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Clustering of time series data—a survey
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Abstract

Time series clustering has been shown effective in providing useful information in various domains. There seems to be an
increased interest in time series clustering as part of the effort in temporal data mining research. To provide an overview,
this paper surveys and summarizes previous works that investigated the clustering of time series data in various application
domains. The basics of time series clustering are presented, including general-purpose clustering algorithms commonly used
in time series clustering studies, the criteria for evaluating the performance of the clustering results, and the measures to
determine the similarity/dissimilarity between two time series being compared, either in the forms of raw data, extracted
features, or some model parameters. The past researchs are organized into three groups depending upon whether they work
directly with the raw data either in the time or frequency domain, indirectly with features extracted from the raw data, or
indirectly with models built from the raw data. The uniqueness and limitation of previous research are discussed and several
possible topics for future research are identified. Moreover, the areas that time series clustering have been applied to are also
summarized, including the sources of data used. It is hoped that this review will serve as the steppingstone for those interested
in advancing this area of research.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of clustering is to identify structure in an un-
labeled data set by objectively organizing data into homo-
geneous groups where the within-group-object similarity
is minimized and the between-group-object dissimilarity is
maximized. Clustering is necessary when no labeled data are
available regardless of whether the data are binary, categor-
ical, numerical, interval, ordinal, relational, textual, spatial,
temporal, spatio-temporal, image, multimedia, or mixtures
of the above data types. Data are called static if all their fea-
ture values do not change with time, or change negligibly.
The bulk of clustering analyses has been performed on static
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data. Most, if not all, clustering programs developed as an
independent program or as part of a large suite of data anal-
ysis or data mining software to date work only with static
data. Han and Kamber[1] classified clustering methods
developed for handing various static data into five major cat-
egories: partitioning methods, hierarchical methods, density-
based methods, grid-based methods, and model-based meth-
ods. A brief description of each category of methods follows.

Given a set ofn unlabeled data tuples, a partitioning
method constructsk partitions of the data, where each par-
tition represents a cluster containing at least one object and
k�n. The partition is crisp if each object belongs to ex-
actly one cluster, or fuzzy if one object is allowed to be in
more than one cluster to a different degree. Two renowned
heuristic methods for crisp partitions are thek-means
algorithm [2], where each cluster is represented by the
mean value of the objects in the cluster and thek-medoids
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algorithm[3], where each cluster is represented by the most
centrally located object in a cluster. Two counterparts for
fuzzy partitions are thefuzzy c-meansalgorithm[4] and the
fuzzy c-medoidsalgorithm [5]. These heuristic algorithms
work well for finding spherical-shaped clusters and small
to medium data sets. To find clusters with non-spherical or
other complex shapes, specially designed algorithms such as
Gustafson–Kessel and adaptive fuzzy clustering algorithms
[6] or density-based methods to be introduced in the sequel
are needed. Most genetic clustering methods implement the
spirit of partitioning methods, especially thek-meansalgo-
rithm [7,8], the k-medoidsalgorithm [9], and thefuzzy c-
meansalgorithm[10].

A hierarchical clustering method works by grouping data
objects into a tree of clusters. There are generally two types
of hierarchical clustering methods: agglomerative and divi-
sive. Agglomerative methods start by placing each object
in its own cluster and then merge clusters into larger and
larger clusters, until all objects are in a single cluster or until
certain termination conditions such as the desired number
of clusters are satisfied. Divisive methods do just the op-
posite. A pure hierarchical clustering method suffers from
its inability to perform adjustment once a merge or split
decision has been executed. For improving the clustering
quality of hierarchical methods, there is a trend to integrate
hierarchical clustering with other clustering techniques.
Both Chameleon[11] and CURE[12] perform careful anal-
ysis of object “linkages” at each hierarchical partitioning
whereas BIRCH[13] uses iterative relocation to refine the
results obtained by hierarchical agglomeration.

The general idea of density-based methods such as
DBSCAN [14] is to continue growing a cluster as long
as the density (number of objects or data points) in the
“neighborhood” exceeds some threshold. Rather than pro-
ducing a clustering explicitly, OPTICS[15] computes an
augmented cluster ordering for automatic and interactive
cluster analysis. The ordering contains information that is
equivalent to density-based clustering obtained from a wide
range of parameter settings, thus overcoming the difficulty
of selecting parameter values.

Grid-based methods quantize the object space into a finite
number of cells that form a grid structure on which all of
the operations for clustering are performed. A typical exam-
ple of the grid-based approach is STING[16], which uses
several levels of rectangular cells corresponding to different
levels of resolution. Statistical information regarding the at-
tributes in each cell are pre-computed and stored. A query
process usually starts at a relatively high level of the hierar-
chical structure. For each cell in the current layer, the con-
fidence interval is computed reflecting the cell’s relevance
to the given query. Irrelevant cells are removed from fur-
ther consideration. The query process continues to the next
lower level for the relevant cells until the bottom layer is
reached.

Model-based methods assume a model for each of the
clusters and attempt to best fit the data to the assumed model.

There are two major approaches of model-based methods:
statistical approach and neural network approach. An ex-
ample of statistical approach is AutoClass[17], which uses
Bayesian statistical analysis to estimate the number of clus-
ters. Two prominent methods of the neural network approach
to clustering are competitive learning, including ART[18]
and self-organizing feature maps[19].

Unlike static data, the time series of a feature comprise
values changed with time. Time series data are of interest be-
cause of its pervasiveness in various areas ranging from sci-
ence, engineering, business, finance, economic, health care,
to government. Given a set of unlabeled time series, it is
often desirable to determine groups of similar time series.
These unlabeled time series could be monitoring data col-
lected during different periods from a particular process or
from more than one process. The process could be natural,
biological, business, or engineered. Works devoting to the
cluster analysis of time series are relatively scant compared
with those focusing on static data. However, there seems to
be a trend of increased activity.

This paper intends to introduce the basics of time series
clustering and to provide an overview of time series cluster-
ing works been done so far. In the next section, the basics of
time series clustering are presented. Details of three major
components required to perform time series clustering are
given in three subsections: clustering algorithms in Section
2.1, data similarity/distance measurement in Section 2.2,
and performance evaluation criterion in Section 2.3. Section
3 categories and surveys time series clustering works that
have been published in the open literature. Several possi-
ble topics for future research are discussed in Section 4 and
finally the paper is concluded. In Appendix A, the applica-
tion areas reported are summarized with pointers to openly
available time series data.

2. Basics of time series clustering

Just like static data clustering, time series clustering re-
quires a clustering algorithm or procedure to form clusters
given a set of unlabeled data objects and the choice of clus-
tering algorithm depends both on the type of data available
and on the particular purpose and application. As far as
time series data are concerned, distinctions can be made as
to whether the data are discrete-valued or real-valued, uni-
formly or non-uniformly sampled, univariate or multivari-
ate, and whether data series are of equal or unequal length.
Non-uniformly sampled data must be converted into uni-
formed data before clustering operations can be performed.
This can be achieved by a wide range of methods, from sim-
ple down sampling based on the roughest sampling interval
to a sophisticated modeling and estimation approach.

Various algorithms have been developed to cluster differ-
ent types of time series data. Putting their differences aside,
it is far to say that in spirit they all try to modify the exist-
ing algorithms for clustering static data in such a way that
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Fig. 1. Three time series clustering approaches: (a) raw-data-based, (b) feature-based, (c) model-based.

time series data can be handled or to convert time series
data into the form of static data so that the existing algo-
rithms for clustering static data can be directly used. The
former approach usually works directly with raw time series
data, thus called raw-data-based approach, and the major
modification lies in replacing the distance/similarity mea-
sure for static data with an appropriate one for time series.
The latter approach first converts a raw time series data ei-
ther into a feature vector of lower dimension or a number
of model parameters, and then applies a conventional clus-
tering algorithm to the extracted feature vectors or model
parameters, thus called feature- and model-based approach,
respectively.Fig. 1 outlines the three different approaches:
raw-data-based, feature-based, and model-based. Note that
the left branch of model-based approach trained the model
and used the model parameters for clustering without the
need for another clustering algorithm.

