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Abstract. In this paper, we present a novel Bayesian model for manifold
learning, suitable for data that are comprised of multiple modes of obser-
vations. Our data are assumed to be lying on a non-linear, low-dimensional
manifold, modelled as a locally linear structure. The manifold local struc-
ture and the manifold coordinates are latent stochastic variables that are
estimated from a training set. Through the use of appropriate prior dis-
tributions, neighbouring points are constrained to have similar manifold
coordinates as well as similar manifold geometry. A single set of latent
coordinates is learned, common for all views. We show how to solve the
model with variational inference. We also exploit the multiview aspect of
the proposed model, by showing how to estimate missing views of unseen
data. We have tested the proposed model and methods on medical imag-
ing data of the OASIS brain MRI dataset [6]. The data are comprised of
four views: two views that correspond to clinical scores and two views that
correspond to hippocampus shape extracted from the OASIS MR images.
Our model is successfully used to map the multimodal data to probabilis-
tic embedding coordinates, as well as estimate missing clinical scores and
shape information of test data.

1 Introduction

Using low-dimensional structures to model data is a widely used and studied
practice in the context of a vast range of problems. Methods that deal with
low-dimensional modeling may assume either a linear or a non-linear structure
of data. Linear models like principal component analysis (PCA), are naturally
simpler and more straightforward in their application. Non-linear models on
the other hand, allow a more accurate and flexible representation of the data
structure. A wealth of models exists for non-linear dimensionality reduction, or
otherwise known as (non-linear) manifold learning [4].

Manifold modeling techniques typically treat data and model parameters as
deterministic (in the sense of being non-probabilistic). The linear PCA algo-
rithm, as well as the closely related canonical correlation analysis (CCA), have
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been shown to be expressible as equivalent probabilistic models [1,2]. In terms
of probabilistic PCA/CCA, the latent variable acts as an embedding coordinate
vector. In [1], a graphical model was introduced that was proved to be equivalent
to CCA. Both models can be solved with Expectation-Maximization (EM) [2].
Interestingly, in both probabilistic models a single set of normally distributed
latent variables is defined, while they differ in that probabilistic CCA defines
two, instead of a single one, sets of observed variables (views in CCA parlance)
and two sets of projections from the common latent space to the view spaces.

Non-linear manifold learning schemes are typically deterministic in the way
they treat data and parameters, with few extensions to probabilistic models.
One exception to this rule is the recently proposed locally linear latent vari-
able model (LL-LVM) [7]. LL-LVM employs a probabilistic graphical model to
describe observations, manifold coordinates and tangents [7]. The manifold is
defined in terms of a patchwork of locally linear subspaces, that are represented
using the tangent space to each point. The model is solved with standard vari-
ational inference (VI) [2]. LL-LVM is closely related to the Gaussian Process
Latent Variable Model (GP-LVM) [5].

Manifold modeling has been extensively used in medical imaging in the recent
years [4,10]. In [4], manifolds are learned on sets of brain structural MR images.
New brain images are projected onto the manifold and a regression model is
proposed, linking the MRI structure with subject clinical scores. In [10], an
embedding is learned over brain MRIs that is used for atlas propagation. Regis-
tering one image to another is broken down to a set of subsequent registrations,
following the shortest path over the learned manifold.

In this paper, we present a novel Bayesian model for manifold learning that
can handle multiple observed views. Views here are to be understood as different
sets of observations or different modes of measurements per observed datum,
with each view typically having different dimensionality and statistics. This setup
is in contrast to standard manifold learning techniques that typically assume a
single source of observations and a non-probabilistic setup. In the same way that
probabilistic CCA can be viewed as probabilistic PCA with multiple outputs
[1], hence generalizing linear manifold learning to multiple views, the current
model extends the LL-LVM model of [7]. Under this consideration we name
the proposed model multiview locally linear latent variable model (MLL-LVM),
underpinning its relation with LL-LVM. The proposed model is solved using
variational inference. We show that a set of useful operations like out-of-sample
extensions, predicting missing views, and generating new observations given the
embedding coordinates, are all naturally defined in terms of the Bayesian model.

