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a b s t r a c t

Time series is an important class of temporal data objects and it can be easily obtained from scientific

and financial applications. A time series is a collection of observations made chronologically. The nature

of time series data includes: large in data size, high dimensionality and necessary to update

continuously. Moreover time series data, which is characterized by its numerical and continuous

nature, is always considered as a whole instead of individual numerical field. The increasing use of time

series data has initiated a great deal of research and development attempts in the field of data mining.

The abundant research on time series data mining in the last decade could hamper the entry of

interested researchers, due to its complexity. In this paper, a comprehensive revision on the existing

time series data mining research is given. They are generally categorized into representation and

indexing, similarity measure, segmentation, visualization and mining. Moreover state-of-the-art

research issues are also highlighted. The primary objective of this paper is to serve as a glossary for

interested researchers to have an overall picture on the current time series data mining development

and identify their potential research direction to further investigation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the increasing use of temporal data, in particular
time series data, has initiated various research and development
attempts in the field of data mining. Time series is an important
class of temporal data objects, and it can be easily obtained from
scientific and financial applications (e.g. electrocardiogram (ECG),
daily temperature, weekly sales totals, and prices of mutual funds
and stocks). A time series is a collection of observations made
chronologically. The nature of time series data includes: large in
data size, high dimensionality and update continuously. Moreover
time series data, which is characterized by its numerical and
continuous nature, is always considered as a whole instead of
individual numerical field. Therefore, unlike traditional databases
where similarity search is exact match based, similarity search in
time series data is typically carried out in an approximate
manner.

There are various kinds of time series data related research, for
example, finding similar time series (Agrawal et al., 1993a; Berndt
and Clifford, 1996; Chan and Fu, 1999), subsequence searching in
time series (Faloutsos et al., 1994), dimensionality reduction
(Keogh, 1997b; Keogh et al., 2000) and segmentation (Abonyi
et al., 2005). Those researches have been studied in considerable
detail by both database and pattern recognition communities for
different domains of time series data (Keogh and Kasetty, 2002).

In the context of time series data mining, the fundamental
problem is how to represent the time series data. One of the
ll rights reserved.
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common approaches is transforming the time series to another
domain for dimensionality reduction followed by an indexing
mechanism. Moreover similarity measure between time series or
time series subsequences and segmentation are two core tasks
for various time series mining tasks. Based on the time series
representation, different mining tasks can be found in the
literature and they can be roughly classified into four fields:
pattern discovery and clustering, classification, rule discovery and
summarization. Some of the research concentrates on one of these
fields, while the others may focus on more than one of the above
processes. In this paper, a comprehensive review on the existing
time series data mining research is given. Three state-of-the-art
time series data mining issues, streaming, multi-attribute time
series data and privacy are also briefly introduced.

The remaining part of this paper is organized as follows:
Section 2 contains a discussion of time series representation and
indexing. The concept of similarity measure, which includes both
whole time series and subsequence matching, based on the raw
time series data or the transformed domain will be reviewed in
Section 3. The research work on time series segmentation and
visualization will be discussed in Sections 4 and 5, respectively. In
Section 6, vary time series data mining tasks and recent time
series data mining directions will be reviewed, whereas the
conclusion will be made in Section 7.
2. Time series representation and indexing

One of the major reasons for time series representation is to
reduce the dimension (i.e. the number of data point) of the
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Fig. 1. Time series dimensionality reduction by sampling. The time series on the left is sampled regularly (denoted by dotted lines) and displayed on the right with a large

distortion.

Fig. 2. Time series dimensionality reduction by PAA. The horizontal dotted lines show the mean of each segment.
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original data. The simplest method perhaps is sampling (Astrom,
1969). In this method, a rate of m/n is used, where m is the length
of a time series P and n is the dimension after dimensionality
reduction (Fig. 1). However, the sampling method has the
drawback of distorting the shape of sampled/compressed time
series, if the sampling rate is too low.

An enhanced method is to use the average (mean) value of
each segment to represent the corresponding set of data points.
Again, with time series P¼ ðp1, . . ., pmÞ and n is the dimension after
dimensionality reduction, the ‘‘compressed’’ time series
P̂¼ ðp̂1, . . ., p̂nÞ can be obtained by

p̂k ¼
1

ek�skþ1

Xek

i ¼ sk

pi ð1Þ

where sk and ek denote the starting and ending data points of the
kth segment in the time series P, respectively (Fig. 2). That is,
using the segmented means to represent the time series (Yi and
Faloutsos, 2000). This method is also called piecewise aggregate
approximation (PAA) by Keogh et al. (2000).1 Keogh et al. (2001a)
propose an extended version called an adaptive piecewise
constant approximation (APCA), in which the length of each
segment is not fixed, but adaptive to the shape of the series. A
signature technique is proposed by Faloutsos et al. (1997) with
similar ideas. Besides using the mean to represent each segment,
other methods are proposed. For example, Lee et al. (2003)
propose to use the segmented sum of variation (SSV) to represent
each segment of the time series. Furthermore, a bit level
approximation is proposed by Ratanamahatana et al. (2005) and
Bagnall et al. (2006), which uses a bit to represent each data point.

To reduce the dimension of time series data, another approach
is to approximate a time series with straight lines. Two major
categories are involved. The first one is linear interpolation. A
common method is using piecewise linear representation (PLR)2

(Keogh, 1997b; Keogh and Smyth, 1997; Smyth and Keogh, 1997).
The approximating line for the subsequence P(pi, y, pj) is simply
the line connecting the data points pi and pj. It tends to closely
align the endpoint of consecutive segments, giving the piecewise
1 This method is called piecewise constant approximation originally (Keogh

and Pazzani, 2000a).
2 It is also called piecewise linear approximation (PLA).
approximation with connected lines. PLR is a bottom-up algo-
rithm. It begins with creating a fine approximation of the time
series, so that m/2 segments are used to approximate the m length
time series and iteratively merges the lowest cost pair of
segments, until it meets the required number of segment. When
the pair of adjacent segments Si and Si +1 are merged, the cost of
merging the new segment with its right neighbor and the cost of
merging the Si+1 segment with its new larger neighbor is
calculated. Ge (1998) extends PLR to hierarchical structure.
Furthermore, Keogh and Pazzani enhance PLR by considering
weights of the segments (Keogh and Pazzani, 1998) and relevance
feedback from the user (Keogh and Pazzani, 1999). The second
approach is linear regression, which represents the subsequences
with the best fitting lines (Shatkay and Zdonik, 1996).

Furthermore, reducing the dimension by preserving the salient
points is a promising method. These points are called as
perceptually important points (PIP). The PIP identification process
is first introduced by Chung et al. (2001) and used for pattern
matching of technical (analysis) patterns in financial applications.
With the time series P, there are n data points: P1, P2 y, Pn. All the
data points in P can be reordered by its importance by going
through the PIP identification process. The first data point P1 and
the last data point Pn in the time series are the first and two PIPs,
respectively. The next PIP that is found will be the point in P with
maximum distance to the first two PIPs. The fourth PIP that is
found will be the point in P with maximum vertical distance to
the line joining its two adjacent PIPs, either in between the first
and second PIPs or in between the second and the last PIPs. The
PIP location process continues until all the points in P are attached
to a reordered list L or the required number of PIPs is reached (i.e.
reduced to the required dimension). Seven PIPs are identified in
from the sample time series in Fig. 3. Detailed treatment can be
found in Fu et al. (2008c).

The idea is similar to a technique proposed about 30 years ago
for reducing the number of points required to represent a line by
Douglas and Peucker (1973) (see also Hershberger and Snoeyink,
1992). Perng et al. (2000) use a landmark model to identify the
important points in the time series for similarity measure. Man
and Wong (2001) propose a lattice structure to represent the
identified peaks and troughs (called control points) in the time
series. Pratt and Fink (2002) and Fink et al. (2003) define extrema
as minima and maxima in a time series and compress the time



Fig. 3. Time series compression by data point importance. The time series on the left is represented by seven PIPs on the right.
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series by selecting only certain important extrema and dropping
the other points. The idea is to discard minor fluctuations and
keep major minima and maxima. The compression is controlled
by the compression ratio with parameter R, which is always
greater than one; an increase of R leads to the selection of fewer
points. That is, given indices i and j, where irxr j, a point px of a
series P is an important minimum if px is the minimum among
pi, y, pj, and pi/pxZR and pj/pxZR. Similarly, px is an important
maximum if px is the maximum among pi, y, pj and px/piZR and
px/pjZR. This algorithm takes linear time and constant memory. It
outputs the values and indices of all important points, as well as
the first and last point of the series. This algorithm can also
process new points as they arrive, without storing the original
series. It identifies important points based on local information of
each segment (subsequence) of time series. Recently, a critical
point model (CPM) (Bao, 2008) and a high-level representation
based on a sequence of critical points (Bao and Yang, 2008) are
proposed for financial data analysis. On the other hand, special
points are introduced to restrict the error on PLR (Jia et al., 2008).
Key points are suggested to represent time series in (Leng et al.,
2009) for an anomaly detection.

Another common family of time series representation
approaches converts the numeric time series to symbolic form.
That is, first discretizing the time series into segments, then
converting each segment into a symbol (Yang and Zhao, 1998;
Yang et al., 1999; Motoyoshi et al., 2002; Aref et al., 2004). Lin
et al. (2003; 2007) propose a method called symbolic aggregate
approximation (SAX) to convert the result from PAA to symbol
string. The distribution space (y-axis) is divided into equiprobable
regions. Each region is represented by a symbol and each segment
can then be mapped into a symbol corresponding to the region in
which it resides. The transformed time series P̂ using PAA is finally
converted to a symbol string SS(s1, y, sW). In between, two
parameters must be specified for the conversion. They are the
length of subsequence w and alphabet size A (number of symbols
used). Besides using the means of the segments to build the
alphabets, another method uses the volatility change to build the
alphabets. Jonsson and Badal (1997) use the ‘‘Shape Description
Alphabet (SDA)’’. Example symbols like highly increasing transi-
tion, stable transition, and slightly decreasing transition are
adopted. Qu et al. (1998) use gradient alphabets like upward,
flat and download as symbols. Huang and Yu (1999) suggest
transforming the time series to symbol string, using change ratio
between contiguous data points.

Megalooikonomou et al. (2004) propose to represent each
segment by a codeword from a codebook of key-sequences. This
work has extended to multi-resolution consideration (Megalooi-
konomou et al., 2005). Morchen and Ultsch (2005) propose an
unsupervised discretization process based on quality score and
persisting states. Instead of ignoring the temporal order of values
like many other methods, the Persist algorithm incorporates
temporal information.

Furthermore, subsequence clustering is a common method to
generate the symbols (Das et al., 1998; Li et al., 2000a; Hugueney
and Meunier, 2001; Hebrail and Hugueney, 2001). A multiple
abstraction level mining (MALM) approach is proposed by Li et al.
(1998), which is based on the symbolic form of the time series.
The symbols in this paper are determined by clustering the
features of each segment, such as regression coefficients, mean
square error and higher order statistics based on the histogram of
the regression residuals.

Most of the methods described so far are representing time
series in time domain directly. Representing time series in the
transformation domain is another large family of approaches. One
of the popular transformation techniques in time series data
mining is the discrete Fourier transforms (DFT), since first being
proposed for use in this context by Agrawal et al. (1993a). Rafiei
and Mendelzon (2000) develop similarity-based queries, using
DFT. Janacek et al. (2005) propose to use likelihood ratio statistics
to test the hypothesis of difference between series instead of an
Euclidean distance in the transformed domain. Recent research
uses wavelet transform to represent time series (Struzik and
Siebes, 1998). In between, the discrete wavelet transform (DWT)
has been found to be effective in replacing DFT (Chan and Fu,
1999) and the Haar transform is always selected (Struzik and
Siebes, 1999; Wang and Wang, 2000). The Haar transform is a
series of averaging and differencing operations on a time series
(Chan and Fu, 1999). The average and difference between every
two adjacent data points are computed. For example, given a
time series P¼(1, 3, 7, 5), dimension of 4 data points is the full
resolution (i.e. original time series); in dimension of two
coefficients, the averages are (2 6) with the coefficients (�1 1)
and in dimension of 1 coefficient, the average is 4 with coefficient
(�2). A multi-level representation of the wavelet transform is
proposed by Shahabi et al. (2000). Popivanov and Miller (2002)
show that a large class of wavelet transformations can be used for
time series representation. Dasha et al. (2007) compare different
wavelet feature vectors. On the other hand, comparison between
DFT and DWT can be found in Wu et al. (2000b) and Morchen
(2003) and a combination use of Fourier and wavelet transforms
are presented in Kawagoe and Ueda (2002). An ensemble-index, is
proposed by Keogh et al. (2001b) and Vlachos et al. (2006), which
ensembles two or more representations for indexing.

Principal component analysis (PCA) is a popular multivariate
technique used for developing multivariate statistical process
monitoring methods (Yang and Shahabi, 2005b; Yoon et al., 2005)
and it is applied to analyze financial time series by Lesch et al.
(1999). In most of the related works, PCA is used to eliminate the
less significant components or sensors and reduce the data
representation only to the most significant ones and to plot the
data in two dimensions. The PCA model defines linear hyperplane,
it can be considered as the multivariate extension of the PLR. PCA
maps the multivariate data into a lower dimensional space, which
is useful in the analysis and visualization of correlated high-
dimensional data. Singular value decomposition (SVD) (Korn
et al., 1997) is another transformation-based approach.

Other time series representation methods include modeling
time series using hidden markov models (HMMs) (Azzouzi and
Nabney, 1998) and a compression technique for multiple stream
is proposed by Deligiannakis et al. (2004). It is based on base
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signal, which encodes piecewise linear correlations among the
collected data values. In addition, a recent biased dimension
reduction technique is proposed by Zhao and Zhang (2006) and
Zhao et al. (2006).

Moreover many of the representation schemes described
above are incorporated with different indexing methods. A
common approach is adopted to an existing multidimensional
indexing structure (e.g. R-tree proposed by Guttman (1984)) for
the representation. Agrawal et al. (1993a) propose an F-index,
which adopts the R*-tree (Beckmann et al., 1990) to index the first
few DFT coefficients. An ST-index is further proposed by
(Faloutsos et al. (1994), which extends the previous work for
subsequence handling. Agrawal et al. (1995a) adopt both the R*-
and R+-tree (Sellis et al., 1987) as the indexing structures. A
multi-level distance based index structure is proposed (Yang and
Shahabi, 2005a), which for indexing time series represented by
PCA. Vlachos et al. (2005a) propose a Multi-Metric (MM) tree,
which is a hybrid indexing structure on Euclidean and periodic
spaces. Minimum bounding rectangle (MBR) is also a common
technique for time series indexing (Chu and Wong, 1999; Vlachos
et al., 2003). An MBR is adopted in (Rafiei, 1999) which an MT-
index is developed based on the Fourier transform and in (Kahveci
and Singh, 2004) which a multi-resolution index is proposed
based on the wavelet transform. Chen et al. (2007a) propose an
indexing mechanism for PLR representation. On the other hand,
Kim et al. (1996) propose an index structure called TIP-index
(TIme series Pattern index) for manipulating time series pattern
databases. The TIP-index is developed by improving the extended
multidimensional dynamic index file (EMDF) (Kim et al., 1994).
An iSAX (Shieh and Keogh, 2009) is proposed to index massive
time series, which is developed based on an SAX. A multi-
resolution indexing structure is proposed by Li et al. (2004), which
can be adapted to different representations.