Three of the five major categories of clustering methods
for static data as reviewed in the Introduction, specifically
partitioning methods, hierarchical methods, and model-
based methods, have been utilized directly or modified
for time series clustering. Several commonly used algo-
rithms/procedures are reviewed in more details in Section
2.1. Almost without exception each of the clustering al-
gorithms/procedures reviewed in Section 2.1 requires a
measure to compute the distance or similarity between two
time series being compared. Depending upon whether the
data are discrete-valued or real-valued and whether time
series are of equal or unequal length, a particular measure

might be more appropriate than another. Several commonly
used distance/similarity measures are reviewed in more de-
tail in Section 2.2. Most clustering algorithms/procedures
are iterative in nature. Such algorithms/procedures rely on
a criterion to determine when a good clustering is obtained
in order to stop the iterative process. Several commonly
used evaluation criteria are reviewed in more detail in
Section 2.3.

2.1. Clustering algorithms/procedures

In this subsection, we briefly describe some general-
purpose clustering algorithms/procedures that have been
employed in the previous time series clustering studies.
Interested readers should refer to the original papers for
the details of specially tailored time series clustering algo-
rithms/procedures.

2.1.1. Relocation clustering
The relocation clustering procedure has the following

three steps:
Step1: Start with an initial clustering, denoted byC, having
the prescribedk number of clusters.
Step2: For each time point compute the dissimilarity matrix
and store all resultant matrices computed for all time points
for the calculation of trajectory similarity.
Step3: Find a clusteringC′, such thatC′ is better than
C in terms of thegeneralized Ward criterion function. The
clusteringC′ is obtained fromC by relocating one member
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for Cp to Cq or by swapping two members betweenCp
andCq , whereCp,Cq ∈ C,p, q = 1,2, . . . , k, andp �= q.
If no such clustering exists, then stop; else replaceC by C′
and repeat Step 3.

This procedure works only with time series with equal length
because the distance between two time series at some cross
sections (time points where one series does not have value)
is ill defined.

2.1.2. Agglomerative hierarchical clustering
A hierarchical clustering method works by grouping data

objects (time series here) into a tree of clusters. Two types
of hierarchical clustering methods are often distinguished:
agglomerative and divisive depending upon whether a
bottom-up or top-down strategy is followed. The agglom-
erative hierarchical clustering method is more popular than
the divisive method. It starts by placing each object in its
own cluster and then merges these atomic clusters into
larger and larger clusters, until all the objects are in a single
cluster or until certain termination conditions are satisfied.
The single (complete) linkage algorithm measures the sim-
ilarity between two clusters as the similarity of the closest
(farthest) pair of data points belonging to different clusters,
merges the two clusters having the minimum distance, re-
peats the merging process until all the objects are eventually
merged to form one cluster. TheWard’s minimum variance
algorithm merges the two clusters that will result in the
smallest increase in the value of the sum-of-squares vari-
ance. At each clustering step, all possible mergers of two
clusters are tried. The sum-of-squares variance is computed
for each and the one with the smallest value is selected.

The performance of an agglomerative hierarchical clus-
tering method often suffers from its inability to adjust once
a merge decision has been executed. The same is true for di-
visive hierarchical clustering methods. Hierarchical cluster-
ing is not restricted to cluster time series with equal length.
It is applicable to series of unequal length as well if an ap-
propriate distance measure such as dynamic time warping
is used to compute the distance/similarity.

2.1.3. k-Means and fuzzy c-means
The k-means (interchangeably calledc-means in this

study) was first developed more than three decades ago[2].
The main idea behind it is the minimization of an objective
function, which is normally chosen to be the total distance
between all patterns from their respective cluster centers.
Its solution relies on an iterative scheme, which starts with
arbitrarily chosen initial cluster memberships or centers.
The distribution of objects among clusters and the updating
of cluster centers are the two main steps of thec-means al-
gorithm. The algorithm alternates between these two steps
until the value of the objective function cannot be reduced
anymore.

Givenn patterns{xk |k = 1, . . . , n}, c-means determinec
cluster centers{vi |i=1, . . . , c}, by minimizing the objective

function given as

Min J1(U, V )=
c∑
i=1

n∑
k=1

uik‖xk − vi‖2 (1)

s.t. (1)uik ∈ {0,1}∀i, k, (2)
∑
i=1,c uik = 1, ∀k. ‖ · ‖ in

the above equation is normally the Euclidean distance mea-
sure. However, other distance measures could also be used.
The iterative solution procedure generally has the following
steps:

(1) Choosec(2�c�n) and� (a small number for stopping
the iterative procedure). Set the counterl = 0 and the
initial cluster centers,V (0), arbitrarily.

(2) Distributexk , ∀k to determineU(l) such thatJ1 is min-
imized. This is achieved normally by reassigningxk to
a new cluster that is closest to it.

(3) Revise the cluster centersV (l).
(4) Stop if the change inV is smaller than�; otherwise,

incrementl and repeat Steps 2 and 3.

Dunn [20] first extended thec-means algorithm to allow
for fuzzy partition, rather than hard partition, by using the
objective function given in Eq. (2) below:

Min J2(U, V )=
c∑
i=1

n∑
k=1

(�ik)
2‖xk − vi‖2. (2)

Note thatU = [�ik] in this and the following equations de-
notes the matrix of a fuzzyc-partition. The fuzzyc-partition
constraints are (1)�ik ∈ [0,1]∀i, k, (2)

∑
i=1,c �ik=1, ∀k,

and (3) 0<
∑
k=1,n �ik < n, ∀i. In other words, eachxk

could belong to more than one cluster with each belong-
ingness taking a fractional value between 0 and 1. Bezdek
[4] generalizedJ2(U, V ) to an infinite number of objective
functions, i.e.,Jm(U, V ), where 1�m�∞. The new ob-
jective function subject to the same fuzzyc-partition con-
straints is

Min Jm(U, V )=
c∑
i=1

n∑
k=1

(�ik)
m‖xk − vi‖2. (3)

By differentiating the objective function with respect tovi
(for fixedU) and to�ik (for fixedV) subject to the conditions,
one obtains the following two equations:

vi =
∑n
k=1 (�ik)

mxk∑n
k=1 (�ik)

m , i = 1, . . . , c. (4)

�ik = (1/‖xk − vi‖2)1/(m−1)∑c
j=1 (1/‖xk − vj‖2)1/(m−1)

,

i = 1, . . . , c; k = 1, . . . , n. (5)

To solve the fuzzyc-means model, an iterative alternative
optimization procedure is required. To run the procedure the
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number of clusters,c, and the weighting coefficient,m, must
be specified. The FCM algorithm has the following steps:

(1) Choosec(2�c�n), m(1<m<∞), and � (a small
number for stopping the iterative procedure). Set the
counterl=0 and initialize the membership matrix,U(l).

(2) Calculate the cluster center,v(l)
i

by using Eq. (4).

(3) Update the membership matrixU(l+1) by using Eq. (5)

if xk �= v(l)
i

Otherwise, set�jk = 1 (0) if j = (�=)i.
(4) Compute� = ‖U(l+1) − U(l)‖. If �> �, incrementl

and go to Step 2. If���, stop.

This group of algorithms works better with time series
of equal length because the concept of cluster centers be-
comes unclear when the same cluster contains time series
of unequal length.

