
Time Series Shapelets: A New Primitive for Data Mining

Lexiang Ye
Dept. of Computer Science & Engineering

University of California, Riverside, CA 92521
lexiangy@cs.ucr.edu

Eamonn Keogh
Dept. of Computer Science & Engineering

University of California, Riverside, CA 92521
eamonn@cs.ucr.edu

ABSTRACT
Classification of time series has been attracting great interest over
the past decade. Recent empirical evidence has strongly suggested
that the simple nearest neighbor algorithm is very difficult to beat
for most time series problems. While this may be considered good
news, given the simplicity of implementing the nearest neighbor
algorithm, there are some negative consequences of this. First, the
nearest neighbor algorithm requires storing and searching the
entire dataset, resulting in a time and space complexity that limits
its applicability, especially on resource-limited sensors. Second,
beyond mere classification accuracy, we often wish to gain some
insight into the data.

In this work we introduce a new time series primitive, time series
shapelets, which addresses these limitations. Informally, shapelets
are time series subsequences which are in some sense maximally
representative of a class. As we shall show with extensive
empirical evaluations in diverse domains, algorithms based on the
time series shapelet primitives can be interpretable, more accurate
and significantly faster than state-of-the-art classifiers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications –Data

Mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION
While the last decade has seen a huge interest in time series
classification, to date the most accurate and robust method is the
simple nearest neighbor algorithm [4][12][14]. While the nearest
neighbor algorithm has the advantages of simplicity and not
requiring extensive parameter tuning, it does have several
important disadvantages. Chief among these are its space and time
requirements, and the fact that it does not tell us anything about
why a particular object was assigned to a particular class.

In this work we present a novel time series data mining primitive
called time series shapelets. Informally, shapelets are time series
subsequences which are in some sense maximally representative
of a class. While we believe shapelets can have many uses in data
mining, one obvious implication of them is to mitigate the two
weaknesses of the nearest neighbor algorithm noted above.

Because we are defining and solving a new problem, we will take
some time to consider a detailed motivating example. Figure 1
shows some examples of leaves from two classes, Urtica dioica
(stinging nettles) and Verbena urticifolia. These two plants are
commonly confused, hence the colloquial name “false nettle”for
Verbena urticifolia.

Figure 1: Samples of leaves from two species. Note that several
leaves have the insect-bite damage

Suppose we wish to build a classifier to distinguish these two
plants; what features should we use? Since the intra-variability of
color and size within each class completely dwarfs the inter-
variability between classes, our best hope is based on the shapes
of the leaves. However, as we can see in Figure 1, the differences
in the global shape are very subtle. Furthermore, it is very
common for leaves to have distortions or “occlusions” due to
insect damage, and these are likely to confuse any global
measures of shape. Instead we attempt the following. We first
convert each leaf into a one-dimensional representation as shown
in Figure 2.

Figure 2: A shape can be converted into a one dimensional “time
series”representation. The reason for the highlighted section of the
time series will be made apparent shortly

Such representations have been successfully used for the
classification, clustering and outlier detection of shapes in recent
years [8]. However, here we find that using a nearest neighbor
classifier with either the (rotation invariant) Euclidean distance or
Dynamic Time Warping (DTW) distance does not significantly
outperform random guessing. The reason for the poor
performance of these otherwise very competitive classifiers seems
to be due to the fact that the data is somewhat noisy (i.e. insect
bites, and different stem lengths), and this noise is enough to
swamp the subtle differences in the shapes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’09, June 29–July 1, 2009, Paris, France
Copyright 2009 ACM 978-1-60558-495-9/09/06.… $5.00.

Verbena urticifolia

Urtica dioica

Verbena urticifolia

Suppose, however, that instead of comparing the entire shapes,
we only compare a small subsection of the shapes from the two
classes that is particularly discriminating. We can call such
subsections shapelets, which invokes the idea of a small “sub-
shape.”For the moment we ignore the details of how to formally
define shapelets, and how to efficiently compute them. In Figure
3, we see the shapelet discovered by searching the small dataset
shown in Figure 1.

Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases
shown with a bold line), is the subsequence that best
discriminates between the two classes

As we can see, the shapelet has “discovered”that the defining
difference between the two species is that Urtica dioica has a stem
that connects to the leaf at almost 90 degrees, whereas the stem of
Verbena urticifolia connects to the leaf at a much shallower angle.
Having found the shapelet and recorded its distance to the nearest
matching subsequence in all objects in the database, we can build
the simple decision-tree classifier shown in Figure 4.

Verbena urticifolia Urtica dioica

0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

5.1

3010 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no

I

Verbena urticifolia Urtica dioica

0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

0

1

2

3

5.1

3010 200 3010 200 10 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no

I

Figure 4: A decision-tree classifier for the leaf problem. The
object to be classified has all of its subsequences compared to the
shapelet, and if any subsequence is less than (the empirically
determined value of) 5.1, it is classified as Verbena urticifolia

The reader will immediately see that this method of classification
has many potential advantages over current methods:

 Shapelets can provide interpretable results, which may
help domain practitioners better understand their data. For
example, in Figure 3 we see that the shapelet can be summarized
as the following: “Urtica dioica has a stem that connects to the
leaf at almost 90 degrees.” Most other state-of-the-art time
series/shape classifiers do not produce interpretable results [4][7].