To sum up, for a given index structure, the efficiency of
indexing depends only on the precision of the approximation in
the reduced dimensionality space. However in choosing a
dimensionality reduction technique, we cannot simply choose
an arbitrary compression algorithm. It requires a technique that
produces an indexable representation. For example, many time
series can be efficiently compressed by delta encoding, but this
representation does not lend itself to indexing. In contrast, SVD,
DFT, DWT and PAA all lend themselves naturally to indexing, with
each eigenwave, Fourier coefficient, wavelet coefficient or
aggregate segment map onto one dimension of an index tree.
Post-processing is then performed by computing the actual
distance between sequences in the time domain and discarding
any false matches.
3. Similarity measure

Similarity measure is of fundamental importance for a variety
of time series analysis and data mining tasks. Most of the
representation approaches discussed in Section 2 also propose the
similarity measure method on the transformed representation
scheme. In traditional databases, similarity measure is exact
match based. However in time series data, which is characterized
by its numerical and continuous nature, similarity measure is
typically carried out in an approximate manner. Consider the
stock time series, one may expect having queries like:

Query1: find all stocks which behave ‘‘similar’’ to stock A.
Query2: find all ‘‘head and shoulders’’ patterns last for a month in

the closing prices of all high-tech stocks.
The query results are expected to provide useful information

for different stock analysis activities. Queries like Query2 in fact is
tightly coupled with the patterns frequently used in technical
analysis, e.g. double top/bottom, ascending triangle, flag and
rounded top/bottom.

In time series domain, devising an appropriate similarity
function is by no means trivial. There are essentially two ways the
data that might be organized and processed (Agrawal et al.,
1993a). In whole sequence matching, the whole length of all time
series is considered during the similarity search. It requires
comparing the query sequence to each candidate series by
evaluating the distance function and keeping track of the
sequence with the smallest distance. In subsequence matching,
where a query sequence Q and a longer sequence P are given, the
task is to find the subsequences in P, which matches Q.
Subsequence matching requires that the query sequence Q be
placed at every possible offset within the longer sequence P. With
respect to Query1 and Query2 above, they can be considered as a
whole sequence matching and a subsequence matching, respec-
tively. Gavrilov et al. (2000) study the usefulness of different
similarity measures for clustering similar stock time series.
3.1. Whole sequence matching

To measure the similarity/dissimilarity between two time
series, the most popular approach is to evaluate the Euclidean
distance on the transformed representation like the DFT coeffi-
cients (Agrawal et al., 1993a) and the DWT coefficients (Chan and
Fu, 1999). Although most of these approaches guarantee that a
lower bound of the Euclidean distance to the original data,
Euclidean distance is not always being the suitable distance
function in specified domains (Keogh, 1997a; Perng et al., 2000;
Megalooikonomou et al., 2005). For example, stock time series has
its own characteristics over other time series data (e.g. data from
scientific areas like ECG), in which the salient points are
important.

Besides Euclidean-based distance measures, other distance
measures can easily be found in the literature. A constraint-based
similarity query is proposed by Goldin and Kanellakis (1995),
which extended the work of (Agrawal et al., 1993a). Das et al.
(1997) apply computational geometry methods for similarity
measure. Bozkaya et al. (1997) use a modified edit distance
function for time series matching and retrieval. Chu et al. (1998)
propose to measure the distance based on the slopes of the
segments for handling amplitude and time scaling problems.
A projection algorithm is proposed by Lam and Wong (1998). A
pattern recognition method is proposed by Morrill (1998), which
is based on the building blocks of the primitives of the time series.
Ruspini and Zwir (1999) devote an automated identification of
significant qualitative features of complex objects. They propose
the process of discovery and representation of interesting
relations between those features, the generation of structured
indexes and textual annotations describing features and their
relations. The discovery of knowledge by an analysis of collections
of qualitative descriptions is then achieved. They focus on
methods for the succinct description of interesting features lying
in an effective frontier. Generalized clustering is used for
extracting features, which interest domain experts. The general-
ized Markov models are adopted for waveform matching in Ge
and Smyth (2000). A content-based query-by-example retrieval
model called FALCON is proposed by Wu et al. (2000a), which
incorporates a feedback mechanism.

Indeed, one of the most popular and field-tested similarity
measures is called the ‘‘time warping’’ distance measure. Based on
the dynamic time warping (DTW) technique, the proposed
method in (Berndt and Clifford, 1994) predefines some patterns
to serve as templates for the purpose of pattern detection. To align
two time series, P and Q, using DTW, an n-by-m matrix M is first



3 CDM is proposed by Keogh et al. (2004), which is used to compare the

co-compressibility between data sets.

Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181168
constructed. The (ith, jth) element of the matrix, mij, contains the
distance d(qi, pj) between the two points qi and pj and an
Euclidean distance is typically used, i.e. d(qi,pj)¼(qi�pj)

2. It
corresponds to the alignment between the points qi and pj. A
warping path, W, is a contiguous set of matrix elements that
defines a mapping between Q and P. Its kth element is defined as
wk¼(ik, jk) and

W ¼w1, w2, . . ., wk, . . ., wK ð2Þ

where maxðm, nÞrKomþn�1.
The warping path is typically subjected to the following

constraints. They are boundary conditions, continuity and mono-
tonicity. Boundary conditions are w1¼(1,1) and wK¼(m,n). This
requires the warping path to start and finish diagonally. Next
constraint is continuity. Given wk¼(a,b), then wk�1¼(a0,b0),
where a�aur1 and b�bur1. This restricts the allowable steps
in the warping path being the adjacent cells, including the
diagonally adjacent cell. Also, the constraints a�auZ0 and
b�buZ0 force the points in W to be monotonically spaced in time.

There is an exponential number of warping paths satisfying the
above conditions. However, only the path that minimizes the
warping cost is of interest. This path can be efficiently found by
using dynamic programming (Berndt and Clifford, 1996) to
evaluate the following recurrence equation that defines the
cumulative distance gði,jÞ as the distance dði,jÞ found in the current
cell and the minimum of the cumulative distances of the adjacent
elements, i.e.

gði, jÞ ¼ dðqi, pjÞþminfgði�1, j�1Þ, gði�1, jÞ, gði, j�1Þg ð3Þ

A warping path, W, such that ‘‘distance’’ between them is
minimized, can be calculated by a simple method

DTWðQ , PÞ ¼min
W

XK

k ¼ 1

dðwkÞ

" #
ð4Þ

where dðwkÞ can be defined as

dðwkÞ ¼ dðqik , pik Þ ¼ ðqik�pik Þ
2

ð5Þ

Detailed treatment can be found in Kruskall and Liberman
(1983). As DTW is computationally expensive, different methods
are proposed to speedup the DTW matching process. Different
constraint (banding) methods, which control the subset of matrix
that the warping path is allowed to visit, are reviewed in
Ratanamahatana and Keogh (2004). Yi et al. (1998) introduce a
technique for an approximate indexing of DTW that utilizes a
FastMap technique, which filters the non-qualifying series. Kim
et al. (2001) propose an indexing approach under DTW similarity
measure. Keogh and Pazzani (2000b) introduce a modification of
DTW, which integrates with PAA and operates on a higher level
abstraction of the time series. An exact indexing approach, which
is based on representing the time series by PAA for DTW
similarity measure is further proposed by Keogh (2002). An
iterative deepening dynamic time warping (IDDTW) is suggested
by Chu et al. (2002), which is based on a probabilistic model of the
approximate errors for all levels of approximation prior to the
query process. Chan et al. (2003) propose a filtering process based
on the Haar wavelet transformation from low resolution approx-
imation of the real-time warping distance. Shou et al. (2005) use
an APCA approximation to compute the lower bounds for DTW
distance. They improve the global bound proposed by Kim et al.
(2001), which can be used to index the segments and propose a
multi-step query processing technique. A FastDTW is proposed by
Salvador and Chan (2004). This method uses a multi-level
approach that recursively projects a solution from a coarse
resolution and refines the projected solution. Similarly, a fast
DTW search method, an FTW is proposed by Sakurai et al. (2005)
for efficiently pruning a significant number of search candidates.
Ratanamahatana and Keogh (2005) clarified some points about
DTW where are related to lower bound and speed. Euachongprasit
and Ratanamahatana (2008) also focus on this problem. A
sequentially indexed structure (SIS) is proposed by Ruengron-
ghirunya et al. (2009) to balance the tradeoff between indexing
efficiency and I/O cost during DTW similarity measure. A lower
bounding function for group of time series, LBG, is adopted.

On the other hand, Keogh and Pazzani (2001) point out the
potential problems of DTW that it can lead to unintuitive
alignments, where a single point on one time series maps onto
a large subsection of another time series. Also, DTW may fail to
find obvious and natural alignments in two time series, because of
a single feature (i.e. peak, valley, inflection point, plateau, etc.).
One of the causes is due to the great difference between the
lengths of the comparing series. Therefore, besides improving the
performance of DTW, methods are also proposed to improve an
accuracy of DTW. Keogh and Pazzani (2001) propose a modifica-
tion of DTW that considers the higher level feature of shape for
better alignment. Ratanamahatana and Keogh (2004) propose to
learn arbitrary constraints on the warping path. Regression time
warping (RTW) is proposed by Lei and Govindaraju (2004) to
address the challenges of shifting, scaling, robustness and
complexity. Latecki et al. (2005) propose a method called the
minimal variance matching (MVM) for elastic matching. It
determines a subsequence of the time series that best matches
a query series by finding the cheapest path in a directed acyclic
graph. A segment-wise time warping distance (STW) is proposed
by Zhou and Wong (2005) for time scaling search. Fu et al. (2008a)
propose a scaled and warped matching (SWM) approach for
handling both DTW and uniform scaling simultaneously. Different
customized DTW techniques are applied to the field of music
research for query by humming (Zhu and Shasha, 2003; Arentz
et al., 2005).

Focusing on similar problems as DTW, the Longest Common
Subsequence (LCSS) model (Vlachos et al., 2002) is proposed. The
LCSS is a variation of the edit distance and the basic idea is to
match two sequences by allowing them to stretch, without
rearranging the sequence of the elements, but allowing some
elements to be unmatched. One of the important advantages
of an LCSS over DTW is the consideration on the outliers. Chen
et al. (2005a) further introduce a distance function based on an
edit distance on real sequence (EDR), which is robust against the
data imperfection. Morse and Patel (2007) propose a Fast
Time Series Evaluation (FTSE) method which can be used to
evaluate the threshold value of these kinds of techniques in a
faster way.

Threshold-based distance functions are proposed by ABfalg et al.
(2006). The proposed function considers intervals, during which the
time series exceeds a certain threshold for comparing time series
rather than using the exact time series values. A T-Time application
is developed (ABfalg et al., 2008) to demonstrate the usage of it. Fu
et al. (2007) further suggest to introduce rules to govern the pattern
matching process, if a priori knowledge exists in the given domain.

A parameter-light distance measure method based on Kolmo-
gorov complexity theory is suggested in Keogh et al. (2007b).
Compression-based dissimilarity measure (CDM)3 is adopted in
this paper. Chen et al. (2005b) present a histogram-based
representation for similarity measure. Similarly, a histogram-
based similarity measure, bag-of-patterns (BOP) is proposed by
Lin and Li (2009). The frequency of occurrences of each pattern in
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the time series is counted and compared by CDM. Lang et al.
(2010) develop a dictionary compression score for similarity
measure. A dictionary-based compression technique is suggested
to compute long time series similarity.
3.2. Subsequence matching

In subsequence matching where a query sequence and a longer
time series are given, the task is to find the subsequences in the
longer time series, which matches the query sequence. The query
sequence is required to place at every offset within the longer
time series. Faloutsos et al. (1994) generalizes the work in
Agrawal et al. (1993a) for subsequence searching. Based on this
work, many researches are conducted to improve the perfor-
mance of the subsequence searching. For example, a DualMatch is
proposed by Moon et al. (2001) to divide the time series into
disjoint windows and query pattern into sliding windows. Loh
and Kim (2001) extend (Faloutsos et al., 1994) using an index
interpolation to solve the storage and CPU time overhead.

The GeneralMatch method is proposed by Moon et al. (2002),
which reduces the window size effect by using large windows by
the method in Faloutsos et al. (1994) and exploits point-filtering
effect by DualMatch (Moon et al., 2001). Furthermore, Kim and
Jeong (2007) discuss on the potential performance bottleneck
during subsequence matching. Four major areas, that time
required to process subsequence matching, are identified. They
are processing time, disk access time and the corresponding post-
processing steps of them. A window ordering method is proposed
to eliminate the redundancies of disk access and CPU processing
in the post-processing steps. A method based on an index
interpolation is further proposed by Lim et al. (2007) to improve
the performance of DualMatch.

Moreover subsequence matching using sequence of linear
segments (Morinaka et al., 2001), anomaly subsequence detection
using an SAX (Keogh et al., 2005), online subsequence matching using
PLR (Wu et al., 2004) and weighted subsequence matching using PLR
(Wu et al., 2005) can be found in the literature. All these approaches
including the DFT approaches are based on lower bounding of the
Euclidean distance.

Li et al. (1996) propose a hierarchical similarity search
algorithm for locating subsequences in the transformed domain
(e.g. DFT, wavelet) hierarchically. An indexing method, S2-Tree, is
presented by Wang and Perng (2001) for subsequence matching,
which is based on string searching techniques on different time
series representation schemes.

In the context of subsequence searching by DTW, a suffix tree
(Gusfield, 1997) is proposed to index the DTW for subsequence
matching (Park et al., 1999; Park et al., 2000; Kim et al., 2002).
Other approaches include a segment-based approach based on
piecewise time warping (Park et al., 2001a), an index-based
approach based on prefix querying (Park et al., 2001b) and an
optimization approach (Kim et al., 2005).

Han et al. (2007) develop a ranked subsequence matching
algorithm to reduce the number of subsequence needs to access
by defining the minimum-distance matching-window pair
(MDMWP). Directed acyclic graph (DAG) is adopted in Dorr and
Denton (2009) to capture the relationship between subsequences
and patterns.

Other researches which are related to time series similarity
measure and pattern matching include forecasting by pattern
recognition (Singh and Stuart, 1998; Liu et al., 2004) and defining
query language. Shape definition query (SDL) is introduced by
Agrawal et al. (1995b) for retrieving objects based on the shapes
contained in the histories associated with these objects. Jagadish
et al. (1995) propose a framework, which include a pattern
language, a transformation rule language and a query language,
for defining queries in terms of similarity of objects. Lin and Risch
(1998) extend the SELECT operator in SQL that retrieves implicit
values from a discrete time sequence under various user-defined
interpolation assumptions. Anand et al. (2001) propose a chart-
pattern language (CPL) to enable financial analysts to define
patterns with subjective criteria and incrementally compose
complex patterns from simpler patterns for pattern query. Dong
et al. (2009) propose to measure the shape distance of the time
series. The shapes are described according to the relative changes
of the slopes lines. Finally, detail comparisons or experiments on
the existing time series representation and similarity measure
approaches can be found in Keogh and Kasetty (2002) and Ding
et al. (2008).
4. Segmentation

Time series segmentation can be considered either as a
preprocessing step for variety of data mining tasks or as trend
analysis techniques. It is also considered as a discretization
problem. Unlike transactional databases with discrete items, time
series data is characterized by their numerical and continuous
nature. In Das et al. (1998), a simple discretization method is
proposed. A fixed length window is used to segment a time series
into subsequences and the time series is then represented by the
primitive shape patterns that are formed. This discretization
process mainly depends on the choice of the window width.
However, using fixed-length segmentation is an over-simplified
approach to solve the problem. There are at least two identified
disadvantages. First, meaningful patterns typically appear with
different lengths throughout a time series. Second, as a result of
the even segmentation of a time series, meaningful patterns may
be missed if they are split across time (cutting) points. Thus, it is
better to use a dynamic approach, which identifies the time points
in a more flexible way (i.e. using different window widths).

