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Abstract

A new hierarchical Bayesian model is proposed for
image segmentation based on Gaussian mixture models
(GMM) with a prior enforcing spatial smoothness. Ac-
cording to this prior, the local differences of thecontex-
tual mixing proportions(i.e. the probabilities of class la-
bels) are Student’st-distributed. The generative properties
of the Student’st-pdf allow this prior to impose smoothness
and simultaneously model the edges between the segments
of the image. A maximum a posteriori (MAP) expectation-
maximization (EM) based algorithm is used for Bayesian
inference. An important feature of this algorithm is that all
the parameters are automatically estimated from the data
in closed form. Numerical experiments are presented that
demonstrate the superiority of the proposed model for im-
age segmentation as compared to standard GMM-based ap-
proaches and to GMM segmentation techniques with ”stan-
dard” spatial smoothness constraints.

1. Introduction

Clustering-based image segmentation methods rely on
arranging data into groups having common characteristics
[19]. During the last decade, the main research direc-
tions in the relevant literature are focused on mixture model
[16, 14], graph theoretic approaches [17, 8, 21], methods
based on the mean shift algorithm [6, 4] and rate distortion
theory techniques [20].

Modeling the probability density function (pdf) of pixel
attributes (e.g. intensity, texture) with finite mixture mod-
els (FMM) [1] is also a natural way to cluster data be-
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cause it automatically provides a grouping based on the
components of the mixture that generated them. Further-
more, the likelihood of a FMM is a rigorous metric for
clustering performance [1]. The parameters of the FMM
model with Gaussian components can be estimated very ef-
ficiently through maximum likelihood (ML) estimation us-
ing the Expectation-Maximization (EM) algorithm [7]. Fur-
thermore, it can be shown that Gaussian components al-
low efficient representation of a large variety of pdf. Thus,
Gaussian mixture models (GMM), are commonly employed
in image segmentation tasks.

A drawback of the standard ML approach for GMM im-
age segmentation is that commonality of location is not
taken into account when grouping the data. In other words,
the prior knowledge that adjacent pixels most likely belong
to the same cluster is not used. To overcome this short-
coming, spatial smoothness constraints have been imposed.
A common approach is the use of an MRF. Many MRF
variants have been proposed, see for example [11]. How-
ever, determination of the amount of the imposed smooth-
ness automatically requires knowledge of the normalization
constant of the MRF. Since this is not known analytically,
learning strategies were proposed [22, 9].

Research efforts in imposing spatial smoothness for im-
age segmentation can be grouped into two categories. In the
methods of the first category, spatial smoothness is imposed
on the discretehiddenvariables of the FMM that represent
class labels [12, 21]. These approaches may be categorized
in a more general area involving simultaneous image re-
covery and segmentation which is better known asimage
modeling[15]. More specifically, spatial regularization is
achieved by imposing a discrete MRF on the classification
labels of neighboring pixels that penalizes solutions where
neighboring pixels belong to different classes. Inference
in this category of models is non trivial and generally per-
formed through EM-like alternating optimization, Markov
Chain Monte Carlo (MCMC) or inexact variational infer-
ence.
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In the second category of methods, the MRF-based
smoothness constraint is not imposed on the labels but on
the contextual mixing proportions, that is on the probabili-
ties of the pixel labels. This model is called spatially vari-
ant finite mixture model (SVFMM) [16] and avoids the in-
ference problems of DMRFs. For instance, in [14], a new
family of smoothness priors was proposed for the contex-
tual mixing proportions based on the Gauss-Markov ran-
dom fields that takes into account cluster statistics, thus en-
forcing different smoothness strength for each cluster. The
model was also refined to capture information in different
spatial directions. In these models, maximuma posteriori
(MAP) estimation of the contextual mixing proportions via
the MAP-EM algorithm is possible. However, the main dis-
advantage is that smoothness is imposed in the neighbour-
hood of each pixel without taking into account that the re-
spective pixel may be an edge pixel or its neighbourhood
consists of edge pixels.

In this paper, we present a new hierarchical Bayesian
model for mixture model-based image segmentation with
spatial constraints. This model assumes that the local dif-
ferences of thecontextual mixing proportionsfollow a Stu-
dent’s t-distribution. The generative model of Student’s
t-distribution contains two levels. The lower level is a
Gaussian pdf with precision (inverse variance) varying with
each pixel and the higher level a Gamma pdf. The vary-
ing precisions with each pixel of the Gaussians of this
model capture thelocal image variationsand thus allow the
smoothness constraints to incorporate the image edge struc-
ture.

