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Abstract: Time series often contain breakpoints of di�er-
ent origin, i.e. breakpoints, caused by (i) shifts in trend,
(ii) other changes in trend and/or, (iii) changes in variance.
In the present study, arti�cially generated time series with
white and red noise structures are analyzed using three re-
cently developed breakpoint detection methods. The time
series are modi�ed so that the exact “locations” of the ar-
ti�cial breakpoints are prescribed, making it possible to
evaluate the methods exactly. Hence, the study provides
a deeper insight into the behaviour of the three di�erent
breakpoint detection methods. Utilizing this experience
can help solving breakpoint detection problems in real-
life data sets, as is demonstrated with two examples taken
from the �elds of paleoclimate research and petrology.

Keywords: arti�cial noise; changepointmodel framework;
cross entropy method; kink point analysis; paleoclimate;
petrophysics; time series analysis

1 Introduction
Structural changes are commonplace in applied time se-
ries data analysis, and the impact of these outstanding
events is often overlooked [1]. The literature dealing with
time series, speci�cally their components (e.g. trend [2, 3])
is vast, but focusing on irregularities, breakpoints (BPs),
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caused by these components represents a di�erent way of
handling data. Scientists have long been aware that time
series often cannot be described adequately by a single lin-
ear trend, since discontinuities may arise [4, 5]. Recently
there has been a boom in papers on both detecting the
changepoints and revealing the phenomena behind them
[6–12].

It is a fundamental point that BPs can occur in the
time series characteristic of any �eld of science. These can
be considered as boundaries between two adjacent seg-
ments of data separated by, e.g. a quasi-constant di�er-
ence (shift), a change in trend, as well as by changes in
the variance of data. Breakpoints, therefore, split time se-
ries into two or – in case of multiple change points – more
segments [6]. The occurrence of changepoints can be cate-
gorized into two basic types, gradual or abrupt. In contrast
to the gradual, an abrupt change occurs when the system
crosses a threshold and from there the features of the data
fundamentally change. Distinguishing between these two
characteristics (gradual vs. abrupt) is not as straightfor-
ward as it may seem at �rst, but can be approximated by
studying di�erences between the features of data (mean,
trend and variance) on the two sides of a given breakpoint
[8].

Breakpoint detection is a tool for revealing changes in
both linear and non-linear processes just as it is for detect-
ing inhomogeneities [13].Many types of detectionmethods
are available, most of these are designed for speci�c pur-
poses of di�erent �elds of science, such as economics [14],
�nance [15], or health science, where for example it is used
in DNA sequencing studies [16] or for detecting chromoso-
mal aberrations [17, 18].

The detection of breakpoints is of particularly great
importance in earth sciences, including for example the
cases dealing with geoelectric (and/or geomagnetic) �eld
data and climate data. In the former case, the identi�ca-
tion of transient electric signals preceding earthquakes –
termed Seismic Electric Signals activity [19] – character-
izedby critical dynamics [20, 21] canbedistinguished from
similar-looking signals emitted from nearby noise sources
[22] by analyzing them in a new time domain, termed ‘nat-
ural time’ [23]. It can alsobe an interesting issue in geodesy
regarding o�sets of Global Positioning System time series
[24, 25].
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Regarding environmental/earth sciences, another
main focus area could be the evaluation of climate data.
In the case of climatic time series, since instrumental me-
teorological recordings began [26] it has always been a
problem to determine if a conspicuous change occurring
in the data is just an artefact, or an actual breakpoint [27].
Thus, numerous studies exist dealing with climate con-
ditions – regardless whether the subjects of the analysis
are instrumental [28] or proxy data – where, e.g. abrupt
changes are sought after [7, 8, 10, 29]. The fact that BPs can
be triggered by non-climate factors (e.g. instrument expo-
sure, land use, location changes) has also been studied
[27, 30, 31, 31].

Even though BP detection methods are used in many
�elds of science, the di�erences between methodologies
have not really been studied so far from a birds-eye
view. There are example studies which compare di�er-
ent methodologies regarding their speci�c components
(e.g. comparing Student t-test and Mann-Whitney U-test
[33]), but there are hardly any studies assessing overall
di�erences between methods from various points of view
[34, 35]. For these reasons, it is essential to �ll the gap and
provide an additional/novel approach to themethodology
of BP analysis by objectively comparing di�erent methods
on the same set of arti�cially generated data with or with-
out breakpoints of di�erent degrees.

The scope of the present study therefore �lls a vacant
niche in the topic by comparing the sensitivity of a kink
point detectionmethod based on trend analysis [7], amod-
i�ed cross-entropy (CE) method [16], and an additional
change point model framework (CMP), as introduced by
Hawkins et al. [36], and further developed by Ross et al.
[37]. It is supposed that due to their di�erent computa-
tional schemes, the di�erent models will be sensitive in
di�ering degrees to BPs of various origins. Therefore, the
study can help future breakpoint detection examinations
in various �elds of science to �nd the most applicable
method and/or to get a glimpse of the type of the break-
point.