This is certainly not a trivial segmentation problem. Common
segmentation methods include using the PIP (Fu et al., 2006; Jiang
et al., 2007) or detecting special events (Guralnik and Srivastava,
1999) in the time series as the time points, minimum message
length (MML) (Oliver et al., 1998) and minimum description
length (MDL) segmentation (Fitzgibbon et al., 2002). Fancourt and
Principe (1997) adopt PCA for the segmentation problem. Based
on PCA, a fuzzy clustering based segmentation is proposed by
Abonyi et al., (2003, 2005). A two stages approach which first uses
piecewise generalized likelihood ratio (GLR) to rough segmenta-
tion and then refines the results is proposed by Wang and Willett
(2004). On the other hand, Keogh et al. (2001c) adopt PLR to
segment the time series. They focus on the problem of an online
segmentation of time series and a sliding window and bottom-up
(SWAB) approach is proposed.

Oliver and Forbes (1997) suggest that the time points are
identified at which behavior changes occur in a time series. In the
statistical term, this is called the ‘‘change-point detection
problem’’. The standard solution involves fixing the number of
change-point, then identifying their positions, and finally deter-
mining functions for curve fitting the intervals between succes-
sive change-points. Chu (1995) presents a sliding test window
segmentation procedure which is based on non-stationary
detection on fluctuation statistics and change-point localization.
An iterative algorithm is proposed by Guralnik and Srivastava
(1999) that fits a model to a time segment and then uses a
likelihood criterion to determine if the segment should be
partitioned further. Srivastava and Weigend (1996) suggest
discovering the underlying switching process in a time series,
which entails identifying the number of sub-process and the
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dynamics of each sub-process. The concept of the nonlinear gated
experts derived from statistical physics is proposed to perform the
segmentation. In Duncan and Bryant (1996), dynamic program-
ming is proposed to determine the total number of intervals
within the data, the location of these intervals and the order of the
model within each segment. In (Srivastava et al., 1999), the
segmentation problem is considered with a tool for exploratory
data analysis and data mining called the scale-sensitive gated
experts (SSGE), which can partition a complex nonlinear regres-
sion surface into a set of simpler surfaces called ‘‘features’’. An
improved annealed competition of experts algorithm (ACE)
identifies switching dynamics in time series using on mutual
information and false nearest neighbor to determine appropriate
embedding dimension and time delay (Feng et al., 2005).

The segmentation problem has also been considered from the
perspective of finding cyclic periodicity for all of the segments. In
Han et al. (1998, 1999), the data cube and the Apriori data mining
techniques are used to mine segment-wise periodicity, using a
fixed length period. An off-line technique for the competitive
identification of piecewise stationary time series is described
by Fancourt and Principe (1996). In addition to performing
piecewise segmentation and identification, the proposed techni-
que maps similar segments of a time series as neighbors on a
neighborhood map.

Himberg et al. (2001) propose a global iterative replacement
(GIR) method, which approximates the dynamic programming
result for minimizing the intra segment variances. The proposed
method is applied to context recognition for the mobile phone
applications.

Although the approaches described in this section can generally
identify a given pattern from a time series, they do not consider the
problem of identifying a suitable set of time points in a time series,
when a set of pattern templates is given; for example, the technical
patterns (e.g. H&S, double top, etc.) for the stock analysis. Further, in
order to form a versatile mining space, a variety of patterns (e.g. in
different resolutions) have to be identified. The aforementioned
segmentation task can be regarded as an optimization problem and
Chung et al. (2004) propose a solution, which is based on an
evolutionary computation.
5. Visualization

Visualization is an important mechanism to present the
processed time series for further analysis by users. It is also a
powerful tool to facilitate the mining tasks like pattern searching,
query-by-example, and pattern discovery afterwards. Current
tools for visualizing time series include: (1) cluster and calendar-
based visualization tool (van Wijk and van Selow, 1999), which
obtains chunks of data with a given interval and then clusters
cba

a

a

b c

b c

Fig. 4. VizTree constructed using (a) jump
them accordingly and (2) spiral visualization tool (Weber et al.,
2001), which maps the periodic section of time series into a ring.
These two tools are focused on periodic time series and a fixed
length of period must be provided, say, weekly or monthly.
A financial visual analytics system for pattern-based analysis of
2-dimensional time-vary chart data is proposed by Schreck et al.
(2007). Hao et al. (2007) introduce the notion of degree of interest
(DOI) to define and generate multi-resolution layouts of long time
series. Non-linear rescaling and space-efficient rendering method
are used to visualize the long time series.

Keogh et al. (2002a) and Hochheiser and Shneiderman (2004)
developed a tool called TimeSearcher which is a time series
exploratory and visualization tool, so that a user can retrieve time
series by querying. Based on their previous developed TimeBoxes,
which are rectangular, direct-manipulation time series queries,
they extend it by introducing variable time timeboxes (VTT),
which permits the specification of queries to allow uncertainty in
the time axis. Four methods (sample events, aggregated sample
events, event index, and interleaved event index) to represent the
unevenly space time series data are studied in Aris et al. (2005).
Furthermore, TimeSearcher2 is developed by Buono et al. (2005),
in which a new search interface combining both filter and pattern
search capability is provided. TimeSearcher is focused on multiple
time series query based on examples. Specification of the region
of interest must be provided.

Recently, another time series visualization tool called VizTree is
proposed (Lin et al., 2005a). This approach first converts each
numeric time series to a symbol string based on the SAX and a set of
substrings (with the same number of symbol) extracted from
the symbol string is encoded by a modified suffix tree to visualize
the frequency of patterns. That is, the SAX discretizes the original
time series into fixed length subsequences, converts each subse-
quence to a symbol and the symbols obtained are concatenated to
form a symbol string. Given a symbol string, say abccbccbcabcbcc, the
next step is to convert this long string to a set of substrings
according to the length of each substring, W (or the number of
substring), specified by users. For example, if the preferred length of
substring is 3, the given string will be divided into 5 substrings if
jumping window is used, i.e. abc, cbc, cbc, abc and bcc. Similarly, 13
substrings will be obtained if the sliding window is used, i.e. abc, bcc,
ccb, cbc, bcc, ccb, cbc, bca, cab, abc, bcb, cbc and bcc. Next, a suffix tree
will be constructed as exemplified in Fig. 4. The length of substring is
reflected by the depth of the tree. Each branch of the tree represents
a pattern. The frequency of the pattern is represented by the
thickness of each branch. As shown in Fig. 4, frequently appearing
patterns discovered by using jumping window are abc and cbc

(Fig. 4a), while bcc and cbc are discovered by using the sliding
window (Fig. 4b). Different applications of VizTree are suggested by
the authors including subsequence matching, frequently appearing
pattern discovery and surprising pattern discovery.
ing window and (b) sliding window.
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The authors demonstrated that VizTree is capable of discover-
ing frequently appearing and surprising patterns in a given
resolution, which is suitable for time series applications like an
ECG. The same representation (i.e. SAX) but different visualization
tools are also proposed by using bitmap (Kumar et al., 2005) and
dot plots (Yankov et al., 2005). On the other hand, Fu et al. (2008b)
extend the work to the discovery of interesting patterns across
different resolutions by adopting the symbolic representation of
PIP instead of an SAX in the VizTree.
6. Mining in time series

Mining is the final goal to discover hidden information or
knowledge from either the original or the transformed time series
data. Indeed, pattern discovery is the most common mining task
and the clustering method is the most commonly method. Other
time series data mining tasks include classification, rule mining
and summarization.

6.1. Pattern discovery and clustering

It is a non-trivial task to discover interesting patterns, which
include frequently appearing (Fu et al., 2001) and surprising
patterns (Keogh et al., 2002b), from time series data. These tasks
are also called motif discovery (Chiu et al., 2003; Tanaka et al.,
2005) and anomaly detection (Chan and Mahoney, 2005; Wei
et al., 2005) or finding discords (Keogh et al., 2007a), respectively.
The discovery of interesting patterns has become one of the most
important data mining tasks, and it can be applied to many
domains (Caraa-Valente and Lopez-Chavarrias, 2000; Lerner et al.,
2004). Ma and Perkins (2003) present a support vector regression
(SVR)-based online novelty detection algorithm. Chan and
Mahoney (2005) present an online anomaly detection approach
based on the Gecko algorithm, which creates a sequence of
minimal bounding boxes with the training trajectories.

For the problem of time series pattern discovery, a common
group of techniques being employed is distance-based clustering
(Das et al., 1998; Oates, 1999; Wang et al., 2002). The general
clustering procedure is listed in Fig. 5. In each iteration, the
winner cluster is found and its center is updated accordingly. The
initial cluster centers can be chosen in various ways, e.g. chosen
arbitrarily or by some sequences. Also, the number of cluster is a
critical parameter to be determined. It can be fixed beforehand or
can vary during the clustering process. The clustering procedure
finally terminates when the number of iteration exceeds the
maximum allowed number of iterations or convergence.

While patterns can be directly discovered from time series, a
major problem is that time series data mostly increase linearly
Fig. 5. A typical clu
with time. This will cause the storage needs to increase rapidly
and slow down the pattern discovery process exponentially.
Therefore, an effective mechanism for compressing the huge
amount of time series data, especially historical data, is needed.
This not only reduces the size of storage, but also maintains an
acceptable level of information for the discovery process. Fu et al.
(2001) propose to adopt PIP representation to solve these
problems. A neural clustering method, the self-organizing map
(SOM) (Kohonen, 1995), is used for pattern discovery. An SOM is a
special type of clustering algorithm (Ripley, 1996) with an
immense discovery power. Spatio-temporal self-organizing fea-
ture maps are proposed by Euliano and Principe (1996). Other
researches adopt an SOM for time series data including: Ultsch
(1999) and Morchen et al. (2005) adopt emergent feature maps in
the medical domain, Kuo et al. (2004) focus on financial domain
and use the K-chart (i.e. combining open, high, low and close
prices) analysis as the input of the SOM for prediction and Wang
et al. (2005b) propose a dimensionality reduction method using
global characteristics like trend and seasonality, periodicity, skew
for feature selection before using an SOM. Guo et al. (2007) adopt
an SOM for stock pattern discovery. An improved version of the
rival penalized competitive learning (RPCL) is further introduced.

Moller-Levet et al. (2003) adopt the fuzzy c-means (FCM)
algorithm for short time series and unevenly spaced sampling
points’ time series clustering. They propose to measure the
similarity of short time series based on shapes, which are formed
by the relative change of amplitude and the temporal information.
Bargiela and Pedrycz (2003) discuss the notion of granular data,
elaborate on the recursive information granulation and access the
quality of summarization of information granules through an FCM
clustering. Steinbach et al. (2003) present a clustering-based
method to discover climate indices that represent regions with
relatively homogeneous behavior. Lin et al. (2004) propose an
anytime version of partitioned clustering algorithm, which adopts
the multi-resolution property of wavelets. Anytime algorithm
means trade execution time for quality of results and always has a
best-so-far answer available and the quality of the answer
improves with an execution time. The user may examine this
answer at anytime (Grass and Ziberstein, 1996). Similarly, Lin
et al. (2005b) introduce another multi-resolution clustering
approach based on multi-resolution PAA (MPAA) for the iterative
clustering algorithm of streaming time series.

Autoregressive moving average (ARMA) and autoregressive
integrated moving average (ARIMA) models have also been used
extensively for time series analysis. Kalpakis et al. (2001) propose
to cluster ARIMA time series, using the partition around the
medoids method. Xiong and Yeung (2004) focus on the problem of
clustering time series of different lengths, using mixtures of
ARMA models and expectation-maximization (EM) algorithm.
stering process.
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Bagnall and Janacek (2005) focus on clustering data derived from
ARMA models, using k-means and k-medoids algorithms. A
clipping process, which descretizes data into binary sequences
of above and below the media, is adopted. This process is
strengthens on the presence of an outlier in the data.

Hidden Markov model (HMM) is a common model-based
algorithm adopted in time series clustering (Panuccio et al., 2002).
HMMs are defined as stochastic generalizations of finite-state
automata, where both transitions between states and generation
of output symbols are governed by probability distributions.
Oates et al. (1999) present a hybrid time series clustering
algorithm that uses DTW for rough initialization and HMM for
removing the sequences that do not belong to the clusters. Yin
and Yang (2005) propose to transform the sensor time series data
into an equal-length vector and model it as a HMM for spectral
clustering. Furthermore, a recursive HMM training process is
proposed by Duan et al. (2005).

Finding representative trends is a typical task, which belongs
to the time series pattern discovery area. Indyk et al. (2000)
identify various representative trends in time series over arbitrary
windows of interest. An approximation approach based on
replacing each interval by a ‘‘sketch’’, which is a low dimensional
vector, is adopted. Papadimitrious and Yu (2006) also examine the
time series at multiple time scales and discover the key trend in
each (i.e. the optimal local patterns). Udechukwu et al. (2004)
propose to convert the time series to symbolic form, build the
suffix tree and discover the frequent patterns or trends
accordingly.

On the other hand, discovering periodic patterns is another
common focus for pattern discovery. Han et al. (1998, 1999)
propose methods to discover periodicity or partial periodicity
segments. Berberidis et al. (2002a) search for weak periodic
signals using autocorrelation function and fast Fourier transform
(FFT) with no period length are known in advance. This work
extends the work from the same authors in (Berberidis et al.,
2002b). Elfeky et al. (2004) further develop a one-pass algorithm
based on convolution. A summary of the work by these authors
can be found in Elfeky et al. (2005). Vlachos et al. (2004) apply
power spectral density estimation using DFT and tree index to
discover important periods. It is applied on an identification of
bursts for online search queries.

Cluster analysis is also applied to the sliding window of the
time series for grouping related time series subsequence patterns
that are dispersed along the time series. Clustering methods seek
out a special type of structure, namely, grouping tendencies in the
data. In this regard, they are not as general as the other
approaches, but they can provide valuable information when
local aggregation of the data is suspected. Das et al. (1998)
propose that the pattern templates for matching are not
predefined. Instead, the templates are generated automatically
by clustering techniques and they will then be used for further
matching in the discretization process to produce meaningful
symbols. Policker and Geva (2000) describe adaptive methods for
finding rules of the above type from time series data. Methods are
based on discretizing the sequence by methods resembling vector
Fig. 6. Pseudo code of the motif-
quantization. Again, they first form subsequences by sliding a
window through the time series, and then cluster these
subsequences by using a suitable measure of time series
similarity. Denton (2005) proposes a kernel-density-based clus-
tering for time series subsequences.

However, applying clustering approaches to discover fre-
quently appearing patterns is claimed to be meaningless when
focusing on time series subsequence recently (Keogh et al., 2003).
It is because when using a sliding window to discretize the long
time series into subsequences in a fixed window size, patterns,
which are derivations from sine curve, are always resulted no
matter how the shape of the given time series is. Theoretical
analysis and experiments can be found in Wang et al. (2005a). Lin
et al. (2002) state that the definition of a match is rather obvious
and intuitive; but it is needed for the definition of a trivial match
as it is easy to observe that the best matches to a subsequence
tend to be the subsequence that begin just one or two points to
the left or the right of the subsequence. They define the term
trivial match as: given a time series P containing a subsequence S1

beginning at position p and a matching subsequence S2 beginning
at q, S2 is a trivial match to S1 if either p¼q or there does not exist
a subsequence S2

0 beginning at q0 such that D(S1, S2
0)4R, and

either qoq0op or poq0oq. Therefore, it is necessary to prevent
the over-counting of these trivial matches.