2.1.4. Self-organizing maps
Self-organizing maps developed by Kohonen[19] are a

class of neural networks with neurons arranged in a low-
dimensional (often two-dimensional) structure and trained
by an iterative unsupervised or self-organizing procedure.
The training process is initialized by assigning small ran-
dom values to the weight vectorsw of the neurons in the
network. Each training-iteration consists of three steps: the
presentation of a randomly chosen input vector from the in-
put space, the evaluation of the network, and an update of
the weight vectors. After the presentation of a pattern, the
Euclidean distance between the input pattern and the weight
vector is computed for all neurons in the network. The neu-
ron with the smallest distance is marked ast. Depending
upon whether a neuroni is within a certain spatial neigh-
borhoodNt (l) aroundt, its weight is updated according to
the following updating rule:

wi(l + 1)=
{
wi(l)+ �(l)[x(l)− wi(l)] if i ∈ Nt (l),
wi(l) if i /∈Nt (l).

(6)

Both the size of the neighborhoodNt and the step size
of weight adaptation� shrink monotonically with the itera-
tion. Since the neighboring neurons are updated at each step,
there is a tendency that neighboring neurons in the network
represent neighboring locations in the feature space. In other
words, the topology of the data in the input space is pre-
served during the mapping. Like the group ofk-means and
fuzzy c-means algorithms, SOM does not work well with
time series of unequal length due to the difficulty involved
in defining the dimension of weight vectors.

2.2. Similarity/distance measures

One key component in clustering is the function used to
measure the similarity between two data being compared.
These data could be in various forms including raw values
of equal or unequal length, vectors of feature-value pairs,
transition matrices, and so on.

2.2.1. Euclidean distance, root mean square distance, and
Mikowski distance

Let xi andvj each be aP-dimensional vector. The Eu-
clidean distance is computed as

dE =
√√√√ P∑
k=1

(xik − vjk)2. (7)

The root mean square distance (or average geometric dis-
tance) is simply

drms = dE/n. (8)

Mikowski distance is a generalization of Euclidean distance,
which is defined as

dM = q

√√√√ P∑
k=1

(xik − vjk)q . (9)

In the above equation,q is a positive integer. A normalized
version can be defined if the measured values are normalized
via division by the maximum value in the sequence.

2.2.2. Pearson’s correlation coefficient and related
distances

Let xi andvj each be aP-dimensional vector. Pearson’s
correlation factor betweenxi andvj , cc, is defined as

cc =
∑P
k=1 (xik − �xik )(vjk − �vjk )

Sxi Svj
, (10)

where�Xi andSXi are, respectively, the mean and scatter
of xi , computed as below:

�xi=
1

P

P∑
k=1

xik and Sxi=

 P∑
k=1

(xik−�xi)




0.5

. (11)

Two cross-correlation-based distances used by Golay et al.
[21] in the fuzzyc-means algorithm are

d1
cc =

(
1 − cc
1 + cc

)�
(12)

and

d2
cc = 2(1 − cc). (13)

In Eq. (12), � has a similar function asm in the fuzzy
c-means algorithm and take a value greater than zero.

2.2.3. Short time series distance
Considering each time series as a piecewise linear func-

tion, Möller-Levet et al.[22] proposed the STS distance as
the sum of the squared differences of the slopes in two time
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series being compared. Mathematically, the STS distance
between two time seriesxi andvj is defined as

dST S=
√√√√ P∑
k=1

(
vj (k+1) − vjk
t(k+1)−tk − xi(k+1)−xik

t(k+1)−tk
)2

, (14)

where tk is the time point for data pointxik and vjk . To
remove the effect of scale,z standardization of the series is
recommended.

2.2.4. Dynamic time warping distance
Dynamic time warping (DTW) is a generalization of

classical algorithms for comparing discrete sequences to
sequences of continuous values. Given two time series,
Q= q1, q2, . . . , qi , . . . , qn andR= r1, r2, . . . , rj , . . . , rm,
DTW aligns the two series so that their difference is mini-
mized. To this end, ann × m matrix where the(i, j) ele-
ment of the matrix contains the distanced(qi , rj ) between
two pointsqi , andrj . The Euclidean distance is normally
used. A warping path,W =w1, w2, . . . , wk, . . . , wK where
max(m, n)�K�m + n − 1, is a set of matrix elements
that satisfies three constraints: boundary condition, conti-
nuity, and monotonicity. The boundary condition constraint
requires the warping path to start and finish in diagonally
opposite corner cells of the matrix. That isw1 = (1,1) and
wK = (m, n). The continuity constraint restricts the allow-
able steps to adjacent cells. The monotonicity constraint
forces the points in the warping path to be monotonically
spaced in time. The warping path that has the minimum dis-
tance between the two series is of interest. Mathematically,

dDTW = min

∑K
k=1wk

K
. (15)

Dynamic programming can be used to effectively find this
path by evaluating the following recurrence, which defines
the cumulative distance as the sum of the distance of the cur-
rent element and the minimum of the cumulative distances
of the adjacent elements:

dcum(i, j)= d(qi , rj )+ min{dcum(i − 1, j − 1),

dcum(i − 1, j), dcum(i, j − 1)}. (16)

2.2.5. Probability-based distance function for data with
errors

This function was originally developed by Kumar et al.
[23] in their study of clustering seasonality patterns. They
defined the similarity/distance between two seasonalities,
Ai andAj , as the probability of accepting/rejecting the null
hypothesis H0 : Ai ∼ Aj . AssumingAi andAj , each com-
prisedT independent samples drawn from Gaussian distribu-
tions with meansxit andxjt and standard deviations�it and

�j t , respectively, the statistic
∑
t=1,T , (xit − xjt )2/(�2

it
+

�2
j t
) follows the chi-square distribution withT − 1 degrees

of freedom.Consequently,

dij = �2
T−1


 T∑
t=1

(xit − xjt )2
�2
it

+ �2
j t


 . (17)

The null hypothesisAi ∼ Aj denotes�it = �j t for t =
1, . . . , T .

2.2.6. Kullback–Liebler distance
Let P1 andP2 be matrices of transition probabilities of

two Markov chains (MCs) withs probability distributions
each andp1ij andp2ij be thei −>j transition probability
in P1 andP2. The asymmetric Kullback–Liebler distance
of two probability distributions is

d(p1i , p2i )=
s∑
j=1

p1ij log(p1ij /p2ij ). (18)

The symmetric version of Kullback–Liebler distance of two
probability distributions is

D(p1i , p2i )= [d(p1i , p2i )+ d(p2i , p1i )]/2. (19)

The average distance betweenP1 and P2 is then
D(P1, P2)=

∑
i=1,s D(p1i , p2i )/s.

2.2.7. J divergence and symmetric Chernoff information
divergence

Let fT (�s ) and gT (�s ) be two spectral matrix estima-
tors for two different stationary vector series withp dimen-
sions andT number of time points, where�s = 2	s/T ,
s = 1,2, . . . , T . TheJ divergence and symmetric Chernoff
information divergence are computed as[24]

J (fT ; gT )= 1

2
T−1

∑
s

(tr{fT g−1
T

}

+ tr{gT f−1
T

} − 2p) (20)

and

JB�(fT ; gT )= 1

2
T−1

∑
s

(
log

|�fT + (1 − �)gT |
|gT |

+ log
|�gT + (1 − �)fT |

|fT |
)

, (21)

where 0< �<1 andp is the size of spectral matrices. Both
divergences are quasi-distance measures because they do not
satisfy the triangle inequality property.

There is a locally stationary version of J divergence for
measuring the discrepancy between two non-stationary time
series. The details can be found in Refs.[25,26].