2 Materials and methods
The study encompasses the following steps: (i) the gener-
ation of arti�cial time series (Section 2.1), (ii) their modi�-
cation after 75% of the total length using prede�ned trans-
formations (Section 2.1.3), (iii) then testing the sensitivity
of the di�erent breakpoint detection techniques to the dif-
ferent modi�cations (Section 3) and �nally (iv) with the

knowledge gained applying the methods to real-life time
series (Section 4).

2.1 Arti�cial time series

Arti�cial white and red (Brownian or random-walk) time
series, consisting of 200 observations, were generated to
model real-life climatic phenomena, as these are oftenmet
in climate science whether integrated within the time se-
ries or as a model for resembling temperature and precip-
itation [38, 39]. Thus, white noise – resembling precipita-
tion – and red noise –resembling temperature – [38, 40]
were generated using an autoregressive integratedmoving
average (ARIMA)¹model with the stats package of R [41],
with seeds set equally to 20. Although real-life precipita-
tion and temperature time series may deviate to a certain
extent from being characterized by solely white/red noise
characteristics – depending on numerous factors [39] –,
still for the sake of the arguments raised in the present
study purely white and red noise was used.

AR models such as those applied have great impor-
tance inmany�elds of science, e.g. inhydrogeology,where
these are used to �nd background factors as factor-time se-
ries (modelled asAR time series; [42, 43]) or inmeteorology
[44].

2.1.1 White noise

The generated completely random time series, i.e. white
noise (Figure 1a; for details see [45]) was generated by all
three integers characterizing the ARIMA (p,d,q) model be-
ing set to zero: the number of autoregressive terms, the
number of non-seasonal di�erences needed for stationar-
ity, and the number of lagged forecast errors in the predic-
tion equation (MA), as well (ARIMA(0,0,0)). Technically, it
is an AR(0) process. The obtained random time series was
of normal distribution (mean µ=0.047, standard deviation
σ=0.994), as seen in the histogram (Figure 1b).

1 Although, in the present state of the research only “ordinary” AR
models have been generated, using the ARIMA model ensured that
when we move forward in the research and take the seasonal com-
ponent (d) and the component determining the lagged forecast errors
(q) into account the same script can be used again.
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Figure 1: White noise time series A), and its histogram indicating normal distribution B).

Figure 2: Red noise time series A), its histogram indicating normal distribution B), its autocorrelation function C), and the partial autocorre-
lation function derived from the series D).



Breakpoints, methodological comparisons and environmental case studies | 81

2.1.2 Red noise

The red noise (Figure 2a) was generated by an AR(1) pro-
cess. The obtained random time series data followed a nor-
mal distribution (µ=0.151, σ=1.257), as indicated by the his-
togram in Figure 2b. The partial autocorrelation function
(pACF [45]) con�rmed that the generated data came from a
�rst order AR process (ARIMA(1,0,0); Figure 2d).

By �tting an ARIMA(1,0,0) model to the generated red
noise time series the parameters of the simulated series
were revealed: AR(1)=0.62; intercept=0.15; σ2= 0.97; log-
likelihood=-280.55; AIC=567.11 [46].

2.1.3 Modi�cation of the generated time series

The last 25% of the time series were modi�ed (from and
including the 151st to the 200th datum) by (i) adding a con-
stant value (called a "shift"), (ii) adding a trend and (iii)
modifying the variance (Figure 3). The modi�cation was
commenced using coe�cient of variation (CV) based mul-
tipliers (m) to ensure relativizationof all themodi�cations,
thus facilitating reproducibility (for details see Table 1).

2.2 Breakpoint detection techniques

We hypothesized that the di�erent breakpoint detection
methods will be more sensitive to the di�erent modi�ca-
tions, in linewith the core of their delineations. Thus, three
di�erent types of approachwere chosen: one based on pri-
marily detecting change in the �rst derivative of the trend
function of the time series (Section 2.2.1), a second based
on a modi�ed cross-entropy method (CE; Section 2.2.2),
and a third based on the idea that before and after a
breakpoint the distribution of the variable undergoes one
or more abrupt change (Section 2.2.3). The methods dis-
cussed in the study were chosen based on the facts that
these (i) cover the detection of di�erent phenomena, (ii)
were published in the last four years and (iii) freely avail-
able.

2.2.1 Kink point detection

The method was designed to detect abrupt climate
changes with the basic idea of separating trend and noise
in the data. The trend describes a temporal change of the
expected value which exhibits an abrupt change when
the �rst derivative of the trend function has a disconti-
nuity. Thus, the method indicates a break “kink” point

where the continuity of �rst derivative is obstructed. De-
cision on trend with kink points against smooth trend,
and estimating both the number and locations of these
possible points are made employing the generalized
cross-validation method. Additionally, a re�nement of the
methodology is the ability to detect kink points in the tem-
poral changes of the variance, too (for details see [7, 8]).