In a nutshell, from a theoretical point of view the novel characteristics of the
proposed model compared to LL-LVM [7] are: (a) An extension of the model
to handle more than a single view/mode of observation, (b) derivation of VI
updates for the extended model and (c) derivation of the required formulae to
estimate missing views given observed views. Note that the latter point is only
compatible with the present model and not with LL-LVM or other single-view
models, since it applies only to a scenario where we have more than one view.
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The proposed model is successfully applied in a medical imaging context,
where various shape data and clinical ratings from a set of Alzheimer’s Disease
(AD) and controls are used to learn common latent manifold coordinates. Brain
MR images are used to extract shape information about subject left and right
hippocampi, which alongside clinical scores make up the set of observed views.
All views, despite being heterogenous and following different statistics, are hence
treated in a unified manner with our model. Also importantly, all estimates (out-
of-sample coordinates, missing views) are computed in the form of posterior
probability density functions, since the model is fully Bayesian.

The remainder of this paper is structured as follows. In Sect. 2, we present the
proposed multi-view Bayesian model, we show how to solve it using variational
inference, and show how to estimate missing views. In Sect. 3, we train our model
on the OASIS data set and estimate unknown clinical scores and hippocampus
shapes given the observed subject views. In Sect. 4, we discuss final conclusions
and thoughts about the perspective of the proposed work.

2 Methods

The basis of the proposed method is a novel Bayesian model, trained on a set
multimodal data of N observations and V views. After training, the model can
be used on new data in order to estimate one or more of their views that may be
missing. In this section, we present the proposed observational model, we show
how to solve it with VI, and derive the formulae required to predict missing
views.

2.1 Generative Model

Observed data: The input to our model is a set of observations y and a graph G.
Each observation yn of the observation set y is itself a set of V observed views
yn = {yn

1 , yn
2 , · · · , yn

V }, with each view being a set of elements with corresponding
per-view dimensionality dy1, dy2, · · · , dyV . N observed elements correspond to
each of the V views, and for view v we have {y1

v , y2
v , · · · , yN

v }.
The graph G contains one node for each observation, and an edge exists

between nodes (n,m) if and only if yn and ym are neighbours. A symmetric N×N
adjacency matrix G corresponds to the graph structure of G, with G=[ηnm]. Ele-
ment [ηnm]n=1..N,m=1..N is equal to one if observations n and m are neighbours,
otherwise it is zero.

In the assumed application context, each patient appears as a single obser-
vation yn for the model, and each view corresponds to a different type of mea-
surement for the patient. For example, for the nth patient, yn

1 may contain brain
MRI T1 data, yn

2 a scalar clinical rating and yn
3 a brain connectogram. Patients

that are similar enough with respect to the available measurements are recorded
as neighbours in G.

The graphical representation for the proposed generative model can be exam-
ined in Fig. 1. Note that a single set of embedding coordinates x are defined,
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Fig. 1. The graphical model for the proposed MLL-LVM. V views are assumed for
N observed data points. The latent variables x are embedding coordinates, common
for all views. Latent variables C model the relation of the embedding coordinates x
with each separate observed view. G is the fixed neighbourhood structure. γ and α are
deterministic parameters that control the form of the likelihood function and the form
of the prior on latent embedding coordinates respectively.

common for all views, while manifold geometry C and observations y are view-
specific. In terms of the graphical model, this is the basic difference between the
proposed model and LL-LVM [7]. The latter can be seen as a special case of our
model, for V = 1.

Assumed distributions and relations with latent variables: Embedding coordi-
nates can be concatenated to a single vector x = [x1T x2T · · · xNT ]T , where
x ∈ RdxN . The prior on latent variables x constraints elements that are neigh-
bours to have embedding coordinates that lie close to each other:

log p(x|G,α) = −1
2

N∑

n=1

(α‖xn‖2 +
N∑

m=1

ηnm‖xn − xm‖2) + const. (1)

The set of linear projections that correspond to the vth view can be concate-
nated to a single matrix Cv = [C1

vC2
v · · · CN

v ], where Cv ∈ Rdyv×dxN . For all sets
of linear maps Cv, a prior is defined that constrains neighbouring maps to be
close to each other in the sense of the Frobenius norm:

log p(Cv|G) = − ε

2
‖

N∑

n=1

Cn
v ‖2F − 1

2

N∑

n=1

N∑

m=1

ηnm‖Cn
v − Cm

v ‖2F + const. (2)

where ε is set to a constant, small value. Local manifold tangents of neighbouring
points are equivalently constrained to be similar, favouring smooth solutions with
low-curvature for all views.