Lin et al. (2002) and Patel et al. (2002) define the problem of
enumerating the most frequently appearing patterns in a time
series P (Lin et al. (2002) referred to as the most significant motifs,
1-motif) is the subsequence S1 that has the highest count of non-
trivial matches. Therefore, the Kth most frequently appearing
patterns (significant motif, K-Motif) in P is the subsequence SK

that has the highest count of non-trivial matches and satisfies
D(SK, Si)42R, for all 1r ioK.

In addition, Chiu et al. (2003) address the limitations discussed in
Lin et al. (2002) on poor scalability of the motif discovery algorithm
and the inability to discover motifs in the presence of noise by
applying a probabilistic model to the algorithm. However, it is still
difficult to define a threshold, R, to distinguish trivial and non-trivial
matches as it is case dependent and there is no general rule for
defining this value.

Furthermore, Keogh et al. (2003) suggest applying a classic
clustering algorithm to cluster only the motifs discovered from
K-motif detection algorithm in place of subsequence time series
clustering. It is because a subset of the motifs discovered might
really be a group that should be clustered together to extract
promising subsequences from the data. The motif-based-cluster-
ing algorithm is as shown in Fig. 6.

Chen (2005) shows that time series clustering is not mean-
ingless when using delay space method instead of an Euclidean
distance for the similarity measure. Fu et al. (2005a) propose an
intermediate subsequences filtering process by detecting the
change of PIP before the clustering process. Simon et al. (2006)
introduce an unfolding (subsampling) preprocess method before
the subsequence clustering, using an SOM. Furthermore, another
solution is proposed by Chen (2007), which is based on restricting
the clustering space. A disk-aware algorithm is proposed by
based-clustering algorithm.



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181 173
Mueen et al. (2009) to find exact motifs in massive time series
databases.

Interesting pattern discovery also includes the detection of
anomalies. Vlachos et al. (2005c) focus on non-parametric
methods that extract important periodic features for classification
and anomaly detection and Keogh et al. (2006) adopt the SAX
representation to improve the performance of finding surprising
patterns. Wei et al. (2006) adopt the SAX representation for
anomaly detection on the basis of shape. Based on an SAX, suffix
tree and Markov model, surprising patterns are discovered in
Lonardi et al. (2006) if the frequency of their occurrence differs
substantially from the expected chance of existing patterns. On
the other hand, a bitmap approach is also proposed by Wei et al.
(2005). Yankov et al. (2007) focus on discovering surprising
patterns under uniform scaling. Yankov et al. (2008) further focus
on finding surprising patterns in terabyte sized data sets. Two
linear scans through the database are adopted to reduce the
memory usage.

Most of the approaches, discussed so far, are focused on
discovering patterns in a fixed resolution (i.e. fixed period), Bettini
et al. (1998) and Li et al. (2000b) focus on discovering patterns
across different resolutions, which are called multiple granula-
rities. Bettini et al. (1998) propose timed automata with
granularities (TAGs), while calendar schemata is presented by Li
et al. (2000b). A k-motif-based algorithm is proposed by Tang and
Liao (2008) for discovering patterns with different lengths.
6.2. Classification

Classification is a traditional data mining task. In the time
series domain, special treatment must be considered due to the
nature of the data. Geurts (2001) proposes to classify time series
data based on combining local properties or patterns in the time
series. Zhang et al. (2004) develop a representation method using
wavelet decomposition that can automatically select the para-
meters for the classification task. They propose a nearest neighbor
classification algorithm, using the derived appropriate scale.
Kadous and Sammut (2005) use metafeature approach (i.e.
recurring substructure) like local maxima in time series to
generate classifiers. Similarly, Yang et al. (2005) focus on feature
subset selection (FSS) based on common principal components,
which is called CleVer, to retain the correlation information
among original features. Classification is employed to evaluate the
effectiveness of the selected subset of features.

On the other hand, researchers have also focused on customiz-
ing or developing classifiers for time series data. For example,
Povinelli et al. (2004) present a signal classification approach
based on modeling the dynamics of a system as they are captured
in a reconstructed phase using Gaussian Mixture models of time
domain signatures. Rodriguez and Alonso (2004) study both
interval and DTW-based decision trees adequate for the classifi-
cation of time series data. Ensembles are used to combine base
classifiers, while Wei and Keogh (2006) study the combination of
the numerosity reduction, using DTW and nearest-neighbor
classifiers for time series classification. Also, Xi et al. (2006)
propose a semi-supervised time series classifiers when only a
small set of labeled examples is available.
6.3. Rule discovery

Rule mining is another typical task in the field of data mining.
Association rule mining (Agrawal et al., 1993b; Agrawal and Srikant,
1994) is one of the most well known algorithms. However, it
is mainly focused on symbolic items present in transactions.
Therefore, many researchers propose new or modified algorithms
for rule mining in the context of time series data.

A trivial approach is first discretizing the time series data into
segments and converting each segment to a symbol. Then rules
can be discovered in the transformed symbolic domain. Das et al.
(1998) cluster the subsequences to find the symbols, and then
apply simple rule mining method to discover the hidden rules. Lu
et al. (1998) propose n-dimensional inter-transaction association
rules for handling spatial and multimedia data mining. Last et al.
(2001) focus on discovering fuzzy association rules, which is
based on the computational theory of perception and signal
processing techniques. Leigh et al. (2002) develop a financial rule
discovery method, using ‘‘bull flag’’ technical charting heuristics.
Similarly, Ting et al. (2006) propose to representation financial
time series based on candle stick charting technique for rule
mining.

The research group of Hoppner (Hoppner and Klawonn, 2001)
takes durations into account and develops a framework to
discover temporal rules, which have been generated out of a set
of frequent patterns in a state sequence. The framework
represents the segments of time series by attributes (e.g.
increasing, high-value, highly convex) and discovers interval
relationships described in terms of an interval logic. Another
research group of Hetland and Saetrom (2005) present a rule
mining method that is based on genetic programming and
specialized hardware. They also examine the role of discretization
when evolving time series predictor rules.

Besides using association rules, decision tree is another
common approach for rule mining. Ohsaki et al. (2003) first
discuss on the preprocessing step to discover interesting rules
from the medical time series data. Similar to Das et al. (1998),
clustering is adopted to discover typical patterns from subse-
quences for the discretization process. The rule mining method is
based on pattern extraction and decision tree. Cotofrei and Stoffel
(2002) propose formalism based on the temporal first logic-order
for rule mining. The approach first transforms sequential raw data
into sequences of events, then infers temporal rules using the
classification trees.

In addition, Jin et al. (2002) focus on discovering the
distribution of temporal rules and Sarker et al. (2003) focus on
developing parallel algorithm for time series rule mining.
6.4. Summarization

Some of the researches are focused on summarizing and
describing the time series data for analysis, mining or prediction.
Zwir and Enrique (1999) develop an automated identification of
significant qualitative features (interesting patterns) in complex
objects (time series). Clustering techniques are adopted to
summarize and produce a compact description of salient features
and their relations.

Boyd (1998) developed a system that integrates knowledge-
based signal processing and natural language processing to
automatically generate descriptions, and it is tested on the
weather data. These descriptions are based on short and long-
term trends, which are detected using the wavelet transform.
Guimaraes and Ultsch (1999) propose an approach to transit
patterns in multivariate time series to a linguistic description.
Different abstraction levels’ temporal grammatical rules are
extracted from the results of neural networks and other
exploratory methods. This approach is applied to medical time
series, i.e. sleep-related breathing disorders (Guimaraes et al.,
2001).

The SumTime project is carried out by Sripada et al. (2001,
2003), which aims to develop generic techniques for summarizing
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time series data. The developed system can generate English
textual summaries of time series data by selecting the most
important trends and patterns, mapping these patterns onto
words and phrases and generating actual texts based on these
words and phrases. SumTime-Turbine is developed by Yu et al.
(2004), which is focused on the sensor data from gas turbines.
Reiter et al. (2005) developed a SumTime-Mousam weather-
forecast generator, which uses consistent data-to-word rules.

Ahmad et al. (2004b) present a time series summarization
method based on analyzing non-stationary, volatile and high-
frequency time series data. Multi scale wavelet analysis is used to
separate the trend, cyclical fluctuations and autocorrelation
effects. It helps to provide a summary of the data with respect
to the ‘‘chief features’’ of the data. The framework can generate
text signals to describe each effect. Ahmad et al. (2004a) outline a
system that comprises modules for summarizing texts and time
series to study the link between them. Similarly, previous work by
Lavrenko et al. (2000) demonstrate how to use language models
to associate stories and trends in time series. They identify trends
in time series using PLR and use language models to represent
patterns of language that are highly associated with particular
trends. All these researches are evaluated using data from
financial domain (e.g. stock market, currency rate). A visualization
system is developed and described with a financial trading case
study by Taskaya and Ahmad (2003).

Furthermore, Kacprzyk et al. (2008) propose to use the fuzzy
quantifier to present a linguistic summarization on the trends of
time series which the trends are identified by PLR. Similarly,
Batyrshin and Sheremetov (2008) describe a perception-based
decision making system which time series is represented by fuzzy
sets of perceptions. A linguistic scaling of patterns is used to
define the vocabulary.
6.5. Recent research directions

We discussed four major time series data mining tasks so far;
they are: pattern discovery (clustering), classification, rule
discovery and summarization. Due to the mature development
in this field and the significant enhancement on the hardware and
communication technologies, three extensions attract more
researchers focused on recently. They are mining on multi-
attribute time series, mining on time series data stream and also
the privacy issue. Some researches discussed above also proposed
partial solutions or directions on them.

First, multi-attribute time series data can also be considered as
multiple time series manipulation. Povinelli and Feng (1999)
propose an approach which temporal clusters from multiple time
series are used and a genetic algorithm is adopted. The method
reconstructs state space for temporal pattern extraction and
adopts an optimal local model for short-term forecasting. The
performance of the approach is demonstrated by using financial
non-stationary time series (i.e. stock price and volume). Kahveci
et al. (2002) consider the problem of shift and scale invariant
search for multi-attribute time series. A symmetric distance
function and a Cone Slice (CS) index are proposed. Lee et al. (2009)
focus on mining of closed patterns in multi-sequence time series
by adopting an SAX representation.

Recent researches also focus on mining multivariate time
series data. Minnen et al. (2007a, 2007b) propose different
algorithms to discover multivariate frequently appearing patterns
(i.e. motif discovery). Tatavarty et al. (2007) consider the problem
of discovering the temporal dependencies between the frequently
appearing patterns in multivariate time series. Wang et al. (2007)
and Plant et al. (2009) focus on the clustering issue, while Takashi
et al. (2009) focus on the prediction issue.
Second, data streaming is referring to transfer of data at a
steady high-speed rate. Handling corresponding time series data
received considerable attention recently, because of the increase
in network bandwidth and its stability. It differs from traditional
time series data on its characteristics of huge amount of data
arriving at steady high-speed rate. One of the initial works on
time series data streaming mining mainly focuses on the design of
system architecture. Miller et al., (1998) propose an I/O system
design and implementation targeted at applications, which
perform data streaming. Golab and Ozsu (2003) reviewed recent
work in data stream management systems with an emphasis on
application requirements, data models, continuous query lan-
guages and query evaluation. Chen et al. (2002) investigate
methods for an online multi-dimensional regression analysis of
time series stream data. They show that only a small number of
compressed regressions need to be measured instead of a
complete stream of data for a multi-dimensional linear regression
analysis. Lian and Chen (2008) propose a framework to handle
similarity search, values prediction and indexing over data
stream.

Based on the well-developed time series data mining algo-
rithms in different aspects, they are either applied directly or
customized for streaming time series data. Indeed, representation
of streaming time series for dimensionality reduction and an
online query or matching is a hot topic. It is important that an
incoming stream of data is a continually appended time series in a
database. Each time when a new data point arrives, the system
needs to fetch/get the data from the database, the nearest or the
neighboring data of the incoming time series is up to the time
position and most researches focus on investigating the correla-
tion of the data. Yi et al. (2000) develop a fast method to analyze
the co-evolving time series for estimating and forecasting,
quantitative data mining and outlier detection. Gilbert et al.
(2001) adopt sketch based methods for capturing various linear
projections of the data for representing data streams (i.e. wavelet
transform) and approximate aggregate query. Gao and Wang
(2002) tackle the problem by using an FFT to find the cross
correlations of time series in a batch mode efficiently. Gao et al.
(2002) focus on continuous nearest neighbor query, using existing
indexing methods with pre-fetching. Cole et al. (2005) propose to
combine several simple techniques (e.g. sketches, convolution,
structured random vectors, etc.) to compute Pearson correlation
over uncooperative time series. Vlachos et al. (2005b) examine
the problem of monitoring and identifying correlation burst
patterns in multi-steam time series data. The solution adopts
burst detection and indexing. Ogras and Ferhatosmanoglu (2006)
developed a transformation-based framework to reduce the
dimension for large-scale and dynamic time series data online.
The framework is focused on DFT-based synopsis generation and
a recursive method is introduced to update the highest energy
transform coefficients of the series data. Wei et al. (2007)
introduce an on-the-fly subsequence matching of streaming
time series to a set of predefined patterns, using the filtering
approach. The proposed approach merges similar patterns into a
wedge, which is an envelope-based lower bounding technique, to
speedup the matching process. A stream-DTW (STW) distance
measure is proposed by Capitani and Ciaccia (2007) for con-
tinuously monitoring DTW distance measure of time series data
streams. Boolean representation based on the data-adaptive
correlation analysis is proposed by Zhang et al. (2007). Palpanas
et al. (2008) introduce arbitrary user-specified amnesic functions
based on PLR to allow an online approximation of streaming time
series. This function allows arbitrary, user-defined reduction of
quality with time. A tree structure is further proposed by Fu et al.
(2008c) for storing the PIPs, which supports various incremental
updating approaches (Fu et al., 2005b). A multiscale segment
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mean (MSM) approximation is proposed by Lian et al. (2009)
which support incrementally computation and static/dynamic
pattern matching.

A tutorial presenting techniques for finding sliding window
correlations, discovering bursts, matching hums and maintaining
and manipulating time ordered data stream can be found in
Lerner et al. (2004). Chen et al. (2007b) propose to handle
continuous pattern detection, using spatial assembling distance
(SpADe). An SpADe is proposed in this paper to handle both
shifting and scaling in temporal and amplitude dimensions. Lim
et al. (2008) concentrate on continuous query sequences on time
series data stream based on window construction mechanism for
supporting variable length queries. Two online segmentation
methods, (stepwise) feasible space window (FSW/SFSW), are
proposed by Liu et al. (2008) to improve the performance of
classic sliding window method. A distortion-free predictive
streaming time series matching algorithm is introduced by Loh
et al. (2010). The proposed algorithm performs preprocessing
step to remove distortions and predict future search results
simultaneously.

Furthermore, researchers also extend their interest on mining
time series streaming data. Yamanishi and Takeuchi (2002)
present an online learning framework based on a probabilistic
model for outlier detection and change-point detection on the
time series data stream. Papadimitriou et al. (2005) introduce a
streaming pattern discovery method in multiple time series,
which summarizes the key trends in the stream collection based
on PCA. An online clustering system is proposed by Rodrigues
et al. (2008) which a top-down strategy is adopted to construct a
binary tree hierarchy of clusters. Clusters’ diameters are evolved
continuously with the stream data.