2.2.2 Multiple Breakpoint Detection via the
Cross-Entropy Method (CE)

TheMultiple Breakpoint Detectionmethod– implemented
in R as a package called ‘breakpoint’ [16, 47] – is based
on a modi�ed CE approach [48], which is an iterative opti-
mization procedure, yet it is only tuned to detect changes
in the mean and not yet in the variance. In every itera-
tion it uses the elite sample (de�ned by rho) to update
the parameters of the sampling distribution. The iteration
goes on until a stop criterion (de�ned by eps) is met (for
details see [6]). Speci�cally, it uses a modi�ed Bayesian
Information Criterion [49] to estimate both the number
and the corresponding locations of breakpoints. In the
present study, due to continuous data the CE.Normal func-
tionwas usedwith the distribution set to truncated normal
(distyp=2), the maximum number of breakpoints (Nmax)
set to �ve, sample size (M) left as default (200) equal to
the total number of observations, andrho=0.25, setting the
number of elite samples to 50. All the other options were
left as defaults. An additional comment should be made
here, namely, that it has been observed that the method is
unable to complete the computational task if Nmax>13.3%
of the total number of observations.

2.2.3 Sequential changepoint detection via the CPM
Method

The foundations of the Change Point Model (CPM) frame-
work were laid by Hawkins et al. [36], and Hawkins &
Zamba [50] to detect changepoints in variance and/or the
meanofGaussian randomvariables.NumerousCPMshave
so far been developed to be applied within this framework
to suit the conditions of variously distributed data: para-
metric, with breakpoints of di�erent origin such as shifts
in mean or variance [51], or non-parametric [52], as well.
The core of the delineation is that in, e.g. a �nite sequence
of independent random variables (X1, ·, Xn), where xt is
a particular realization of Xi at the point in time (ti), the
segments before {X1, ·, Xk} and after {Xk+1, ·, Xn} a break-
point (T = k) the distribution of the data is di�erent, and
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Table 1: Table of the applied modi�cations: the modi�ed value (y) and the value of the original dataset (x) both regarding white and red
noise, where m stands for the degree of the modi�cation.

m Trend, where i = 1 − 50 Shift Variance
1.5 y=x+i*1.5*CV/100 y=x+CV/10*1.5 y=x*CV/10*1.5
1 y=x+i*CV/100 y=x+CV/10 y=x*CV/10
0.5 y=x+i*0.5*CV/100 y=x+CV/10*0.5 y=x*CV/10*0.5
0.25 y=x+i*0.25*CV/100 y=x+CV/10*0.25 y=x*CV/10*0.25

Figure 3: Shift A), trend B), and variance C), modi�ed white noise time series and the shift D), trend E), and variance F) modi�ed red noise
time series with the multiplier (m) set to 0.25, 0.5, 1 and 1.5.
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this change can indeed be detected using a two sample hy-
pothesis test [28]. In the present study, since the modelled
time series were of Gaussian distribution, the Student-t –
tuned for detecting changes in the mean [36] – Bartlett
–designed for �nding changes in the variance [50] – and
Generalized Likelihood Ratio (GLR) statistics – originally
tuned for detecting changes in both [51] – were used and
compared on the di�erently modi�ed time series. The Av-
erage Run Length (ARL0) – as described in quality con-
trol literature [53] – was set to 200, which corresponds to
α=0.95, the startup sequence (S) was set to 2,8,10 (corre-
sponding to the default setting 10%=20 pcs. of data) and
32 percent of the total data length and the processStream
function was used. S was determined so it would corre-
spond in this study to a certain percentage of the data
stream. Generally, regarding S ≤10%, the very same break-
points were estimated. However, the method appeared to
be much more successful if the startup sequence was cho-
sen as one third of the total dataset length. Therefore, only
those cases are presented in Section 3 inwhich themethod
appeared to be themost successful, i.e. S = 32%.The func-
tion is tuned to handle a stream of observations andmulti-
ple breakpoints. Although only one breakpoint was imple-
mented in the time series, for the sake of comparison with
the other methods this was not taken as a known fact. For
further details, please see [50].

2.3 Software used

R statistical environment [41]wasused to generate the time
series and run the calculations using the CE-, [16] and
CMP [37]methods,breakpoint, andcpmpackages, respec-
tively. The kink point method was applied using our own
[7] Fortran code [54].

3 Results
The results show that basically every method is the most
applicable if it is a question of �nding the breakpoints for
which that particular method was designed. However, we
also came up against limitations regarding the applicabil-
ity of the various methods.