A MAP-EM algorithm was used for Bayesian inference
with this model. An important feature of this algorithm is
that all the necessary parametersare estimated from the
data. Thus, the proposed segmentation algorithm isau-
tomatic in the sense that it does not require empirical se-
lection of parameters like other state-of-the-art methods (n-
cuts, mean-shift).

The model was extensively evaluated on the 300 images
of the Berkeley image data base and was compared with
other GMM based methods that do not require parameter
selection. More specifically, it compared favorably to stan-
dard GMM and to GMM with ”standard” spatial smooth-
ness constraints [14].

2. The edge preserving spatially varying GMM

The K-kernel spatially varying GMM [16, 14] differs
from the standard GMM [1] in the definition of the mixing
proportions. More precisely, in the SVGMM, each pixel
xn, n = 1, ..., N has a distinct vector of mixing proportions
denoted byπn

j , j = 1, ..., K, with K being the number of
Gaussian kernels. We call these parameterscontextual mix-
ing proportionsto distinguish them from the mixing pro-
portions of a standard GMM. Hence, the probability of a

distinct pixel is expressed by:

f(xn; π, µ, Σ) =
K∑

j=1

πn
j N (xn; µj ,Σj), (1)

where0 ≤ πn
j ≤ 1,

∑K
j=1 πn

j = 1 for j = 1, 2, ...,K and
n = 1, 2, ..., N , µj are the Gaussian kernel means andΣj

are the Gaussian kernel covariance matrices.
Generally, in image processing and computer vision,

we assume that, conditioned on a hidden variableZ, pix-
els X = {x1, x2, ..., xN} are independent and Gaussian-
distributed:

p(X|Z) =
K∏

j=1

N∏
n=1

N (xn|µj , Σj)zn
j , (2)

where the set ofN × K latent variables Z =
{zn

j }n=1..N,k=1..K is introduced to make inference
tractable for the model. TheZ variables are distributed
multinomially:

p(Z|Π) =
K∏

j=1

N∏
n=1

(πn
j )zn

j , (3)

where eachzn is a binary vector, withzn
j = 1 if datumn is

generated by thej-th kernel andzn
j = 0 otherwise.

Considering the set ofcontextual mixing proportionsΠ
as random variables and assuming a proper prior, we can
incorporate the intuitive fact that neighbouring pixels are
more likely to share the same class label. We assume a
Markov random field onΠ, which equivalently means that
Π is governed by a Gibbs distribution [11] generally ex-
pressed by:

p(Π) ∝
∏

C

e−ψc(Π),

whereψc is a function on cliquec, calledclique potential
function in the literature, and the product is over all minimal
cliques of the Markov random field.

In the herein proposed model, we consider clique po-
tential functions imposing local differences ofcontextual
mixing proportions to follow a univariate Student’st-
distribution.

A d-dimensional random variableX follows a multivari-
atet-distribution,X ∼ St(µ, Σ, ν), with meanµ, positive
definite, symmetric and reald× d covariance matrixΣ and
hasν ∈ [0,∞) degrees of freedom when [1], given the
weight u, the variableX has the multivariate normal dis-
tribution with meanµ and covarianceΣ/u:

X|µ,Σ, u ∼ N (µ, Σ/u), (4)

and the weightu follows a Gamma distribution parameter-
ized byν:

u ∼ G(ν/2, ν/2). (5)



Integrating out the weights from the joint density leads to
the density function of the marginal distribution:

p(x;µ, Σ, ν) =
Γ

(
ν+d

2

) |Σ|− 1
2

(πν)
d
2 Γ

(
ν
2

)
[1 + ν−1δ(x, µ; Σ)]

ν+d
2

(6)

whereδ(x, µ; Σ) = (x−µ)T Σ−1(x−µ) is the Mahalanobis
squared distance andΓ is the Gamma function [1]. It can be
shown that forν → ∞ the Student’st-distribution tends to
a Gaussian distribution with covarianceΣ. Also, if ν > 1,
µ is the mean ofX and ifν > 2, ν(ν−2)−1Σ is the covari-
ance matrix ofX. Therefore, the family oft-distributions
provides a heavy-tailed alternative to the normal family with
meanµ and covariance matrix that is equal to a scalar mul-
tiple of Σ, if ν > 2 (fig. 1)[1].

Figure 1. The Student’st-distribution for various degrees of free-
dom. Asν → ∞ the distribution tends to a Gaussian. For small
values ofν the distribution has heavier tails than a Gaussian.