Third, research on data mining is suggested to incorporate
with privacy concern (Agrawal and Srikant, 2000). Working on the
privacy in time series data mining is a newly research direction.
Zhu et al. (2008) suggest that traditional techniques are not
effective in the time series data. Data flow separation attack is
identified and possible countermeasures to this attack are further
proposed in this paper. To preserve the privacy, cloaked time
series data are suggested to be adopted. Lian et al. (2008) propose
an approach to deal with cloaked range query (CRQ) based on an
R-tree indexing. Furthermore, framework is proposed by Nin and
Torra (2009) to evaluate different time series protection methods.
A set of information loss and disclosure risk measures for time
series are introduced in this paper. Based on the definition of
these kinds of measurements, increasing number of research on
time series data protection and privacy issue during the mining
process is expected.
7. Conclusion

In this paper, we have reviewed research in time series data
mining. Different research is focused on one or more problems in
time series data mining. However, according to the unique
behavior of the time series data, existing research is still
inadequate and it is considered as one of the 10 challenging
problems in data mining (Yang and Wu, 2006). There is still room
for us to further investigate and develop. For example, while most
of the research communities have concentrated on the mining
tasks, the fundamental problem on how to represent a time series
has not yet been fully addressed so far. To represent a time series
is essential, because time series data is hard to manipulate in
its original structure. The high dimensionality of time series
data creates difficulties in applying existing data mining techni-
ques to it. Therefore, defining a more effective and efficient
time series representation scheme is of fundamental importance.
The framework should also support time series pattern matching,
including both whole sequence and subsequence matching,
between time series of different lengths in an effective manner.
The framework should be compatible to varieties of time series
data mining tasks like pattern discovery. In addition, handling
multi-attribute time series data, mining on time series data
stream and privacy issue are three promising research directions,
due to the existence of the system with high computational
power.
References

ABfalg, J., Kriegel, H.P., Kroger, P., Kunath, P., Pryakhin, A., Renz, M., 2006. Similarity
search on time series based on threshold queries. In: Proceedings of the 10th
International Conferece on Extending Database Technology, pp. 276–294.

ABfalg, J., Kriegel, H.P., Kroger, P., Kunath, P., Pryakhin, A., Renz, M., 2008. T-Time:
threshold-based data mining on time series. In: Proceedings of the 24th IEEE
International Conference on Data Engineering, pp. 1620–1623.

Abonyi, J., Feil, B., Nemeth, S., Arva, P., 2003. Principal component analysis based
time series segmentation—application to hierarchical clustering for multi-
variate process data. In: Proceedings of the IEEE International Conference on
Computational Cybernetics, pp. 29–31.

Abonyi, J., Feil, B., Nemeth, S., Arva, P., 2005. Modified Gath–Geva clustering for
fuzzing segmentation of multivariate time-series. Fuzzy Sets and Systems,
Data Mining Special Issue 149, 39–56.

Agrawal, R., Srikant, R., 2000. Privacy-preserving Data Mining. In: Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 439–450.

Agrawal, R., Faloutsos, C., Swami, A., 1993a. Efficient similarity search in sequence
databases. In: Proceedings of the Fourth International Conference on
Foundations of Data Organization and Algorithms, pp. 69–84.

Agrawal, R., Imielinski, T., Swami, A., 1993b. Mining association rules between sets
of items in large databases. In: Proceedings of the ACM SIGMOD Conference on
Management of Data, pp. 207–216.

Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K., 1995a. Fast similarity search in the
presence of noise, scaling, and translation in time-series databases. In:
Proceedings of the 21st International Conference on Very Large Databases,
pp. 490–501.

Agrawal, R., Psaila, G., Wimmers, E.L., Zait, M., 1995b. Querying shapes of histories.
In: Proceedings of the 21st International Conference on Very Large Databases,
pp. 502–514.

Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules. In:
Proceedings of the 20th International Conference Very Large Databases,
pp. 487–499.

Ahmad, S., Oliveira, P.C.F., Ahmad, K., 2004a. Summarization of multimodal
information. In: Proceedings of the Fourth International Conference on
Language Resources and Evaluation, vol. 3, pp. 1049–1052.

Ahmad, S., Oliveira, P.C.F., Ahmad, K., 2004a. Summarization of multimodal
information. In: Proceedings of the Fourth International Conference on
Language Resources and Evaluation, vol. 3, pp. 1049–1052.

Ahmad, S., Taskaya-Temizel, T., Ahmad, K., 2004b. Summarizing time series: learning
patterns in volatile series. In: Proceedings of the Fifth International Conference on
Intelligent Data Engineering and Automated Learning, pp. 523–532.

Aref, W.G., Elfeky, M.G., Elmagarmid, A.K., 2004. Incremental, online, and merge
mining of partial periodic patterns in time-series databases. IEEE Transactions
on Knowledge and Data Engineering 16 (3), 332–342.

Arentz, W.A., Hetland, M.L., Olstad, B., 2005. Retrieving musical information based
on rhythm and pitch correlations. Journal of New Music Research 34 (2),
151–159.

Aris, A., Shneiderman, B., Plaisant, C., Shmueli, G., Jank, W., 2005. Representing
unevenly-spaced time series data for visualization and interactive exploration.
In: Proceedings of the International Conference on Human–Computer Inter-
action, pp. 835–846.

Astrom, K.J., 1969. On the choice of sampling rates in parametric identification of
time series. Information Sciences 1 (3), 273–278.

Azzouzi, M., Nabney, I.T., 1998. Analysing time series structure with Hidden
Markov Models. In: Proceedings of the IEEE Conference on Neural Networks
and Signal Processing, pp. 402–408.

Bagnall, A., Janacek, G., 2005. Clustering time series with clipped data. Machine
Learning 58 (2–3), 151–178.

Bagnall, A., Ratanamahatana, C.A., Keogh, E., Lonardi, S., Janacek, G.A., 2006. Bit
level representation for time series data mining with shape based similarity.
Data Mining and Knowledge Discovery 13 (1), 11–40.

Bao, D.A., 2008. Generalized model for financial time series representation and
prediction. Applied Intelligence 29 (1), 1–11.

Bao, D., Yang, Z., 2008. Intelligent stock trading system by turning point confirming
and probabilistic reasoning. International Journal of Expert Systems with
Applications 34 (1), 620–627.

Bargiela, A., Pedrycz, W., 2003. Recursive information granulation: aggregation and
interpretation issues. IEEE Transactions on Systems, Man, and Cybernetics—

Part B: Cybernetics 33 (1), 96–112.



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181176
Batyrshin, I.Z., Sheremetov, L.B., 2008. Perception-based approach to time series
data mining. Applied Soft Computing 8 (3), 1211–1221.

Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B., 1990. The R*-tree: an efficient
and robust access method for points and rectangles. In: Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data,
pp. 322–331.

Berberidis, C., Vlahavas, I.P., Aref, W.G., Atallah, M.J., Elmagarmid, A.K., 2002a. On
the discovery of weak periodicities in large time series. In: Proceedings of the
6th European Conference on Principles and Practice of Knowledge Discovery in
Databases, pp. 51–61.

Berberidis, C., Walid, A.G., Atallah, M., Vlahavas, I., Elmagarmid, A.K., 2002b.
Multiple and partial periodicity mining in time series databases. In:
Proceedings of the 15th European Conference on Artificial Intelligence.

Berndt, D.J., Clifford, J., 1994. Using dynamic time warping to find patterns in time
series. In: AAAI Working Notes of the Knowledge Discovery in Databases
Workshop, pp. 359–370.

Berndt, D.J., Clifford, J., 1996. Finding patterns in time series: a dynamic
programming approach. Advances in Knowledge Discovery and Data Mining,
229–248.

Bettini, C., Wang, S., Jajodia, S., Lin, J.L., 1998. Discovering frequent event patterns with
multiple granularities in time sequences. IEEE Transactions on Knowledge and
Data Engineering 10 (2), 222–237.

Boyd, S., 1998. TREND: a system for generating intelligent descriptions of time-
series data. In: Proceedings of the IEEE International Conference on Intelligent
Processing Systems.

Bozkaya, T., Yazdani, N., Ozsoyoglu, Z.M., 1997. Matching and indexing sequences
of different lengths. In: Proceedings of the Sixth ACM International Conference
on Information and Knowledge Management, pp. 128–135.

Buono, P., Aris, A., Plaisant, C., Khella, A., Shneiderman, B., 2005. Interactive pattern
search in time series. In: Proceedings of the Conference on Visualization and
Data Analysis, pp. 175–186.

Capitani, P., Ciaccia, P., 2007. Warping the time on data streams. Data and
Knowledge Engineering 62 (3), 438–458.

Caraa-Valente, J.P., Lopez-Chavarrias, I., 2000. Discovering similar patterns in time
series. In: Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pp. 497–505.

Chan, K.P., Fu, A.C., 1999. Efficient time series matching by wavelets. In:
Proceedings of the 15th IEEE International Conference on Data Engineering,
pp. 126–133.

Chan, K.P., Fu, A., Yu, C., 2003. Haar wavelets for efficient similarity search of time-
series: with and without time warping. IEEE Transactions on Knowledge and
Data Engineering 15 (3), 685–705.

Chan, P., Mahoney, M., 2005. Modeling multiple time series for anomaly detection.
In: Proceedings of the Fifth IEEE International Conference on Data Mining,
pp. 90–97.

Chen, J., 2005. Making subsequence time series clustering meaningful. In:
Proceedings of the Fifth IEEE International Conference on Data Mining,
pp. 114–121.

Chen, J., 2007. Useful clustering outcomes from meaningful time series clustering.
In: Proceedings of the Sixth Australasian Conference on Data Mining and
Analytics, pp. 101–109.

Chen, L., Ozsu, M.T., Oria V., 2005a. Robust and fast similarity search for moving
object trajectories. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 491–502.

Chen, L., Ozsu, M.T., Oria, V., 2005b. Using multi-scale histograms to answer
pattern existence and shape match queries. In: Proceedings of the 17th
International Conference on Scientific and Statistical Database Management.

Chen, Q. Chen, L., Lian, X., Liu, Y., Yu, J.X., 2007a. Indexable PLA for efficient
similarity search. In: Proceedings of the 33rd International Conference on Very
Large Databases, pp. 435–446.

Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J., 2002. Multi-dimensional regression
analysis of time-series data streams. In: Proceedings of the 28th International
Conference on Very Large Databases, pp. 323–334.

Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H., 2007b. SpADe: on shape-based
pattern detection in streaming time series. In: Proceedings of IEEE 23rd
International Conference on Data Engineering, pp. 786–795.

Chiu, B., Keogh, E., Lonardi, S., 2003. Probabilistic discovery of time series motifs.
In: Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 493–498.

Chu, C.S.J., 1995. Time series segmentation: a sliding window approach.
Information Sciences 85 (1–3), 147–173.

Chu, K.K.W., Wong, M.H., 1999. Fast time-series searching with scaling and
shifting. In: Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pp. 237–248.

Chu, K.W., Lam, S.K., Wong, M.H., 1998. An efficient Hash-based algorithm for
sequence data searching. The Computer Journal 41 (6), 402–415.

Chu, S., Keogh, E., Hart, D., Pazzani, M., 2002. Iterative deepening dynamic time
warping for time series. In: Proceedings of the Second SIAM International
Conference on Data Mining.

Chung, F.L., Fu, T.C., Luk, R., Ng, V., 2001. Flexible time series pattern matching
based on perceptually important points. In: International Joint Conference on
Artificial Intelligence Workshop on Learning from Temporal and Spatial Data,
pp. 1–7.

Chung, F.L., Fu, T.C., Ng, V., Luk, R., 8, 2004. An evolutionary approach to pattern-based
time series segmentation. IEEE Transactions on Evolutionary Computation,
471–489.
Cole, R., Shasha, D., Zhao, X., 2005. Fast window correlations over uncooperative
time series. In: Proceedings of the 11th ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, pp. 743–749.

Cotofrei, P., Stoffel, K., 2002. Classification rules+time¼temporal rules. In:
Proceedings of the 2002 International Conference on Computational Science,
pp. 572–581.

Das, G., Gunopulos, D., Mannila, H., 1997. Finding similar time series. In:
Proceedings of the First European Symposium on Principles and Practice of
Knowledge Discovery in Databases, pp. 88–100.

Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P., 1998. Rule discovery from
time series. In: Proceedings of the Fourth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 16–22.

Dasha, P.K., Nayaka, M., Senapatia, M.R., Lee, I.W.C., 2007. Mining for
similarities in time series data using wavelet-based feature vectors and
neural networks. Engineering Applications of Artificial Intelligence 20 (2),
185–201.

Deligiannakis, A., Kotidis, Y. and Roussopoulos, N., 2004. Compressing historical
information in sensor networks. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pp. 527–538.

Denton, A., 2005. Kernel-density-based clustering of time series subsequences
using a continuous random-walk noise model. In: Proceedings of the Fifth IEEE
International Conference on Data Mining, pp. 122–129.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E., 2008. Querying and
mining of time series data: experimental comparison of representations
and distance measures. In: Proceedings of the VLDB Endowment, vol. 1(2),
pp. 1542–1552.

Dong, X.L., Gu, C.K., Wang, Z.O., 2009. Research on shape-based time series
similarity measure. In: Proceedings of the 2006 International Conference on
Machine Learning and Cybernetics, pp. 1253–1258.

Dorr, A.H., Denton, A.M., 2009. Establishing relationships among patterns in stock
market data. Data and Knowledge Engineering 68 (3), 318–337.

Douglas, D., Peucker, T., 1973. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian
Cartographer 10 (2), 112–122.

Duan, J., Wang, W., Liu, B., Xue, Y., Zhou, H., Shi, B., 2005. Incorporating with
recursive model training in time series clustering. In: Proceedings of the
Fifth International Conference on Computer and Information Technology,
pp. 105–109.

Duncan, S.R., Bryant, G.F. A, 1996. New algorithm for segmenting data from
time series. In: Proceedings of the 35th Conference on Decision and Control,
pp. 3123–3128.

Elfeky, M.G., Aref, W.G., Elmagarmid, A.K., 2004. Using convolution to mine
obscure periodic patterns in one pass. In: Proceedings of the Ninth
International Conference on Extending Database Technology, pp. 605–620.

Elfeky, M.G., Aref, W.G., Elmagarmid, A.K., 2005. Periodicity detection in time
series databases. IEEE Transactions on Knowledge and Data Engineering 17 (7),
875–887.

Euachongprasit, W., Ratanamahatana, C.A., 2008. Accurate and efficient retrieval of
multimedia time series data under uniform scaling and time warping. In:
Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, pp. 100–111.

Euliano, N.R., Principe, J.C., 1996. Spatio-temporal self-organizing feature maps. In:
Proceedings of the IEEE International Conference on Neural Networks, vol. 4,
pp. 1900–1905.

Faloutsos, C., Jagadish, H., Mendelzon, A., Milo, T., 1997. A Signature technique for
similarity-based queries. In: Proceedings of the International Conference on
Compression and Complexity of Sequences, pp. 2–20.

Faloutsos, C., Ranganathan, M., ManolopoulosY., 1994. Fast subsequence matching
in time-series databases. In: Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 419–429.

Fancourt, C.L., Principe, J.C., 1996. A neighborhood map of competing one step
predictors for piecewise segmentation and identification of time series.
In: Proceedings of the International Conference on Neural Network, vol. 4,
pp. 1906–1911.

Fancourt, C.L., 1997. and Principe, J.C. Competitive principal component analysis
for locally stationary time series. IEEE Transactions on Signal Processing 46
(11), 3068–3082.

Feng, L., Ju, K., Chon, K.H.A., 2005. Method for segmentation of switching dynamic
modes in time series. IEEE Transactions on Systems, Man, and Cybernetics—

Part B: Cybernetics 35 (5), 1058–1064.
Fink, E., Pratt, K.B., Gandhi, H.S., 2003. Indexing of time series by major minima and

maxima. In: Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pp. 2332–2335.

Fitzgibbon, L.J., Dowe, D.L., Allison, L., 2002. Change-point estimation using new
minimum message length approximations. In: Proceedings of the Seventh
Pacific Rim International Conference on Artificial Intelligence: Trends in
Artificial Intelligence, pp. 244–254.

