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Abstract

This article presents a selective survey of algorithms for the offline detection of
multiple change points in multivariate time series. A general yet structuring
methodological strategy is adopted to organize this vast body of work. More
precisely, detection algorithms considered in this review are characterized by
three elements: a cost function, a search method and a constraint on the num-
ber of changes. Each of those elements is described, reviewed and discussed
separately. Implementations of the main algorithms described in this article are
provided within a Python package called ruptures.
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1. Introduction

A common task in signal processing is the identification and analysis of
complex systems whose underlying state changes, possibly several times. This
setting arises when industrial systems, physical phenomena or human activity
are continuously monitored with sensors. The objective of practitioners is to
extract from the recorded signals a posteriori meaningful information about the
different states and transitions of the monitored object for analysis purposes.
This setting encompasses a broad range of real-world scenarios and a wide va-
riety of signals.

Change point detection is the task of finding changes in the underlying model
of a signal or time series. The first works on change point detection go back
to the 50s [1, 2]: the goal was to locate a shift in the mean of independent
and identically distributed (iid) Gaussian variables for industrial quality con-
trol purposes. Since then, this problem has been actively investigated, and is
periodically the subject of in-depth monographs [3–6]. This subject has gen-
erated important activity in statistics and signal processing [7–9] but also in
various application settings such as speech processing [10–13], financial analy-
sis [7, 14, 15], bio-informatics [16–24], climatology [25–27], network traffic data
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Figure 1: Flowchart of a study scheme, for gait analysis.

analysis [28, 29]. Modern applications in bioinformatics, finance, monitoring
of complex systems have also motivated recent developments from the machine
learning community [18, 30, 31].

Let us take the example of gait analysis, illustrated on the flowchart dis-
played on Figure 1. In this context, a patient’s movements are monitored with
accelerometers and gyroscopes while performing simple activities, for instance
walking at preferred speed, running or standing still. The objective is to objec-
tively quantify gait characteristics [32–36]. The resulting signal is described as
a succession of non-overlapping segments, each one corresponding to an activity
and having its own gait characteristics. Insightful features from homogeneous
phases can be extracted if the temporal boundaries of those segments are iden-
tified. This analysis therefore needs a preliminary processing of the signals:
change point detection.

Change point detection methods are divided into two main branches: online
methods, that aim to detect changes as soon as they occur in a real-time setting,
and offline methods that retrospectively detect changes when all samples are
received. The former task is often referred to as event or anomaly detection,
while the latter is sometimes called signal segmentation.

In this article, we propose a survey of algorithms for the detection of multiple
change points in multivariate time series. All reviewed methods presented in
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this paper address the problem of offline (also referred to as retrospective or a
posteriori) change point detection, in which segmentation is performed after the
signal has been collected. The objective of this article is to facilitate the search
of a suitable detection method for a given application. In particular, focus is
made on practical considerations such as implementations and procedures to
calibrate the algorithms. This review also presents the mathematical properties
of the main approaches, as well as the metrics to evaluate and compare their
results. This article is linked with a Python scientific library called ruptures

[37], that includes a modular and easy-to-use implementation of all the main
methods presented in this paper.

2. Background

This section introduces the main concepts for change point detection, as well
as the selection criteria and the outline of this review.

2.1. Notations

In the remainder of this article, we use the following notations. For a given
signal y = {yt}Tt=1, the (b−a)-sample long sub-signal {yt}bt=a+1 (1 ≤ a < b ≤ T )
is simply denoted ya..b; the complete signal is therefore y = y0..T . A set of
indexes is denoted by a calligraphic letter: T = {t1, t2, . . . } ⊂ {1, . . . , T}, and
its cardinal is |T |. For a set of indexes T = {t1, . . . , tK}, the dummy indexes
t0 := 0 and tK+1 := T are implicitly available.

2.2. Problem formulation

Let us consider a multivariate non-stationary random process y = {y1, . . . , yT }
that takes value in Rd (d ≥ 1) and has T samples. The signal y is assumed to be
piecewise stationary, meaning that some characteristics of the process change
abruptly at some unknown instants t∗1 < t∗2 < · · · < t∗K∗ . Change point detection
consists in estimating the indexes t∗k. Depending on the context, the number
K∗ of changes may or may not be known, in which case it has to be estimated
too.

Formally, change point detection is cast as a model selection problem, which
consists in choosing the best possible segmentation T according to a quantitative
criterion V (T , y) that must be minimized. (The function V (T , y) is simply
denoted V (T ) when it is obvious from the context that it refers to the signal
y.) The choice of the criterion function V (·) depends on preliminary knowledge
on the task at hand.

In this work, we make the assumption that the criterion function V (T ) for
a particular segmentation is a sum of costs of all the segments that define the
segmentation:

V (T , y) :=

K∑
k=0

c(ytk..tk+1
) (1)

3
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Figure 2: Typology of change point detection methods described in this article. Reviewed
algorithms are defined by three elements: a cost function, a search method and a constraint
(on the number of change points).

where c(·) is a cost function which measures goodness-of-fit of the sub-signal

ytk..tk+1
= {yt}tk+1

tk+1 to a specific model. The “best segmentation” T̂ is the
minimizer of the criterion V (T ). In practice, depending on whether the number
K∗ of change points is known beforehand, change point detection methods fall
into two categories.

• Problem 1 : known number of changes K. The change point detec-
tion problem with a fixed number K of change points consists in solving
the following discrete optimization problem

min
|T |=K

V (T ). (P1)

• Problem 2 : unknown number of changes. The change point detec-
tion problem with an unknown number of change points consists in solving
the following discrete optimization problem

min
T

V (T ) + pen(T ) (P2)

where pen(T ) is an appropriate measure of the complexity of a segmenta-
tion T .

All change point detection methods considered in this work yield an exact
or an approximate solution to either Problem 1 (P1) or Problem 2 (P2), with
the function V (T , y) adhering to the format (1).

2.3. Selection criteria for the review

To better understand the strengths and weaknesses of change point detection
methods, we propose to classify algorithms according to a comprehensive ty-
pology. Precisely, detection methods are expressed as the combination of the
following three elements.

• Cost function. The cost function c(·) is a measure of “homogeneity”.
Its choice encodes the type of changes that can be detected. Intuitively,
c(ya..b) is expected to be low if the sub-signal ya..b is “homogeneous”
(meaning that it does not contain any change point), and large if the
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sub-signal ya..b is “heterogeneous” (meaning that it contains one or sev-
eral change points).

• Search method. The search method is the resolution procedure for the
discrete optimization problems associated with Problem 1 (P1) and Prob-
lem 2 (P2). The literature contains several methods to efficiently solve
those problems, in an exact fashion or in an approximate fashion. Each
method strikes a balance between computational complexity and accuracy.

• Constraint (on the number of change points). When the number of
changes is unknown (P2), a constraint is added, in the form of a complexity
penalty pen(·) (P2), to balance out the goodness-of-fit term V (T , y). The
choice of the complexity penalty is related to the amplitude of the changes
to detect: with too “small” a penalty (compared to the goodness-of-fit)
in (P2), many change points are detected, even those that are the result of
noise. Conversely, too much penalization only detects the most significant
changes, or even none.

This typology of change point detection methods is schematically shown on
Figure 2.

2.4. Limitations

The described framework, however general, does not encompass all pub-
lished change point detection methods. In particular, Bayesian approaches are
not considered in the remainder of this article, even though they provide state-
of-the-art results in several domains, such as speech and sound processing. The
most well-known Bayesian algorithm is the Hidden Markov Model (HMM) [38].
This model was later extended, for instance with Dirichlet processes [39, 40]
or product partition models [41, 42]. The interested reader can find reviews of
Bayesian approaches in [4] and [6].
Also, several literature reviews with different selection criteria can be found.
Recent and important works include [43] which focuses on window-based detec-
tion algorithms. In particular, the authors use the quantity of samples needed to
detect a change as a basis for comparison. Maximum likelihood and Bayes-type
detection are reviewed, from a theoretical standpoint, in [8]. Existing asymp-
totic distributions for change point estimates are described for several statistical
models. In [44], detection is formulated as a statistical hypothesis testing prob-
lem, and emphasis is put on the algorithmic and theoretical properties of several
sequential mean-shift detection procedures.

2.5. Outline of the article

Before starting this review, we propose in Section 3 a detailed overview of
the main mathematical tools that can be used for evaluating and comparing
the change point detection methods. The organization of the remaining of this
review article reflects the typology of change point detection methods, which
is schematically shown on Figure 2. Precisely, the three defining elements of a
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detection algorithm are reviewed separately. In Section 4, cost functions from
the literature are presented, along with the associated signal model and the
type of change that can be detected. Whenever possible, theoretical results
on asymptotic consistency are also given. Section 5 lists search methods that
efficiently solve the discrete optimizations associated with Problem 1 (P1) and
Problem 2 (P2). Both exact and approximate methods are described. Con-
straints on the number of change points are reviewed in Section 6. A summary
table of the literature review can be found in Section 7. The last section 8 is
dedicated to the presentation of the Python package that goes with this article
and propose a modular implementation of all the main approaches described in
this article.

3. Evaluation

Change point detection methods can be evaluated either by proving some
mathematical properties of the algorithms (such as consistency) in general case,
or empirically by computing several metrics to assess the performances on a
given dataset.