2.2.8. Dissimilarity index based on the cross-correlation
function between two time series

Let 
2
i,j
(�) denote the cross-correlation between two time

seriesxi andvj with lag �. One dissimilarity index based
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on the cross-correlation function is defined as

di,j =
√√√√ (1 − 
2

i,j
(0))

/ max∑
�=1


2
i,j
(�), (22)

where max is the maximum lag. The similarity counterpart
of the above index can be defined as

si,j = exp(−di,j ). (23)

2.2.9. Dissimilarity between two spoken words
Let xi be a pattern representing a replication of one spe-

cific spoken word. Each pattern has an inherent duration
(e.g.,xi is ni frames long) and each frame is represented by
a vector of LPC coefficients. A symmetric distance between
patternsxi andxj , dSW (xi , xj ) is defined as

dsw(xi , xj )=
�(xi , xj )+ �(xj , xi)

2
(24)

and

�(xi , xj )= 1

ni

∑
log


 (a

j
w(k)
)′Ri
k
(a
j
w(k)
)

(ai
k
)′Ri
k
(ai
k
)


 , (25)

whereai
k

is the vector of LPC coefficients of thekth frame

of patterni, Ri
k

is the matrix of autocorrelation coefficients
of thekth frame of patterni, and′ denotes vector transpose.
The functionw(k) is the warping function obtained from a
dynamic time warp match of patternj to patterni which min-
imizes their distance over a constrained set of possiblew(k).

2.3. Clustering results evaluation criteria

The performance of a time series clustering method must
be evaluated with some criteria. Two different categories
of evaluation criteria can be distinguished: known ground
truth and unknown ground truth. The number of clusters is
usually known for the former and not known for the latter.
We will review only some general criteria below. Readers
should refer to the original paper for each criterion specific
to a particular clustering method.

2.3.1. Criteria based on known ground truth
Let G andC be the set ofk ground truth clusters and

those obtained by a clustering method under evaluation, re-
spectively. The cluster similarity measure is defined as

Sim(G,C)= 1

k

k∑
i=1

max
1� j�k

Sim(Gi, Cj ), (26)

where

Sim(Gi, Cj )=
2|Gi ∩ Cj |
|Gi | + |Cj | . (27)

| · | in the above equation denotes the cardinality of the
elements in the set.

2.3.2. Criteria based on unknown ground truth
Two cases can be further distinguished: one assuming that

the number of clusters is known a priori and the other not.
The relocation clustering,k-means, and fuzzyc-means al-
gorithms all require the number of clusters to be specified. A
number of validation indices has been proposed in the past
[27]. Maulik and Bandyopadhyay[28] evaluated four clus-
ter validity indices. No time series clustering studies used
any one of the validity indices to determine the appropriate
number of clusters for their application.

Let Pk denote the set of all clusterings that partition a set
of multivariate time series into a pre-specifiedk numbers
of clusters. Košmelj and Batagelj[29] determined the best
among all possible clusterings by the following criterion
function:

P(C∗)= min
Cj∈C∈Pk

k∑
j=1

p(Cj ), (28)

where

p(Cj )=
T∑
t=1

�t (Cj )pt (Cj ) (29)

and

pt (Cj )= 1

2w(Cj )

∑
X,Y∈Cj

w(X)w(Y )dt (X, Y ). (30)

In the above equation,w(X) represents the weight ofX,
w(Cj )=

∑
X∈Cj w(X) represents the weight of clusterCj ,

and dt (X, Y ) the dissimilarity betweenX andY at time t.
By varyingk, the most appropriate number of clusters is the
one with minimumP(C∗).

To determine the number of clustersg, Baragona[30]
maximizes the following function:

g∑
=1

∑
i,j∈C,i �=j

si,j , (31)

wheresi,j is a similarity index as defined in Eq. (23). In-
formation criteria such as AIC[31], BIC [32], and ICL[33]
can be used if the data come from an underlying mixture of
Gaussian distributions with equal isotropic covariance ma-
trices. The optimal number of clusters is the one that yields
the highest value of the information criterion.

3. Major time series clustering approaches

This paper groups previously developed time series clus-
tering methods into three major categories depending upon
whether they work directly with raw data, indirectly with
features extracted from the raw data, or indirectly with mod-
els built from the raw data. The essence of each study is
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summarized in this section. Studies using clustering algo-
rithms, similarity/dissimilarity measures, and evaluation cri-
teria reviewed in Section 2.1, 2.2, and 2.3, respectively, are
as italicized.

3.1. Raw-data-based approaches

Methods that work with raw data, either in the time or
frequency domain, are placed into this category. The two
time series being compared are normally sampled at the
same interval, but their length (or number of time points)
might or might not be the same.

For clustering multivariate time varying data, Košmelj and
Batagelj[29] modified therelocation clustering procedure
that was originally developed for static data. For measur-
ing the dissimilarity between trajectories as required by the
procedure, they first introduced a cross-sectional approach-
based general model that incorporated the time dimension,
and then developed a specific model based on the compound
interest idea to determine the time-dependent linear weights.
The proposed cross-sectional procedure ignores the correla-
tions between the variables over time and works only with
time series of equal length. To form a specified number of
clusters, the best clustering among all the possible cluster-
ings is the one with the minimumgeneralizedWard criterion
function. Also taking the cross-sectional approach, Liao et
al. [34] applied several clustering algorithms includingK-
means, fuzzy c-means, and genetic clustering to multivari-
ate battle simulation time series data of unequal length with
the objective to form a discrete number of battle states. The
original time series data were not evenly sampled and made
uniform by using the simple linear interpolation method.

Golay et al.[21] applied thefuzzy c-meansalgorithm to
functional MRI data (univariate time series of equal length)
in order to provide the functional maps of human brain ac-
tivity on the application of a stimulus. All three different
distances: theEuclidean distanceand twocross-correlation-
based distanceswere alternatively used in the algorithm.
One of the two cross-correlation-based distances,d1

cc, was
found to be the best. Several data preprocessing approaches
were evaluated, and the effect of number of clusters was also
discussed. However, they proposed no procedure to deter-
mine the optimal number of clusters. Instead, they recom-
mended using a large number of clusters as an initial guess,
reserving the possibility of reducing this large number to
obtain a clear description of the clusters without redundancy
or acquisition of insignificant cluster centers.

van Wijk and van Selow[35] performed anagglomera-
tive hierarchical clusteringof daily power consumption data
based on theroot mean square distance. How the clusters
distributed over the week and over the year were also ex-
plored with calendar-based visualization.

Kumar et al.[23] proposed adistance function based on
the assumed independent Gaussian models of data errors
and used ahierarchical clusteringmethod to group season-
ality sequences into a desirable number of clusters. The ex-

perimental results based on simulated data and retail data
showed that the new method outperformed bothk-means
and Ward’s method that do not consider data errors in terms
of (arithmetic) average estimation error. They assumed that
data used have been preprocessed to remove the effects of
non-seasonal factors and normalized to enable comparison
of sales of different items on the same scale.

For the analysis of dynamic biomedical image time se-
ries data, Wismüller et al.[36] showed that deterministic
annealing by the minimal free energy vector quantization
(VQ) could be effective. It realizes a hierarchical unsuper-
vised learning procedure to unveil the structure of the data
set with gradually increasing clustering resolution. In par-
ticular, the method was used (i) to identify activated brain
regions in functional MRI studies of visual stimulation ex-
periments, (ii) to unveil regional abnormalities of brain per-
fusion characterized by differences of signal magnitude and
dynamics in contrast-enhanced cerebral perfusion MRI, and
(iii) for the analysis of suspicious lesions in patients with
breast cancer in dynamic MRI mammography data.

In their study of DNA microarray data, Möller-Levet et al.
[22] proposedshort time series(ST S) distanceto measure
the similarity in shape formed by the relative change of
amplitude and the corresponding temporal information of
uneven sampling intervals. All series are considered sampled
at the same time points. By incorporating the STS distance
into the standard fuzzyc-means algorithm, they revised the
equations for computing the membership matrix and the
prototypes (or cluster centers), thus developed a fuzzy time
series clustering algorithm.

To group multivariate vector series of earthquakes and
mining explosions, Kakizawa et al.[24] applied hierarchical
clustering as well ask-means clustering. They measured
the disparity between spectral matrices corresponding to the
p×pmatrices of autocovariance functions of two zero-mean
vector stationary time series with two quasi-distances: theJ
divergenceandsymmetric Chernoff information divergence.