As for the modi�ed time series, an ‘acceptance inter-
val’ was introduced. When the detected breakpoints were
located at a distance farther than ±5% of the total dataset
length from the location of the arti�cial modi�cations, the
breakpoint was not considered to be accurately found.

3.1 Kink point method

Although, this method was originally designed for detect-
ing trend-type change points, it turned out to be capa-
ble of accurately detecting shift-, and variance-type BPs as
well. It seems that the location of trend-typemodi�cations
is generally over-, while variance-type is under-estimated
with this method. As for the shift-type modi�cation, in all
cases two BPswere estimated. Another general and impor-
tant observation is that no BPs were found in the original
unmodi�ed datasets.

3.1.1 White noise

Applying the kink point method on trend modi�ed white
noise time series all modi�cations were found with in-
creasing accuracy parallel to the increasing m, with just
slight overestimations (Table 2).

With respect to the shift modi�ed datasets (Table 2)
BPs were only found if m ≥ 0.5, moreover, not only one,
but two BPs were obtained within the acceptance interval.
The gap between the two BPs suggests that the kink point
detectionmethod handles a shift as two distinct BPs, since
this method was originally developed to �nd discontinu-
ity in the �rst derivative of the trend function [7]. It is ob-
vious, however, that the smaller the interval between the
two BPs, themore accurate themethod can be considered.

In the variance modi�ed datasets, BPs were only
found if the relative variance of the dataset was increased
by at least 100%.

The observations showed that the accuracy of the
method is highly dependent on the degree of the imple-
mented modi�cations; the higher the multiplier, the more
accurately were the BPs found with regard to all the three
types of modi�cations (Table 2).

3.1.2 Red noise

In theAR(1) characteristic time series, in general, BPswere
found with a slightly lower degree of accuracy than in the
white noise ones. The only case with explicit amelioration
compared to white noise was at m=1 in the variance modi-
�ed dataset (BP at 145; Table 2).

Again, the shift modi�cation obliged the kink point
method to recognize two BPs located on the two sides of
the implemented change. However, the size of the inter-
val between the two BPs was wider than in the case of the
white noise time series.
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Table 2: Location (number of data in the sequence) of detected breakpoints by the Kink point method on white and red noise. m stands for
the degree of modi�cation. Datasets were modi�ed from the 151st data.

White noise Red noise
m Trend Shift Variance Trend Shift Variance
1.5 152 148; 154 145 154 145, 158 145
1 154 148; 160 140 154 145, 158 145
0.5 154 140; 160 - - - -
0.25 155 - - - - -

Table 3: Location (number of data in the sequence) of detected breakpoints by CE-method with the percentage indicating how many times
the particular BP was found. Datasets were modi�ed from the 151st data, and m stands for the degree of the modi�cation.

White noise Red noise
m Trend Shift Variance Trend Shift Variance
1.5 158 (10%) 150 (45%) - 146 (39%) 147 (22%) -
1 158 (16%) 150 (47%) - 146 (47%) 146 (57%) -
0.5 158 (32%) 150 (82%) - 147 (100%) 147 (100%) -
0.25 154 (41%) 144 (100%) - - (62%) - (61%) -

Themost important di�erence arisingbetween the two
types of noise was that for white noise, the trend modi�-
cations were accurately found, regardless of their degree,
even with the smallest multiplier (m=0.25), while in case
of red noise this was not true. It was also noticeable that
variance-type modi�cations were not detected when the
relative degree of modi�cation was smaller than 100% re-
garding both white and red noise.

With respect to the kink point detection method it can
be said that the best results were obtained with respect
to trend-type modi�cations; however, shift and variance
modi�cations were also accurately located if m ≥1.

3.2 CE method

Due to the stochastic characteristics of the CE method [6],
its estimates can change slightly from iteration to itera-
tion. Therefore, to get around this problem, the tests were
run multiple times, and their distribution was assessed in
the course of the analysis. The number of runs (mr) was
set to 100 and 200, and with regard to the 3 most fre-
quently occurring BPs, no meaningful di�erence was ob-
served between the two sets (100; 200). Thus, only the re-
sults obtained with mr=100will be discussed. After assess-
ing the distribution of the obtained breakpoints, so as to
better guide the discussion, the location of only the most
frequently occurring ones are presented, accompanied by
their abundance (%; Table 3). It should be noted here that
even according to the authors developing the method, it

is not yet able to recognize variance changes [16]. Thus,
unsurprisingly, no breakpoints were found in the variance
modi�ed time series (Table 3).

In summary, the location of trend-type modi�cations
was overestimated for white noise whereas both trend-
and shift-type modi�cations were underestimated for red
noise. It is also important to note that as with the kink
point detection method, no BPs were found in the original
unmodi�ed datasets here either.