3.1. Consistency

A natural question when designing detection algorithms is the consistency of
estimated change point indexes, as the number of samples T goes to infinity. In
the literature, the “asymptotic setting” is intuitively described as follows: the
observed signal y is regarded as a realization of a continuous-time process on an
equispaced grid of size 1/T , and “T goes to infinity” means that the spacing of
the sampling grid converges to 0. Precisely, for all τ ∈ [0, 1], let Y (τ) denote an
Rd-valued random variable such that

yt = Y (t/T ) ∀t = 1, . . . , T. (2)

The continuous-time process undergoes K∗ changes in the probability distribu-
tion at the time instants τ∗k ∈ (0, 1). Those τ∗k are related to the change point
indexes t∗k through the following relationship:

t∗k = bTτ∗k c. (3)

Generally, for a given change point index tk, the associated quantity τk = tk/T ∈
(0, 1) is referred to as a change point fraction. In particular, the change point
fractions τ∗k (k = 1, . . . ,K∗) of the time-continuous process Y are change point
indexes of the discrete-time signal y. Note that in this asymptotic setting, the
lengths of each regime of y increase linearly with T . The notion of asymptotic
consistency of a change point detection method is formally introduced as follows.

Definition 1 (Asymptotic consistency). A change point detection algorithm

is said to be asymptotically consistent if the estimated segmentation T̂ = {t̂1, t̂2, . . . }
satisfies the following conditions, when T −→ +∞:
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(i) P (|T̂ | = K∗) −→ 1,

(ii) 1
T

∥∥∥T̂ − T ∗∥∥∥
∞

p−→ 0,

where the distance between two change point sets is defined by∥∥∥T̂ − T ∗∥∥∥
∞

:= max { max
t̂∈T̂

min
t∗∈T ∗

|t̂− t∗|, max
t∗∈T ∗

min
t̂∈T̂
|t̂− t∗| }. (4)

In Definition 1, the first condition is trivially verified when the number
K∗ of change points is known beforehand. As for the second condition, it
implies that the estimated change point fractions are consistent, and not the
indexes themselves. In general, distances |t̂ − t∗| between true change point
indexes and their estimated counterparts do not converge to 0, even for simple
models [18, 45–47]. As a result, consistency results in the literature only deal
with change point fractions.

3.2. Evaluation metrics

Several metrics from the literature are presented below. Each metric cor-
respond to one of the previously listed criteria by which segmentation perfor-
mances are assessed. In the following, the set of true change points is denoted
by T ∗ = {t∗1, . . . , t∗K∗}, and the set of estimated change points is denoted by

T̂ = {t̂1, . . . , t̂K̂}. Note that that the cardinals of each set, K∗ and K̂, are not
necessarily equal.

3.2.1. AnnotationError

The AnnotationError is simply the difference between the predicted
number of change points |T̂ | and the true number of change points |T ?|:

AnnotationError := |K̂ −K∗|. (5)

This metric can be used to discriminate detection method when the number of
changes is unknown.

3.2.2. Hausdorff

The Hausdorff metric measures the robustness of detection methods [47,
48]. Formally, it is equal to the greatest temporal distance between a change
point and its prediction:

Hausdorff(T ∗, T̂ ) := max { max
t̂∈T̂

min
t∗∈T ∗

|t̂− t∗|, max
t∗∈T ∗

min
t̂∈T̂
|t̂− t∗| }.

It is the worst error made by the algorithm that produced T̂ and is expressed in
number of samples. If this metric is equal to zero, both breakpoint sets are equal;
it is large when a change point from either T ∗ or T̂ is far from every change
point of T̂ or T ∗ respectively. Over-segmentation as well as under-segmentation
is penalized. An illustrative example is displayed on Figure 3.
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∆t1
∆t2 ∆t3

Figure 3: Hausdorff. Alternating gray areas mark the segmentation T ∗; dashed lines mark
the segmentation T̂ . Here, Hausdorff is equal to ∆t1 = max(∆t1,∆t2,∆t3).

3.2.3. RandIndex

Accuracy can be measured by the RandIndex, which is the average sim-
ilarity between the predicted breakpoint set T̂ and the ground truth T ∗ [30].
Intuitively, it is equal to the number of agreements between two segmentations.
An agreement is a pair of indexes which are either in the same segment ac-
cording to both T̂ and T ∗ or in different segments according to both T̂ and
T ∗. Formally, for a breakpoint set T , the set of grouped indexes and the set of
non-grouped indexes are respectively gr(T ) and ngr(T ):

gr(T ) := {(s, t), 1 ≤ s < t ≤ T s.t. s and t belong to the same segment according to T },
ngr(T ) := {(s, t), 1 ≤ s < t ≤ T s.t. s and t belong to different segments according to T }.

The RandIndex is then defined as follows:

RandIndex(T ∗, T̂ ) :=
|gr(T̂ ) ∩ gr(T ∗)|+ |ngr(T̂ ) ∩ ngr(T ∗)|)

T (T − 1)
. (6)

It is normalized between 0 (total disagreement) and 1 (total agreement). Origi-
nally, RandIndex has been introduced to evaluate clustering methods [30, 47].
An illustrative example is displayed on Figure 4.

3.2.4. F1-score

Another measure of accuracy is the F1-Score. Precision is the proportion of
predicted change points that are true change points. Recall is the proportion of
true change points that are well predicted. A breakpoint is considered detected
up to a user-defined margin of error M > 0; true positives Tp are true change
points for which there is an estimated one at less than M samples, i.e.

Tp(T ∗, T̂ ) := {t∗ ∈ T ∗ | ∃ t̂ ∈ T̂ s.t. |t̂− t∗| < M}. (7)

Precision Prec and recall Rec are then given by

Prec(T ∗, T̂ ) := |Tp(T ∗, T̂ )|/K̂ and Rec(T ∗, T̂ ) := |Tp(T ∗, T̂ )|/K∗. (8)
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True partition Computed partition Disagreement

Figure 4: RandIndex. Top: alternating gray areas mark the segmentation T ∗; dashed lines
mark the segmentation T̂ . Below: representations of associated adjacency matrices and dis-
agreement matrix. The adjacency matrix of a segmentation is the T × T binary matrix with
coefficient (s, t) equal to 1 if s and t belong to the same segment, 0 otherwise. The dis-
agreement matrix is the T × T binary matrix with coefficient (s, t) equal to 1 where the two
adjacency matrices disagree, and 0 otherwise. RandIndex is equal to the white area (where
coefficients are 0) of the disagreement matrix.

X× X

Figure 5: F1-Score. Alternating gray areas mark the segmentation T ∗; dashed lines mark the
segmentation T̂ ; dashed areas mark the allowed margin of error around true change points.
Here, Prec is 2/3, Rec is 2/2 and F1-Score is 4/5.

Precision and Recall are well-defined (ie. between 0 and 1) if the margin M
is smaller than the minimum spacing between two true change point indexes t∗k
and t∗k+1. Over-segmentation of a signal causes the precision to be close to zero
and the recall close to one. Under-segmentation has the opposite effect. The
F1-Score is the harmonic mean of precision Prec and recall Rec:

F1-Score(T ∗, T̂ ) := 2× Prec(T ∗, T̂ )×Rec(T ∗, T̂ )

Prec(T ∗, T̂ ) + Rec(T ∗, T̂ )
. (9)

Its best value is 1 and its worse value is 0. An illustrative example is displayed
on Figure 5.
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maximum
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, cΣ,

cPoisson

clinear, cAR,
clinear,L1

cM cF̂ crank
ckernel, crbf,

cH,M

Figure 6: Typology of the cost functions described in Section 4.

4. Models and cost functions

This section presents the first defining element of change detection methods,
namely the cost function. In most cases, cost functions are derived from a
signal model. In the following, models and their associated cost function are
organized in two categories: parametric and non-parametric, as schematically
shown in Figure 6. For each model, the most general formulation is first given,
then special cases, if any, are described. A summary table of all reviewed costs
can be found at the end of this section.

4.1. Parametric models

Parametric detection methods focus on changes in a finite-dimensional pa-
rameter vector. Historically, they were the first to be introduced, and remain
extensively studied in the literature.

4.1.1. Maximum likelihood estimation

Maximum likelihood procedures are ubiquitous in the change point detection
literature. They generalize a large number of models and cost functions, such as
mean-shifts and scale shifts in normally distributed data [2, 49–51], changes in
the rate parameter of Poisson distributed data [39], etc. In the general setting
of maximum likelihood estimation for change detection, the observed signal
y = {y1, . . . , yT } is composed of independent random variables, such that

yt ∼
K∗∑
k=0

f(·|θk)1(t∗k < t ≤ t∗k+1) (M1)
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where the t∗k are change point indexes, the f(·|θ) are probability density func-
tions parametrized by the vector-valued parameter θ, and the θk are parameter
values. In other words, the signal y is modelled by iid variables with piecewise
constant distribution. The parameter θ represents a quantity of interest whose
value changes abruptly at the unknown instants t∗k, which are to be estimated.
Under this setting, change point detection is equivalent to maximum likelihood
estimation if the sum of cost V (T , y) is equal to the negative log-likelihood. The
corresponding cost function, denoted ci.i.d., is defined as follows.