Therefore, the clique potential functions are properly de-
fined in order to impose:

πn
j − πk

j ∼ St(0, β2
jd, νjd), ∀n, j, d,∀k ∈ γd(n). (7)

As it an be observed in eq. (7), we introduceK ×D dif-
ferentt-distributions, amounting to an equal number of pa-
rameter sets,{βjd, νjd}j=1..K,d=1..D. In eq. (7), D stands
for the number of a pixel’s neighbourhood adjacency types,
andγd(n) is the set of neighbours of pixel indexedn, with
respect to thedth adjacency type. In our model, we assume
4 neighbours for each pixel, and partition the corresponding
adjacency types into horizontal and vertical, thus, setting
D = 2. This variability of parameter sets aims to capture
the fact that smoothness statistics may vary along clusters
and spatial directions [14]. Therefore, the joint distribution
onΠ is given by:

p(Π; β, ν) =
D∏

d=1

K∏

j=1

N∏
n=1

∏

k∈γd(n)

St(πn
j |πk

j ;β2
jd, νjd).

(8)
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Figure 2.Graphical model for the edge preserving spatailly variant
Gaussian mixture model. Superscriptn ∈ [1, N ] denotes pixel
index, subscriptj ∈ [1, K] denotes kernel (segment) index and
d ∈ [1, D] describes the neighbourhood direction type.

Following the definition of thet-distribution in eq. (4)
and eq. (5) we introduce the latent variablesU =
{un

jd}n=1..N,j=1..K,d=1..D and the distribution of the dif-
ferences of localcontextual mixing proportionsbecomes:

πn
j − πk

j ∼ N (0, β2
jd/unk

j ),

unk
j ∼ G(νjd/2, νjd/2), ∀n, j, d, ∀k ∈ γd(n). (9)

This generative model (fig.2), apart from being tractable
using the EM algorithm, as it will be demonstrated in the
next section, allows better insight on our assumption of
Student-t cliques. Sinceunk

j depends on datum indexed
by n, each weight difference in the MRF can be described
by a different instance of a Gaussian distribution. There-
fore, asunk

j → +∞ the distribution tightens around zero,
and forces neighboringcontextual mixing proportionsto be
smooth. On the other hand, whenunk

j → 0 the distribution
tends to be uninformative, and forces no smoothness. This
is a desirable property when there exists an edge between
neighboring pixels. Thus, theU -variable maps provide a
very detailed description of the image edge structure. Fur-
thermore, they may be considered as a continuous general-
ization of the binary line-process variable idea in [2, 11].

3. Bayesian inference using MAP-EM

As shown in the graphical model in figure2, the un-
knownsΨ = {µ, Σ, β, ν} are considered asparametersand
will be estimated in the M-step of the EM algorithm that
follows. TheZ,U are hidden random variables and will
be inferred in the E-step of the same algorithm. The un-
known quantitiesΠ, although being random variables, they
are treated as parameters and are estimated in the M-step.
This is the reason we refer to this algorithm as MAP-EM
[1].



To perform model inference, the evidenceln p(X, Π;Ψ)
with respect to the model parametersΨ = {µ, Σ, β, ν} and
the contextual mixing proportionsΠ has to be optimized.
In EM terminology [7] this is the incomplete data log-
likelihood while the complete log-likelihood is expressed
by ln p(X, Π, Z, U ; Ψ). The conditional expectation of the
complete likelihood is an important quantity in EM - it is
defined as

EZ(t),U(t)|X,Π(t)

{
ln p(X, Π, Z, U ; Ψ)

}
. (10)

The E-step consists in computing the joint expectation of
the hidden variablesZ andU , with respect to current itera-
tion parametersΨ(t) wheret denotes the number of current
iteration. Observing the graphical model in fig.2, we can
see that givenX andΠ, Z andU are conditionally indepen-
dent; thereforeEZ,U |X,Π(·) = EZ|X,Π{(EU |X,Π(·)} and we
can compute these expectations separately. So we have the
updates∀n, j, d, ∀k ∈ γd(n):

<zn
j >(t)=

π
n(t)
j N (xn; µ(t)

j , Σ(t)
j )

∑K
l=1 π

n(t)
l N (xn; µ(t)

l , Σ(t)
l )

,

<unk
j >(t)= ζ

nk(t)
j /η

nk(t)
j ,

<ln unk
j >(t)= ψ(ζnk(t)

j )− ln η
nk(t)
j ,

whereψ(·) stands for the digamma function, and parame-
tersζ, η being:

ζ
nk(t)
j =

1
2

(
ν

(t)
jd + 1

)
,

η
nk(t)
j =

1
2

(
ν

(t)
jd +

(πn(t)
j − π

k(t)
j )2

β
2(t)
jd

)
.