3.2.1 White noise

After having run the analysis on time series characterized
by white noise, in the case of trend modi�ed datasets, the
located BPs were found to be distributed mainly above
the implemented arti�cial change point, nevertheless still
within the acceptance interval (Table 3).

Shift modi�cations were more accurately estimated
than those of trend. The best results (most accurate (150)
and highest occurrence (82%)) were obtained if the mean
of the original dataset was increased by 50%. In the case
of m=0.25, the implemented BP was underestimated.

3.2.2 Red noise

With respect to the datasets characterized by red noise,
both trend-, and shift-type modi�cations were accurately
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found with high occurrences; they were, however, under-
estimated in all cases (Table 3). Atm=0.5 for both shift and
trend the same BP (147) was found in 100% of the cases,
while at m=0.25 in 62 and 61% of the cases, respectively,
no BPs were found. In the remainder (38 and 39%) it was
falsely estimated to be at the 34th point.

Regarding the CE method, it can be concluded that (i)
it is as yet incapable of handling variance-type BPs, (ii) it is
most accurate in locating shift-typeBPs inwhite noise time
series, and (iii) in the case of white noise trend-modi�ed
processes the locations of BPs are overestimated, while for
red noise the opposite is true. Furthermore, the abundance
of the most frequently located BPs displays a decreasing
tendency with an increasing degree of modi�cation (iv),
still giving accurate results, and (v) the most accurate re-
sults are obtained if the degree of modi�cation is around
50%.

In time series characterized by AR(1), trend modi�-
cations are more successfully located than in the case
of AR(0), while regarding shift-type modi�cations the
method appeared to be more accurate when applied to
AR(0) time series.

3.3 Change Point Model (CPM) method

All the three test options available for normally distributed
data (Student, Bartlett, GLR) were applied on all the mod-
i�ed datasets to reveal the speci�c discontinuities.

The startup sequence was chosen as 2, 8, 10% (10%
is same as the default, 20 data points) and 32% of the to-
tal length of the data. It was found that under S=10% the
exact same output is obtained. Themethod appeared to be
the most successful when the startup sequence was one
third of the total dataset length; this way, in most cases
only one accurate breakpoint was obtained. It should be
noted that during the CPM runs BPs were found in the
original unmodi�ed datasets. It therefore had to be tested
whether these occurred by chance, or originated from the
sensitivity of the CPM method. Thus, a 1000 normally dis-
tributed randomwhite and red noise time series were gen-
erated without implemented BPs. It was found that in the
case of white noise, the Student- and Bartlett tests did not
�nd BPs in about 33%, while GLR did not �nd any BPs in
∼40% of the time series. In the case of AR(1) type time se-
ries, BPs were found technically in almost all cases. Only
the Bartlett test was able to produce estimations where
no BPs were found in the original unmodi�ed datasets,
that is in slightly over 3% of the cases. This phenomenon
may presumably be attributed to (i) the sensitivity of the
CPM method, and (ii) the fact that it has been developed

for datasets with di�erent characteristics than the ones in
the present study [50], and this should not therefore be
regarded as a “weakness”. Thus, during real-life applica-
tions caution is advisable.

Aside from these facts, the accuracy of the CPM
method in �nding the implemented BPs can indeed be
tested, because the BPs found in the original datasets were
systematically found in the modi�ed ones as well. How-
ever, it is possible to obtain objective results only in those
caseswhere the BPs found in the original datasetwere out-
side the chosen acceptance interval. Therefore, in the fol-
lowing two sections the applicability of the results is re-
stricted to answering the question of whether the di�erent
tests found the implemented BPs or not, and to what ex-
tent the degree of modi�cation (m) a�ected these results.
In the case ofwhite noise no BPswere found in the original
datasetswithin the acceptance interval,while for rednoise
this was not true. The Bartlett test on the unmodi�ed data
found a BP at the 156th datum. Therefore, only the Student
and GLR test results can only be objectively discussed for
red noise.

3.3.1 White noise

Regarding trend modi�cations, the Student and GLR tests
found the exact same BPs regardless of their degree (m) at
S=32%.All the BPswere overestimated, andwere found in-
side the acceptance interval, even in the case of the small-
est modi�cation (m=0.25). Unsurprisingly, the Bartlett test
was only able to �nd the trend characteristic BPs when
the degree of modi�cation was above 50%. In these cases,
however, this was accompanied by additional false BPs
(Table 4). In the case of S ≤10%, trend modi�cations were
not found accurately, and the obtained BPs were scattered
all over the time series for all three tests. It seems that at
S <10%, the arti�cial BP in the data was recognized as a
gradual change (steps) at around the 150th point.

Shift alternations were accurately found by both Stu-
dent and GLR tests equally, regardless of the degree of
modi�cation. Nonetheless, the smaller the degree of mod-
i�cation, the less accurate BPs were located just as seen
previously (Section 3.1). Applying the Bartlett test to shift
modi�edwhite noise time series no useful results were ob-
tained, since all the BPs were located outside the accep-
tance interval, along with two pairs already found in the
unmodi�ed datasets (Table 4).