Cost function 1 (ci.i.d.). For a given parametric family of distribution den-
sities {f(·|θ)|θ ∈ Θ} where Θ is a compact subset of Rp (for a certain p), the
cost function ci.i.d. is defined by

ci.i.d.(ya..b) := − sup
θ

b∑
t=a+1

log f(yt|θ). (C1)

Model M1 and the related cost function ci.i.d. encompasses a large number of
change point methods. Note that, in this context, the family of distributions
must be known before performing the detection, usually thanks to prior knowl-
edge on the data. Historically, the Gaussian distribution was first used, to model
mean-shifts [52–54] and scale shifts [39, 50, 55]. A large part of the literature
then evolved towards other parametric distributions, most notably resorting to
distributions from the general exponential family [15, 25, 56].
From a theoretical point of view, asymptotic consistency, as described in Defi-
nition 1, has been demonstrated, in the case of a single change point, first with
Gaussian distribution (fixed variance), then for several specific distributions, e.g.
Gaussian with mean and scale shifts [3, 6, 51, 57], discrete distributions [49],
etc. The case with multiple change points has been tackled later. For cer-
tain distributions (e.g. Gaussian), the solutions of the change point detection
problems (P1) (known number of change points) and (P2) (unknown number
of change points) have been proven to be asymptotically consistent [58]. The
general case of multiple change points and a generic distribution family has been
addressed decades after the change detection problem has been introduced: the
solution of the change point detection problem with a known number of changes
and a cost function set to ci.i.d. is asymptotically consistent [59]. This is true
if certain assumptions are satisfied: (i) the signal follows the model (M1) for a
distribution family that verifies some regularity assumptions (which are no dif-
ferent from the assumptions needed for generic maximum likelihood estimation,
without any change point) and (ii) technical assumptions on the value of the
cost function on homogeneous and heterogeneous sub-signals. As an example,
distributions from the exponential family satisfy those assumptions.

Related cost functions.. The general model (M1) has been applied with different
families of distributions. We list below three notable examples and the associ-
ated cost functions: change in mean, change in mean and scale, and change in
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the rate parameter of count data.

• The mean-shift model is the earliest and one of the most studied model in
the change point detection literature [2, 53, 60–62]. Here, the distribution
is Gaussian, with fixed variance. In other words, the signal y is simply a
sequence of independent normal random variables with piecewise constant
mean and same variance. In this context, the cost function ci.i.d. becomes
cL2

, defined below. This cost function is also referred to as the quadratic
error loss and has been applied for instance on DNA array data [15] and
geology signals [63].

Cost function 2 (cL2
). The cost function cL2

is given by

cL2
(ya..b) :=

b∑
t=a+1

‖yt − ȳa..b‖22 (C2)

where ȳa..b is the empirical mean of the sub-signal ya..b.

• A natural extension to the mean-shift model consists in letting the variance
abruptly change as well. In this context, the cost function ci.i.d. becomes
cΣ, defined below. This cost function can be used to detect changes in the
first two moments of random (not necessarily Gaussian) variables, even
though it is the Gaussian likelihood that is plugged in ci.i.d. [8, 49]. It
has been applied for instance on stock market time series [49], biomedical
data [63], and electric power consumption monitoring [64].

Cost function 3 (cΣ). The cost function cΣ is given by

cΣ(ya..b) := (b− a) log det Σ̂a..b +

b∑
t=a+1

(yt − ȳa..b)′Σ̂−1
a..b(yt − ȳa..b) (C3)

where ȳa..b and Σ̂a..b are respectively the empirical mean and the empirical
covariance matrix of the sub-signal ya..b.

• Change point detection has also be applied on count data modelled by a
Poisson distribution [39, 65]. More precisely, the signal y is a sequence of
independent Poisson distributed random variables with piecewise constant
rate parameter. In this context, the cost function ci.i.d. becomes cPoisson,
defined below.

Cost function 4 (cPoisson). The cost function cPoisson is given by

cPoisson(ya..b) := −(b− a)ȳa..b log ȳa..b (C4)

where ȳa..b is the empirical mean of the sub-signal ya..b.
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Remark 1. A model slightly more general than (M1) can be formulated by let-
ting the signal samples to be dependant and the distribution function f(·|θ)
to change over time. This can in particular model the presence of unwanted
changes in the statistical properties of the signal (for instance in the statistical
structure of the noise [49]). The function f(·|θ) is replaced in (M1) by a se-
quence of distribution functions ft(·|θ) which are not assumed to be identical for
all indexes t. Changes in the functions ft are considered nuisance parameters
and only the variations of the parameter θ must be detected. Properties on the
asymptotic consistency of change point estimates can be obtained in this context.
We refer the reader to [49, 66] for theoretical results.

4.1.2. Piecewise linear regression

Piecewise linear models are often found, most notably in the econometrics
literature, to detect so-called “structural changes” [67–69]. In this context, a
linear relationship between a response variable and covariates exists, and this
relationship changes abruptly at some unknown instants. Formally, the observed
signal y follows a piecewise linear model with change points located at the t∗k:

∀ t, t∗k < t ≤ t∗k+1, yt = x′tuk + z′tv + εt (k = 0, . . . ,K∗) (M2)

where the uk ∈ Rp and v ∈ Rq are unknown regression parameters and εt is
noise. Under this setting, the observed signal y is regarded as a univariate
response variable (ie d = 1) and the signals x = {xt}Tt=1 and z = {zt}Tt=1

are observed covariates, respectively Rp-valued and Rq-valued. In this context,
change point detection can be carried out by fitting a linear regression on each
segment of the signal. To that end, the sum of costs is made equal to the sum of
squared residuals. The corresponding cost function, denoted clinear, is defined
as follows.

Cost function 5 (clinear). For a signal y (response variable) and covariates
x and z, the cost function clinear is defined by

clinear(ya..b) := min
u∈Rp,v∈Rq

b∑
t=a+1

(yt − x′tu− z′tv)2. (C5)

In the literature, Model (M2) is also known as a partial structural change model
because the linear relationship between y and x changes abruptly, while the lin-
ear relationship between y and z remains constant. The pure structural change
model is obtained by removing the term z′tv from (M2). This formulation gener-
alizes several well-known models such as the autoregressive (AR) model [12, 70],
multiple regressions [69, 71], etc. A more general formulation of (M2) that can
accommodate a multivariate response variable y exists [72], but is more involved,
from a notational standpoint.
From a theoretical point of view, piecewise linear models are extensively stud-
ied in the context of change point detection by a series of important contri-
butions [14, 67–71, 73–77]. When the number of changes is known, the most
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general consistency result can be found in [14]. A multivariate extension of this
result has been demonstrated in [72]. As for the more difficult situation of an
unknown number of changes, statistical tests have been proposed for a single
change [78] and multiple changes [74]. All of those results are obtained under
various sets of general assumptions on the distributions of the covariates and
the noise. The most general of those sets can be found in [79]. Roughly, in
addition to some technical assumptions, it imposes the processes x and z to be
weakly stationary within each regime, and precludes the noise process to have
a unit root.

Related cost functions.. In the rich literature related to piecewise linear models,
the cost function clinear has been applied and extended in several different
settings. Two related cost functions are listed below.

• The first one is clinear,L1
, which was introduced in order to accommo-

date certain noise distributions with heavy tails [68, 73] and is defined as
follows.

Cost function 6 (clinear,L1
). For a signal y (response variable) and co-

variates x and z, the cost function clinear,L1
is defined by

clinear,L1
(ya..b) := min

u∈Rp,v∈Rq

b∑
t=a+1

|yt − x′tu− z′tv|. (C6)

The difference between clinear,L1
and clinear lies in the norm used to

measure errors: clinear,L1
is based on a least absolute deviations crite-

rion, while clinear is based on a least squares criterion. As a result,
clinear,L1

is often applied on data with noise distributions with heavy

tails [8, 25]. In practice, the cost function clinear,L1
is computationally

less efficient than the cost function clinear, because the associated mini-
mization problem (C6) has no analytical solution. Nevertheless, the cost
function clinear,L1

is often applied on economic and financial data [67–69].
For instance, changes in several economic parameters of the G-7 growth
have been investigated using a piecewise linear model and clinear,L1

[80].

• The second cost function related to clinear has been introduced to deal
with piecewise autoregressive signals. The autoregressive model is a pop-
ular representation of random processes, where each variable depends lin-
early on the previous variables. The associated cost function, denoted
cAR, is defined as follows.

Cost function 7 (cAR). For a signal y and an order p ≥ 1, the cost
function cAR is defined by

cAR(ya..b) := min
u∈Rp

b∑
t=a+1

‖yt − x′tu‖
2

(C7)
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where xt := [yt−1, yt−2, . . . , yt−p] is the vector of lagged samples.

The piecewise autoregressive model is a special case of the generic piece-
wise linear model, where the term z′tv is removed (yielding a pure struc-
tural change model) and the covariate signal x is equal to the signal of
lagged samples. The resulting cost function cAR is able to detect shifts in
the autoregressive coefficients of a non-stationary process [21, 70]. This
model has been applied on EEG/ECG time series [72], functional mag-
netic resonance imaging (fMRI) time series [81] and speech recognition
tasks [12].

4.1.3. Mahalanobis-type metric

The cost function cL2
(C2), adapted for mean-shift detection, can be ex-

tended through the use of Mahalanobis-type pseudo-norm. Formally, for any
symmetric positive semi-definite matrix M ∈ Rd×d, the associated pseudo-norm
‖·‖M is given by:

‖yt‖2M := y′tMyt (10)

for any sample yt. The resulting cost function cM is defined as follows.

Cost function 8 (cM). The cost function cM , parametrized by a symmetric
positive semi-definite matrix M ∈ Rd×d, is given by

cM (ya..b) :=

b∑
t=a+1

‖yt − ȳa..b‖2M (C8)

where ȳa..b is the empirical mean of the sub-signal ya..b.