 Shapelets can be significantly more accurate/robust on
some datasets. This is because they are local features, whereas
most other state-of-the-art time series/shape classifiers consider
global features, which can be brittle to even low levels of noise
and distortions [4]. In our example, leaves which have insect bite
damage are still usually correctly classified.

 Shapelets can be significantly faster at classification
than existing state-of-the-art approaches. The classification time is
just O(ml), where m is the length of the query time series and l is

the length of the shapelet. In contrast, if we use the best
performing global distance measure, rotation invariant DTW
distance [8], the time complexity is on the order of O(km3), where
k is the number of reference objects in the training set. On real-
world problems the speed difference can be greater than three
orders of magnitude.

The leaf example, while from an important real-world problem in
botany, is a contrived and small example to help develop the
reader’s intuitions. However, as we shall show in Section 5, we
can provide extensive empirical evidence for all of these claims,
on a vast array of problems in domains as diverse as
anthropology, human motion analysis, spectrography, and
historical manuscript mining.

2. RELATED WORK AND BACKGROUND
While there is a vast amount of literature on time series
classification and mining [4][7][14], we believe that the problem
we intend to solve here is unique. The closest work is that of [5].
Here the author also attempts to find local patterns in a time series
which are predictive of a class. However, the author considers the
problem of finding the best such pattern intractable, and thus
resorts to examining a single, randomly chosen instance from each
class, and even then only considering a reduced piecewise
constant approximation of the data. While the author notes “it is
impossible in practice to consider every such subsignal as a
candidate pattern,”this is in fact exactly what we do, aided by
eight years of improvements in CPU time, and, more importantly,
an admissible pruning technique that can prune off more than
99.9% of the calculations (c.f. Section 5.1). Our work may also be
seen as a form of a supervised motif discovery algorithm [3].

2.1 Notation
Table 1 summarizes the notation in the paper; we expand on the
definitions below.

Table 1: Symbol table

Symbol Explanation
T, R time series

S subsequence

m, |T| length of time series

l, |S| length of subsequence

d distance measurement

D time series dataset

A,B class label

I entropy

Î weighted average entropy

sp split strategy

k number of time series objects in dataset

C classifier

S(k) the kth data point in subsequence S

We begin by defining the key terms in the paper. For ease of
exposition, we consider only a two-class problem. However,
extensions to a multiple-class problem are trivial.

Definition 1: Time Series. A time series T = t1,… ,tm is an
ordered set of m real-valued variables.

Data points t1,… ,tm are typically arranged by temporal order,
spaced at equal time intervals. We are interested in the local
properties of a time series rather than the global properties. A
local subsection of time series is termed as a subsequence.

Verbena urticifolia

Shapelet

Urtica dioica

Definition 2: Subsequence. Given a time series T of length m, a
subsequence S of T is a sampling of length l ≤ m of contiguous
positions from T, that is, S = tp,… ,tp+l-1, for 1 ≤ p ≤ m –l + 1.

Our algorithm needs to extract all of the subsequences of a certain
length. This is achieved by using a sliding window of the
appropriate size.

Definition 3: Sliding Window. Given a time series T of length
m, and a user-defined subsequence length of l, all possible
subsequences can be extracted by sliding a window of size l
across T and considering each subsequence Sp

l of T. Here the
superscript l is the length of the subsequence and subscript p
indicates the starting position of the sliding window in the time
series. The set of all subsequences of length l extracted from T
is defined as ST

l, ST
l={Sp

l of T, for 1 ≤ p ≤ m –l + 1}.

As with virtually all time series data mining tasks, we need to
provide a similarity measure between the time series Dist(T, R).

Definition 4: Distance between the time series. Dist(T, R) is a
distance function that takes two time series T and R which are
of the same length as inputs and returns a nonnegative value d,
which is said to be the distance between T and R. We require
that the function Dist be symmetrical; that is, Dist(R, T) =
Dist(T, R).

The Dist function can also be used to measure the distance
between two subsequences of the same length, since the
subsequences are of the same format as the time series. However,
we will also need to measure the similarity between a short
subsequence and a (potentially much) longer time series. We
therefore define the distance between two time series T and S,
with |S| < |T| as:

Definition 5: Distance from the time series to the subsequence.
SubsequenceDist(T, S) is a distance function that takes time
series T and subsequence S as inputs and returns a nonnegative
value d, which is the distance from T to S. SubsequenceDist(T,
S) = min(Dist(S, S')), for S'  ST

|S|.

Intuitively, this distance is simply the distance between S and its
best matching location somewhere in T, as shown in Figure 5.

Figure 5: Illustration of best matching location in time series T
for subsequence S

As we shall explain in Section 3, our algorithm needs some metric
to evaluate how well it can divide the entire combined dataset into
two original classes. Here, we use concepts very similar to the
information gain used in the traditional decision tree [2]. The
reader may recall the original definition of entropy which we
review here:

Definition 6: Entropy. A time series dataset D consists of two
classes, A and B. Given that the proportion of objects in class A
is p(A) and the proportion of objects in class B is p(B), the
entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

Each splitting strategy divides the whole dataset D into two
subsets, D1 and D2. Therefore, the information remaining in the
entire dataset after splitting is defined by the weighted average
entropy of each subset. If the fraction of objects in D1 is f(D1) and
the fraction of objects in D2 is f(D2), the total entropy of D after

splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). This allows us to define
the information gain for any splitting strategy:

Definition 7: Information Gain. Given a certain split strategy
sp which divides D into two subsets D1 and D2, the entropy
before and after splitting is I(D) and Î(D). So the information
gain for this splitting rule is

Gain(sp) = I(D) - Î(D),

Gain(sp) = I(D) - f(D1)I(D1) + f(D2)I(D2).