Observed views are assumed to be conditionally independent given x. Hence
the model likelihood is defined as the sum of V terms, each corresponding to a
different view:
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log p(y|C, x, γ,G) =
V∑

v=1

log p(yv|Cv, x, γv, G) (3)

where γ = γ1, γ2, · · · , γV is a set of scale parameters. The log-likelihood compo-
nent specific to each view is given by:

log p(yv|Cv, x, γv, G) = − ε

2
‖

N∑

n=1

y
n
v ‖2 − 1

2

N∑

n=1

N∑

m=1

η
nm

γv‖Δ
m,n
yv

− C
n
v Δ

m,n
x ‖2

+ const. (4)

where Δm,n
x = xm −xn and Δm,n

yv
= ym

v −yn
v . The double-summation term in the

above equation encodes the assertion that Cn
v Δm,n

xv
≈ Δm,n

yv
, or that the assumed

manifolds are locally linear.
Following [7], it is straightforward to show that x and yv ∀v ∈ [1..V ] are

normally distributed, and Cv ∀v ∈ [1..V ] follow the matrix-normal distribution.
More specifically,

x|G,α ∼ N (0, Σ0
x), (5)

Cv|G ∼ MN (0, Idyv
, Σ0

Cv
),∀v ∈ [1..V ], (6)

yv|Cv, x, γv, G ∼ N (μ0
yv

, Σ0
yv

),∀v ∈ [1..V ], (7)

where for Σ−1
x = αIdxN + 2L ⊗ Idx

and L = diag(G1N ) − G is the graph
Laplacian matrix of G. The prior covariance Σ0

C
−1 = εJJT + 2L ⊗ Idx

is the
same for all view distributions. The likelihood parameters are Σ0

yv

−1 = (ε1N1T
N +

2γvL) ⊗ Idyv
, μ0

yv
= Σ0

yv
ev, where ev = [e1T

v , e1T
v , · · · , eNT

v ]T ∈ RdyvN , en
v =

−∑N
m=1 ηmnγv(Cm

v + Cn
v )Δm,n

x .

2.2 Solution with Variational Inference

Solving the model amounts to calculating the posterior distributions for the
shared coordinates x and the sets of linear projections Cv,∀v ∈ [1..V ], as well
as the non-stochastic parameters {γv}V

v=1 and α. As an exact calculation of the
posterior is intractable, we employ variational inference [2] to approximate it.
In VI, the model is solved by iterating between optimizing the Kullback-Leibler
divergence KL(q||p) of the posterior estimate q and the actual posterior p, and
optimizing a lower bound L of the model likelihood. In our model, the variational
lower bound L is defined as

L(q, C, x, γ, α) =
∫

C,x

q(C, x) log
p(y, C, x|G, γ, α)

q(C, x)
dCdx. (8)

According to VI theory, the posteriors of the latent variables are estimated
by taking expectations of the model joint distribution, in our case p(C, x|G, γ, α),
over all latent variables except the one that is being computed. Formally, for the
approximate posteriors q∗(x), q∗(C1), q∗(C2), · · · , q∗(CV ) we have

log q∗(x) =<log p(y, C, x|G, γ, α)>C +const. (9)
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log q∗(Cv) =<log p(y, C, x|G, γ, α)>x,C1,··· ,Cv−1,Cv+1,··· ,CV +const., ∀v ∈ [1..V ] (10)

Key to model tractability with VI is the fact that the log-likelihood term
(Eq. 4) can be written as a quadratic function in both x and C. More specifically,

log p(y|C, x, γ,G) = −1
2
[xT {

V∑

v=1

Av}x − 2xT {
V∑

v=1

bv}] + Zx, (11)