Intuitively, measuring distances with the pseudo-norm ‖·‖M is equivalent to
applying a linear transformation on the data and using the regular (Euclidean)
norm ‖·‖. Indeed, decomposing the matrix M = U ′U yields:

‖yt − ys‖2M = ‖Uyt − Uys‖2 . (11)

Originally, the metric matrix M was set equal to the inverse of the covariance
matrix, yielding the Mahalanobis metric [82], ie

M = Σ̂−1 (12)

where Σ̂ is the empirical covariance matrix of the signal y. By using cM , shifts
in the mean of the transformed signal can be detected. In practice, the trans-
formation U (or equivalently, the matrix M) is chosen to highlight relevant
changes. This cost function generalizes all linear transformations of the data
samples. In the context of change point detection, most of the transformations
are unsupervised, for instance principal component analysis or linear discrim-
inant analysis [83]. Supervised strategies are more rarely found, even though
there exist numerous methods to learn a task-specific matrix M in the context
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of supervised classification [83–85]. Those strategies fall under the umbrella
of metric learning algorithms. In the change point detection literature, there is
only one work that proposes a supervised procedure to calibrate a metric matrix
M [30]. In this contribution, the authors use a training set of annotated sig-
nals (meaning that an expert has provided the change point locations) to learn
M iteratively. Roughly, at each step, a new matrix M is generated in order
to improve change point detection accuracy on the training signals. However,
using the cost function cM is not adapted to certain applications, where a linear
treatment of the data is insufficient. In that situation, a well-chosen non-linear
transformation of the data samples must be applied beforehand [30].

4.2. Non-parametric models

When the assumptions of parametric models are not adapted to the data
at hand, non-parametric change point detection methods can be more robust.
Three major approaches are presented here, each based on different non-parametric
statistics, such as the empirical cumulative distribution function, rank statistics
and kernel estimation.

Signal model.. Assume that the observed signal y = {y1, . . . , yT } is composed
of independent random variables, such that

yt ∼
K∗∑
k=0

Fk 1(t∗k < t ≤ t∗k+1) (M3)

where the t∗k are change point indexes and the Fk are cumulative distribution
functions (c.d.f.), not necessarily parametric as in (M1). Under this setting, the
sub-signal yt∗k..t∗k+1

, bounded by two change points, is composed of iid variables
with c.d.f. Fk. When the Fk belong to a known parametric distribution fam-
ily, change point detection is performed with the MLE approach described in
Section 4.1.1, which consists in applying the cost function ci.i.d.. However, this
approach is not possible when the distribution family is either non-parametric
or not known beforehand.

4.2.1. Non-parametric maximum likelihood

The first non-parametric cost function example, denoted cF̂ , has been intro-
duced for the single change point detection problem in [86] and extended for
multiple change points in [87]. It relies on the empirical cumulative distribu-
tion function, estimated on sub-signals. Formally, the signal is assumed to be
univariate (ie d = 1) and the empirical cdf on the sub-signal ya..b is given by

∀u ∈ R, F̂a..b(u) :=
1

b− a

[ b∑
t=a+1

1(yt < u) + 0.5× 1(yt = u)

]
. (13)

In order to derive a log-likelihood function that does not depend on the proba-
bility distribution of the data, ie the f(·|θk), the authors use the following fact:
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for a fixed u ∈ R, the empirical cdf F̂ of n iid random variables, distributed from
a certain cdf F is such that nF̂ (u) ∼ Binomial(n, F (u)) [87]. This observation,
combined with careful summation over u, allows a distribution-free maximum
likelihood estimation. The resulting cost function cF̂ is defined as follows. Inter-
estingly, this strategy was first introduced to design non-parametric two-sample
statistical tests, which were experimentally shown to be more powerful than
classical tests such as Kolmogorov-Smirnov and Cramr-von Mises [86, 88].

Cost function 9 (cF̂ ). The cost function cF̂ is given by

cF̂ (ya..b) := −(b− a)

T∑
u=1

F̂a..b(u) log F̂a..b(u) + (1− F̂a..b(u)) log(1− F̂a..b(u))

(u− 0.5)(T − u+ 0.5)

(C9)

where the empirical cdf F̂a..b is defined by (13).

From a theoretical point of view, asymptotic consistency of change point es-
timates is verified, when the number of change points is either known or un-
known [87]. However, solving either one of the detection problems can be com-
putationally intensive, because calculating the value of the cost function cF̂ on
one sub-signal requires to sum T terms, where T is the signal length. As a result,
the total complexity of change point detection is of the order of O(T 3) [87]. To
cope with this computational burden, several preliminary steps are proposed.
For instance, irrelevant change point indexes can be removed before performing
the detection, thanks to a screening step [87]. Also, the cost function cF̂ can
be approximated, by summing, in (C9), over a few (carefully chosen) terms,
instead of T terms originally [89]. Thanks to those implementation techniques,
the cost function cF̂ has been applied on DNA sequences [87] and heart-rate
monitoring signals [89].

4.2.2. Rank-based detection

In statistical inference, a popular strategy to derive distribution-free statis-
tics is to replaced the data samples by their ranks within the set of pooled
observations [28, 90, 91]. In the context of change point detection, this strat-
egy has first been applied to detect a single change point [28, 29], and then
has been extended by [92] to find multiple change points. The associated cost
function, denoted crank, is defined as follows. Formally, it relies on the centered
Rd-valued “rank signal” r = {rt}Tt=1, given by

rt,j :=

T∑
s=1

1(ys,j ≤ yt,j) −
T + 1

2
, ∀1 ≤ t ≤ T, ∀1 ≤ j ≤ d. (14)

In other words, rt,j is the (centered) rank of the jth coordinate of the tth sample,
ie yt,j , among the {y1,j , y2,j , . . . , yT,j}.
Cost function 10 (crank). The cost function crank is given by

crank(ya..b) := −(b− a) r̄′a..b Σ̂−1
r r̄a..b (C10)
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where the signal r is defined in (14) and Σ̂r ∈ Rd×d is the following matrix

Σ̂r :=
1

T

T∑
t=1

(rt + 1/2)′(rt + 1/2). (15)

Intuitively, crank measures changes in the joint behaviour of the marginal rank
statistics of each coordinate, which are contained in r. One of the advantages
of this cost function is that it is invariant under any monotonic transformation
of the data. Several well-known statistical hypothesis testing procedures are
based on this scheme, for instance the Wilcoxon-Mann-Whitney test [93], the
Friedman test [94], the Kruskal-Wallis test [95], and several others [90, 91].
From a computational point of view, two steps must be performed before the
change point detection: the calculation of the rank statistics, in O(dT log T )

operations, and the calculation of the matrix Σ̂r, in O(d2T + d3) operations.
The resulting algorithm has been applied on DNA sequences [92] and network
traffic data [28, 29].

4.2.3. Kernel-based detection

A kernel-based method has been proposed by [96] to perform change point
detection in a non-parametric setting. To that end, the original signal y is
mapped onto a reproducing Hilbert space (rkhs) H associated with a user-
defined kernel function k(·, ·) : Rd×Rd → R. The mapping function φ : Rd → H
onto this rkhs is implicitly defined by φ(yt) = k(yt, ·) ∈ H, resulting in the
following inner-product and norm:

〈φ(ys)|φ(yt)〉H = k(ys, yt) and ‖φ(yt)‖2H = k(yt, yt) (16)

for any samples ys, yt ∈ Rd. The associated cost function, denoted ckernel,
is defined as follows. This kernel-based mapping is central to many machine
learning developments such as support vector machine or clustering [97, 98].

Cost function 11 (ckernel). For a given kernel function k(·, ·) : Rd × Rd →
R, the cost function ckernel is given by

ckernel(ya..b) :=

b∑
t=a+1

‖φ(yt)− µ̄a..b‖2H (C11)

where µ̄a..b ∈ H is the empirical mean of the embedded signal {φ(yt)}bt=a+1 and
‖·‖H is defined in (16).

Remark 2 (Computing the cost function). Thanks to the well-known “ker-
nel trick”, the explicit computation of the mapped data samples φ(yt) is not re-
quired to calculate the cost function value [99]. Indeed, after simple algebraic
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manipulations, ckernel(ya..b) can be rewritten as follows:

ckernel(ya..b) =

b∑
t=a+1

k(yt, yt) −
1

b− a
b∑

s,t=a+1

k(ys, yt). (17)

Remark 3 (Intuition behind the cost function). Intuitively, the cost func-
tion ckernel is able to detect mean-shifts in the transformed signal {φ(yt)}t. Its
use is motivated in the context of Model M3 by the fact that, under certain con-
ditions on the kernel function, changes in the probability distribution coincide
with mean-shifts in the transformed signal. This connection has been investi-
gated in several works on kernel methods [97, 98, 100, 101]. Formally, let P
denote a probability distribution defined over Rd. Then there exists a unique
element µP ∈ H [100], called the mean embedding (of P), such that

µP = EX∼P [φ(X)]. (18)

In addition, the mapping P 7→ µP is injective (in which case the kernel is said
to be characteristic), meaning that

µP = µQ ⇐⇒ P = Q, (19)

where Q denotes a probability distribution defined over Rd. In order to determine
if a kernel is characteristic (and therefore, useful for change point detection),
several conditions can be found in the literature [97, 98, 100]. For instance, if a
kernel k(·, ·) is translation invariant, meaning that k(ys, yt) = ψ(ys − yt) ∀s, t,
where ψ is a bounded continuous positive definite function on Rd, then it is
characteristic [100]. This condition is verified by the commonly used Gaussian
kernel. As a consequence, two transformed samples φ(ys) and φ(yt) are dis-
tributed around the same mean value if they belong to the same regime, and
around different mean-values if they each belong to two consecutive regimes. To
put it another way, a signal that follows (M3) is mapped by φ(·) to a random
signal with piecewise constant mean.