As hinted at in the introduction, we use the distance to a shapelet
as the splitting rule. The shapelet is a subsequence of a time series
such that most of the time series objects in one class of the dataset
are close to the shapelet under SubsequenceDist, while most of
the time series objects from the other class are far away from it.

To find the best shapelet, we may have to test many shapelet
candidates. In the brute force algorithm discussed in Section 3.1,
given a candidate shapelet, we calculate the distance between the
candidate and every time series object in the dataset. We sort the
objects according to the distances and find an optimal split point
between two neighboring distances.

Definition 8: Optimal Split Point (OSP). A time series dataset
D consists of two classes, A and B. For a shapelet candidate S,
we choose some distance threshold dth and split D into D1 and
D2, such that for every time series object T1,i in D1,
SubsequenceDist(T1,i, S) < dth and for every time series object
T2,i in D2, SubsequenceDist(T2,i, S) ≥ dth. An Optimal Split
Point is a distance threshold that

Gain(S, dOSP(D, S)) ≥ Gain(S, d'th)

for any other distance threshold d'th.

So using the shapelet, the splitting strategy contains two factors:
the shapelet and the corresponding optimal split point. As a
concrete example, in Figure 4 the shapelet is shown in red in the
shapelet dictionary, and the optimal split point is 5.1.

We are finally in the position to formally define the shapelet.

Definition 9: Shapelet. Given a time series dataset D which
consists of two classes, A and B, shapelet(D) is a subsequence
that, with its corresponding optimal split point,

Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S))

for any other subsequence S.

Since the shapelet is simply any time series of some length less
than or equal to the length of the shortest time series in our
dataset, there are an infinite amount of possible shapes it could
have. For simplicity, we assume the shapelet to be a subsequence
of a time series object in the dataset. It is reasonable to make this
assumption since the time series objects in one class presumably
contain some similar subsequences, and these subsequences are
good candidates for the shapelet.

Nevertheless, there are still a very large number of possible
shapelet candidates. Suppose the dataset D contains k time series
objects. We specify the minimum and maximum length of the
shapelet candidates that can be generated from this dataset as
MINLEN and MAXLEN, respectively. Obviously MAXLEN ≤
min(mi), mi is the length of the time series Ti from the dataset, 1 ≤
i ≤ k. Considering a certain fixed length l, the number of shapelet
candidates generated from the dataset is:

)1(


lm
DT

i

i

So the total number of candidates of all possible lengths is:

0 10 20 30 40 50 60 70 80

S T
best
matching
location

 
 


MAXLEN

MINLENl DT

i

i

lm)1(

If the shapelet can be any length smaller than that of the shortest
time series object in the dataset, the number of shapelet candidates
is linear in k, and quadratic in m , the average length of time

series objects. For example, the well-known Trace dataset [11]
has 200 instances, each of length 275. If we set MINLEN=3,
MAXLEN=275, there will be 7,480,200 shapelet candidates. For
each of these candidates, we need to find its nearest neighbor
within the k time series objects. Using the brute force search, it
will take approximately three days to accomplish this. However,
as we will show in Section 3, we can achieve an identical result in
a tiny fraction of this time with a novel pruning strategy.

3. FINDING THE SHAPELET
We first show the brute force algorithm for finding shapelets,
followed by two simple but highly effective speedup methods.

3.1 Brute-Force Algorithm
The most straightforward way for finding the shapelet is using the
brute force method. The algorithm is described in Table 2.

Table 2: Brute force algorithm for finding shapelet

FindingShapeletBF (dataset D, MAXLEN, MINLEN)

1
2
3
4
5
6
7
8
9
10

candidates GenerateCandidates(D, MAXLEN, MINLEN)
bsf_gain 0
For each S in candidates

gain CheckCandidate(D, S)
If gain > bsf_gain

bsf_gain gain
bsf_shapelet S

EndIf
EndFor
Return bsf_shapelet

Given a combined dataset D, in which each time series object is
labeled either class A or class B, along with the user-defined
maximum and minimum lengths of the shapelet, line 1 generates
all of the subsequences of all possible lengths, and stores them in
the unordered list candidates. After initializing the best
information gain bsf_gain to be zero (line 2), the algorithm checks
how well each candidate in candidates can separate objects in
class A and class B (lines 3 to 7). For each shapelet candidate, the
algorithm calls the function CheckCandidate() to obtain the
information gain achieved if using that candidate to separate the
data (line 4). As illustrated in Figure 6, we can visualize this as
placing class-annotated points on the real number line,
representing the distance of each time series to the candidate.
Intuitively, we hope to find that this mapping produces two well-
separated “pure”groups. In this regard the example in Figure 6 is
very good, but clearly not perfect.