Maximization of the current complete likelihood (10)
must be driven with respect to the model parametersΨ and
Π. With some manipulation, we can rewrite it equivalently
as

EZ|X,Π{ln p(X|Z; µ, Λ)}+ EZ|X,Π{ln p(Z|Π)}+

+EU |Π{ln p(Π|U ;β)}+ EU |Π{ln p(U ; ν)}.
In this form, parameter optimization is straightforward.

The resulting update equations make up the M-step:

µ
(t+1)
j =

∑N
n=1 <zn

j >(t) xn

∑N
n=1 <zn

j >(t)
,

Σ(t+1)
j =

∑N
n=1 <zn

j >(t) (xn − µ
(t+1)
j )(xn − µ

(t+1)
j )T

∑N
n=1 <zn

j >(t)
,

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd(n) <unk

j >(t) (πn(t)
j − π

k(t)
j )2

∑N
n=1 |γd(n)|

.

Moreover, thecontextual mixing proportionsπn
j are com-

puted as the roots of a quadratic equation:

an
j

(
π

n(t+1)
j

)2

+ bn
j

(
π

n(t+1)
j

)
+ c

n(t+1)
j = 0 (11)

with coefficients:

an
j = −

D∑

d=1

{
β
−2(t)
jd

∑

k∈γd(n)

<unk
j >(t)

}
,

bn
j =

D∑

d=1

{
β
−2(t)
jd

∑

k∈γd(n)

<unk
j >(t) π

k(t)
j

}
,

cn
j =

1
2

<zn
j >(t) .

The form of the coefficients guarantees that there is always
a real non negative solution. However, the solutions of eq.
(11) for a given pixel, indexed byn, will not in general
satisfy the constraint

∑K
j=1 πn

j = 1. In order to get proper
mixing weight vectors we perform a projection step onto
the constraints subspace using the quadratic programming
algorithm described in [3].

Finally, setting the derivative of (10) with respect to the
degrees of freedom equal to zero we obtainν

(t+1)
jd as the

solutions of the equation:

ln(ν(t+1)
jd /2)− ψ(ν(t+1)

jd /2)+

+
[∑N

n=1

∑
k∈γd(n)(<ln unk

j >(t) − <unk
j >(t))

∑N
n=1 |γd(n)|

]
+ 1 = 0

with ψ(·) being again the digamma function.

4. Experimental results

In our model, parametersU play a very important role in
the preservation of the boundaries between image regions.
The U -variable maps for thejth kernel can be considered
as the edges that separate thejth segment of the image from
the remaining segments. To demonstrate this point we show
an example in figure3. In this example, an image is seg-
mented intoK = 3 segments thus 6U -variable maps are
shown. The first row of this figure shows the original and
the segmented images. Then, moving from top to bottom,
theU -variable maps for the three image segments, namely
sky, roof and shadows, buildingare shown, respectively.
The left column highlights vertical edges and the right col-
umn underpins horizontal edges. Notice that in the second
row of figure3, where theU -variable maps for segmentsky
are shown, the edges between the segmentskyand the rest



(roof and shadows, building) are mainly highlighted. The
edges between the other segments, (roof and shadowsand
building) are mainly highlighted in the remaining two maps.
Similarly, the edges between the segmentsskyandbuilding
are not highlighted in the third row of images as theU -
variable maps forroof and shadowsare underpinned.

Figure 3.U -variable maps: The first row shows the original image
and the segmentation forK = 3 clusters; the rows below showU -
variable maps (expected values ofunk

j variables). Brighter values
represent lower values ofu. In each row, theU -variable maps
for kernel indexed byj = 1 (sky),j = 2 (roof and shadows)
and j = 3 (building), are shown respectively. The left column
corresponds tou values computed for horizontal adjacencies, and
the right column for vertical adjacencies.

In our implementation, we have used a 4-dimensional
feature vector to describe the image data. It is comprised
by theLab color space features and theBlobworldcontrast
texture descriptor as described in [5]. Prior to segmenta-
tion, each variate has been separately normalized in order
not to have dominating features. We have evaluated the pro-
posed Student’s t-based SVGMM (St-SVGMM) segmenta-
tion scheme on the 300 images of the Berkeley image data-
base [13]. We have applied our algorithm for different val-
ues of the number of segments (K = {3, 5, 7, 10, 15, 20}).
For comparison purposes, we have also experimented with
the standard GMM [1] and the GMM based segmentation
with ”standard” smoothness constraints [14] with the same

number of components.