From a theoretical point of view, asymptotic consistency of the change point
estimates has been demonstrated for both a known and unknown number of
change points in the recent work of [102]. This result, as well as an important
oracle inequality on the sum of cost V (T ) [103], also holds in a non-asymptotic
setting. In addition, kernel change point detection was experimentally shown
to be competitive in many different settings, in an unsupervised manner and
with very few parameters to manually calibrate. For instance, the cost function
ckernel was applied on the Brain-Computer Interface (BCI) data set [96], on
a video time series segmentation task [103], DNA sequences [99] and emotion
recognition [104].

Related cost functions.. The cost function ckernel can be combined with any
kernel to accommodate various types of data (not just Rd-valued signals). No-
table examples of kernel functions include [101]:
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• The linear kernel k(x, y) = 〈x|y〉 with x, y ∈ Rd.

• The polynomial kernel k(x, y) = (〈x|y〉+C)deg with x, y ∈ Rd, and C and
deg are parameters.

• The Gaussian kernel k(x, y) = exp(−γ ‖x− y‖2) with x, y ∈ Rd and γ > 0
is the so-called bandwidth parameter.

• The χ2-kernel k(x, y) = exp(−γ∑i[(xi − yi)2/(xi + yi)]) with γ ∈ R a
parameter. It is often used for histogram data.

Arguably, the most commonly used kernels for numerical data are the linear
kernel and the Gaussian kernel. When combined with the linear kernel, the cost
function ckernel is formally equivalent to cL2 . As for the Gaussian kernel, the
associated cost function, denoted crbf, is defined as follows.

Cost function 12 (crbf). The cost function crbf is given by

crbf(ya..b) := (b− a) − 1

b− a
b∑

s,t=a+1

exp(−γ ‖ys − yt‖2) (C12)

where γ > 0 is the so-called bandwidth parameter.

The parametric cost function cM (based on a Mahalanobis-type norm) can be
extended to the non-parametric setting through the use of a kernel. Formally,
the Mahalanobis-type norm ‖·‖H,M in the feature space H is defined by

‖φ(ys)− φ(yt)‖2H,M = (φ(ys)− φ(yt))
′M (φ(ys)− φ(yt)) (20)

where M is a (possibly infinite dimensional) symmetric positive semi-definite
matrix defined on H. The associated cost function, denoted cH,M , is defined
below. Intuitively, using cH,M instead of cM introduces a non-linear treatment
of the data samples.

Cost function 13 (cH,M). For a given kernel function k(·, ·) : Rd × Rd → R
and M a symmetric positive semi-definite matrix defined on the associated rkhs
H, the cost function cH,M is given by

cH,M (ya..b) :=

b∑
t=a+1

‖φ(yt)− µ̄a..b‖2H,M (C13)

where µa..b is the empirical mean of the transformed sub-signal {φ(yt)}bt=a+1

and ‖·‖H,M is defined in (20).

4.3. Summary table

Reviewed cost functions (parametric and non-parametric) are summarized
in Table 1. For each cost, the name, expression and parameters of interest are
given.
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Name c(ya..b) Parameters

ci.i.d. (C1) − supθ
∑b
t=a+1 log f(yt|θ) θ: changing parameter; density

function: f(·|θ)

cL2
(C2)

∑b
t=a+1 ‖yt − ȳa..b‖

2
2 ȳa..b: empirical mean of ya..b

cΣ (C3) (b− a) log det Σ̂a..b +
∑b
t=a+1(yt − ȳa..b)′Σ̂−1

a..b(yt − ȳa..b) Σ̂a..b: empirical covariance of ya..b

cPoisson (C4) −(b− a)ȳa..b log ȳa..b ȳa..b: empirical mean of ya..b

clinear (C5) minu∈Rp,v∈Rq
∑b
t=a+1(yt − x′tu− z

′
tv)2 xt ∈ Rp, zt ∈ Rq : covariates

clinear,L1
(C6) minu∈Rp,v∈Rq

∑b
t=a+1 |yt − x

′
tu− z

′
tv| xt ∈ Rp, zt ∈ Rq : covariates

cAR (C7) minu∈Rp
∑b
t=a+1(yt − x′tu)2 xt = [yt−1, yt−2, . . . , yt−p]:

lagged samples

cM (C8)
∑b
t=a+1 ‖yt − ȳa..b‖

2
M M ∈ Rd×d: positive semi-definite

matrix

cF̂ (C9) −(b− a)
∑T
u=1

F̂a..b(u) log F̂a..b(u)+(1−F̂a..b(u)) log(1−F̂a..b(u))

(u−0.5)(T−u+0.5)
F̂ : empirical c.d.f. (13)

crank (C10) −(b− a) r̄′a..b Σ̂−1
r r̄a..b r: rank signal (14); Σ̂r: empirical

covariance of r (15)

ckernel (C11)
∑b
t=a+1 k(yt, yt) − 1

b−a
∑b
s,t=a+1 k(ys, yt) k(·, ·) : Rd × Rd 7→ R: kernel

function

crbf (C12) (b− a) − 1
b−a

∑b
s,t=a+1 exp(−γ ‖ys − yt‖2) γ > 0: bandwidth parameter

cH,M (C13)
∑b
t=a+1 ‖yt − ȳa..b‖

2
H,M M : positive semi-definite matrix

(in the feature space H)

Table 1: Summary of cost reviewed functions

5. Search methods

This section presents the second defining element of change detection meth-
ods, namely the search method. Reviewed search methods are organized in
two general categories, as shown on Figure 7: optimal methods, that yield the
exact solution to the discrete optimization of (P1) and (P2), and the approx-
imate methods, that yield an approximate solution. Described algorithms can
be combined with cost functions from Section 4. Note that, depending on the
chosen cost function, the computational complexity of the complete algorithm
changes. As a consequence, in the following, complexity analysis is done with
the assumption that applying the cost function on a sub-signal requires O(1) op-
erations. Also, the practical implementations of the most important algorithms
are given in pseudo-code.

5.1. Optimal detection

Optimal detection methods find the exact solutions of Problem 1 (P1) and
Problem 2 (P2). A naive approach consists in enumerating all possible segmen-
tations of a signal, and returning the one that minimizes the objective function.
However, for (P1), minimization is carried out over the set {T s.t. |T | = K}
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Cost function Search method Constraint

Change point detection

Optimal Approximate

Window-sliding
Binary

segmentation
Bottom-up

segmentation

Opt, Pelt

Win BinSeg BotUp

Figure 7: Typology of the search methods described in Section 5.

(which contains
(
T−1
K−1

)
elements), and for (P2), over the set {T s.t. 1 ≤ |T | < T}

(which contains
∑T−1
K=1

(
T−1
K−1

)
elements). This makes exhaustive enumeration

impractical, in both situations. We describe in this section two major ap-
proaches to efficiently find the exact solutions of (P1) and (P2).

5.1.1. Solution to Problem 1 (P1): Opt

In (P1), the number of change points to detect is fixed to a certain K ≥ 1.
The optimal solution to this problem can be computed efficiently, thanks to a
method based on dynamic programming. The algorithm, denoted Opt, relies
on the additive nature of the objective function V (·) to recursively solve sub-
problems. Precisely, Opt is based on the following observation:

min
|T |=K

V (T , y = y0..T ) = min
0=t0<t1<···<tK<tK+1=T

K∑
k=0

c(ytk..tk+1
)

= min
t≤T−K

[
c(y0..t) + min

t=t0<t1<···<tK−1<tK=T

K−1∑
k=0

c(ytk..tk+1
)

]
= min
t≤T−K

[
c(y0..t) + min

|T |=K−1
V (T , yt..T )

]
(21)

Intuitively, Equation 21 means that the first change point of the optimal seg-
mentation is easily computed if the optimal partitions with K−1 elements of all
sub-signals yt..T are known. The complete segmentation is then computed by
recursively applying this observation. This strategy, described in detail in Algo-
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rithm 1, has a complexity of the order of O(KT 2) [105, 106]. Historically, Opt
was introduced for a non-related problem [107] and later applied to change point
detection, in many different contexts, such as EEG recordings [66, 108], DNA
sequences [99, 109], tree growth monitoring [20], financial time-series [49, 76],
radar waveforms [110], etc.

Algorithm 1 Algorithm Opt

Input: signal {yt}Tt=1, cost function c(·), number of regimes K ≥ 2.
for all (u, v), 1 ≤ u < v ≤ T do

Initialize C1(u, v)← c({yt}vt=u).
end for
for k = 2, . . . ,K − 1 do

for all u, v ∈ {1, . . . , T}, v − u ≥ k do
Ck(u, v)← min

u+k−1≤t<v
Ck−1(u, t) + C1(t+ 1, v)

end for
end for
Initialize L, a list with K elements.
Initialize the last element: L[K]← T .
Initialize k ← K.
while k > 1 do

s← L(k)
t∗ ← argmink−1≤t<s Ck−1(1, t) + C1(t+ 1, s)
L(k − 1)← t∗

k ← k − 1
end while
Remove T from L
Output: set L of estimated breakpoint indexes.

Related search methods.. Several extensions of Opt have been proposed in the
literature. The proposed methods still find the exact solution to (P1).