Fu, A., Keogh, E., Lau, L., Ratanamahatana, C.A., Wong, C.W., 2008a. Scaling
and time warping in time series querying. The VLDB Journal 17 (4),
899–921.

Fu, T.C., Chung, F.L., Kwok, K.Y., Ng, C.M., 2008b. Stock time series visualization
based on data point importance. Engineering Applications of Artificial
Intelligence 21 (8), 1217–1232.

Fu, T.C., Chung, F.L., Luk, R., Ng, C.M., 2005a. Preventing meaningless stock time
series pattern discovery by changing perceptually important point detection,



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181 177
In: Proceeding of the Second International Conference on Fuzzy Systems and
Knowledge Discovery, pp. 1171–1174.

Fu, T.C., Chung, F.L., Luk, R., Ng, C.M., 2008c. Representing financial time series
based on data point importance. Engineering Applications of Artificial
Intelligence 21 (2), 277–300.

Fu, T.C., Chung, F.L., Luk, R., Ng, C.M., 2007. Stock time series pattern matching:
template-based vs. rule-based approaches. Engineering Applications of
Artificial Intelligence 20 (3), 347–364.

Fu, T.C., Chung, F.L., Luk, R., Ng, V., 2001. Pattern discovery from stock time series
using self-organizing maps. In: Proceedings of the 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining Workshop
on Temporal Data Mining, pp. 27–37.

Fu, T.C., Chung, F.L., Ng, C.M., 2006. Financial time series segmentation based on
specialized binary tree representation. In: Proceedings of the 2006 Interna-
tional Conference on Data Mining, pp. 3–9.

Fu, T.C., Chung, F.L., Tang, P.Y., Luk, R., Ng, C.M., 2005b. Incremental stock time
series data delivery and visualization. In: Proceedings of the 14th ACM
Conference on Information and Knowledge Management, pp. 279–280.

Gao, L., Wang, X.S., 2002. Continually evaluating similarity-based pattern queries
on a streaming time series. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 370–381.

Gao, L., Yao, Z., Wang, X.S., 2002. Evaluating continuous nearest neighbor queries
for streaming time series via pre-fetching. In: Proceedings of the 11th ACM
International Conference on Information and Knowledge Management,
pp. 485–492.

Gavrilov, M., Anguelov, D., Indyk, P., Motwani, R., 2000. Mining the stock market:
which measure is best? In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 487–496.

Ge, X., Smyth, P., 2000. Deformable Markov Model templates for time-series
pattern matching. In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 81–90.

Ge, X.P., 1998. Pattern matching in financial time series data. University of
California, Irvine, Final Project Report for. ICS 278.

Geurts, P., 2001. Pattern extraction for time series classification. In: Proceedings of
the Fifth European Conference on Principles and Practice of Knowledge
Discovery in Databases, pp. 115–127.

Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J., 2001. Surfing wavelets on
streams: one-pass summaries for approximate aggregate queries. In: Proceed-
ings of the 27th International Conference on Very Large Databases, pp. 79–88.

Golab, L., Ozsu, M.T., 2003. Issues in data stream management. ACM SIGMOD
Record 32 (2), 5–14.

Goldin, D., Kanellakis, P., 1995. On similarity queries for time-series data:
constraint specification and implementation. In: Proceedings of the First
International Conference on Principles and Practice of Constraint Program-
ming, pp. 137–153.

Grass, J., Ziberstein, S., 1996. Anytime algorithm development tools. Sigart
Artificial Intelligence 7 (2).

Guimaraes, G., Ultsch, A., 1999. A Method for temporal knowledge conversion. In:
Proceedings of the Third International Symposium on Intelligent Data
Analysis, pp. 369–382.

Guimaraes, G., Peter, J.H., Penzel, T., Ultsch, A.A., 2001. Method for automated
temporal knowledge acquisition applied to sleep-related breathing disorders.
Artificial Intelligence in Medicine 23 (3), 211–237.

Guo, X., Liang, X., Li, N., 2007. Automatically recognizing stock patterns using RPCL
neural networks. In: Proceedings of the 2007 International Conference on
Intelligent Systems and Knowledge Engineering, pp. 997–1004.

Guralnik, V., Srivastava, J., 1999. Event detection from time series data.
In: Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 33–42.

Gusfield, D., 1997. Algorithms on Strings, Trees and Sequences. Cambridge
University Press.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching. In:
Proceedings of the 1984 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 47–57.

Han, J., Dong, G., Yin, Y., 1999. Efficient mining of partial periodic patterns in time
series database. In: Proceedings of the 15th IEEE International Conference on
Data Engineering, pp. 106–115.

Han, J., Gong, W., Yin, Y., 1998. Mining segment-wise periodic patterns in time-
related databases. In: Proceedings of the Fourth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 214–218.

Han, W.S., Lee, J., Moon, Y.S., Jiang, H., 2007. Ranked subsequence matching in
time-series databases. In: Proceedings of the 33rd International Conference on
Very Large Databases, pp. 423–434.

Hao, M.C., Dayal, U., Keim, D.A., Schreck, T., 2007. Multi-resolution techniques for
visual exploration of large time-series data. In: Proceedings of the Joint
Eurographics—IEEE VGTC Symposium on Visualization, pp. 27–34.

Hebrail, G., Hugueney, B., 2001. Symbolic representation of long time-series. In:
Proceedings of the Applied Stochastic Models and Data Analysis Conference.

Hershberger, J., Snoeyink, J., 1992. Speeding up the Douglas–Peucker line-
simplification algorithm. In: Proceedings of the Fifth Symposium on Data
Handling, pp. 134–143.

Hetland, M.L., Saetrom, P., 2005. Evolutionary rule mining in time series databases.
Machine Learning 58 (2–3), 107–125.
Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., Toivonen, H., 2001. Time series
segmentation for context recognition in mobile devices. In: Proceedings of the
2001 IEEE International Conference on Data Mining, pp. 203–210.

Hochheiser, H., Shneiderman, B., 2004. Dynamic query tools for time series data
sets, timebox widgets for interactive exploration. Information Visualization
3 (1), 1–18.

Hoppner, F., Klawonn, F., 2001. Finding informative rules in interval sequences. In:
Proceedings of the Fourth International Symposium on Intelligent Data
Analysis, pp. 123–132.

Huang, Y.W., Yu, P.S., 1999. Adaptive query processing for time-series data. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 282–286.

Hugueney, B., Meunier, B.B., 2001. Time-series segmentation and symbolic
representation, from process-monitoring to data-mining. In: Proceedings of
the Seventh International Conference on Computational Intelligence, Theory
and Applications, pp. 118–123.

Indyk, P., Koudas, N., Muthukrishnan, S., 2000. Identifying representative trends in
massive time series data sets using sketches. In: Proceedings of the 26th
International Conference on Very Large Databases, pp. 363–372.

Jagadish, H.V., Mendelzon, A.O., Milo, T., 1995. Similarity-based queries. In:
Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 36–45.

Janacek, G.J., Bagnall, A.J., Powell, M.A., 2005. Likelihood ratio distance measure for
the similarity between the Fourier transform of time series. In: Proceedings of
the Ninth Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 737–743.

Jia, P., He, H., Sun, T., 2008. Error restricted piecewise linear representation of time
series based on special points. In: Proceedings of the Seventh World Congress
on Intelligent Control and Automation, pp. 2059–2064.

Jiang, J., Zhang, Z., Wang, H., 2007. A New segmentation algorithm to stock
time series based on PIP approach. In: Proceedings of the International
Conference on Wireless Communications, Networking and Mobile Computing,
pp. 5609–5612.

Jin, X., Lu, Y., Shi, C., 2002. Distribution discovery: local analysis of temporal rules.
In: Proceedings of the Sixth Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 469–480.

Jonsson, H.A., Badal, Z., 1997. Using signature files for querying time-series data.
In: Proceedings of the First European Symposium on Principles and Practice of
Knowledge Discovery in Databases, pp. 211–220.

Kacprzyk, J., Wilbik, A., Zadrozny, S., 2008. Linguistic summarization of time series
using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems 159 (12),
1485–1499.

Kadous, M.W., Sammut, C., 2005. Classification of multivariate time series and
structured data using constructive induction. Machine Learning 58 (2–3),
179–216.

Kahveci, T., Singh, A.K., 2004. Optimizing similarity search of arbitrary length time
series queries. IEEE Transactions on Knowledge and Data Engineering 16 (4),
418–433.

Kahveci, T., Sing, A., Gurel, A., 2002. Similarity searching for multi-attribute
sequences. In: Proceedings of the 14th International Conference on Scientific
and Statistical Database Management, pp. 175–186.

Kalpakis, K., Gada, D., Puttagunta, V., 2001. Distance measures for effective
clustering of ARIMA time-series. In: Proceedings of the IEEE International
Conference on Data Mining, 2001, pp. 273–280.

Kawagoe, K., Ueda, T., 2002. A Similarity search method of time series data with
combination of Fourier and wavelet transforms. In: Proceedings of the Ninth
IEEE International Symposium on Temporal Representation and Reasoning,
pp. 86–93.

Keogh, E., 1997a. A fast and robust method for pattern matching in time series
databases. In: Proceedings of the Ninth IEEE International Conference on Tools
with Artificial Intelligence, pp. 578–584.

Keogh, E., 1997b. Fast similarity search in the presence of longitudinal scaling in
time series databases. In: Proceedings of the Ninth IEEE International
Conference on Tools with Artificial Intelligence, pp. 578–584.

Keogh, E., 2002. Exact indexing of dynamic time warping. In: Proceedings of the
28th International Conference on Very Large Databases, pp. 406–417.

Keogh, E., Kasetty, S., 2002. On the need for time series data mining benchmarks: a
survey and empirical demonstration. In: Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 102–111.

Keogh, E., Pazzani, M., 1998. An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback. In:
Proceedings of the Fourth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 239–341.

Keogh, E., Pazzani, M., 1999. Relevance feedback retrieval of time series data.
In: Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 183–190.

Keogh, E., Pazzani, M., 2000a. A Simple dimensionality reduction technique for fast
similarity search in large time series databases. In: Proceedings of the
4th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 122–133.

Keogh, E., Pazzani, M., 2000b. Scaling up dynamic time warping for datamining
applications. In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 285–289.

Keogh, E., Pazzani, M., 2001. Derivative dynamic time warping. In: Proceedings of
the First SIAM International Conference on Data Mining.



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181178
Keogh, E., Smyth, P.A., 2001. Probabilistic approach to fast pattern matching in
time series databases. In: Proceedings of the Third ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1997, pp. 24–30.

Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M., 2001a. Locally adaptive
dimensionality reduction for indexing large time series databases. In:
Proceedings of the 2001 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 151–163.

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S., 2000. Dimensionality
reduction for fast similarity search in large time series databases. Journal of
Knowledge and Information Systems 3 (3), 263–286.

Keogh, E., Chu, S., Pazzani, M., 2001b. Ensemble-index: a new approach to indexing
large databases. In: Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 117–125.

Keogh, E., Chu, S., Hart, D., Pazzani, M., 2001c. An online algorithm for segmenting
time series. In: Proceedings of the 2001 IEEE International Conference on Data
Mining, pp. 289–296.

Keogh, E., Hochheiser, H., Shneiderman, B., 2002a. An augmented visual query
mechanism for finding patterns in time series data. In: Proceedings of the Fifth
International Conference on Flexible Query Answering Systems, pp. 240–250.

Keogh, E., Lin, J., Fu, A., 2005. HOT SAX: efficiently finding the most unusual time
series subsequence. In: Proceedings of the Fifth IEEE International Conference
on Data Mining, pp. 226–233.

Keogh, E., Lin, J., Truppel, W., 2003. Clustering of time series subsequences is
meaningless: implications for previous and future research. In: Proceedings of
the Third IEEE International Conference on Data Mining, pp. 115–122.

Keogh, E., Lin, J., Fu, A., Herle, H.V., 2006. Finding unusual medical time-series
subsequences: algorithms and applications. IEEE Transactions on Information
Technology in Biomedicine 10 (3), 429–439.

Keogh, E., Lin, J., Lee, S.H., Herle, H.V., 2007a. Finding the most unusual time series
subsequence: algorithms and applications. Knowledge and Information
Systems 11 (1), 1–27.

Keogh, E., Lonardi, S., Chiu, Y.C., 2002b. Finding surprising patterns in a time series
database in linear time and space. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 550–556.

Keogh, E., Lonardi, S., Ratanamahatana, C.A., 2004. Towards parameter-free data
mining. In: Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 206–215.

Keogh, E., Lonardi, S., Ratanamahatana, C.A., Wei, L., Lee, S.H., Handley, J., 2007b.
Compression-based data mining of sequential data. Data Mining and Knowl-
edge Discovery 14 (1), 99–129.

Kim, M.S., Kim, S.W., Shin, M., 2005. Optimization of subsequence matching under
time warping in time-series databases. In: Proceedings of the 2005 ACM
Symposium on Applied Computing, pp. 581–586.

Kim, S.W., Jeong, B.S., 2007. Performance bottleneck of subsequence matching in
time-series databases: observation, solution, and performance evaluation.
Information Sciences 177 (22), 4841–4858.

Kim, S.W., Park, S.H., Chu, W.W., 2001. An index-based approach for similarity
search supporting time warping in large sequence databases. In: Proceedings
of the 17th IEEE International Conference on Data Engineering, pp. 607–614.

Kim, S.W., Yoon, J., Park, S., Kim, T.H., 2002. Shape-based retrieval of similar
subsequences in time-series databases. In: Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 438–445.

Kim, Y.I., Park, Y., Chun, J., 1996. A Dynamic indexing structure for searching time-
series pattern. In: Proceedings of the 20th Computer Software and Applica-
tions Conference, pp. 270–275.

Kim, Y.I., Ryu, K.H., Park, T., 1994. Algorithms of improved multidimensional
dynamic index for the time-series pattern. In: Proceedings of the First KIPS
Spring Conference, vol. 1(1).

Kohonen, T., 1995. Self-Oranizing Maps. Springer, Berlin.
Korn, F., Jagaciish, H.V., Faloutsos, C., 1997. Efficiently supporting ad hoc queries in

large data sets of time sequences. In: Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, pp. 289–300.

Kruskall, J.B., Liberman, M., 1983. The symmetric time warping algorithm:
from continuous to discrete, Time Warps, String Edits and Macromolecules.
Addison-Wesley.

Kumar, N., Lolla, N., Keogh, E., Lonardi, S., Ratanamahatana, C.A., 2005. Time-series
bitmaps A practical visualization tool for working with large time series
databases. In: Proceedings of the Fifth SIAM International Conference on Data
Mining.

Kuo, S.C., Li, S.T., Cheng, Y.C., Ho, M.H., 2004. Knowledge discovery with SOM
networks in financial investment strategy. In: Proceedings of the 4th
International Conference on Hybrid Intelligent Systems, pp. 98–103.

Lam, S.K., Wong, M.H.A., 1998. Fast projection algorithm for sequence data
searching. Data and Knowledge Engineering 28 (3), 321–339.

Lang, W., Morse, M., Patel, J., 2010. Dictionary-based compression for long time-
series similarity. In: IEEE Transactions on Knowledge and Data Engineering 22
(11), 1609–1622.

Last, M., Klein, Y., Kandel, A., 2001. Knowledge discovery in time series databases.
IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 31
(1), 160–169.

Latecki, L.J., Megalooikonomou, V., Wang, Q., Lakaemper, R., Ratanamahatana, C.A.,
Keogh, E., 2005. Partial elastic matching of time series. In: Proceedings of the
Fifth IEEE International Conference on Data Mining, pp. 701–704.

Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J., 2000. Mining of
concurrent text and time series. In: Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining Workshop
on Text Mining, pp. 37–44.

Lee, A.J.T., Wu, H.W., Lee, T.Y., Liu, Y.H., Chen, K.T., 2009. Mining closed patterns in
multi-sequence time-series databases. Data and Knowledge Engineering 68
(10), 1071–1090.

Lee, S., Kwon, D., Lee, S., 2003. Dimensionality reduction for indexing time series
based on the minimum distance. Journal of Information Science and
Engineering 19, 697–711.

Lei, H., Govindaraju, V., 2004. Regression time warping for similarity measure of
sequence. In: Proceedings of the Fourth International Conference on Computer
and Information Technology, pp. 826–830.

Leigh, W., Modani, N., Purvis, R., Roberts, T., 2002. Stock market trading rule
discovery using technical charting heuristics. Expert Systems with Applica-
tions 23, 155–159.

Leng, M., Lai, X., Tan, G., Xu, X., 2009. Time series representation for anomaly
detection. In: Proceedings of the Second IEEE International Conference on
Computer Science and Information Technology, pp. 628–632.

Lerner, A., Shasha, D., Wang, Z., Zhao, X., Zhu, Y., 2004. Fast algorithms for time
series with applications to finance, physics, music, biology, and other suspects.
In: Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, pp. 965–968.

Lesch, R., Caille, Y., Lowe, D., 1999. Component analysis in financial time series. In:
Proceedings of the IEEE Conference on Computational Intelligence for Financial
Engineering, pp. 183–190.

Li, B., Tan, L., Zhang, J., Zhuang, Z., 2000a. Using fuzzy neural network clustering
algorithm in the symbolization of time series. In: Proceedings of the 2000 IEEE
Asia Pacific Conference on Circuits and Systems, pp. 379–382.

Li, C., Yu, P.S., Castelli, V., 1998. MALM: a framework for mining sequence database
at multiple abstraction levels. In: Proceedings of the Seventh ACM Interna-
tional Conference on Information and Knowledge Management, pp. 267–272.

Li, C.S., Yu, P.S., Castelli, V., 1996. HierarchyScan: a hierarchical similarity search
algorithm for databases of long sequences. In: Proceedings of the 12th IEEE
International Conference on Data Engineering, pp. 546–553.

Li, Q., Lopez, I.F.V., Moon, B., 2004. Skyline index for time series data. IEEE
Transactions on Knowledge and Data Engineering 16 (6), 669–684.

Li, Y., Wang, X.S., Jajodia, S., 2000b. Discovering temporal patterns in multiple
granularities. In: the International Workshop on Temporal, Spatial and Spatio-
Temporal Data Mining, pp. 5–19.

Lian, X., Chen, L., 2008. Efficient similarity search over future stream time series.
IEEE Transactions on Knowledge and Data Engineering 20 (1), 40–54.

Lian, X., Chen, L., Yu, J.X., 2008. Pattern matching over cloaked time series. In:
Proceedings of the 24th IEEE International Conference on Data Engineering,
pp. 1462–1464.

Lian, X., Chen, L., Yu, J.X., Han, J., Ma, J., 2009. Multiscale representations for fast
pattern matching in stream time series. IEEE Transactions on Knowledge and
Data Engineering 21 (4), 568–581.

Lim, H.S., Whang, K.Y., Moon, Y.S., 2008. Similar sequence matching supporting
variable-length and variable-tolerance continuous queries on time-series data
stream. Information Sciences 178 (6), 1461–1478.

Lim, S.H., Park, H., Kim, S.W., 2007. Using multiple indexes for efficient
subsequence matching in time-series databases. Information Sciences 177
(24), 5691–5706.

Lin, J., Li, Y., 2009. Finding structural similarity in time series data using bag-of-
patterns representation. In: Proceedings of the 21st International Conference
on Scientific and Statistical Database Management, pp. 461–477.

Lin, J., Keogh, E., Lonardi, S., 2005a. Visualizing and discovering non-trivial patterns
in large time series databases. Information Visualization 4 (2), 61–82.

Lin, J., Keogh, E., Lonardi, S., Chiu, B., 2003. A Symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of the Eighth ACM
SIGMOD International Conference on Management of Data Workshop on
Research Issues in Data Mining and Knowledge Discovery, pp. 2–11.

Lin, J., Keogh, E., Lonardi, S., Patel, P., 2002. Finding motifs in time series. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining 2nd Workshop on Temporal Data Mining,
pp. 53–68.

Lin, J., Keogh, E., Wei, L., Lonardi, S., 2007. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery 15 (2),
107–144.

Lin, J., Vlachos, M., Keogh, E., Gunopulos, D., 2004. Iterative incremental clustering
of time series. In: Proceedings of the Ninth International Conference on
Extending Database Technology, pp. 106–122.

Lin, J., Vlachos, M., Keogh, E., Gunopulos, D., Liu, J.W., Yu, S.J., Le, J.J., 2005b. A
MPAA-based iterative clustering algorithm augmented by nearest neighbors
search for time-series data streams. In: Proceedings of the Ninth Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 333–342.

Lin, L., Risch, T., 1998. Querying continuous time sequences. In: Proceedings of the
24th International Conference on Very Large Databases, pp. 170–181.

Liu, J.N.K., Kwong, R.W.M., Bo, F., 2004. Chart patterns recognition and forecast
using wavelet and radial basis function network. In: Proceedings of the Eighth
International Conference on Knowledge-Based Intelligent Information and
Engineering Systems, pp. 564–571.

Liu, X., Lin, Z., Wang, H., 2008. Novel online methods for time series segmentation.
IEEE Transactions on Knowledge and Data Engineering 20 (12), 1616–1626.

Loh, W.K., Kim, S.W., 2001. A Subsequence matching algorithm supporting
moving average transform of arbitrary order in time-series databases using



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181 179
index interpolation. In: Proceedings of the Australian Database Conference,
pp. 37–44.

Loh, W.K., Moon, Y.S., Srivastava, J., 2010. Distortion-free predictive streaming
time-series matching. Information Sciences 180 (8), 1458–1476.

Lonardi, S., Lin, J., Keogh, E., Chiu, Y.C., 2006. Efficient discovery of unusual patterns
in time series. New Generation Computing 25 (1), 61–93.

Lu, H., Han, J., Feng, L., 1998. Stock movement prediction and N-dimensional inter-
transaction association rules. In: Proceedings of the Third ACM SIGMOD
International Conference on Management of Data Workshop on Research
Issues in Data Mining and Knowledge Discovery, pp. 1–7.

Ma, J., Perkins, S., 2003. Online novelty detection on temporal sequences. In:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 613–618.

Man, P., Wong, M.H., 2001. Efficient and robust feature extraction and pattern
matching of time series by a lattice structure. In: Proceedings of the 10th ACM
International Conference on Information and Knowledge Management,
pp. 271–278.

Megalooikonomou, V., Li, G., Wang, Q., 2004. A Dimensionality reduction
technique for efficient similarity analysis of time series databases. In:
Proceedings of the 13th ACM International Conference on Information and
Knowledge Management, pp. 160–161.

Megalooikonomou, V., Wang, Q., Li, G., Faloutsos, C., 2005. A Multiresolution
symbolic representation of time series. In: Proceedings of the 21st IEEE
International Conference on Data Engineering, pp. 668–679.

Miller, F.W., Keleher, P. and Tripathi, S.K., 1998. General data streaming. In:
Proceedings of the 19th IEEE Real-Time Systems Symposiums, pp. 232–250.

Minnen, D., Isbell, C.L., Essa, I.A., Starner, T., 2007a. Detecting subdimensional
motifs: an efficient algorithm for generalized multivariate pattern discovery.
In: Proceedings of the Seventh IEEE International Conference on Data Mining,
pp. 601–606.

Minnen, D., Isbell, C.L., Essa, I.A., Starner, T., 2007b. Discovering multivariate motifs
using subsequence density estimation and greedy mixture learning.
In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
pp. 615–620.

Moller-Levet, C.S., Klawonn, F., Cho, K.H., Wolkenhauer, O., 2003. Fuzzy clustering of
short time-series and unevenly distributed sampling points. In: Proceedings of
the Fifth International Symposium on Intelligent Data Analysis, pp. 330–340.

Moon, Y., Whang, K., Loh, W., 2001. Duality-based subsequence matching in time-
series databases. In: Proceedings of the 17th IEEE International Conference on
Data Engineering, pp. 263–272.

Moon, Y.S., Whang, K.Y., Han, W.S., 2002. General match: a subsequence matching
method in time-series databases based on generalized windows. In: Proceed-
ings of the 2002 ACM SIGMOD International Conference on Management of
Data, pp. 382–393.

Morchen, F., 2003. Time series feature extraction for data mining using DWT and
DFT. University of Marburg, Department of Mathematics and Computer
Science, Technical Report no. 33.

Morchen, F. and Ultsch, A., 2005. Optimizing time series discretization for
knowledge discovery. In: Proceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, pp. 660–665.

Morchen, F., Ultsch, A., Hoos, O., 2005. Extracting interpretable muscle activation
patterns with time series knowledge mining. International Journal of Knowl-
edge-Based+Intelligent Engineering Systems.

Morinaka, Y., Yoshikawa, M., Amagasa, T., Uemura, S., 2001. The L-index: an
indexing structure for efficient subsequence matching in time sequence
databases. In: Proceedings of the Fifth Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 51–60.

Morrill, J.P., 1998. Distributed recognition of patterns in time series data.
Communications of the ACM 41 (5), 45–51.

Morse, M.D., Patel, J.M., 2007. An efficient and accurate method for evaluating time
series similarity. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 569–580.

Motoyoshi, M., Miura, T., Watanabe, K., 2002. Mining temporal classes from time
series data. In: Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, pp. 493–498.

Mueen, A., Keogh, E., Bigdely-ShamloN., 2009. Finding time series motifs in disk-
resident data. In: Proceedings of the 2009 IEEE International Conference on
Data Mining, pp. 367–376.

Nin, J., Torra, V., 2009. Towards the evaluation of time series protection methods.
Information Sciences 179 (11), 1663–1677.

Oates, T., 1999. Identifying distinctive subsequences in multivariate time series by
clustering. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 322–326.

Oates, T., Firoiu, L., Cohen, P.R., 1999. Clustering time series with Hidden Markov
Models and dynamic time warping. In: Proceedings of the International Joint
Conference on Artificial Intelligence Workshop on Sequence Learning.

Ogras, Y., Ferhatosmanoglu, H., 2006. Online summarization of dynamic time
series data. The International Journal on Very Large Data Bases 15 (1), 84–98.

Ohsaki, M., Sato, Y., Yokoi, H., Yamaguchi, T., 2003. A Rule discovery support
system for sequential medical data in the case study of a chronic hepatitis data
set. In: the 14th European Conference on Machine Learning/the Seventh
European Conference on Principles and Practice in Knowledge Discovery in
Databases Discovery Challenge Workshop, pp. 154–165.

Oliver, J.J., Forbes, C.S., 1997. Bayesian approaches to segmenting a simple time
series. In: Proceedings of the Econometric Society Australasian Meeting.
Oliver, J.J., Bexter, R.A., Wallace, C.S., 1998. Minimum message length segmenta-
tion. In: Proceedings of the Second Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 222–233.

Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., 2008. Streaming time series
summarization using user-defined amnesic functions. IEEE Transactions on
Knowledge and Data Engineering 20 (7), 992–1006.

Plant, C., Wohlschlager, A.M., Zherdin, A., 2009. Interaction-based clustering of
multivariate time series. In: Proceedings of the 2009 IEEE International
Conference on Data Mining, pp. 914–919.

Panuccio, A., Bicego, M., Murino, V., 2002. A Hidden Markov Model-based approach
to sequential data clustering. In: the Joint International Association for Pattern
Recognition Workshops on Structural, Syntactic and Statistical Pattern
Recognition, pp. 734–742.

Papadimitriou, S., Sun, J., Faloutsos, C., 2005. Streaming pattern discovery in
multiple time-series. In: Proceedings of the 31st International Conference on
Very Large Databases, pp. 697–708.

Papadimitriou, S., Yu, P., 2006. Optimal multi-scale patterns in time series streams.
In: Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, pp. 647–658.

Park, S., Chu, W., Yoon, J., Hsu, C., 2000. Efficient searches for similar subsequences
of different lengths in sequence databases. In: Proceedings of the 16th IEEE
International Conference on Data Engineering, pp. 23–32.

Park, S., Kim, S., Chu, W.W., 2001a. Segment-based approach for subsequence
searches in sequence databases. In: Proceedings of the 16th ACM Symposium
on Applied Computing, pp. 248–252.

Park, S., Kim, S.W., Cho, J.S., Padmanabhan, S., 2001b. Prefix-querying: an approach
for effective subsequence matching under time warping in sequence
databases. In: Proceedings of the 10th ACM International Conference on
Information and Knowledge Management, pp. 255–262.

Park, S., Lee, D., Chu, W., 1999. Fast retrieval of similar subsequences in long
sequence databases. In: Proceedings of the Third IEEE Knowledge and Data
Engineering Exchange Workshop, pp. 60–67.

Patel, P., Keogh, E., Lin, J., Lonardi, S., 2002. Mining motifs in massive time series
databases. In: Proceedings of the 2002 IEEE International Conference on Data
Mining, pp. 370–377.

Perng, C.S., Wang, H., Zhang, R., Parker, D., 2000. Landmarks: a new model for
similarity-based pattern querying in time series databases. In: Proceedings of
the 16th IEEE International Conference on Data Engineering, pp. 33–42.

Policker, S., Geva, A.B., 2000. Nonstationary time series analysis by temporal
clustering. IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics 30 (2), 339–343.

Popivanov, I., Miller, J., 2002. Similarity search over time-series data using
wavelets. In: Proceedings of the 18th IEEE International Conference on Data
Engineering, pp. 212–224.

Povinelli, J., Feng, X., 1999. Data mining of multiple nonstationary time series. In:
Proceedings of Artificial Neural Networks in Engineering, pp. 511–516.

Povinelli, R.J., Johnson, M.T., Lindgren, A.C., Ye, J., 2004. Time series classification
using Gaussian mixture models of reconstructed phase spaces. IEEE Transac-
tions on Knowledge and Data Engineering 16 (6), 779–783.

Pratt, B., Fink, E., 2002. Search for patterns in compressed time series. International
Journal of Image and Graphics 2 (1), 89–106.

Qu, Y., Wang, C., Wang, S., 1998. Supporting fast search in time series for
movement patterns in multiple scales. In: Proceedings of the Seventh
ACM International Conference on Information and Knowledge Management,
pp. 251–258.

Rafiei, D., 1999. On similarity-based queries for time series data. In: Proceedings of
the 15th IEEE International Conference on Data Engineering, pp. 410–417.

Rafiei, D., Mendelzon, A., 2000. Querying time series data based on similarity. IEEE
Transactions on Knowledge and Data Engineering 12 (5), 675–693.

Ratanamahatana, C.A. and Keogh, E., 2004. Making time-series classification more
accurate using learned constraints. In: Proceedings of the Fourth SIAM
International Conference on Data Mining, pp. 11–22.

Ratanamahatana, C.A., Keogh, E., 2005. Three myths about dynamic time warping
data mining. In: Proceedings of the Fifth SIAM International Conference on
Data Mining.

Ratanamahatana, C.A., Keogh, E., Bagnall, A.J., Lonardi, S. A, 2005. Novel bit level
time series representation with implications for similarity search and
clustering. In: Proceedings of the Ninth Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 771–777.