Figure 6: The CheckCandidate() function at the heart of the
brute force search algorithm can be regarded as testing to see
how mapping all of the time series objects on the number line
based on their SubsequenceDist(T, S) separates the two classes

If the information gain is higher than the bsf_gain, the algorithm
updates the bsf_gain and the corresponding best shapelet
candidate bsf_shapelet (lines 5 to 7). Finally, the algorithm
returns the candidate with the highest information gain in line 10.
The two subroutines GenerateCandidates() and CheckCandidate()
called in the algorithm are outlined in Table 3 and Table 4,

respectively. In Table 3, the algorithm GenerateCandidates()
begins by initializing the shapelet candidate pool to be an empty
set and the shapelet length l to be MAXLEN (lines 1 and 2).

Table 3: Generate all the candidates from time series dataset

GenerateCandidates (dataset D, MAXLEN, MINLEN)
1
2
3
4
5
6
7
8
9

pool Ø
l MAXLEN
While l ≥ MINLEN

For T in D
pool pool  ST

l

EndFor
l l - 1

EndWhile
Return pool

Thereafter, for each possible length l, the algorithm slides a
window of size l across all of the time series objects in the dataset
D, extracts all of the possible candidates and adds them to the
pool (line 5). The algorithm finally returns the pool as the entire
set of shapelet candidates that we are going to check (line 9). In
Table 4 we show how the algorithm evaluates the utility of each
candidate by using the information gain.

Table 4: Checking the utility of a single candidate

CheckCandidate (dataset D, shapelet candidate S)

1
2
3
4
5
6

objects_histogram Ø
For each T in D

dist SubsequenceDist(T, S)
insert T into objects_histogram by the key dist

EndFor
Return CalculateInformationGain(objects_histogram)

First, the algorithm inserts all of the time series objects into the
histogram objects_histogram according to the distance from the
time series object to the candidate in lines 1 to 4. After that, the
algorithm returns the utility of that candidate by calling
CalculateInformationGain() (line 6).

Table 5: Information gain of distance histogram optimal split

CalculateInformationGain (distance histogram obj_hist)
1
2
3
4
5
6
7
8
9
10

split_dist OptimalSplitPoint(obj_hist)
D1 Ø, D2 Ø
For d in obj_hist

If d.dist < split_dist
D1 D1  d.objects

Else
D2 D2  d.objects

EndIf
EndFor
Return I(D) - Î(D)

The CalculateInformationGain() subroutine, as shown in Table 5,
takes an object histogram as the input, finds an optimal split point
split_dist (line 1) and divides the time series objects into two
subsets by comparing the distance to the candidate with split_dist
(lines 4 to 7). Finally, it calculates the information gain (cf.
definitions 6, 7) of the partition and returns the value (line 10).

After building the distance histogram for all of the time series
objects to a certain candidate, the algorithm will find a split point
that divides the time series objects into two subsets (denoted by
the dashed line in Figure 6). As noted in definition 8, an optimal
split point is a distance threshold. Comparing the distance from
each time series object in the dataset to the shapelet with the
threshold, we can divide the dataset into two subsets, which
achieves the highest information gain among all of the possible
partitions. Any point on the positive real number line could be a
split point, so there are infinite possibilities from which to choose.
To make the search space smaller, we check only the mean values

0
Split point

of each pair of adjacent points in the histogram as a possible split
point. This reduction still finds all of the possible information
gain values since the information gain cannot change in the region
between two adjacent points. Furthermore, in this way, we
maximize the margin between two subsets.

The naïve brute force algorithm clearly finds the optimal shapelet.
It appears that it is extremely space inefficient, requiring the
storage of all of the shapelet candidates. However, we can
mitigate this with some internal bookkeeping that generates and
then discards the candidates one at a time. Nevertheless, the
algorithm suffers from high time complexity. Recall that the
number of the time series objects in the dataset is k and the
average length of each time series is m . As we discussed in

Section 2.1, the size of the candidate set is)(2kmO . Checking the

utility of one candidate takes)(kmO . Hence, the overall time

complexity of the algorithm is)(23kmO , which makes the real-

world problems intractable.

3.2 Subsequence Distance Early Abandon
In the brute force method, the distance from the time series T to
the subsequence S is obtained by calculating the Euclidean
distance of every subsequence of length |S| in T and S and
choosing the minimum. This takes O(|T|) distance calculations
between subsequences. However, all we need to know is the
minimum distance rather than all of the distances. Therefore,
instead of calculating the exact distance between every
subsequence and the candidate, we can stop distance calculations
once the partial distance exceeds the minimum distance known so
far. This trick is known as early abandon [8], which is very
simple yet has been shown to be extremely effective for similar
types of problems [8].

Figure 7: (left) Illustration of complete Euclidean distance.
(right) Illustration of Euclidean distance early abandon

While it is a simple idea, for clarity we illustrate the idea in Figure
7 and provide the pseudo code in Table 6.

Table 6: Early abandon the non-minimum distance

SubsequenceDistanceEarlyAbandon(T, S)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

min_dist ∞
stop False
For Si in ST

|S|

sum_dist 0
For k 1 to |S|

sum_dist sum_dist + (Si(k) –S(k))
2

If sum_dist ≥ min_dist
stop True
Break

EndIf
EndFor
If not stop

min_dist sum_dist
EndIf

EndFor
Return min_dist

In line 1, we initialize the minimum distance min_dist from the
time series T to the subsequence S to be infinity. Thereafter, for
each subsequence Si from T of length |S|, we accumulate the
distance sum_dist between Si and S, one data point at a time (line

6). Once sum_dist is larger than or equal to the minimum distance
known so far, we abandon the distance calculation between Si and
S (lines 7 to 9). If the distance calculation between Si and S
finishes, we know that the distance is smaller than the minimum
distance known so far. Thus, we update the minimum distance
min_dist in line 13. The algorithm returns the true distance from
the time series T to the subsequence S in line 16. Although the
early abandon search is still O(|T|), as we will demonstrate later,
this simple trick reduces the time required by a large, constant
factor.