- The first extension is the “forward dynamic programming” algorithm [20].
Contrary to Opt, which returns a single partition, the “forward dynamic
programming” algorithm computes the top L (L ≥ 1) most probable par-
titions (ie with lowest sum of costs). The resulting computational com-
plexity is O(LKT 2) where L is the number of computed partitions. This
method is designed as a diagnostic tool: change points present in many of
the top partitions are considered very likely, while change points present
in only a few of the top partitions might not be as relevant. Thanks to
“forward dynamic programming”, insignificant change points are trimmed
and overestimation of the number of change point is corrected [20], at the
expense of a higher computational burden. It is applied on tree growth
monitoring time series [20] that are relatively short with around a hundred
samples.
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- The “pruned optimal dynamic programming” procedure [109] is an exten-
sion of Opt that relies on a pruning rule to discard indexes that can never
be change points. Thanks to this trick, the set of potential change point
indexes is reduced. All described cost functions can be plugged into this
method. As a result, longer signals can be handled, for instance long array-
based DNA copy number data (up to 106 samples, with the quadratic error
cost function) [109]. However, worst case complexity remains of the order
of O(KT 2).

5.1.2. Solution to Problem 2 (P2): Pelt

In (P2), the number of changes point is unknown, and the objective function
to minimize is the penalized sum of costs. A naive approach consists in applying
Opt forK = 1, . . . ,Kmax for a sufficiently largeKmax, then choosing among the
computed segmentations the one that minimizes the penalized problem. This
would prove computational cumbersome because of the quadratic complexity
of the resolution method Opt. Fortunately a faster method exists for a general
class of penalty functions, namely linear penalties. Formally, linear penalties
are linear functions of the number of change points, meaning that

pen(T ) = β|T | (22)

where β > 0 is a smoothing parameter. (More details on such penalties can
be found in Section 6.1.) The algorithm Pelt (for “Pruned Exact Linear
Time”) [111] was introduced to find the exact solution of (P2), when the penalty
is linear (22). This approach considers each sample sequentially and, thanks to
an explicit pruning rule, may or may not discard it from the set of potential
change points. Precisely, for two indexes t and s (t < s < T ), the pruning rule
is given by:

if

[
min
T

V (T , y0..t) + β|T |
]

+ c(yt..s) ≥
[

min
T

V (T , y0..s) + β|T |
]

holds,

then t cannot be the last change point prior to T. (23)

This results in a considerable speed-up: under the assumption that regime
lengths are randomly drawn from a uniform distribution, the complexity of
Pelt is of the order O(T ). The detailed algorithm can be found in Algorithm 2.
An extension of Pelt is described in [9] to solve the linearly penalized change
point detection for a range of smoothing parameter values [βmin, βmax]. Pelt

has been applied on DNA sequences [16, 17], physiological signals [89], and
oceanographic data [111].
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Algorithm 2 Algorithm Pelt

Input: signal {yt}Tt=1, cost function c(·), penalty value β.
Initialize Z a (T + 1)-long array; Z[0]← −β.
Initialize L[0]← ∅.
Initialize χ← {0}. . Admissible indexes.
for t = 1, . . . , T do

t̂← argmins∈χ
[
Z[s] + c(ys..t) + β

]
.

Z[t]←
[
Z[t̂] + c(yt̂..t) + β

]
L[t]← L[t̂] ∪ {t̂}.
χ← {s ∈ χ : Z[s] + c(ys..t) ≤ Z[t]} ∪ {t}

end for
Output: set L[T ] of estimated breakpoint indexes.

5.2. Approximate detection

When the computational complexity of optimal methods is too great for the
application at hand, one can resort to approximate methods. In this section,
we describe three major types of approximate segmentation algorithms, namely
window-based methods, binary segmentation and bottom-up segmentation. All
described procedures fall into the category of sequential detection approaches,
meaning that they return a single change point estimate t̂(k) (1 ≤ t̂(k) < T ) at
the k-th iteration. (In the following, the subscript ·(k) refers to the k-th iteration
of a sequential algorithm.) Such methods can be used to solve (approximately)
either (P1) or (P2). Indeed, if the number K∗ of changes is known, K∗ iterations
of a sequential algorithm are enough to retrieve a segmentation with the correct
number of changes. If K∗ is unknown, the sequential algorithm is run until an
appropriate stopping criterion is met.

5.2.1. Window sliding

The window-sliding algorithm, denoted Win, is a fast approximate alternative
to optimal methods. It consists in computing the discrepancy between two
adjacent windows that slide along the signal y. For a given cost function c(·),
this discrepancy between two sub-signals is given by

d(ya..t, yt..b) = c(ya..b)− c(ya..t)− c(yt..b) (1 ≤ a < t < b ≤ T ). (24)

When the two windows cover dissimilar segments, the discrepancy reaches large
values, resulting in a peak. In other other words, for each index t, Win measures
the discrepancy between the immediate past (“left window”) and the immedi-
ate future (“right window”). Once the complete discrepancy curve has been
computed, a peak search procedure is performed to find change point indexes.
The complete Win algorithm is given in Algorithm 3 and a schematic view is
displayed on Figure 8. The main benefits of Win are its low complexity (linear
in the number of samples) and ease of implementation.
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Original Signal

Discrepancy Curve

Peak Detection

Figure 8: Schematic view of Win

Algorithm 3 Algorithm Win

Input: signal {yt}Tt=1, cost function c(·), half-window width w, peak search
procedure PKSearch.
Initialize Z ← [0, 0, . . . ] a T -long array filled with 0. . Score list.
for t = w, . . . , T − w do

p← (t− w)..t.
q ← t..(t+ w).
r ← (t− w)..(t+ w).
Z[t]← c(yr)− [c(yp) + c(yq)].

end for
L← PKSearch(Z) . Peak search procedure.
Output: set L of estimated breakpoint indexes.

In the literature, the discrepancy measure d(·, ·) is often derived from a two-
sample statistical test (see Remark 4), and not from a cost function, as in (24).
However, the two standpoints are generally equivalent: for instance, using cL2 ,
ci.i.d. or ckernel is respectively equivalent to applying a Student t-test [3], a
generalized likelihood ratio (GLR) [112] test and a kernel Maximum Mean Dis-
crepancy (MMD) test [98]. As a consequence, practitioners can capitalize on
the vast body of work in the field of statistical tests to obtain asymptotic dis-
tributions for the discrepancy measure [28, 29, 98, 113], and sensible calibration
strategies for important parameters of Win (such as the window size or the peak
search procedure). Win has been applied in numerous contexts: for instance,
on biological signals [11, 114–117], on network data [28, 29], on speech time
series [10, 11, 118] and on financial time series [3, 119, 120]. It should be noted
that certain window-based detection methods in the literature rely on a discrep-
ancy measure which is not related to a cost function, as in (24) [11, 121–123].
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As a result, those methods, initially introduced in the online detection setting,
cannot be extended to work with optimal algorithms (Opt, Pelt).

Remark 4 (Two-sample test). A two-sample test (or homogeneity test) is
a statistical hypothesis testing procedure designed to assess whether two popu-
lations of samples are identical in distribution. Formally, consider two sets of
iid Rd-valued random samples {xt}t and {zt}t. Denote by Px the distribution
function of the xt and by Pz, the distribution function of the zt. A two-sample
test procedure compares the two following hypotheses:

H0 : Px = Pz
H1 : Px 6= Pz.

(25)

A general approach is to consider a probability (pseudo)-metric d(·, ·) on the
space of probability distributions on Rd. Well-known examples of such a met-
ric include the Kullback-Leibler divergence, the Kolmogorov-Smirnov distance,
the Maximum Mean Discrepancy (MMD), etc. Observe that, under the null
hypothesis, d(Px,Pz) = 0. The testing procedure consists in computing the em-

pirical estimates P̂x and P̂z and rejecting H0 for “large” values of the statistics
d(P̂x, P̂z). This general formulation relies on a consistent estimation of arbi-
trary distributions from a finite number of samples. In the parametric setting,
additional assumptions are made on the distribution functions: for instance,
Gaussian assumption [3, 63, 113], exponential family assumption [15, 124], etc.
In the non-parametric setting, the distributions are only assumed to be con-
tinuous. They are not directly estimated; instead, the statistics d(P̂x, P̂z) are
computed [11, 90, 98, 122].
In the context of single change point detection, the two-sample test setting is
adapted to assess whether a distribution change has occurred at some instant
in the input signal. Practically, for a given index t, the homogeneity test is
performed on the two populations {ys}s≤t and {ys}s>t. The estimated change
point location is given by

t̂ = argmaxt d(P̂•≤t, P̂•>t) (26)

where P̂•≤t and P̂•>t are the empirical distributions of respectively {ys}s≤t and
{ys}s>t.

5.2.2. Binary segmentation

Binary segmentation, denoted BinSeg, is a well-known alternative to optimal
methods [53], because it is conceptually simple and easy to implement [63, 111,
125]. BinSeg is a greedy sequential algorithm, outlined as follows. The first
change point estimate t̂(1) is given by

t̂(1) := argmin1≤t<T−1 c(y0..t) + c(yt..T )︸ ︷︷ ︸
V (T={t})

. (27)
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Step 0

Step 1

Step 2

Figure 9: Schematic example of BinSeg

This operation is “greedy”, in the sense that it searches the change point that
lowers the most the sum of costs. The signal is then split in two at the position of
t̂(1); the same operation is repeated on the resulting sub-signals until a stopping
criterion is met. A schematic view of the algorithm is displayed on Figure 9
and an implementation is given in Algorithm 4. The complexity of BinSeg

is of the order of O(T log T ). This low complexity comes at the expense of
optimality: in general, BinSeg’s output is only an approximation of the optimal
solution. As argued in [111, 126], the issue is that the estimated change points
t̂(k) are not estimated from homogeneous segments and each estimate depends
on the previous ones. Change points that are close are imprecisely detected
especially [8]. Applications of BinSeg range from financial time series [7, 63,
113, 126, 127] to context recognition for mobile devices [128] and array-based
DNA copy number data [19, 125, 129].