It is important to note that variance type alternations
were revealed in all cases quite accurately with m ≥100%.
With the Bartlett and GLR tests, breakpoints appeared to
be accurately located, regardless of the degree of modi�-
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cation, except in caseswhere the degree of alternationwas
50%, in which case, interestingly, no breakpoints were es-
timated.

It can be concluded that the Student test is the most
applicable for detecting shift-type changes, while the
Bartlett is successful at recognizing variance-type breaks.
The GLR method successfully combines the advantages
of these two by detecting changes in both the mean and
variance. For trend and shift modi�cations (which primar-
ily a�ect the mean), it gave the same BPs as the Student
method, while for modi�cations in the variance, it repli-
cated the Bartlett test results. Trend-type alternations can
be estimated most e�ectively with both Student and GLR
tests with S=32%.

3.3.2 Red noise

Breakpoint detection with the CPM method on time series
characterized by red noise turned out to be much more
challenging than on white noise. As mentioned before,
there were cases when BPs were identi�ed in the unmod-
i�ed datasets. Unfortunately, in case of the Bartlett test,
BPswere found in theunmodi�ed time serieswithin the ar-
bitrary chosen acceptance interval (150th point ±10; ±5%of
the total dataset length). Therefore, these test results had
to be excluded from the discussion. At the lowest,m=0.25,
no meaningful results were obtained.

Trend modi�cations, taking into account only the re-
sults of the Student and GLR tests, did not �nd BPs within
the acceptance interval. Shift type modi�cations were ac-
curately recognized by the Student and GLR tests only
above m=0.5 at the 146th data point.

In the rednoise variancemodi�ed time series, only the
GLR test was capable of revealing accurate BPs over m=1,
with the best result (149 found at m=1.5) for a startup set
to 32%. The Student test found one BP for eachm=1 and 1.5
just slightly outside the acceptance interval.

In summary, the CPM method was most accurate in
the case of shift-type modi�cations using the Student and
the GLR tests, while the Bartlett test (regarding white
noise) wasmost applicable for detecting the variance-type
changes.

3.4 Comparison of the test results

The obtained results were compared in detail according to
the following criteria: (i/a) how themethods reacted to the
di�erent modi�cations and (i/b) to the change in the mul-
tiplier (m) with regard to the accuracy (and in the case of

the CE method) and to the abundance of the results, and,
(ii) whether any BPs were found in the original, unmodi-
�ed datasets.

It should again be noted that datasets were modi-
�ed from the 151st datum onwards, and there were no BPs
placed to the 151st datum by any of the methods tested (in
contrast to placing it at the 150th). Hence, it can be con-
cluded that the locations indicated by the tests determine
the location of the last datum occurring in the sequence
before the particular change takes place.

4 Real-life applications

4.1 Application to a historical temperature
proxy: vine sprout length data from
Hungary

As the timing of life cycle-events recorded in phenologi-
cal records have been proven to be closely connected to
climate variations [55], it becomes more and more impor-
tant to be able objectively to determine changes in their
time series, and thus, hopefully, be able to distinguish be-
tween climate-induced and other BPs, as a crucial step be-
fore any conclusions are drawn concerning possible cli-
mate change.

The Kőszeg (Western Hungary) ‘Book of Vine sprouts’
is a unique collection of life-sized pictorial documents of
the vine sprouts with a documented connection to early
spring temperatures [56, 57]. Střeštík & Verő [58] were the
�rst to develop a quantitative reconstruction based on this
historical phenology evidence. However, after noticing a
sharp variance contrast between the 20th century and the
earlier section of the record they tried to eliminate this in-
homogeneity by arbitrarily amplifying the variance of the
20th century part. This would have been a less risky ap-
proach if they had omitted either the previous part to their
presumed BP or the subsequent part, and/or, preferably, if
they had determined the BP in an objective way. The time
series was recently reassessed [59], restricting the anal-
ysis to only the Burgundy braches – which raises ques-
tions notwithin the scope of the present paper – anddeter-
mined three BPs (1780; 1820; 1929) using the Bai and Per-
ronmultiple breakpoint test [60]. Thesewere subsequently
attributed to changes in cultivation/species etc.

We applied the three methods (kink, CE, CPM) so as
to determine objectively the suspected BPs. Even a simple
visual inspection sheds light on a change in the character-
istics of the data passing the midpoint of the record (Fig-
ure 4), possibly in variance and mean as well.
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Table 4: Location (number of data in the sequence) of detected breakpoints in white noise modi�ed time series by CPM method (Student,
Bartlett and GLR tests). Results outside the chosen accuracy interval (±5% of the total dataset length) are marked with *. The underlined
BPs were found in the original unmodi�ed datasets as well. Datasets were modi�ed from the 151st data, m stands for the degree of the
modi�cation.