= −1
2

V∑

v=1

Tr[ΓvCT
v Cv − 2γvCT

v H] + ZC (12)

where we followed [7] in a related calculation, and Zx,ZC contain terms not
depending on x or C respectively. Matrix Av is of size Ndx × Ndx and bv is of
size Ndx ×1. Matrix Γv is of size Ndx ×Ndx. Hence all priors x, C1, C2, · · · , CV

are conjugate to the likelihood and VI is tractable.
Variational E step update of q(x): Equation (9) can be further decomposed

to
log q∗(x) =<log p(y|C, x, γ,G)>C + log p(x|G,α) + const.

= −1
2

V∑

v=1

[xT Avx − 2xT bv] − 1
2
[xT Σ−1(0)

x ] + const.

where we have used Eqs. (5) and (11). As the non-constant terms are quadratic in
x, the approximate posterior of x is Gaussian. Thus we have q∗(x) = N (x|μx, Σx)
with

Σ−1
x = Σ−1(0)

x +
V∑

v=1

<Av>Cv
, (13)

μx =<x>= Σx

V∑

v=1

<bv>Cv
. (14)

We also calculate the expectation <xxT>, useful for some later updates,

<xnxmT>= Σnm
x + <xn><xm>T , (15)

where Σnm
x is the (n,m)th chunk of size dx ×dx of this matrix. Expectations for

Av and bv can be derived following a related calculation in [7]. We show updates
for all dx × dx-sized chunks of the Ndx × Ndx-sized matrix Av, and updates for
all dx-sized chunks of the Ndx-sized matrix bv:

<Anm
v >Cv

= γ2
v

N∑

p=1

N∑

q=1

{[L̂pq
v − L̂pm

v − L̂nq
v + L̂nm

v ]ηpnηqm

× <CpT
v Cq

v + CpT
v Cm

v + CnT
v Cq

v + CnT
v Cm

v >Cv
}, (16)

<bn
v>Cv

= γv

N∑

m=1

ηnm{<Cm
v >T (yn

v − ym
v )− <Cn

v >T (ym
v − yn

v )}, (17)
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where the quantity L̂v for each v is equal to (ε11T + 2γvL)−1.
Variational E step update of q(Cv), v ∈ [1..V ]: We decompose Eq. (10) as:

log q∗(Cv) = −1
2

V∑

v=1

Tr[ΓvCT
v Cv −2γvCT

v H]+MN (0, Idyv
, Σ0

C)+const., (18)

where we wrote the likelihood function in terms of Cv using Eq. (12). The approx-
imate posterior distribution for the vth view projection matrix Cv can thus be
written as a matrix normal distribution q∗(Cv) = MN (μCv

, Idyv
, ΣCv

) with

Σ−1
Cv

= Σ
−1(0)
Cv

+ <Γv>x, (19)

<CnT
v Cm

v >x=<Cn
v >T

x <Cm
v >x +dyΣnm

Cv
, (20)

where Σnm
Cv

is the (n,m)th chunk of size dx × dx, and Cn
v is the nth chunk of the

respective matrices. Also,

μCv
=<Cv>x= γ <Hv>x ΣCv

. (21)

Finally, expectations for quantities Γv and Hv are given as:

<Γnm
v >x= γ2

v

N∑

p=1

N∑

q=1

{[L̂pq
v − L̂pm

v − L̂nq
v + L̂nm

v ]ηpnηqm

× <xpxqT − xpxmT − xnxqT + xnxmT>x}, (22)

<Hn
v >x=

N∑

m=1

ηnm(ym
v <xm>T

x −ym
v <xn>T

x −ym
v <xm>T

x +ym
v <xn>T

x ).

(23)
Variational M step update of α, γv, ∀v ∈ [1..V ]: In the maximization step we
optimize the variation lower bound with respect to non-stochastic parameters α
and γv, ∀v ∈ [1..V ]. The update of α is identical to the one for the single-view
case [7]. The update for γv is similar to the update for γ of [7], save that for
each view it is now calculated over yv and the statistics of Cv instead of y and
C respectively.