3.3 Admissible Entropy Pruning
Our definition of the shapelet requires some measure of how well
the distances to a given time series subsequence can split the data
into two “purer”subsets. The reader will recall that we used the
information gain (or entropy) as that measure. However, there are
other commonly used measures for distribution evaluation, such
as the Wilcoxon signed-rank test [13]. We adopted the entropy
evaluation for two reasons. First, it is easily generalized to the
multi-class problem. Second, as we will now show, we can use a
novel idea called early entropy pruning to avoid a large fraction
of distance calculations required when finding the shapelet.

Obtaining the distance between a candidate and its nearest
matching subsequence of each of the objects in the dataset is the
most expensive calculation in the brute force algorithm, whereas
the information gain calculation takes an inconsequential amount
of time. Based on this observation, instead of waiting until we
have all of the distances from each of the time series objects to the
candidate, we can calculate an upper bound of the information
gain based on the currently observed distances. If at any point
during the search the upper bound cannot beat the best-so-far
information gain, we stop the distance calculations and prune that
particular candidate from consideration, secure in the knowledge
that it cannot be a better candidate than the current best so far.

In order to help the reader understand the idea of pruning with an
upper bound of the information gain, we consider a simple
example. Suppose as shown in Figure 8, ten time series objects
are arranged in a one-dimensional representation by measuring
their distance to the best-so-far candidate. This happens to be a
good case, with five of the six objects from class A (represented
by circles) closer to the candidate than any of the four objects
from class B (represented by squares). In addition, of the five
objects to the right of the split point, only one object from class A
is mixed up with the class B. The optimal split point is
represented by a vertical dashed line, and the best-so-far
information gain is:

[-(6/10)log(6/10)-(4/10)log(4/10)] - [(5/10)[-(5/5)log(5/5)]+(5/10)[-(4/5)log(4/5)-(1/5)log(1/5)]]=0.4228

Figure 8: Distance arrangement of the time series objects in one-
dimensional representation of best-so-far information gain. The
positions of the objects represent their distances to the candidate

We now consider another candidate. The distances of the first five
time series objects to the candidate have been calculated, and their
corresponding positions in a one-dimensional representation are
shown in Figure 9.

Figure 9: The arrangement of first five distances from the time
series objects to the candidate

0

0

0 10 20 30 40 50 60 70 80

S

T

0 10 20 30 40 50 60 70 80

S

T
calculation
abandoned
at this point

We can ask the following question: of the 30,240 distinct ways
the remaining five distances could be added to this line, could any
of them results in an information gain that is better than the best
so far? In fact, we can answer this question in constant time. The
idea is to imagine the most optimistic scenarios and test them. It is
clear that there are only two optimistic possibilities: either all of
the remaining class A objects map to the far right and all of the
class B objects map to the far left, or vice versa. Figure 10 shows
the former scenario applied to the example shown in Figure 9.

Figure 10: One optimistic prediction of distance distribution
based on distances that have already been calculated in Figure 9.
The dashed objects are in the optimistically assumed placements

The information gain of the better of the two optimistic
predictions is:

[-(6/10)log(6/10)-(4/10)log(4/10)] - [(4/10)[-(4/4)log(4/4)]+(6/10)[-(4/6)log(4/6)-(2/6)log(2/6)]]=0.2911

which is lower than the best-so-far information gain. Therefore, at
this point, we can stop the distance calculation for the remaining
objects and prune this candidate from consideration forever. In
this case, we saved 50% of the distance calculations. But in real-
life situations, early entropy pruning is generally much more
efficient than we have shown in this brief example. We will
empirically evaluate the time we save in Section 5.1.

This intuitive idea is formalized in the algorithm outlined in Table
7. The algorithm takes as the inputs the best-so-far information
gain, the calculated distances from objects to the candidate
organized in the histogram (i.e the number line for Figures 8, 9
and 10) and the remaining time series objects in class A and class
B, and returns TRUE if we can prune the candidate as the answer.
The algorithm begins by finding the two ends of the histogram
(discussed in Section 3.1). For simplicity, we make the distance
values at two ends as 0 and maximum distance +1 (in lines 1 and
2). To build the optimistic histogram of the whole dataset based
on the existing one (lines 3 and 8), we assign the remaining
objects of one class to one end and those of the other class to the
other end (lines 4 and 9). If in either case, the information gain of
the optimistic histogram is higher than the best so far (lines 5 and
10), it is still possible that the actual information gain of the
candidate can beat the best so far. Thus, we should continue to
test the candidate(lines 6 and 11). Otherwise, if the upper bound
of the actual information gain is lower than the best so far, we
save all of the remaining calculations with this candidate (line 13).