Related search methods.. Several extensions of BinSeg have been proposed to
improve detection accuracy.

- Circular binary segmentation [125] is a well-known extension of BinSeg.
This method is also a sequential detection algorithm that splits the original
at each step. Instead of searching for a single change point in each sub-
signal, circular binary segmentation searches two change points. Within
each treated sub-segment, it assumes a so-called “epidemic change model”:
the parameter of interest shifts from one value to another at the first
change point and returns to the original value at the second change point.
The algorithm is dubbed “circular” because, under this model, the sub-
segment has its two ends (figuratively) joining to form a circle. Practically,
this method has been combined with cL2

C2, to detect changes in the mean
of array-based DNA copy number data [125, 130, 131]. A faster version
of the original algorithm is described in [132].
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Algorithm 4 Algorithm BinSeg

Input: signal {yt}Tt=1, cost function c(·), stopping criterion.
Initialize L← { }. . Estimated breakpoints.
repeat

k ← |L|. . Number of breakpoints
t0 ← 0 and tk+1 ← T . Dummy variables.
if k > 0 then

Denote by ti (i = 1, . . . , k) the elements (in ascending order) of L, ie
L = {t1, . . . , tk}.

end if
Initialize G a (k + 1)-long array. . list of gains
for i = 0, . . . , k do

G[i]← c(yti..ti+1)− min
ti<t<ti+1

[c(yti..t) + c(yt..ti+1)] .

end for
î← argmaxiG[i]
t̂← argmintî<t<tî+1

[c(ytî..t) + c(yt..tî+1
)].

L← L ∪ {t̂}
until stopping criterion is met.
Output: set L of estimated breakpoint indexes.

- Another extension of BinSeg is the wild binary segmentation algorithm [127].
In a nutshell, a single point detection is performed on multiple intervals
with start and end points that are drawn uniformly. Small segments are
likely to contain at most one change but have lower statistical power, while
the opposite is true for long segments. After a proper weighting of the
change score to account for the differences on sub-signals’ length, the al-
gorithm returns the most “pronounced” ones, ie those that lower the most
the sum of costs. An important parameter of this method is the number
of random sub-segments to draw. Wild binary search is combined with
cL2

C2 to detect mean-shifts of univariate piecewise constant signals (up
to 2000 samples) [127].

5.2.3. Bottom-up segmentation

Bottom-up segmentation, denoted BotUp, is the natural counterpart of BinSeg.
Contrary to BinSeg, BotUp starts by splitting the original signal in many small
sub-signals and sequentially merges them until there remain only K change
points. At every step, all potential change points (indexes separating adja-
cent sub-segments) are ranked by the discrepancy measure d(·, ·), defined in 24,
between the segments they separate. Change points with the lowest discrep-
ancy are then deleted, meaning that the segments they separate are merged.
BotUp is often dubbed a “generous” method, by opposition to BinSeg, which is
“greedy” [133]. A schematic view of the algorithm is displayed on Figure 10 and
an implementation is provided in Algorithm 5. Its benefits are its linear compu-
tational complexity and conceptual simplicity. However, if a true change point
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Step 0
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Steps 1, 2, . . .

Result

Figure 10: Schematic view of BotUp

does not belong to the original set of indexes, BotUp never considers it. More-
over, in the first iterations, the merging procedure can be unstable because it is
performed on small segments, for which statistical significance is smaller. In the
literature, BotUp is somewhat less studied than its counterpart, BinSeg: no the-
oretical convergence study is available. It has been applied on speech time series
to detect mean and scale shifts [119]. Besides, the authors of [133] have found
that BotUp outperforms BinSeg on ten different data sets such as physiologi-
cal signals (ECG), financial time-series (exchange rate), industrial monitoring
(water levels), etc.

6. Estimating the number of changes

This section presents the third defining element of change detection meth-
ods, namely the constraint on the number of change points. Here, the number
of change points is assumed to be unknown (P2). Existing procedures are or-
ganized by the penalty function that they are based on. Common heuristics
are also described. The organization of this section is schematically shown in
Figure 11.

6.1. Linear penalty

Arguably the most popular choice of penalty [111], the linear penalty (also
known as l0 penalty) generalizes several well-known criteria from the literature
such as the Bayesian Information Criterion (BIC) and the Akaike Information
Criterion (AIC) [134, 135]. The linear penalty, denoted penl0 , is formally defined
as follows.

Penalty 1 (penl0). The penalty function penl0 is given by

penl0(T ) := β|T | (28)
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Algorithm 5 Algorithm BotUp

Input: signal {yt}Tt=1, cost function c(·), stopping criterion, grid size δ > 2.
Initialize L← {δ, 2δ, . . . , (bT/δc − 1) δ}. . Estimated breakpoints.
repeat

k ← |L|. . Number of breakpoints
t0 ← 0 and tk+1 ← T . Dummy variables.
Denote by ti (i = 1, . . . , k) the elements (in ascending order) of L, ie

L = {t1, . . . , tk}.
Initialize G a (k − 1)-long array. . list of gains
for i = 1, . . . , k − 1 do

G[i− 1]← c(yti−1..ti+1
)− [c(yti−1..ti) + c(yti..ti+1

)] .
end for
î← argminiG[i]
Remove t̂i+1 from L.

until stopping criterion is met.
Output: set L of estimated breakpoint indexes.

where β > 0 is the smoothing parameter.

Intuitively, the smoothing parameter controls the trade-off between complexity
and goodness-of-fit (measured by the sum of costs): low values of β favour
segmentations with many regimes and high values of β discard most change
points.

Calibration.. From a practical standpoint, once the cost function has been cho-
sen, the only parameter to calibrate is the smoothing parameter. Several ap-
proaches, based on model selection, can be found in the literature: they assume
a model on the data, for instance (M1), (M2), (M3), and choose a value of β
that optimizes a certain statistical criterion. The best-known example of such
an approach is BIC, which aims at maximizing the constrained log-likelihood of
the model. The exact formulas of several linear penalties, derived from model
selection procedures, are given the following paragraph. Conversely, when no
model is assumed, different heuristics are applied to tune the smoothing param-
eter. For instance, one can use a procedure based on cross-validation [136] or
the slope heuristics [137]. In [138, 139], supervised algorithms are proposed: the
chosen β is the one that minimizes an approximation of the segmentation error
on an annotated set of signals.

Related penalties.. A number of model selection criteria are special cases of
the linear penalty penl0 . For instance, under Model (M1) (iid with piecewise
constant distribution), the constrained likelihood that is derived from the BIC
and the penalized sum of costs are formally equivalent, upon setting c = ci.i.d.
and pen = penBIC, where penBIC is defined as follows.
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Cost function Search method Constraint

Change point detection

Known K? Unknown K?

Penalty l0 Penalty l1 Other methods

penl0
, penBIC,

penBIC,L2
,

penBIC,L2

penl1

Stopping
criterion,
penLeb,
penmBIC

Figure 11: Typology of the constraints (on the number of change points) described in Section 6.

Penalty 2 (penBIC). The penalty function penBIC is given by

penBIC(T ) :=
p

2
log T |T | (29)

where p ≥ 1 is the dimension of the parameter space in (M1).

In the extensively studied model of an univariate Gaussian signal, with fixed
variance σ2 and piecewise constant mean, the penalty penBIC becomes penL2

,
defined below. Historically, it was one of the first penalties introduced for change
point detection [134, 140].

Penalty 3 (penBIC,L2
). The penalty function penBIC,L2

is given by

penBIC,L2
(T ) := σ2 log T |T |. (30)

where σ is the standard deviation and T is the number of samples.

In the same setting, AIC, which is a generalization of Mallows’ Cp [62], also
yields a linear penalty, namely penAIC,L2

, defined as follows.

Penalty 4 (penAIC,L2
). The penalty function penAIC,L2

is given by

penAIC,L2
(T ) := σ2 |T |. (31)

where σ is the standard deviation.

6.2. Fused lasso

For the special case where the cost function is cL2 , a faster alternative to
penl0 can be used. To that end, the l0 penalty is relaxed to a l1 penalty [18, 48].
The resulting penalty function, denoted penl1 , is defined as follows.

32



Penalty 5 (penl1). The penalty function penl1 is given by

penl1(T ) := β

|T |∑
k=1

∥∥ȳtk−1..tk − ȳtk..tk+1

∥∥
1

(32)

where β > 0 is the smoothing parameter, the tk are the elements of T and
ȳtk−1..tk is the empirical mean of sub-signal ytk−1..tk .