The obtained segmentations were quantitatively evalu-
ated with two performance measures: the Rand index (RI)
[18] and the boundary displacement error (BDE) [10]. The
RI measures the consistency between the ground truth and
the computed segmentation map while the BDE measures
error in terms of boundary displacement with respect to the
ground truth. The statistics for these measures are presented
in tables1 and2.

Based on the theoretical properties of the Student’st-
model one might have expected that the St-SVGMM in-
troduced erroneous boundaries that did not agree with hu-
man segmentation. Therefore it would provide a worse RI
as compared to the ”classical” non preserving algorithm
(SVGMM) [14]. However, as observed in the statistics of
the RI (table1), the St-SVGMM outperforms the standard
GMM in all cases and the SVGMM in the overwhelming
majority of the different number of components.

Also, in terms of correct region boundary estimation, ex-
pressed by the BDE (table2), the St-SVGMM outperforms
the SVGMM, as it is theoretically expected. However, it
also outperforms standard GMM and the difference in per-
formance increases with the number of segments. The ex-
planation for this behavior is that the standard GMM since
it does not integrate a smoothing step it generally computes
correctly the boundaries between segments (it also outper-
forms the SVGMM in the same median values). However,
as the number of segments increases, the complexity of the
image cannot be captured by a simple GMM and smooth-
ness constraints that model the image edge structure be-
come increasingly beneficial.

Overall, the St-SVGMM not only preserves region
boundaries but also improves the correct classification rates
with respect to the standard methods. Some representative
segmentation examples are shown in figure4.

5. Conclusion

In this paper a segmentation algorithm based on clus-
tering with GMM is proposed. The main novelty of this
work is a smoothness prior which apart from constraining
adjacent pixel to belong in the same cluster captures the im-
age edge structure. Thus, it does not enforce smoothness
across segment boundaries. Another important feature of
the herein proposed segmentation algorithm is that all re-
quired parameters are estimated from the data. Thus, this
algorithm isautomaticand does not require empirical para-
meter selection like many recent state-of-the-art segmenta-
tion algorithms. An important perspective of this study is
to automatically estimate the number of componentsK. To
this end, criteria appropriate to constrained mixtures could
be conceived.



Figure 4. Segmentation examples using the proposed edge preserving spatially variant mixture. From left to right, the columns show: the
original image, segmentation withK = 5, K = 10 andK = 15 kernels.

Table 1.Statistics on the Rand Index (RI) over the 300 images of the Berkeley image data base for the compared methods. Higher values
represent better segmentations.

GMM SVGMM St-SVGMM
K Mean Median St. dev. K Mean Median St. dev. K Mean Median St. dev.
3 0.6754 0.6796 0.0853 3 0.6860 0.6902 0.0851 3 0.6871 0.6911 0.0857
5 0.7101 0.7346 0.1025 5 0.7175 0.7451 0.1071 5 0.7183 0.7460 0.1071
7 0.7171 0.7528 0.1191 7 0.7228 0.7589 0.1214 7 0.7233 0.7586 0.1212
10 0.7166 0.7590 0.1329 10 0.7209 0.7598 0.1355 10 0.7209 0.7592 0.1357
15 0.7125 0.7545 0.1431 15 0.7159 0.7579 0.1465 15 0.7157 0.7589 0.1469
20 0.7092 0.7489 0.1473 20 0.7062 0.7452 0.1529 20 0.7110 0.7525 0.1524



Table 2.Statistics on boundary displacement error (BDE) over the 300 images of the Berkeley image data base for the compared methods.
Lower values represent better segmentations.

GMM SVGMM St-SVGMM
K Mean Median St. dev. K Mean Median St. dev. K Mean Median St. dev.
3 4.7893 4.1636 2.3856 3 4.7870 4.2057 2.3967 3 4.7633 4.2109 2.3820
5 4.3862 3.7571 2.1734 5 4.3938 3.8141 2.1745 5 4.3666 3.7939 2.1713
7 4.2438 3.7077 2.0950 7 4.2118 3.6831 2.0554 7 4.1902 3.6451 2.0556
10 4.1370 3.6025 2.0088 10 4.0963 3.5038 1.9863 10 4.0929 3.4969 2.0033
15 4.0996 3.6353 1.9760 15 4.0341 3.5036 1.9401 15 4.0119 3.4486 1.9345
20 4.1283 3.6784 2.0110 20 4.1913 3.6549 1.9084 20 4.0049 3.4735 1.9286
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