Shumway [26] investigated the clustering of non-
stationary time series by applying locally stationary versions
of Kullback–Leibler discrimination information measures
that give optimal time–frequency statistics for measuring
the discrepancy between two non-stationary time series. To
distinguish earthquakes from explosions, anagglomerative
hierarchical cluster analysiswas performed until a final set
of two clusters was obtained.

Policker and Geva[37] modeled non-stationary time se-
ries with a time varying mixture of stationary sources, com-
parable to the continuous hidden Markov model. The fuzzy
clustering procedure developed by Gath and Geva[38] was
applied to a series ofP data points as a set of unordered ob-
servations to compute the membership matrix for a specified
number of clusters. After performing the clustering, the se-
ries is divided into a set of P/K segments with each including
K data points. The temporal value of each segment belong-
ing to each cluster is computed as the average membership
values of its data points. The optimal number of clusters is



T. Warren Liao / Pattern Recognition 38 (2005) 1857–1874 1865

determined by a temporal cluster validation criterion. If the
symmetric Kullback–Leibler distancebetween all the prob-
ability function pairs is bigger than a given small threshold,
then the number of clusters being tested is set as the optimal
one; otherwise, retain the old optimal value. The resultant
membership matrix associated with the determined number
of clusters was given an interpretation as the weights in a
time varying, mixture probability distribution function.

Liao [39] developed a two-step procedure for clustering
multivariate time series of equal or unequal length. The first
step applies thek-meansor fuzzy c-meansclustering algo-
rithm to time stripped data in order to convert multivariate
real-valued time series into univariate discrete-valued time
series. The converted variable is interpreted as state variable
process. The second step employs thek-means or FCM al-
gorithm again to group the converted univariate time series,
expressed as transition probability matrices, into a number
of clusters. The traditional Euclidean distance is used in
the first step, whereas various distance measures including
the symmetric version of Kullback–Liebler distance are em-
ployed in the second step.

Table 1summarizes the major components used in each
raw-data-based clustering algorithm and the type of time
series data the algorithm is for.

3.2. Feature-based approaches

Clustering based on raw data implies working with high-
dimensional space—especially for data collected at fast sam-
pling rates. It is also not desirable to work directly with the
raw data that are highly noisy. Several feature-based clus-
tering methods have been proposed to address these con-
cerns. Though most feature extraction methods are generic
in nature, the extracted features are usually application de-
pendent. That is, one set of features that work well on one
application might not be relevant to another. Some studies
even take another feature selection step to further reduce the
number of feature dimensions after feature extraction.

With the objectives to develop an automatic clustering
algorithm, which could be implemented for any user with a
minimal amount of knowledge about clustering procedures,
and to provide the template sets as accurate as those created
by other clustering algorithms, Wilpon and Rabiner[40]
modified the standardk-means clustering algorithm for the
recognition of isolated words. The modifications address
problems such as how to obtain cluster centers, how to split
clusters to increase the number of clusters, and how to create
the final cluster representations. Each pattern representing a
replication of one specific spoken word has an inherent du-
ration (e.g.,ni frames long), and each frame is a vector of
linear predictive coding (LPC) coefficients. To measure the
distance between two spoken word patterns,a symmetric
distance measurewas defined based on the Itakura dis-
tance for measuring the distance between two frames. The
proposed modifiedk-means (MKM) clustering algorithm
was shown to outperform the well-established unsuper-

vised without averaging (UWA) clustering algorithm at that
time.

Shaw and King[41] clustered time series indirectly by
applying two hierarchical clustering algorithms, theWard’s
minimum variance algorithmand thesingle linkage algo-
rithm, to normalized spectra (normalized by the amplitude
of the largest peak). The spectra were constructed from the
original time series with the means adjusted to zero. The
principal component analysis (PCA) filtered spectra were
also clustered; it was found that using 14 most signifi-
cant eigenvectors could achieve comparable results. The Eu-
clidean distance was used.

Goutte et al.[42] clustered fMRI time series (P slices of
images) in groups of voxels with similar activations using
two algorithms:k-meansandWard’s hierarchical clustering.
Thecross-correlation functionbetween the fMRI activation
and the paradigm (or stimulus) was used as the feature space,
instead of the raw fMRI time series. For each voxelj in
the image,yj denotes the measured fMRI time series and
p is the activation stimulus (assumed a square wave but not
limited to), common to allj. The cross-correlation function
is defined as

xj (t)= 1

P

P∑
u=1

yj (u)p(u− t), −T < t <T , (32)

wherep(i) = 0 for i <0 or i >P andT is of the order of
the stimulus period. In a subsequent paper Goutte et al.[43]
further illustrated the potential of the feature-based cluster-
ing method. First, they used only two features, namely the
delay and strength of activation measured on a voxel-by-
voxel basis to show that one could identify the regions with
significantly different delays and activations. Using thek-
means algorithm, they investigated the performance of three
information criteria including AIC[31], BIC [32], and ICL
[33] for determining the optimal number of clusters. It was
found that ICL was most parsimonious and AIC tended to
overestimate. Then, they showed that feature-based cluster-
ing could be used as a meta-analysis tool in evaluating the
similarities and differences of the results obtained by several
individual voxel analyses. In this case, features are results
of previous analyses performed on the data.

Fu et al.[44] described the use of self-organizing maps
for grouping data sequences segmented from the numeri-
cal time series using a continuous sliding window with the
aim to discover similar temporal patterns dispersed along
the time series. They introduced the perceptually important
point (PIP) identification algorithm to reduce the dimension
of the input data sequenceD in accordance with the query
sequenceQ. The distance measure between the PIPs found
in D andQwas defined as the sum of the mean squared dis-
tance along the vertical scale (the magnitude) and that along
the horizontal scale (time dimension). To process multires-
olution patterns, training patterns from different resolutions
are grouped into a set of training samples to which the SOM
clustering process is applied only once. Two enhancements
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Table 1
Summary of raw-data-based time series clustering algorithms

Paper Variable Length Distance measure Clustering algorithm Evaluation criterion Application

Golay et al.[21] Single Equal Euclidean and two cross-correlation-
based

Fuzzyc-means Within cluster variance Functional MRI brain activity
mapping

Kakizawa et al.[24] Multiple Equal J divergence and symmetric Chernoff
information divergence

Agglomerative hierarchical N/A Earthquakes and mining ex-
plosions

Košmelj and Batagelj
[29]

Multiple Equal Euclidean Modified relocation cluster-
ing procedure

Generalized Ward criterion
function

Commercial energy con-
sumption

Kumar et al.[23] Single Equal Based on the assumed independent
Gaussian models of data errors

Agglomerative hierarchical N/A Seasonality pattern in retails

Liao [39] Multiple Equal &
unequal

Euclidean and symmetric version of
Kullback–Liebler distance

k-Means and fuzzyc-Means Within cluster variance Battle simulations

Liao et al. [34] Single Equal &
unequal

DTW k-Medoids-based genetic
clustering

Several different fitness func-
tions

Battle simulations

Möller-Levet et al.
[22]

Single Equal Short time series (STS) distance Modified fuzzyc-means Within cluster variance DNA microarray

Policker and Geva
[37]

Single Equal Euclidean Fuzzy clustering by Gath and
Geva

Symmetric Kullback–Leibler
distance between probability
function pairs

Sleep EEG signals

Shumway[26] Multiple Equal Kullback–Leibler discrimination in-
formation measures

Agglomerative hierarchical N/A Earthquakes and mining ex-
plosions

Van Wijk and van
Selow[35]

Single Equal Root mean square Agglomerative hierarchical N/A Daily power consumption

Wismüller et al.[36] Single Equal N/A Neural network clustering
performed by a batch EM ver-
sion of minimal free energy
vector quantization

Within cluster variance Functional MRI brain activity
mapping
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were made to the SOM: filtering out those nodes (patterns) in
the output layer that did not participate in the recall process
and consolidating the discovered patterns with a relatively
more general pattern by a redundancy removal step.