Reiter, E., Sripada, S., Hunter, J., Yu, J., Davy, I., 2005. Choosing words in computer-
generated weather forecasts. Artificial Intelligence 167 (1–2), 137–169.

Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge
University Press.

Rodrigues, P.P., Gama, J., Pedroso, J.P., 2008. Hierarchical clustering of time series
data streams. IEEE Transactions on Knowledge and Data Engineering 20 (5),
615–627.

Rodriguez, J.J., Alonso, C.J., 2004. Interval and dynamic time warping-based
decision trees. In: Proceedings of the 2004 ACM Symposium on Applied
Computing, pp. 548–552.

Ruengronghirunya, P., Niennattrakul, V., Ratanamahatana, C.A., 2009. Speeding up
similarity search on a large time series data set under time warping distance.
In: Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, pp. 981–988.

Ruspini, E.H., Zwir, I.S., 1999. Automated qualitative description of measurements.
In: Proceedings of the 16th IEEE Instrumentation and Measurement
Technology Conference.



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181180
Sakurai, Y., Yoshikawa, M., Faloutsos, C., 2005. FTW: fast similarity search under
the time warping distance. In: Proceedings of the 24th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 326–337.

Salvador, S., Chan, P., 2004. FastDTW: toward accurate dynamic time warping in
linear time and space. In: Prcoeedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining Workshop on Mining
Temporal and Sequential Data, pp. 70–80.

Sarker, B.K., Mori, T., Uehara, K., 2003. Parallel algorithms for mining association
rules in time series data. In: Proceedings of the International Symposium on
Parallel and Distributed Processing and Applications, pp. 273–284.

Schreck, Tekusova, Kohlhammer, T., Fellner D., J., 2007. Trajectory-based visual
analysis of large financial time series data. ACM SIGKDD Explorations
Newsletter, Special Issue on Visual Analytics 9 (2), 30–37.

Sellis T., Roussopoulos, N., Faloutsos, C., 1987. The R+tree: a dynamic index for
multidimensional objects. In: Proceedings of the 13th International Con-
ference on Varge Large Data Bases, pp. 507–518.

Shahabi, C., Tian, X., Zhao, W., 2000. TSA-tree: a wavelet-based approach to
improve the efficiency of multi-level surprise and trend queries on time-series
data. In: Proceedings of the 12th International Conference on Scientific and
Statistical Database Management, pp. 55.

Shatkay, H., Zdonik, S., 1996. Approximate queries and representations for large
data sequences. In: Proceedings of the 12th IEEE International Conference on
Data Engineering, pp. 536–545.

Shieh, J., Keogh, E., 2009. iSAX: disk-aware mining and indexing of massive time
series data sets. Data Mining and Knowledge Discovery 19 (1), 24–57.

Shou, Y., Mamoulis, N., Cheung, D.W., 2005. Fast and exact warping of time series
using adaptive segmental approximations. Machine Learning 58 (2–3), 231–267.

Simon, G., Lee, J.A., Verleysen, M., 2006. Unfolding preprocessing for meaningful
time series clustering. Neural Networks 19 (6), 877–888.

Singh, S., Stuart, E., 1998. A Pattern matching tool for time-series forecasting. In:
Proceedings of the 14th International Conference on Pattern Recognition,
pp. 103–105.

Smyth, P., Keogh, E., 1997. Clustering and mode classification of engineering time
series data. In: Proceedings of the Thirrd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 24–30.

Sripada, S., Reiter, E., Hunter, J., Yu, J., Davy, I., 2001. Modelling the task of
summarising time series data using KA techniques. In: Proceedings of the
International Conference on Knowledge Based Systems and Applied Artifical
Intelligence, pp. 183–196.

Sripada, S.G., Reiter, E., Hunter, J., Yu, J., 2003. Generating english summaries of time
series data using the Gricean Maxims. In: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 187–196.

Srivastava, A.N., Weigend, A.S., 1996. Improved time series segmentation using
gated experts with simulated annealing. In: Proceedings of the IEEE
International Conference on Neural Networks, pp. 1883–1888.

Srivastava, A.N., Su, R., Weigend, A.S., 1999. Data mining for features using scale-
sensitive gated experts. IEEE Transactions on Pattern Analysis and Machine
Intelligence 21 (12), 1268–1279.

Steinbach, M., Tan, P.N., Kumar, V., Klooster, S., Potter, C., 2003. Discovery of climate
indices using clustering. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 446–455.

Struzik, R., Siebes, A., 1999. The Haar Wavelet Transform in the time series
similarity paradigm. In: Proceedings of the Third European Conference on
Principles and Practice of Knowledge Discovery in Databases, pp. 12–22.

Struzik, Z.R., Siebes, A.P.J.M., 1998. Wavelet transform in similarity paradigm. In:
Proceedings of the Second Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 295–309.

Takashi, S., Tatsuya, H., Yasuo, K., 2009. Causality quantification and its
applications: structuring and modeling of multivariate time series. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 787–796.

Tanaka, Y., Iwamoto, K., Uehara, K., 2005. Discovery of time-series motif from multi-
dimensional data based on MDL principle. Machine Learning 58 (2–3), 269–300.

Tang, H., Liao, S.S., 2008. Discovering original motifs with different lengths from
time series. Knowledge-Based Systems 21 (7), 666–671.

Taskaya, T., Ahmad, K., 2003. Bimodal visualisation: a financial trading case study.
In: Proceedings of the Seventh International Conference on Information
Visualisation, pp. 230–236.

Tatavarty, G., Bhatnagar, R., Young, B., 2007. Discovery of temporal dependencies
between frequent patterns in multivariate time series. In: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining, pp. 688–696.

Ting, J., Fu, T.C., Chung, F.L., 2006. Mining of stock data: intra- and inter-stock
pattern associative classification. In: Proceedings of the 2006 International
Conference on Data Mining, pp. 30–36.

Udechukwu, A., Barker, K., Alhajj, R., 2004. Discovering all frequent trends in time
series. In: Proceedings of the 2004 Winter International Symposium on
Information and Communication Technologies, pp. 1–6.

Ultsch, A., 1999. Data mining and knowledge discovery with emergent self-
organizing feature maps for multivariate time series. Kohonen Maps, 33–46.

van Wijk, J.J., van Selow, E.R., 1999. Cluster and calendar based visualization of
Time Series Data. In: Proceedings of the IEEE Symposium on Information
Visualization, pp. 4–9.

Vlachos, M., Gunopulos, D., Kollios, G., 2002. Discovering similar multidimensional
trajectories. In: Proceedings of the 18th IEEE International Conference on Data
Engineering, pp. 673.
Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E., 2003. Indexing multi-
dimensional time-series with support for multiple distance measures. In:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 216–225.

Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E., 2006. Indexing
multidimensional time-series. The International Journal on Very Large
Databases 15 (1), 1–20.

Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D., 2004. Identifying similarities,
periodicities and bursts for online search queries. In: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, pp. 131–142.

Vlachos, M., Vagena, Z., Castelli, V., Yu, P.S., 2005a. A Multi-metric index for
Euclidean and periodic matching. In: Proceedings of the Ninth European
Conference on Principles and Practice of Knowledge Discovery in Databases,
pp. 355–367.

Vlachos, M., Wu, K.L., Chen, S.K., Yu, P.S., 2005b. Fast burst correlation of financial
data. In: Proceedings of the Ninth European Conference on Principles and
Practice of Knowledge Discovery in Databases, pp. 368–379.

Vlachos, M., Yu, P., Castelli, V., 2005c. On periodicity detection and structural
periodic similarity. In: Proceedings of the Fifth SIAM International Conference
on Data Mining.

Wang, C., Wang, S., 2000. Supporting subseries nearest neighbor search via
approximation. In: Proceedings of the Ninth ACM International Conference on
Information and Knowledge Management, pp. 314–321.

Wang, H., Perng, C.S., 2001. The S2-tree: an index structure for subsequence
matching of spatial objects. In: Proceedings of the Fifth Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 312–323.

Wang, H., Wang, W., Yang, J., Yu, P.S., 2002. Clustering by pattern similarity in large
data sets. In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, pp. 394–405.

Wang, S., Chung, F.L., Deng, Z., 2005a. Why did time series subsequence clustering
disguise. International Journal of Information Acquisition 2 (3), 259–266.

Wang, X., Smith, K.A., Hyndman, R.J., 2005b. Dimension reduction for clustering
time series using global characteristics. In: Proceedings of the International
Conference on Computational Science, pp. 792–795.

Wang, X, Wirth, A., Wang, L., 2007. Structure-based statistical features and
multivariate time series clustering. In: Proceedings of the 2007 IEEE
International Conference on Data Mining, pp. 351–360.

Wang, Z.J., Willett, P., 2004. Joint segmentation and classification of time series
using class-specific features. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics 34 (2), 1056–1067.

Weber, M., Alexa, M., Muller, W., 2001. Visualizing time series on spirals. In:
Proceedings of the IEEE Symposium on Information Visualization, pp. 7–14.

Wei, L., Keogh, E., 2006. Semi-supervised time series classification. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 748–753.

Wei, L., Keogh, E., Xi, X.,2006. SAXually explicit images: finding unusual shapes.
In: Proceedings of the 2006 IEEE International Conference on Data Mining,
pp. 711–720.

Wei, L., Keogh, E., Herle, H.V., Mafra-Neto, A., Abbott, R.J., 2007. Efficient query
filtering for streaming time series with applications to semisupervised learning of
time series classifiers. Knowledge and Information Systems 11 (3), 313–344.

Wei, L., Kumar, N., Lolla, V., Keogh, E., Lonardi, S., Ratanamahatana, C.A., 2005.
Assumption-free anomaly detection in time series. In: Proceedings of the 17th
International Conference on Statistical and Scientific Database Management,
pp. 237–240.

Wu, H., Salzberg, B., Zhang, D., 2004. Online event-driven subsequence matching
over financial data streams. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pp. 23–34.

Wu, H., Salzberg, B., Sharp, G., Jiang, S., Shirato, H., Kaeli, D., 2005. Subsequence
matching on structured time series data. In: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pp. 682–693.

Wu, L., Faloutsos, C., Sycara, K., Payne, T.R., 2000a. FALCON: feedback adaptive loop
for content-based retrieval. In: Proceedings of the 26th International
Conference on Very Large Databases, pp. 297–306.

Wu, Y., Agrawal, D., El Abbadi, A., 2000b. A Comparison of DFT and DWT based
similarity search in time-series databases. In: Proceedings of the Ninth ACM
International Conference on Information and Knowledge Management,
pp. 488–495.

Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A., 2006. Fast time series
classification using numerosity reduction. In: Proceedings of the 23rd
International Conference on Machine Learning, pp. 1033–1040.

Xiong, Y., Yeung, D.Y., 2004. Time series clustering with ARMA mixtures. Pattern
Recognition 37 (8), 1675–1689.

Yamanishi, K., Takeuchi, J., 2002. A Unifying framework for detecting outliers and
change points from non-stationary time series data. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 676–681.

Yang, K., Shahabi, C., 2005a. A Multilevel distance-based index structure for
multivariate time series. In: Proceedings of the 12th IEEE International
Symposium on Temporal Representation and Reasoning, pp. 65–73.

Yang, K., Shahabi, C., 2005b. On the stationarity of multivariate time series for
correlation-based data analysis. In: Proceedings of the Fifth IEEE International
Conference on Data Mining, pp. 805–808.

Yang, K., Yoon, H., Shahabi, C., 2005. CLeVer: a feature subset selection technique
for multivariate time series. In: Proceedings of the Ninth Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 516–522.



Tak-chung Fu / Engineering Applications of Artificial Intelligence 24 (2011) 164–181 181
Yang, O., Jia, W., Zhou, P., Meng, X., 1999. A New approach to transforming time
series into symbolic sequences. In: Proceedings of the First Joint Conference
between the Biomedical Engineering Society and Engineers in Medicine and
Biology, pp. 974.

Yang, Q., Wu, X., 2006. 10 Challenging problems in data mining research. International
Journal of Information Technology and Decision Making 5 (4), 597–604.

Yang, Z., Zhao, G., 1998. Application of symbolic techniques in detecting determinism
in time series. In: Proceedings of the 20th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 20(5), pp. 2670–2673.

Yankov, D., Keogh, E., Rebbapragada, U., 2008. Disk aware discord discovery:
finding unusual time series in terabyte sized data sets. Knowledge and
Information Systems 7 (1), 241–262.

Yankov, D., Keogh, E., Lonardi, S., Fu, A., 2005. Dot plots for time series analysis. In:
Proceedings of the 17th IEEE International Conference on Tools with Artificial
Intelligence, pp. 159–168.

Yankov, D., Keogh, E., Medina, J., Chiu, B., Zordan, V., 2007. Detecting time series
motifs under uniform scaling. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 844–853.

Yi, B., Faloutsos, C., 2000. Fast time sequence indexing for arbitrary Lp norms. In:
Proceedings of the 26th International Conference on Very Large Data Bases,
pp. 385–394.

Yi, B., Jagadish, H.V., Faloutsos, C., 1998. Efficient retrieval of similar time
sequences under time warping. In: Proceedings of the 14th IEEE International
Conference on Data Engineering, pp. 201–208.

Yi, B.K., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V., Faloutsos, C., Biliris, A., 2000.
Online data mining for co-evolving time sequences. In: Proceedings of the 16th
IEEE International Conference on Data Engineering, pp. 13–22.

Yin, J., Yang, Q., 2005. Integrating Hidden Markov Models and spectral analysis for
sensory time series clustering. In: Proceedings of the Fifth IEEE International
Conference on Data Mining, pp. 506–513.
Yoon, H., Yang, K., Shahabi, C., 2005. Feature subset selection and feature
ranking for multivariate time series. IEEE Transactions on Knowledge
and Data Engineering, Special Issue on Intelligent Data Preparation 17 (9),
1186–1198.

Yu, J., Reiter, E. Hunter, J., Sripada, S.G., 2004. A New architecture for summarising
time series data. In: Proceedings of the Third International Conference on
Natural Language Generation, pp. 47–50.

Zhang, H., Ho, T.B., Lin, M.S., 2004. A Non-parametric wavelet feature extractor for
time-series classification. In: Proceedings of the Eighth Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 595–603.

Zhang, T., Yue, D., Gu, Y., Yu, G., 2007. Boolean representation based data-adaptive
correlation analysis over time series streams. In: Proceedings of the 16th ACM
Conference on Information and Knowledge Management, pp. 203–212.

Zhao, Y., Zhang, S., 2006. Generalized dimension-reduction framework for recent-
biased time series analysis. IEEE Transactions on Knowledge and Data
Engineering 18 (2), 231–244.

Zhao, Y., Zhang, C., Zhang, S., 2006. Enhancing DWT for recent-biased dimension
reduction of time series data. In: Proceedings of the Australian Conference on
Artificial Intelligence, pp. 1048–1053.

Zhou, M., Wong, M.H.A., 2005. Segment-wise time warping method for time
scaling searching. Information Sciences 173 (1–3), 227–254.

Zhu, Y., Shasha, D., 2003. Warping indexes with envelope transforms for query by
humming. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pp. 181–192.

Zhu, Y., Fu, Y., Fu, H., 2008. On privacy in time series data mining. In: Proceedings
of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining, pp. 479–493.

Zwir, I., Enrique, E.H., 1999. Qualitative object description: initial reports of
the exploration of the frontier. In: Proceedings of Joint EUROFUSE-SIC99
International Conference, pp. 485–490.


	A review on time series data mining
	Introduction
	Time series representation and indexing
	Similarity measure
	Whole sequence matching
	Subsequence matching

	Segmentation
	Visualization
	Mining in time series
	Pattern discovery and clustering
	Classification
	Rule discovery
	Summarization
	Recent research directions

	Conclusion
	References