This relaxation strategy (from l0 to l1) is shared with many developments in
machine learning, for instance sparse regression, compressive sensing, sparse
PCA, dictionary learning [83], where penl1 is also referred to as the fused lasso
penalty. In numerical analysis and image denoising, it is also known as the total
variation regularizer [13, 18, 48]. Thanks to this relaxation, the optimization
of the penalized sum of costs (1) in (P2) is transformed into a convex opti-
mization problem, which can be solved efficiently using Lars (for “least absolute
shrinkage and selection operator”) [18, 48]. The resulting complexity is of this
order of O(T log T ) [83, 141]. From a theoretical standpoint, under the mean-
shift model (piecewise constant signal with Gaussian white noise), the estimated
change point fractions are asymptotically consistent [48]. This result is demon-
strated for an appropriately converging sequence of values of β. This consistency
property is obtained even though classical assumptions from the Lasso regres-
sion framework (such as the irrepresentable condition) are not satisfied [48]. In
the literature, penl1 , combined with cL2

, is applied on DNA sequences [16, 18],
speech signals [12] and climatological data [142].

6.3. Complex penalties

Several other penalty functions can be found in the literature. However they
are more complex, in the sense that the optimization of the penalized sum of
cost is not tractable. In practice, the solution is found by computing the optimal
segmentations with K change points, with K = 1, 2, . . . ,Kmax for a sufficiently
large Kmax, and returning the one that minimizes the penalized sum of costs.
When possible, the penalty can also be approximated by a linear penalty, in
which case, Pelt can be used. In this section, we describe two examples of
complex penalties. Both originate from theoretical considerations, under the
univariate mean-shift model, with the cost function cL2

. The first example
is the modified BIC criterion (mBIC) [143], which consists in maximizing the
asymptotic posterior probability of the data. The resulting penalty function,
denoted penmBIC, depends on the number and repartition of the change point
indexes: intuitively, it favours evenly spaced change points.

Penalty 6 (penmBIC). The penalty function penmBIC is given by

penmBIC(T ) := 3|T | log T +

|T |+1∑
k=0

log(
tk+1 − tk

T
) (33)

where the tk are the elements of T .
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In [144], a model selection procedure leads to another complex penalty function,
namely penLeb. Upon using this penalty function, the penalized sum of costs
satisfied a so-called oracle inequality, which holds in a non-asymptotic setting,
contrary to the other penalties previously described.

Penalty 7 (penLeb). The cost function penLeb is given by

penLeb(T ) :=
|T |+ 1

T
σ2(a1 log

|T |+ 1

T
+ a2) (34)

where a1 > 0 and a2 > 0 are positive parameters and σ2 is the noise variance.

7. Summary table

This literature review is summarized in Table 2. When applicable, each
publication is associated with a search method (such as Opt, Pelt, BinSeg or
Win); this is a rough categorization rather than an exact implementation. Note
that Pelt (introduced in 2012) is sometimes associated with publications prior
to 2012. It is because some linear penalties [62, 143] were introduced long be-
fore Pelt was, and authors then resorted to quadratic (at best) algorithms.
Nowadays, the same results can be obtained faster with Pelt. A guide of com-
putational complexity is also provided. Quadratic methods are the slowest and
have only one star while linear methods are given three stars. Algorithms for
which the number of change points is an explicit input parameter work under
the “known K” assumption. Algorithms that can be used even if the number of
change points is unknown work under the “unknown K” assumption. (Certain
methods can accommodate both situations.)

34



P
u
b
li
c
a
t
io

n
S
e
a
r
c
h

m
e
t
h
o
d

C
o
s
t

fu
n
c
t
io

n
K

n
o
w

n
K

S
c
a
la

b
il
it

y
(
w

r
t
T

)
P

a
c
k
a
g
e

A
d
d
it

io
n
a
l

in
fo

r
m

a
t
io

n

Y
e
s

N
o

S
e
n

a
n
d

S
r
iv

a
s
t
a
v
a

(
1
9
7
5
)
,

V
o
s
t
r
ik

o
v
a

(
1
9
8
1
)

B
i
n
S
e
g

c
L

2
3

-
H

H
H

3

Y
a
o

(
1
9
8
8
)

O
p
t

c
L

2
-

3
H

I
I

-
B

a
y
e
s
ia

n
in

fo
r
m

a
t
io

n
c
r
it

e
r
io

n
(
B

IC
)

B
a
s
s
e
v
il
le

a
n
d

N
ik

if
o
r
o
v

(
1
9
9
3
)

O
p
t

c
i.
i.
d
.
,
c
L

2
-

-
H

H
H

-
s
in

g
le

c
h
a
n
g
e

p
o
in

t

B
a
i

(
1
9
9
4
)
,

B
a
i

a
n
d

P
e
r
r
o
n

(
2
0
0
3
)

O
p
t

c
li
n
e
a
r
,L

2
-

-
H

H
I

-
s
in

g
le

c
h
a
n
g
e

p
o
in

t

B
a
i

(
1
9
9
5
)

O
p
t

c
li
n
e
a
r
,L

1
-

-
H

H
I

-
s
in

g
le

c
h
a
n
g
e

p
o
in

t

L
a
v
ie

ll
e

(
1
9
9
8
)

O
p
t

c
A
R

3
-

H
I

I
-

B
a
i

(
2
0
0
0
)

O
p
t

c
A
R

3
-

H
I

I
-

B
ir

g
é
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Figure 12: Schematic view of the ruptures package.

8. Presentation of the Python package

Most of the approaches presented in this article are included in a Python sci-
entific library for multiple change point detection in multivariate signals called
ruptures [37]. The ruptures library is written in pure Python and available
on Mac OS X, Linux and Windows platforms. Source code is available from [37]
under the BSD license and deployed with a complete documentation that in-
cludes installation instructions and explanations with code snippets on advance
use.

A schematic view is displayed on Figure 12. Each block of this diagram is
described in the following brief overview of ruptures’ features.

• Search methods Our package includes the main algorithms from the
literature, namely dynamic programming, detection with a l0 constraint,
binary segmentation, bottom-up segmentation and window-based segmen-
tation. This choice is the result of a trade-off between exhaustiveness and
adaptiveness. Rather than providing as many methods as possible, only
algorithms which have been used in several different settings are included.
In particular, numerous “mean-shift only” detection procedures were not
considered. Implemented algorithms have sensible default parameters that
can be changed easily through the functions’ interface.

• Cost functions Cost functions are related to the type of change to de-
tect. Within ruptures, one has access to parametric cost functions that
can detect shifts in standard statistical quantities (mean, scale, linear re-
lationship between dimensions, autoregressive coefficients, etc.) and non-
parametric cost functions (kernel-based or Mahalanobis-type metric) that
can, for instance, detect distribution changes [30, 96].

• Constraints All methods can be used whether the number of change
points is known or not. In particular, ruptures implements change point
detection under a cost budget and with a linear penalty term [17, 111].

• Evaluation Evaluation metrics are available to quantitatively compare
segmentations, as well as a display module to visually inspect algorithms’
performances.
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• Input Change point detection can be performed on any univariate or
multivariate signal that fits into a Numpy array. A few standard non-
stationary signal generators are included.

• Consistent interface and modularity Discrete optimization methods
and cost functions are the two main ingredients of change point detection.
Practically, each is related to a specific object in the code, making the code
highly modular: available optimization methods and cost functions can be
connected and composed. An appreciable by-product of this approach is
that a new contribution, provided its interface follows a few guidelines,
can be integrated seamlessly into ruptures.

• Scalability Data exploration often requires to run several times the same
methods with different sets of parameters. To that end, a cache is imple-
mented to keep intermediate results in memory, so that the computational
cost of running the same algorithm several times on the same signal is
greatly reduced. We also add the possibility for a user with speed con-
straints to sub-sample their signals and set a minimum distance between
change points.

9. Conclusion

In this article, we have reviewed numerous methods to perform change point
detection, organized within a common framework. Precisely, all methods are
described as a collection of three elements: a cost function, a search method
and a constraint on the number of changes to detect. This approach is in-
tended to facilitate prototyping of change point detection methods: for a given
segmentation task, one can pick among the described elements to design an
algorithm that fits its use-case. Most detection procedures described above are
available within the Python language from the package ruptures [37], which is
the most comprehensive change point detection library. Its consistent interface
and modularity allow painless comparison between methods and easy integra-
tion of new contributions. In addition, a thorough documentation is available
for novice users. Thanks to the rich Python ecosystem, ruptures can be used
in coordination with numerous other scientific libraries .
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change-points in high-dimensional network traffic data. Statistics and Computing, 22
(2):485–496, 2012.

[30] R. Lajugie, F. Bach, and S. Arlot. Large-margin metric learning for constrained par-
titioning problems. In Proceedings of the 31st International Conference on Machine
Learning (ICML), pages 297–395, Beijing, China, 2014.

[31] T. Hocking, G. Rigaill, and G. Bourque. PeakSeg: constrained optimal segmentation
and supervised penalty learning for peak detection in count data. In Proceedings of the
International Conference on Machine Learning (ICML), pages 324–332, Lille, France,
2015.

[32] R. Barrois-Müller, D. Ricard, L. Oudre, L. Tlili, C. Provost, A. Vienne, P.-P. Vidal,

S. Buffat, and A. Yelnik. Étude observationnelle du demi-tour à l’aide de capteurs iner-
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[46] S. Chakar, É. Lebarbier, C. Levy-Leduc, and S. Robin. AR1seg: segmentation of an
autoregressive Gaussian process of order 1, 2014. URL https://cran.r-project.org/

package=AR1seg.

[47] L. Boysen, A. Kempe, V. Liebscher, A. Munk, and O. Wittich. Consistencies and rates
of convergence of jump-penalized least squares estimators. The Annals of Statistics, 37
(1):157–183, 2009.
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