We alternate the aforementioned E-step updates for the approximate poste-
rior of x (Eqs. 13–17), the approximate posterior of C (Eqs. 19–23) and M-step
updates until convergence.

2.3 Estimation of Missing Views for New Data

Given a previously unseen datum ynew for which only part of all the V views are
observed, we can use the trained model to estimate the missing views. In order
to do this, first we add the new datum to the training set and re-compute the
E-step for the new datum only, keeping posteriors for the original trained data
and deterministic parameters fixed. The new observation is added to the previous
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graph structure by computing its nearest neighbours. Using the E-step equations
gives us an estimate of the posterior distributions q(xnew) and q(Cnew) for the
new datum. These steps let us effectively project the new observation onto the
manifold, a process known in the literature as out-of-sample projection [7].

The set of missing views v̂ of ynew are treated also as latent variables,
for which we require their approximate posterior distribution q(y). Hence the
joint posterior now also includes q({ynew

v }v∈v̂), decomposed using the mean field
approximation [2] into {q(ynew

v )}v∈v̂. In order to estimate the posterior for miss-
ing view v, we compute the expectation of the model evidence. This is formally
written as

logq∗(ynew
v ) =<logp(yv, Cv, x|G, γv, α)>x,Cv

+const. (24)

The above equation, combined with the likelihood formula (Eq. 4), where we have
kept all observations fixed except ynew, gives a posterior Normal distribution
N (ynew

v |mnew
v , Snew

v ) with statistics given by

Snew
v = (2γv

N∑

m=1

ηm,new + ε)−1Idyv
(25)

m
new
v = S

new
v (2γv

N∑

m=1

{η
m,new

[y
n
+ 1/2(<C

new
v > + <C

m
v >) <Δ

new,m
x >]} − ε

2

N∑

m=1

y
m
v ) (26)

In summary, in order to estimate the missing views of an unseen datum ynew

we iterate through the E- step updates for the approximate posterior of xnew

(Eqs. 13–17), the approximate posterior of Cnew (Eqs. 19–23) and the approxi-
mate posterior for ynew (Eqs. 25 and 26), keeping fixed the deterministic model
parameters and all other point posteriors 1.

3 Experiments

3.1 Dataset

We have experimented with data from the OASIS database [6]. In our evaluation
we have included the 198 subjects aged 60 or more found in the cross-sectional
set of OASIS. 100 of these subjects have been diagnosed with very mild to
moderate AD. The rest of the subjects are used as controls. We have used in total
4 views/modes for each subject. The two first views are the clinical scores Mini-
mental State Exam (MMSE) and Clinical Dementia Rating (CDR). The other
two views correspond to shape information for the left and the right hippocampus
of each subject respectively. The volumetric characteristics of the hippocampus
are known to be correlated with the advance of AD [9].

In order to create the shape views, we have first segmented the OASIS T1-
modulated MR images with Freesurfer [3]. We have then computed deformation
1 MATLAB code that implements training and missing view estimation using the
presented model is available at https://github.com/sfikas/mll-lvm/.

https://github.com/sfikas/mll-lvm/
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fields for each volume, given as the output of matching with an in-set template
image. The template, one for each hippocampus, was chosen as the medoid image
within the sets of left and right hippocampi. The medoid was taken with respect
to a distance metric that is analogous to the total magnitude of the deformation
field required to perform a matching non-rigid deformation between volumes [4].
Deformation fields are subsampled to 25% of the original length of each axis,
resulting in 11× 15× 8 and 12× 14× 9-sized fields of R3 vectors. These volumes
are further vectorized into descriptors of 3960 and 4536 dimensions respectively.

We partitioned our dataset into a training set and a test set. The training
set was used to learn the parameters of our model, and the test set was used
to evaluate the model. We assigned the first 80% of the data (first in the sense
of lexicographical OASIS id order) to the training set, and the rest to the test
set. Mean clinical scores for both training and test differ by less than 10−2

(CDR) and 0.5 (MMSE) to the respective statistics of the full set (CDR = 0.2
and MMSE= 27 respectively).