Trend Shift Variance
m Student Bartlett GLR Student Bartlett GLR Student Bartlett GLR
1.5 154 127*; 152 154 150 127*; 166* 150 154 150 150
1 154 127*; 147 154 150 127* 150 159 150 147
0.5 154 109*; 174* 154 150 46*; 48* 150 - - -
0.25 159 109* 159 154 46*; 48* 154 - 154 154

Table 5: Location (number of data in the sequence) of detected breakpoints in red noise modi�ed time series detected by the Student and
GLR tests of the CPM method. Results outside the chosen accuracy interval (±5% of the total dataset length) are marked with *. Only those
BPs are listed which were found in the modi�ed datasets. In this case only, the dash (-) means that no other BP was found than the ones in
the original datasets. Datasets were modi�ed from the 151st data; m stands for the degree of the modi�cation.

Trend Shift Variance
m Student GLR Student GLR Student GLR
1.5 130*;168* 130*;168* 146 146 161* 149
1 130*;168* 130*;168* 146 146 161* 146
0.5 - - 146 146 - -
0.25 - - 130*;178* - 114*;129*;176* 126*;178*

Table 6: Summary results of the di�erent BP detection methods on the arti�cially modi�ed time series.

Kink CE CPM
White noise Q I/a Most accurately trend, than

shift and lastly variance
modi�cations were found.

Most accurately, trend,
than shift was found

(method yet incapable of
�nding variance type BPs).

For Student & GLR most
accurately shift, than

variance BPs were found.
For variance-type BPs
Bartlett test was more
accurate than GLR.

I/b Accuracy increased with m. Unexpectedly, with m
increasing, accuracy
decreased along with

abundance.

Accuracy increased with m

Q II None found in the original
data.

None found in the original
data.

Limited.

Red noise Q I/a No pronounced di�erence between the di�erent
modi�cations

For trend no meaningful
result was obtained. For
shift, Student- & GLR

produced similar accuracy
and to �nd variance type of

BPs GLR is the best
solution.

I/b m ≥ 1, no meaningful
di�erence observed.

m ≥ 0.5, no meaningful
di�erence in accuracy and

abundance observed.

-

Q II None found in the original
data.

None found in the original
data.

Numerous BPs found in all
cases.
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The Kink point method was not able to identify any
breakpoints in the vine sprout length data, which fore-
casted that the awaited structural change in the data could
not be of the trend type. This hypothesis was further en-
forced by the other two methods, since those are sensitive
to other types of structural change, such as mean and/or
variance, and not trend.

The CE method was run 100 times with the same pa-
rameters as on the arti�cial data (Section 2.2.2). The results
indicated that most probably one BP exists in the time se-
ries, and it is very likely the year 1907, corresponding to the
120th data point, since 75%of the detectedBPswere placed
there (Figure 4). In the remaining 25% of the cases, it was
estimated to be at the 112th data point, corresponding to
1899.

As for the CPM results, all three tests were run, supple-
mented by a fourth, nonparametric one (Mann-Whitney),
tuned to locate shifts. These identi�ed numerous BPs.
However, having compared these to each other, only two
breakpoints were indicated by multiple tests: 119/120 and
201, corresponding to the years 1906/7 and 1988 (Table 7).

Interestingly, neither of the BPs found by the two
methods (CE & CPM; Table 7) match those reported by
Parisi et al. [59], which raises concerns about their inter-
pretations. However, it should be noted that the datasets
used [59] di�ered slightly from that used in the present
study. Parisi et al. [59] re-measured the pictures in the
‘Book of Vine sprouts’, while we used the data published
by Střeštík & Verő [58] and omitted the values before 1788,
so no gaps would occur.

Nevertheless, the BPs placed at the turn of the 20th

century (Table 7) coincided with previous suppositions
[58]. The BP found in 1899 matched exactly the �rst occur-
rence of the phylloxera disease in the Kőszeg area, which
caused a complete change in the species composition of
the vineyards [61]. This change had presumably a�ected
viticulture to such an extent that after 1908 the population
cannot be further considered as homogeneous. The results
may be considered important from several paleoclimato-
logical points of view: in a recent study, for example, be-
cause the CPM placed the BP to 1906 and the CE to 1907,
the data after 1906 was omitted for spring temperature re-
constructions [57].

From the observations of the arti�cial time series (Ta-
ble 6) and the results seen above, it can also be concluded
that the BP found at the 119/120th data point is of the shift
type, while at datum 201 it may be presumed to be a vari-
ance type of change, though the restricted number of data
after the BP makes it di�cult to decide.