Table 7: Information gain upper bound pruning

EntropyEarlyPrune (bsf_gain, dist_hist, cA, cB)
1
2
3
4
5
6
7
8
9
10
11
12
13

minend 0
maxend largest distance value in dist_hist + 1
pred_dist_hist dist_hist
Add to the pred_dist_hist, cA at minend and cB at maxend
If CalculateInformationGain (pred_dist_hist) > bsf_gain

Return FALSE
EndIf
pred_dist_hist dist_hist
Add to the pred_dist_hist, cA at maxend and cB at minend
If CalculateInformationGain (pred_dist_hist) > bsf_gain

Return FALSE
EndIf
Return TRUE

The utility of this pruning method depends on the data. If there is
any class-correlated structure in the data, we will typically find a
good candidate that gives a high information gain early in our

search, and thereafter the vast majority of candidates will be
pruned quickly.

There is one simple trick we can do to get the maximum pruning
benefit. Suppose we tested all of the objects from class A first,
then all of the objects from class B. In this case, the upper bound
of the information gain must always be maximum until at least
after the point at which we have seen the first object from class B.
We therefore use a round-robin algorithm to pick the next object
to be tested. That is to say, the ordering of objects we use is a1, b1,
a2, b3,… , an, bn. This ordering lets the algorithm know very early
in the search if a candidate cannot beat the best so far.

It is often the case that different candidates will have the same
best information gain. This is particularly true for small datasets.
We propose several options to break this tie depending on
applications. We can break such ties by favoring the longest
candidate, the shortest candidate or the one that achieves the
largest margin between the two classes. We omit a more detailed
discussion of this minor issue for brevity.

4. SHAPELETS FOR CLASSIFICATION
While we believe that shapelets can have implications for many
time series data mining problems, including visualization,
anomaly detection and rule discovery, for brevity we will focus
just on the classification problem in this work.

Classifying with a shapelet and its corresponding split point
produces a binary decision as to whether a time series belongs to a
certain class or not. Obviously, this is not enough to deal with a
multi-class situation. Even with two-class problems, a linear
classifier is sometimes inadequate. In order to make the shapelet
classifier universal, we frame it as a decision tree [2]. Given the
discussion of the information gain above, this is a natural fit.

At each step of the decision tree induction, we determine the
shapelet and the corresponding split point over the training subset
considered in that step. (A similar idea is considered in [5].)

After the learning procedure finishes, we can assess the
performance of the shapelet decision tree classifier by calculating
the accuracy on the testing dataset. The way we predict the class
label of each testing time series object is very similar to the way
this is done with a traditional decision tree. For concreteness the
algorithm is described in Table 8.

Table 8: Calculating the accuracy on the shapelet classifier

CalculateAccuracy (shapelet decision tree classifier C, dataset Dt)
1
2
3
4
5
6
7

For each T in Dt

predict_class_label Predict(C, T)
If predict_class_label is the same as actual class label

correct correct + 1
EndIf

EndFor
Return correct / | Dt |

The technique to predict the class label of each testing object is
described in Table 9. For each node of the decision tree, we have
the information of a single shapelet classifier, the left subtree and
the right subtree. For the leaf node, there is additional information
of a predicted class label. Starting from the root of a shapelet
decision tree classifier, we calculate the distance from the testing
object T to the shapelet in that node. If the distance is smaller than
the split point, we recursively use the left subtree (lines 6 and 7)
and otherwise use the right subtree (lines 8 and 9). This procedure
continues until we reach the leaf node and return the predicted
class label (lines 1 and 2).

0

Table 9: Predicting the class label of a testing object

Predict (shapelet decision tree classifier C, testing time series T)
1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
Return label of C

Else
S shapelet on the root node of C
split_point split point on the root of C
If SubsequenceDistanceEarlyAbandon (T, S) < split_point

Predict (left substree of C, T)
Else

Predict (right substree of C, T)
EndIf

EndIf

5. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. We have
designed and conducted all experiments such that they are easily
reproducible. With this in mind, we have built a webpage [15]
which contains all of the datasets and code used in this work,
together with spreadsheets which contain the raw numbers
displayed in all of the figures, and larger annotated figures
showing the decision trees, etc. In addition, this webpage contains
many additional experiments which we could not fit into this
work; however, we note that this paper is completely self-
contained.

5.1 Performance Comparison
We test the scalability of our shapelet finding algorithm on the
Synthetic Lightning EMP Classification [6], which, with a
2,000/18,000 train/test split, is the largest class-labeled time series
dataset we are aware of. It also has the highest dimensionality,
with each time series object being 2,000 data points long. Using
four different search algorithms, we started by finding the shapelet
in a subset of just ten time series, and then iteratively doubled the
size of the data subset until the time for brute force made the
experiments untenable. Figure 11 shows the results.

Figure 11: The time required to find the best shapelet (left) and
the hold-out accuracy (right), for increasing large databases sizes

The results show that brute force search quickly becomes
untenable, requiring about five days for just 160 objects. Early
abandoning helps reduce this by a factor of two, and entropy
based pruning helps reduce this by over two orders of magnitude.
Both ideas combined almost linearly to produce three orders of
magnitude speedup.
For each size data subset we considered, we also built a decision
tree (which can be seen at [15]) and tested the accuracy on the
18,000 holdout data. When only 10 or 20 objects (out of the
original 2,000) are examined, the decision tree is slightly worse
than the best known result on this dataset (the one-nearest
neighbor Euclidean distance), but after examining just 2% of the
training data, it is significantly more accurate.

5.2 Projectile Points (Arrowheads)
Projectile point (arrowhead) classification is an important topic in
anthropology (see [15] where we have an extensive review of the

literature). Projectile points can be divided into different classes
based on the location they are found, the group that created them,
and the date they were in use, etc. In Figure 12, we show some
samples of the projectile points used in our experiments.