3.2 Experimental Setup

Before proceeding to any tests we computed the neighbourhood structure G. To
this end, a distance ζnm for all pairs of subjects (n, m) in the training set was first
calculated. This distance fusions view-specific distances are ζnm =

∑V
v=1 ζnm

v .
The view-specific distances are Euclidean distances over normalized view data.
We computed embeddings with dx = 2, which can be examined in Fig. 2, along
with an overlay of clinical score values.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

Fig. 2. Computed embedding given clinical score and shape information of the training
data (N = 158 subjects). Approximate posterior mean values for x are shown, per
subject. Point colours correspond to (a) CDR scores (b) MMSE scores. (Color figure
online)

Estimating clinical scores given shape data: In the first experiment, we assumed
that only shape information (views 3 and 4) was known for the test set subjects. For
each test subject, we estimate the posterior distribution of its clinical scores (views
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Table 1. Clinical score estimation given hippocampus shape data. We show the
moments of the Gaussian posterior distribution of the clinical scores (mean ±
st.deviation) for all the 40 test set subjects. Significant statistical correlation is reported
between estimate means and ground truth for both CDR and MMSE (bottom row).

OASIS id CDR MMSE

Estimate Actual Estimate Actual

Control subjects

363 0.16 ± 0.32 0.00 28.3 ± 4.0 30.0

365 0.41 ± 0.32 0.00 24.4 ± 4.0 30.0

369 0.23 ± 0.05 0.00 27.3 ± 0.7 28.0

371 0.22 ± 0.07 0.00 27.6 ± 0.9 30.0

373 0.16 ± 0.32 0.00 28.4 ± 4.0 30.0

374 0.16 ± 0.32 0.00 28.3 ± 4.0 29.0

380 0.16 ± 0.32 0.00 28.3 ± 4.0 29.0

382 0.16 ± 0.32 0.00 27.8 ± 4.0 28.0

388 0.27 ± 0.09 0.00 26.8 ± 1.1 29.0

390 0.16 ± 0.32 0.00 27.3 ± 4.0 28.0

398 0.21 ± 0.10 0.00 27.9 ± 1.2 29.0

399 0.41 ± 0.32 0.00 26.9 ± 4.0 29.0

400 0.23 ± 0.07 0.00 27.0 ± 0.8 30.0

402 0.22 ± 0.11 0.00 27.4 ± 1.3 29.0

404 0.18 ± 0.10 0.00 28.0 ± 1.2 28.0

405 0.16 ± 0.32 0.00 28.4 ± 4.0 30.0

411 0.41 ± 0.32 0.00 27.4 ± 4.0 26.0

AD subjects

418 0.66 ± 0.32 1.00 20.8 ± 4.0 20.0

422 0.16 ± 0.09 0.50 27.8 ± 1.1 29.0

423 0.16 ± 0.32 0.50 26.3 ± 4.0 18.0

424 0.28 ± 0.23 1.00 25.9 ± 2.8 15.0

425 0.41 ± 0.13 1.00 26.1 ± 1.6 22.0

426 0.24 ± 0.19 0.50 28.0 ± 2.3 24.0

428 0.66 ± 0.32 1.00 24.4 ± 4.0 29.0

430 0.41 ± 0.32 0.50 23.4 ± 4.0 25.0

432 0.67 ± 0.32 0.50 26.3 ± 4.0 30.0

438 0.16 ± 0.32 1.00 27.9 ± 4.0 23.0

440 0.32 ± 0.10 0.50 27.4 ± 1.2 29.0

441 0.18 ± 0.10 0.50 27.7 ± 1.2 28.0

445 0.29 ± 0.23 1.00 28.3 ± 2.8 20.0

446 0.41 ± 0.32 1.00 24.8 ± 4.0 23.0

447 0.41 ± 0.32 1.00 22.3 ± 4.0 17.0

449 0.23 ± 0.12 0.50 27.0 ± 1.5 26.0

451 0.32 ± 0.19 0.50 26.0 ± 2.3 27.0

452 0.41 ± 0.32 0.50 28.4 ± 4.0 29.0

453 0.41 ± 0.32 0.50 26.4 ± 4.0 24.0

454 0.16 ± 0.32 0.50 28.4 ± 4.0 27.0

455 0.25 ± 0.19 1.00 27.9 ± 2.3 22.0

456 0.16 ± 0.23 0.50 28.1 ± 2.8 29.0

457 0.16 ± 0.32 0.50 27.9 ± 4.0 23.0

r p-value r p-value

corr.coeff. 0.43 0.006 0.44 0.004
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Left hippocampus Right hippocampus Right hippocampus
reconstruction

id 363
(control subject)

id 428
(probable AD patient)

