

#179206 - $15.00 USD Received 2 Nov 2012; revised 7 Dec 2012; accepted 14 Dec 2012; published 13 Feb 2013
(C) 2013 OSA 25 February 2013 / Vol. 21,  No. 4 / OPTICS EXPRESS  4437



In the class of ΛΛΛ, we thereby have a matrix (ΛΛΛ ·R) with λ4 = 0. This means that ΛΛΛ ·R is
a lower triangular matrix with λ4 = 0 that verifies H = (ΛΛΛ ·R) · (ΛΛΛ ·R)t ;

2. if H is such that λ2 = 0 in Eq. (20), then the second column of ΛΛΛ vanishes and the
reasoning above applies with

R =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ ; (23)

3. if H is such that λ3 = 0 in Eq. (20), then the third column of ΛΛΛ vanishes and the reasoning
above applies with

R =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (24)

This proves that every H ∈ ∂H 4
+ admits a decomposition H = ΛΛΛ ·ΛΛΛt , with λ4 = 0.

Note that when λi = 0 (i = 1 . . .3), the elements of the i-th column cannot be uniquely de-
termined. In this case, these elements have been set to 0 (see Eq. (20)). This has provided us a
way to easily find a matrix equivalent to ΛΛΛ that verifies λ4 = 0. If the undetermined elements
had not been set to 0, it would not have been possible to use such a simple procedure, because
swapping columns would have led to a non-triangular matrix.

B. Algorithm for the estimation of ΛΛΛ from M ∈ ∂B

Let M be a Mueller matrix that belongs to the boundary ∂B of the Mueller matrix set. Let H be
the associated coherency matrix (H ∈ ∂H 4

+ ). It has been shown in Appendix A that there exists
ΛΛΛ with λ4 = 0 such that H = ΛΛΛ ·ΛΛΛt . The goal of this Appendix is to explain how to determine
ΛΛΛ. At first sight, an algorithm can be easily derived from Appendix A:

1. Determine ΛΛΛ using Eq. (20).

2. Let i0 be an integer in [1,4] verifying λi0 = 0. Such an integer exists since at least one
value of λi is null (i = 1 . . .4).

3. Swap the i0-th column of ΛΛΛ with its last one to obtain the desired result.

However, such an algorithm cannot be used to properly estimate ΛΛΛ. Indeed, due to numerical
problems, it may happen that λ1, λ2, λ3 and λ4 are all strictly positive. We could then define a
threshold beyond which the values of λi would be set to 0 (i = 1 . . .4). However, there is in this
case a risk that λi is set to 0 while it should not be, thereby leading to a matrix ΛΛΛ with ΛΛΛ ·ΛΛΛt

highly different from H.
To solve this problem, several matrices ΛΛΛ are computed by setting some values of λi to

0 (i = 1 . . .4). This can be formally described as follows. Let A denote a combination of p
elements of {λ1,λ2,λ3,λ4} (1 ≤ p ≤ 4). Each λi of A is set to 0, and the other values of ΛΛΛ are
computed from Eq. (20). All combinations are tested, leading to 15 different matrices ΛΛΛ. The
matrix ΛΛΛ that minimizes the quadratic error between H and ΛΛΛ ·ΛΛΛt is chosen. The equivalence
class defined in Apprendix A enables finally to derive a lower triangular matrix ΛΛΛ0 from ΛΛΛ,
with λ4 = 0 that verifies H � ΛΛΛ0 ·ΛΛΛ0

t .
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