An algorithm called sequence cluster refinement algo-
rithm (SCRA) was developed by Owsley et al.[45] to group
machine tool monitoring data into clusters represented as
discrete hidden Markov models (HMM), with each reflect-
ing a kind of health status of the tool. The developed al-
gorithm differs from the generalized Lloyd algorithm, a
vector quantization algorithm, in representing the clusters
as HMMs’ instead of template vectors. Instead of process-
ing the entire raw data, the transient events in the bulk
data signal are first detected by template matching. A high-
resolution time–frequency representation of the transient re-
gion is then formed. To reduce dimension, they modified the
self-organizing feature map algorithm in order to improve
its generalization abilities.

Vlachos et al.[46] presented an approach to perform in-
cremental clustering of time series at various resolutions
using the Haar wavelet transform. First, the Haar wavelet
decomposition is computed for all time series. Then, thek-
means clustering algorithm is applied, starting at the coarse
level and gradually progressing to finer levels. The final cen-
ters at the end of each resolution are reused as the initial
centers for the next level of resolution. Since the length of
the data reconstructed from the Haar decomposition dou-
bles as we progress to the next level, each coordinate of the
centers at the end of leveli is doubled to match the dimen-
sionality of the points on leveli+ 1. The clustering error is
computed at the end of each level as the sum of number of
incorrectly clustered objects for each cluster divided by the
cardinality of the dataset.

Table 2 summarizes major components used in each
feature-based clustering algorithm. They all can handle
series with unequal length because the feature extraction
operation takes care of the issue. For a multivariate time
series, features extracted can simply be put together or go
through some fusion operation to reduce the dimension
and improve the quality of the clustering results, as in
classification studies.

3.3. Model-based approaches

This class of approaches considers that each time series is
generated by some kind of model or by a mixture of under-
lying probability distributions. Time series are considered
similar when the models characterizing individual series or
the remaining residuals after fitting the model are similar.

For clustering or choosing from a set of dynamic struc-
tures (specifically the class of ARIMA invertible models),
Piccolo[47] introduced the Euclidean distance between their
corresponding autoregressive expansions as the metric. The
metric satisfies the classical properties of a distance, i.e.,
non-negativity, symmetry, and triangularity. In addition, six
properties of the metric were discussed. The distance matrix

between pairs of time series models was then processed by
a complete linkage clustering methodto construct the den-
drogram.

Baragona[30] evaluated three meta-heuristic methods for
partitioning a set of time series into clusters in such a way
that (i) the cross-correlation maximum absolute value be-
tween each pair of time series that belong to the same cluster
is greater than some given threshold, and (ii) thek-min clus-
ter criterion is minimized with a specified number of clus-
ters. The cross-correlations are computed from the residuals
of the models of the original time series. Among all methods
evaluated, Tabu search was found to perform better than sin-
gle linkage, pure random search, simulation annealing and
genetic algorithms based on a simulation experiment on ten
sets of artificial time series generated from low-order uni-
variate and vector ARMA models.

Motivated by questions raised in the context of musical
performance theory, Beran and Mazzola[48] defined hier-
archical smoothing models (or HISMOOTH models) to un-
derstand the relationship between the symbolic structure of
a music score and its performance, with each represented
by a time series. The models are characterized by a hier-
archy of bandwidths and a vector of coefficients. Givenn
performances and a common explanatory time series, the es-
timated bandwidth values are then used in clustering using
the S-plus functionsplclust andhclust that plots the clus-
tering tree structure produced by agglomerative hierarchical
clustering.

Maharaj [49] developed an agglomerative hierarchical
clustering procedure that is based on thep-value of a test of
hypothesis applied to every pair of given stationary time se-
ries. Assuming that each stationary time series can be fitted
by a linear AR(k) model denoted by a vector of parameters
	′ = [	1, 	2, . . . , 	k], a chi-square distributed test statistic
was derived to test the null hypothesis that there is no dif-
ference between the generating processes of two stationary
time series or H0: 	x =	y . Two series are grouped together
if the associatedp-value is greater than the pre-specified
significance level. The clustering result is evaluated with a
measure of discrepancy, which is defined as the difference
between the actual number of clusters and the number of
exactly correct clusters generated.

Ramoni et al.[50] presented BCD: a Bayesian algorithm
for clustering by dynamics. Given a setS of n numbers
of univariate discrete-valued time series, BCD transforms
each series into a Markov chain (MC) and then clusters
similar MCs to discover the most probable set of generat-
ing processes. BCD is basically an unsupervised agglomer-
ative clustering method. Considering a partition as a hidden
discrete variableC, each stateCk of C represents a clus-
ter of time series, and hence determines a transition ma-
trix. The task of clustering is regarded as a Bayesian model
selection problem with the objective to select the model
with the maximum posterior probability. Since the same
data are used to compare all models and all models are
equally likely, the comparison can be based on the marginal
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Table 2
Summary of feature-based time series clustering algorithms

Paper Variable Features Feature selec-
tion

Distance mea-
sure

Clustering al-
gorithm

Evaluation cri-
terion

Application

Fu et al.[44] Single Perceptually
important
points

No Sum of the
mean squared
distance along
the vertical
and horizontal
scales

Modified
SOM

Expected
squared error

Hong Kong
stock market

Goutte et al.
[42]

Single Cross-
correlation
function

No Euclidean Agglomerative
hierarchical
andk-means

N/A and
Within cluster
variance

Functional
MRI brain ac-
tivity mapping

Owsley et al.
[45]

Single Time-
frequency rep-
resentation of
the transient
region

Modified
SOM

Euclidean Modified k-
means (Se-
quence cluster
refinement)

Within cluster
variance

Tool condition
monitoring

Shaw and
King [41]

Single Normalized
spectra

PCA Euclidean Agglomerative
hierarchical

N/A Flow velocity
in a wind tun-
nel

Vlachos et al.
[46]

Single Haar wavelet
transform

No Euclidean Modified k-
means (called
I-k-means)

Within cluster
variance

Non-specific

Wilpon and
Rabiner[40]

Single LPC coeffi-
cients

No A symmetric
measure based
on the Itakura
distance

Modified k-
means

Within cluster
variance

Isolated word
recognition

likelihood p(S|MC), which is a measure of how likely the
data are if the model MC is true. The similarity between
two estimated transition matrices is measured as an aver-
age of thesymmetrized Kullback–Liebler distancebetween
corresponding rows in the matrices. The clustering result is
evaluated mainly by a measure of the loss of data informa-
tion induced by clustering, which is specific to the proposed
clustering method. They also presented a Bayesian cluster-
ing algorithm for multivariate time series[51]. The algo-
rithm searches for the most probable set of clusters given the
data using a similarity-based heuristic search method. The
measure of similarity is an average of the Kullback–Liebler
distances between comparable transition probability tables.
The similarity measure is used as a heuristic guide for the
search process rather than a grouping criterion. Both the
grouping and stopping criteria are based on the posterior
probability of the obtained clustering. The objective is to find
a maximum posterior probability partition of set of MCs.

Kalpakis et al.[52] studied the clustering of ARIMA time-
series, by using the Euclidean distance between the Linear
Predictive Coding cepstra of two time-series as their dissim-
ilarity measure. The cepstral coefficients for an AR(p) time
series are derived from the auto-regression coefficients. The
partition around medoids method[3] that is ak-medoids
algorithm was chosen, with the clustering results evaluated
with the cluster similarity measure and Silhouette width.
Based on a test of four data sets, they showed that the LPC

cepstrum provides higher discriminatory power to tell one
time series from another and superior clusterings than other
widely used methods such as the Euclidean distance be-
tween (the first 10 coefficients of) the DFT, DWT, PCA, and
DFT of the auto-correlation function of two time series.