Figure 12: Examples of the three classes of projectile points in
our dataset. The testing dataset includes some broken points, and
some drawings taken from anthropologist’s field notes

We convert the shapes of the projectile points to a time series
using the angle-based method [8]. We then randomly created a
36/175 training/test split. The result is shown in Figure 13.

Figure 13: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the 3-class projectile
points problem

As shown in Figure 13 and confirmed by physical anthropologists
Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis
projectile points can be distinguished from the others by an un-
notched hafting area near the bottom connected by a deep concave
bottom end. After distinguishing the Clovis projectile points, the
Avonlea points are differentiated from the mixed class by a small
notched hafting area connected by a shallow concave bottom end.

The shapelet decision tree classifier achieves an accuracy of
80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater
accuracy, the shapelet decision tree classifier produces the
classification result 3×103 times faster than the rotation invariant
one-nearest-neighbor classifier and it is more robust in dealing
with the pervasive broken projectile points in most collections.

5.3 Mining Historical Documents
In this section we consider the utility of shapelets for an ongoing
project in mining and annotating historical documents. Coats of
arms or heraldic shields were originally symbols used to identify

Avonlea Clovis Mix

11.24

85.47

Shapelet Dictionary

(Clovis)

(Avonlea)

I

II

0 100 200 300 400

0
0.5
1.0
1.5

Arrowhead Decision
Tree

I

21

II

0

Clovis Avonlea

0

1 *10
5

2 *10
5

3 *10
5

4 *10
5

5 *10
5

Brute Force

16010 20 40 80

Early Abandon Pruning

Entropy Pruning
Combined Pruning

About 5 days

10 20 40 80 320

0.80

0.85

0.90

0.95

1.00

se
co

n
d

s

a
cc

u
ra

cy

Currently best
published
accuracy 91.1%

|D|, the number of objects in the database |D|, the number of objects in the database
160

individuals or groups on the battlefield. Since the beginning of the
Middle Ages, thousands of annotated catalogues of these shields
have been created, and in recent years hundreds of them have
been digitized [1][9]. Naturally, most efforts to automatically
extract and annotate these volumes concentrate on the colors and
patterns of the shields; however, there is also useful information
contained in the shape. Consider for example Figure 14, which
shows examples of different shapes commonly associated with
various countries’heraldic traditions.

Figure 14: Examples of the three classes in our dataset. The
shields were hand-drawn one to six centuries ago

Note that in most of these documents, the shields were drawn
freehand and thus have natural variability in shape, in addition to
containing affine transformation artifacts introduced during the
digital scanning.

We convert the shapes of the shields to a time series using the
angle-based method [8]. Because some shields may be augmented
with ornamentation (i.e far left in Figure 14) or torn (i.e Figure
16) and thus may have radically different perimeter lengths, we do
not normalize the time series lengths.

We randomly select 10 objects from each class as the training
dataset, and leave the remaining 129 objects for testing. The
resulting classifier is shown in Figure 15.

Figure 15: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) A decision tree for heraldic shields

Note that we can glean some information about this dataset by
“brushing”the shapelet back onto the shields as in Figure 15 top.
For example, both the Spanish and the French shields have right
angle edges at the top of the shield, so the shapelet algorithm does
not choose that common feature to discriminate between the
classes. Instead, the unique semi-circular bottom of the Spanish
crest is used in node II to discriminate it from the French
examples. Nobody expects the Spanish Inquisition.

For our shapelet decision tree classifier, we achieve 89.9%
accuracy; while for the rotation invariant one-nearest-neighbor
Euclidean distance classifier the accuracy is only 82.9%. Beyond
the differences in accuracy, there are two additional advantages of
shapelets. First, the time to classify is approximately 3×104 times
faster than for the rotation invariant one-nearest-neighbor
Euclidean distance, although we could close that difference
somewhat if we indexed the training data with a shape indexing
algorithm [8]. Second, as shown in Figure 16, many images from
historical manuscripts are torn or degraded. Note that the decision
tree shown in Figure 15 can still correctly classify the shield of
Charles II, even though a large fraction of it is missing.

Figure 16: The top section of a page of the 1840 text, A guide to
the study of heraldry [10]. Note some shields are torn

5.4 Understanding the Gun/NoGun Problem
The Gun/NoGun motion capture time series dataset is perhaps the
most studied time series classification problem in the literature
[4][14]. We take the standard train/test split for this dataset and
use it to learn the decision tree shown in Figure 17.

Figure 17: (top) The dictionary of shapelets, with the thresholds
dth. (bottom) The decision tree for the Gun/NoGun problem

The holdout accuracy for the decision tree is 93.3%, beating the
one-nearest-neighbor Euclidean distance classifier, whose
accuracy is 91.3%, and unconstrained or constrained DTW
[4][14], with accuracies of 90.7% and 91.3%, respectively. More
significantly, the time to classify using the decision tree is about
four times faster than the one-nearest-neighbor Euclidean distance
classifier. This is significant, since surveillance is a domain where
classification speed can matter.