Fig. 3. Estimation of the right hippocampus given the left hippocampus shape data.
We show reconstructions for a probable AD patient as well as for a control subject.
Left column: Left hippocampus shapes on which the estimate is conditioned. Middle
column: Right hippocampus ground truth data, shown here for comparison. Right
column: Right hippocampus posterior mean, calculated with the proposed algorithm.

1 and 2), using the method described in Sect. 2.3. In order to fit the new datum onto
the neighbourhood structure G, we assigned neighbours according to a distance
threshold chosen so that the mean number of neighbours is closest to k = 5. Data
without neighbours are assigned their nearest neighbour to their neighbourhood.

We can see an overview of the results in Table 1. Note that all estimates
are computed as posterior probability density functions. The moments of the
posterior Gaussians are reported for all test set subjects, alongside with the
ground truth values. The correlation coefficient between estimate mean values
and ground truth is also computed. The results clearly indicate that there is sta-
tistically significant correlation between estimates and actual values. This result
agrees with the fact, known from the related literature, that hippocampus shape
and the progression of neurogenerative diseases such as AD are correlated [4],
hence validating the usefulness of the proposed MLL-LVM model. Furthermore,
our results come all in the form of pdfs, measuring estimation uncertainty in a
natural and principled manner, in line with the model assumptions.

Estimating shape data given shape data: We have experimented with using the
proposed model to calculate an estimate of missing shape data given existing
shape data. To this end, we have trained our model with the set of left and
right hippocampus shape data. We have assumed that the test set now contains
information only about the left hippocampus. In other words, for the 40 images
of the test we now assume only the right hippocampus shape view as available,
while the left hippocampus shape is missing. We have calculated posterior dis-
tribution approximations of the right hippocampus shape given the model and
the observed test left hippocampus. We show visual results in Fig. 3. The results
show that the estimate right hippocampus is reasonably similar to the ground
truth right hippocampus. Again, estimates are computed in the form of pdfs.
Here however we show only mean volumes, due to visualization constraints.
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4 Conclusion

We have presented a novel Bayesian model for manifold learning, and tested it on
a set of medical data. The model assumes that observed values are comprised of
a number of heterogenous views. The solution has been shown to be feasible with
approximate inference. The proposed model also allows new test data to have
one or more of their views missing; we have shown how to compute estimates
of these views, in a manner that is consistent with the definition of model. All
estimates are computed in the form of posterior probability distributions.

In perspective, the model can be used with any number and combination of
modes. Other imaging modalities could be used as modes, or other descriptors
that characterize other parts of the brain. Extensions of the probabilistic model
could also be considered. For example, replacing the binary neighbourhood graph
with a more flexible alternative could be envisaged, in the spirit of the continuous
line process model of [8].

References

1. Bach, F.R., Jordan, M.I.: A probabilistic interpretation of canonical correlation
analysis. Technical Report 688, Department of Statistics, University of California,
Berkeley (2005)

2. Bishop, C.M.: Pattern Recogn. Mach. Learn. Springer, New York (2006)
3. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)
4. Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S., Whitaker, R.: Alzheimers disease

neuroimaging initiative: manifold modeling for brain population analysis. Med.
Image Anal. 14(5), 643–653 (2010)

5. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high
dimensional data. Adv. Neural Inf. Process. Syst. 16(3), 329–336 (2004)

6. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner,
R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in
young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci.
19(9), 1498–1507 (2007)

7. Park, M., Jitkrittum, W., Qamar, A., Szabó, Z., Buesing, L., Sahani, M.: Bayesian
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