Xiong and Yeung[53] proposed a model-based method
for clustering univariate ARIMA series. They assumed that
the time series are generated byk different ARMA mod-
els, with each model corresponds to one cluster of inter-
est. An expectation-maximization (EM) algorithm was used
to learn the mixing coefficients as well as the parameters
of the component models that maximize the expectation of
the complete-data log-likelihood. In addition, the EM algo-
rithm was improved so that the number of clusters could be
determined automatically. The evaluation criterion used is
thecluster similarity measuredetailed in Section 5.1.1. The
proposed method was compared with that of Kalpakis et al.
using the same four datasets.

Assuming the Gaussian mixture model for speaker veri-
fication, Tran and Wagner[54] proposed a fuzzyc-means
clustering-based normalization method to find a better score
to be compared with a given threshold for accepting or re-
jecting a claimed speaker. It overcomes the drawback of as-
suming equal weight of all the likelihood values of the back-
ground speakers in current normalization methods. Let�0 be
the claimed speaker model and�i , i=1, . . . , B, be a model
representing another possible speaker model andB is the
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total number of “background” speaker models.P(X|�0) and
P(X|�i ) are the likelihood functions of the claimed speaker
and an impostor, respectively, for a given input utteranceX.
The FCM membership score is defined as follows:

S(X)=


B∑
i=1

[logP(X|�0)/ logP(X|�i )]1/(m−1)




−1

.

(33)

Biernacki et al.[33] proposed an integrated completed likeli-
hood (ICL) criterion for choosing a Gaussian mixture model
and a relevant number of clusters. The ICL criterion is es-
sentially the ordinary BIC penalized by the subtraction of
the estimated mean entropy. Numerical experiments with
simulated and real data showed that the ICL criterion seems
to overcome the practical possible tendency of Bayesian
information criterion (BIC) to overestimate the number of
clusters.

Considering that a set of multivariate, real-valued time se-
ries is generated according to hidden Markov models, Oates
et al.[55] presented a hybrid clustering method for automat-
ically determining thek number of generating HMMs, and
for learning the parameters of those HMMs. A standard hi-
erarchical, agglomerative clustering algorithm was first ap-
plied to obtain an initial estimate ofk and to form the initial
clusters using dynamic time warping to assess the similar-
ity. These initial clusters serve as the input to a process that
trains one HMM on each cluster and iteratively moves time
series between clusters based on their likelihoods given the
various HMMs.

Li and Biswas[56] described a clustering methodology
for temporal data using the hidden Markov model repre-
sentation. The temporal data are assumed to have Markov
property, and may be viewed as the result of a probabilis-
tic walk along a fixed set of (not directly observable) states.
The proposed continuous HMM clustering method can be
summarized in terms of four levels of nested searches. From
the outer most to the inner most levels, they are the search
for (1) the number of clusters in a partition based on the
partition mutual information (PMI) measure, (2) the struc-
ture for a given partition size according to thek-means or
depth-first binary divisive clustering, (3) the HMM structure
for each cluster that gives the highest marginal likelihood
based on the BIC and the Cheeseman–Stutz approximation,
and (4) the parameters for each HMM structure according
to the segmentalk-means procedure. For the second search
level, the sequence-to-model likelihood distance measure
was chosen for object-to-cluster assignments. The HMM
refinement procedure for the third-level search starts with
an initial model configuration and incrementally grows or
shrinks the model through HMM state splitting and merging
operations. They generated an artificial data set from three
random generative models: one with three states, one with
four states, and one with five states, and showed that their
method could reconstruct the HMM with the correct model
size and near perfect model parameter values. Li et al.[57]

presented a Bayesian HMM clustering algorithm that uses
BIC as the model selection criterion in levels 1 and 3 and
exploits the monotonic characteristics of the BIC function
to develop a sequential search strategy. The strategy starts
with the simplest model, gradually increases the model size,
and stops when the BIC score of the current model is less
than that of the previous model. Experimental results using
both artificially generated data and ecology data showed the
effectiveness of the clustering methodology.

A framework was presented by Wang et al.[58] for tool
wear monitoring in a machining process using discrete hid-
den Markov models. The feature vectors are extracted from
the vibration signals measured during turning operations by
wavelet analysis. The extracted feature vectors are then con-
verted into a symbol sequence by vector quantization, which
in turn is used as input for training the hidden Markov model
by the expectation maximization approach.

Table 3summarizes the major components used in each
model-based clustering algorithm. Like feature-based meth-
ods, model-based methods are capable of handling series
with unequal length as well through the modeling operation.
For those methods that use log-likelihood as the distance
measure, the model with the highest likelihood is concluded
to be the cluster for the data being tested.

4. Discussion

Among all the papers surveyed the studies of Ramoni
et al. [50,51] are the only two that assumed discrete-valued
time series data. The work of Kumar et al.[23] is the only
one that takes data error into account. Most studies address
evenly sampled data while Möller-Levet et al.[22] are the
only ones who consider unevenly sampled data. Note that
some studies such as Maharaj[49] and Baragona[30] are
restricted to stationary time series only whereas most others
are not. None of the papers included in this survey handle
multivariate time series data with different length for each
variable.

Several studies including Košmelj and Batagelj[29] and
Kumar et al.[23] made the assumption that theT samples
of a time series are independent (come from independent
distribution), ignoring the correlations in consecutive sam-
ple values in time. Modeling a time series by a (first order)
Markov chain as done by Ramoni et al.[50,51] assumes
that the probability of a variable at timet is dependent upon
only the variable values at timet − 1 and independent of
the variable values observed prior to timet − 1. The hid-
den Markov models provide a richer representation of time
series, especially for systems where their real states are not
observable and the observation is a probability function of
the state. Note that both studies of using HMM models for
the multidimensional case assumed that temporal features
are independent[55,57]. In the case that time series data has
a longer memory, higher orders of Markov chain or hidden
Markov models should be considered.
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Table 3
Summary of model-based time series clustering algorithms

Paper Variable Model Model output of inter-
est

Distance measure Clustering algorithm Evaluation Criterion Application

Baragona[30] Single and multi-
ple

ARMA Residuals Cross-correlation
based

Tabu search, GA, and
simulated annealing

Specially designed Non-specific

Beran and
Mazzola[48]

Single Hierarchical
smoothing models

Coefficients Unknown (most likely
Euclidean)

Agglomerative hierar-
chical

N/A Music performance

Biernacki et al.
[33]

Multiple Gaussian mixture Parameters Log-likelihood EM algorithm Log-likelihood Non-specific

Kalpakis et al.
[52]

Single AR LPC coefficients of
AR coefficients

Euclidean Partition around
medoids

Cluster similarity metric
and Silhouette width

Public data

Li and Biswas
[56]

Multiple Continuous HMM HMM parameters Log-likelihood Four nested levels of
search

Partition mutual informa-
tion

Non-specific

Li et al. [57] Multiple Continuous HMM HMM parameters Log-likelihood Four nested levels of
search

Partition mutual informa-
tion

Ecology

Maharaj[49] Single ARCoefficients P-value of hypothesis
testing

Agglomerative hierar-
chical

N/A Number of dwelling units
financed

Oates et al.
[55]

Multiple Discrete HMM
(discretized by
SOM)

HMM parameters Log-likelihood Initialized by DTW
followed by a fixed
point operation

Log-likelihood Robot sensor data

Piccolo [47] Single AR(∞) Coefficients Euclidean Agglomerative hierar-
chical

N/A Industrial produc-
tion indices

Ramoni et al.
(2001)

Single discrete-
valued

Markov Chain Transition probabili-
ties

Symmetrized
Kullback–Liebler
distance

Agglomerative clus-
tering

N/A Robot sensor data

Ramoni et al.
[51]

Multiple discrete-
valued

Markov Chain Transition probabili-
ties

Symmetrized
Kullback–Liebler to
guide search and Pos-
terior probability as a
grouping criterion

Agglomerative clus-
tering

Marginal likelihood of a
partition

Robot sensor data

Tran and Wag-
ner [54]