Moreover, by “brushing” the shapelet back onto the original
video, we are able to gain some understanding of the differences
between the two classes. In Figure 17, we can see that the NoGun
class has a “dip”where the actor put her hand down by her side,
and inertia carries her hand a little too far and she is forced to
correct for it (a phenomenon known as “overshoot”). In contrast,
when the actor has the gun, she returns her hand to her side more
carefully, feeling for the gun holster, and no dip is seen.

0 25 50 75 100

0

1

2

3

I38.94

Shapelet Dictionary

I Gun Decision Tree

01

(NoGun)

NoGun

Gun

Charles II

I

21

II

0

0 100 200 300 400

0

1

2

3
I

II

151.7

156.1

Shapelet Dictionary

Shield Decision Tree

Polish Spanish

(Polish)

(Spanish)

Spanish Polish French

5.5 Wheat Spectrography
This dataset consists of 775 spectrographs of wheat samples
grown in Canada between 1998 and 2005. The data is made up of
several different types of wheat, including Soft White Spring,
Canada Western Red Spring, Canada Western Red Winter, etc.
However, the class label given for this problem is the year in
which the wheat was grown. This makes the classification
problem very difficult, as some of the similarities/dissimilarities
between objects can be attributed to the year grown, but some can
be attributed to the wheat type, which we do not know. In Figure
18 we plot one example from each class; as the reader can see, the
differences between classes are very subtle.

Figure 18 : One sample from each of the seven classes in the
wheat problem. The objects are separated in the y-axis for visual
clarity, as they all have approximately the same mean

We created a 49/726 train/test split, ensuring that the training set
has seven objects from each class, and then tested the
classification accuracy of the one-nearest-neighbor Euclidean
distance classifier, which we find to be 44.1% (Dynamic Time
Warping does not outperform Euclidean distance here). We then
created a decision tree for the data, using the algorithm introduced
in Section 4. The output is shown in Figure 19.

Figure 19: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the wheat
spectrography problem

The accuracy of the decision tree is 72.6%, which is significantly
better than the 44.1% achieved by the nearest neighbor method.

6. CONCLUSIONS AND FUTURE WORK
We have introduced a new primitive for time series and shape
mining, time series shapelets. We have shown with extensive
experiments that we can find the shapelets efficiently, and that
they can provide accurate, interpretable and fast classification
decisions in a wide variety of domains. Ongoing and future work
includes extensions to the multivariate case and detailed case
studies in the domains of anthropology and MOCAP analyses.

Acknowledgements: We thank Ralf Hartemink for help with the
heraldic shields and Dr. Sang-Hee Lee and Taryn Rampley for
their help with the projectile point dataset. This work was funded
by NSF 0803410 and 0808770.

7. REFERENCES
[1] Anon. 1525. Founders’and benefectors’book of Tewkesbury

Abbey, in Latin England. Online version
www.bodley.ox.ac.uk/dept/scwmss/wmss/medieval/mss/top/glouc/d/002.htm

[2] Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. 1984.
Classification and regression trees. Wadsworth.

[3] Chiu, B., Keogh, E., and Lonardi, S. 2003. Probabilistic Discovery
of Time Series Motifs. In Proc of the 9th ACM SIGKDD. 493–498.

[4] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E.
2008. Querying and Mining of Time Series Data: Experimental
Comparison of Representations and Distance Measures. In Proc of
the 34th VLDB. 1542–1552.

[5] Geurts, P. 2001. Pattern Extraction for Time Series Classification. In
Proc of the 5th PKDD, 115–127.

[6] Jeffery, C. 2005. http://public.lanl.gov/eads/datasets/emp/index.html

[7] Keogh, E. and Kasetty, S. 2002. On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In
Proc’of the 8th ACM SIGKDD. 102–111.

[8] Keogh, E., Wei, L., Xi, X., Lee, S., and Vlachos, M. 2006.
LB_Keogh Supports Exact Indexing of Shapes under Rotation
Invariance with Arbitrary Representations and Distance Measures.
In the Proc of 32th VLDB. 882–893.

[9] Koschorreck,W. and Werner, W., editors. 1981. Facsimile edition
with commentary: Kommentar zum Faksimile des Codex Manesse:
Die grosse Heidelberger Liederhandschrift.

[10] Montagu, J.A. 1840. A guide to the study of heraldry. Publisher:
London : W. Pickering. Online version
www.archive.org/details/guidetostudyofhe00montuoft

[11] Rodríguez, J.J. and Alonso, C.J. 2004. Interval and dynamic time
warping-based decision trees. In Proc of the 2004 ACM Symposium
on Applied Computing, 548–552.

[12] Salzberg, S.L. 1997. On comparing classifiers: Pitfalls to avoid and
a recommended approach. Data Mining and Knowledge Discovery,
1, 317–328, 1997.

[13] Wilcoxon, F. 1945. Individual Comparisons by Ranking Methods.
Biometrics, 1, 80–83.

[14] Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana, C. A.
2006. Fast Time Series Classification Using Numerosity Reduction.
In the Proc of the 23rd ICML. 1033–1040.

[15] Ye, L. 2009. The Time Series Shapelet Webpage.
www.cs.ucr.edu/~lexiangy/shapelet.html

1

0 200 400 600 800 1000 1200

0

0.5

1

2 4 0 1 6 5

I

II

III IV

V

VI

Wheat Decision Tree

0.1

0.2

0.3

0.4

0.0

100 200 3000

I5.22

II2.48

III12.15

IV2.7

V42.8

VI4.09

Shapelet Dictionary

3