4.2 Application to the closure-correction of
mercury-injection capillary-pressure
(MICP) curves

In petrophysical analyses, mercury drainage capillary
pressure curves serve as a vital stepping-stone in the de-
termination of initial �uid distribution in the subject reser-
voir rock and thus indetermining the e�ciencywithwhich
a non-wetting phase can be taken from a pore system
[62]. In general practice, the raw drainage capillary pres-
sure curves’ assessment starts with the �tting of two lin-
ear trends on the data and the discarding of the shorter
segment (i.e. closure correction). With the residuals’ cap-
illary curve, a Thomeer evaluation [63] can be conducted,
describing the residual curve with a hyperbola. However,
closure correction is performedmanually, based on the ex-
pert’s professional experience (that is, arbitrarily).

Through the application of the three BP detection
methods at hand (kink point, CE and CPM) on the 29 avail-
able MICP curves [64], it became possible to validate the
expert’s decision and, vice-versa, to evaluate themethods’
e�ciency. In the analysis, the values indicating the loca-
tion of the BPs determined by the expert correspond to the
last datum which was discarded. Thus, the break is be-
tween the value pointed out as the BP and the following
one.

First, the BPs were determined using each method
(for details see the Appendix) and then the di�erences be-
tween those and the locations of theBPsdeterminedby the
expert were computed and summarized (Table 8).

It can be concluded that in order of decreasing ac-
curacy the kink point, GLR, Student, CE and the Bartlett
methodswere capable of �nding BPs closest to those iden-
ti�ed by the expert. The average di�erence between the ex-
pert’s evaluations and the breakpoints found by the kink
point method was µ= -0.10, with a standard deviation of σ
= 0.56. The tendency was to overestimate the BPs, and the
few cases when underestimation was observed belonged
mainly to those indicated by the Bartlett and kink point
methods (15 out of the 16 underestimations; Table 8).

In summary, the kink point method was shown to be
the most suitable to facilitate the industrial task of assess-
ing the closure-correction of MICP curves, and its applica-
tion would indeed accelerate the process, freeing up hu-
man resources.
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Figure 4: Vine sprout length data A) and the distribution of BPs found using the CE method in the gapless period (1788-1998) B).

Table 7: BPs found in the vine sprout data using the CPM & the CE method. The BPs found by at least three methods/tests are highlighted.

CPM CE
MW GLR Bartlett Student
25 49 14 119 112 (25%)
45 51 55 201 120 (75%)
119 98 57

104 98
126 104
128 126
151 128
153 146
155 167
173 169
175 189
189 191
191 201
201

Table 8: Descriptive statistics of the di�erences between the location of the BPs found by the expert and the di�erent methods on the 29
MICP curves. Negative values indicate under-, while positive ones overestimation. The statistics were computed using only the most fre-
quently found CE BPs (average abundance was 33.7%). Data was obtained from Nemes [61].

CPM CE
Kink point GLR Student Bartlett

Min. -1.00 -2.00 1.00 -3.00 0.00
Max. 1.00 2.00 3.00 9.00 11.00
Med. 0.00 1.00 2.00 7.00 3.00
St.dev. 0.56 0.73 0.72 4.76 1.70
Avg. -0.10 0.59 1.66 4.00 2.97
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5 Conclusions and outlook
By comparing the sensitivity of three breakpoint detec-
tion techniques, their basic di�erences were highlighted.
The results draw attention to the fact that the detection of
breakpoints is indeed dependent on the degree and type
of themodi�cations and the computational background of
the detectionmethods. Most importantly: (i) the CE & kink
point methods did not �nd any breakpoints in the origi-
nal dataset, unlike the CPM method (probably due to its
basic sensitivity), (ii) breakpoints in AR(0) time series are
handledmore successfully, and (iii) themost explicit ame-
lioration in accuracy was witnessed starting from m ≥0.5.
As seen in recent studies, with multiple methods applied
together [29], the suspected breakpoints can bemore e�ec-
tively found. In the present study, the information gained
from the test on arti�cial breakpoints and those docu-
mented in literature were combined.

On the one hand, documented BPs were veri�ed,
while others were questioned in a historic grape phenol-
ogy dataset; on the other hand, the practice of closure-
correction of MICP curves was facilitated and expedited,
sparing human resources and leading towards a more ob-
jective industrial practice. The interpretation of real life
data sets was supported by the experience gained from the
“arti�cial” exercises.
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A Appendix: Detecting breakpoints
in arti�cially implemented and
real-life time series using
state-of-the-art methods

The following graphs represent the breakpoints found by
the Expert (red triangle pointing down), found by the spe-
ci�c test of the CPMmethod (blue broken vertical line), the
CEmethod (thick orange broken vertical line) and the Kink
point method (black broken and dotted vertical line). The
measurement unit of capillary pressure for Hg/ Air is in
bars, however the axis has been rescaled arbitrarily.
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