Single Gaussian mixture Cepstral coefficients Log-likelihood Modified fuzzyc-
means

Within cluster variance Speaker verification

Wang et al.
[58]

Single (discretized
by vector quan-
tization from
wavelet coeffi-
cients)

Discrete HMM HMM parameters Log-likelihood EM learning Log-likelihood Tool conditionmoni-
toring

Xiong and Ye-
ung [53]

Single ARMA mixture Coefficients Log-likehood EM learning Cluster similarity metric Public data
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The majority of time series clustering studies are re-
stricted to univariate time series. Among all the univariate
time series clustering studies, most work only with the ob-
served data with a few exceptions. One exception assumes
that for all the observed time series there is a common ex-
planatory time series[48] while some others assume that
the observed time series are generated based on a known
stimulus[21,36,42]. The studies that addressed multivariate
(or vector) time series include Košmelj and Batagelj[29],
Kakizawa et al.[24], Ramoni et al.[51], Oates et al.[55],
Li et al. [57], etc. Some multivariate time series clustering
studies assume that there is no cross-correlation between
variables. Those based on the probability framework sim-
plify the overall joint distribution by assuming conditional
independence between variables[51].

In some cases, time series clustering could be comple-
mented with a change-point detection algorithm in order to
automatically and correctly identify the start times (or the
origins) of the time series before they are matched and com-
pared. This point was brought up by Shumway[26] in their
clustering study of earthquakes and mining explosions at
regional distances.

All in all, clustering of time series data differs from
clustering of static feature data mainly in how to com-
pute the similarity between two data objects. Depending
upon the types and characteristics of time series data, dif-
ferent clustering studies provide different ways to compute
the similarity/dissimilarity between two time series being
compared. Once the similarity/dissimilarity of data objects
is determined, many general-purpose clustering algorithms
can be used to partition the objects, as reviewed in Section
2.1. Therefore, for any given time series clustering applica-
tion, the key is to understand the unique characteristics of
the subject data and then to design an appropriate similar-
ity/dissimilarity measure accordingly.

We note that to date very few time series clustering studies
made use of more recently developed clustering algorithms
such as genetic algorithms (the work of Baragona[30] is
the only exception). It might be interesting to investigate the
performance of GA in time series clustering. There seems
to be either no or insufficient justification why a particular
approach was taken in the previous studies. We also note
that there is a lack of studies to compare different time series
clustering approaches. In the case where more than one
approach is possible, it is desirable to know which approach
is better.

It has been shown beneficial to integrate an unsupervised
clustering algorithm with a supervised classification algo-
rithm for static feature data[59]. There is no reason why the
same cannot true for time series data. An investigation on
such integration is thus warranted. It also has been reported
that an ensemble of classifiers could be more effective than
an individual classifier[60,61]. Will an ensemble of cluster-
ing algorithms be as effective? It might be interesting to find
out as well. A problem that an ensemble of classifiers does
not have is the random labeling of the clustering results,

which most likely would create problems in attempting to
compile the clustering results obtained by each clustering
algorithm together and a solution must be found.

It should be noted that most scaled-up clustering al-
gorithms developed to handle larger data sets consider
only static data. Examples are clustering large applica-
tions (CLARA) proposed by Kaufman and Rousseeuw[3],
clustering large applications based on randomized search
(CLARANS) developed by Ng and Han[62], and pattern
count-tree based clustering (PCBClu) described by Anan-
thanarayana et al.[63]. It is definitely desirable to develop
scaled-up time series clustering algorithms as well in order
to handle large data sets. In this regard, most efforts have
been devoted to data representation using so called seg-
mentation algorithms[64]. The work of Fu et al.[44] for
finding the PIPs is a segmentation algorithm.

Finally, time series clustering is part of a recent survey
of temporal knowledge discovery by Roddick et al.[65]. In
that survey, they discussed only a few research works related
to time series clustering in less than two pages. Our survey
intends to provide a more detailed review of this expanding
research area.

5. Concluding remarks

In this paper we surveyed most recent studies on the sub-
ject of time series clustering. These studies are organized
into three major categories depending upon whether they
work directly with the original data (either in the time or
frequency domain), indirectly with features extracted from
the raw data, or indirectly with models built from the raw
data. The basics of time series clustering, including the three
key components of time series clustering studies are high-
lighted in this survey: the clustering algorithm, the similar-
ity/dissimilarity measure, and the evaluation criterion. The
application areas are summarized with a brief description of
the data used. The uniqueness and limitation of past studies,
and some potential topics for future study are also discussed.

Appendix A. Previous applications and data used

The studies focusing on the development of new meth-
ods usually do not have a particular application in mind.
For testing a new method and for comparing existing meth-
ods, the researchers normally either generate simulated
data or rely on public-accessible time series data depos-
itories such as the UCR time series data mining archive
[http://www.cs.ucr.edu/∼eamonn/TSDMA/index.html].

Other studies set out to investigate issues directly related
to a particular application. As can be seen in the below sum-
mary, clustering of time series data is necessary in widely
different applications.

http://www.cs.ucr.edu/~eamonn/TSDMA/index.html
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A.1. Business and socio-economics

• Clustering seasonality patterns of retail data[22]. The
sales data from several departments of a major retail chain
were used in the study.

• Cluster analysis of country’s energy consumption[29].
The data used are the energy consumption of 23 European
countries in the years 1976–1982.

• Discovering consumer power consumption patterns for
the segmentation of markets[35]. The data used are daily
power demands at a research facility.

• Discovery patterns from stock time series[44]. The Hong
Kong stock exchange data were used in their study.

• To cluster the number of dwelling units financed from
January 1978 to March 1998 for all states and territories
in Australia[49].

• Clustering population data[52]. The data used were the
population estimates from 1900–1999 in 20 states of the
US (http://www.census.gov/population/www/estimates/
st_stts.html).

• Clustering personal income data[52]. They used a col-
lection of time series representing the per capita per-
sonal income from 1929 to 1999 in 25 states of the USA
(http://www.bea.gov/bea/regional/spi).

A.2. Engineering

• Unsupervised learning of different activities by mobile
robots[51].

• Identifying similar velocity flows[42]. They used 42 512-
point time series collected in a special wind tunnel setup.

• Speech recognition[40,54]. Wilpon and Rabiner used a
set of speech data consisting of 4786 isolated patterns
form a digits vocabulary. Tran and Wagner performed ex-
periments on the T146 and the ANDOSL speech corpora.

• Space Shuttle maneuver monitoring[46]. They extracted
time series of length 512, at random starting points of each
sequence from the original data collected from various
inertial sensors from Space Shuttle mission STS-57.

• Two health monitoring[45,58]. Wang et al.[58] performed
cutting tests to collect vibration signals for detecting two
tool states: sharp and worn.

A.3. Science

• Clustering temperature data[52]. They used 30
time series of the daily temperature in the year
2000 in various places in Florida, Tennessee, and
Cuba taken from the National Climatic Data Center
(http://www.ncdc.noaa.gov/rcsg/datasets.html).

• Grouping genes[22]. The authors used a subset of mi-
croarray data available fromhttp://cmgm.standford.edu/
pbrown/sporulation

• Discriminating seismic data from different sources[26].

• Cluster models of ecological dynamics[57]. They used
data collected from 30 sites on a salt marsh area south of
Brisbane, Australia. At each site, four measurements of
species performance and 11 environmental measurements
were collected.

A.4. Medicine

• Clustering fMRI time series for identifying regions with
similar patterns of activation[21,42,43]. The data used in
their studies were experimentally acquired with an MR
scanner.

• Clustering ECG data[52]. The data were taken from the
ECG database at PhysioNet (http://www.physionet.org/
physiobank/database).

A.5. Art and entertainment

• Clustering musical performances with a similar “style”
[48]. They analyzed 28 tempo curves from performances
of Schumann’s Träumerei op. 15/7.
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