A visualization system for the study of

parallelly evolving time-series

Pantelidis Nikolaos

Diploma Thesis

Supervisor: Prof. Panos Vassiliadis

loannina, February 2021

TMHMA MHX. H/Y & IIAHPO®OPIKHE
ITANENIZTHMIO IQANNINGN

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF IOANNINA

R | -

Acknowledgements

[would like to thank Prof. Panos Vassiliadis for his guidance and his patience to me and I

would also like to thank my family and my friends for their support.

25/02/2021

Pantelidis Nikolaos

— il —

—jv —

Abstract

The goal of this Diploma Thesis is the development of a parallelly evolving time-series
visualization tool. This kind of time-series consist of peer entities and they evolve in a
common timeframe. Our system is a generalized recreation of the [Giac15] and it uses its
Parallel Lives Diagram to visually demonstrate how a group of entities co-evolve in
parallel, over time. To generalize the old system, we introduce a new format that we call
intermediate representation, which is employed to convert the different kind of parallelly
time-series formats in a uniform representation. This uniform internal representation is
then used to visualize the evolution of the group of entities as a 2D matrix, with each entity
corresponding to a row, each time-point corresponding to a column and the color
intensity of each cell to demonstrate the volume of activity for the combination of entity
& time-point. To handle the volume of entities and time-points we can also cluster them
into groups and phases, respectively, via an agglomerative clustering mechanism that we
have built. The tool allows zooming in and out, reporting of details, exporting the
intermediate representation as a file and the visual representation as a png file and
importing/exporting the clustered data. Our system is designed in such way that it is easy

to be expanded to support more kinds of formats.

Keywords: time-series, visualization, agglomerative clustering, Java, JavaFX

Mepianym

0 oTt6X0G AUTNG TNG AMAWHATIKNG gpyaciag eivatl 1 avaTTuén evog EPYOAEIOV OTITIKYG
AVATIOPACTACNG TAPAAANAX €EEAlGOOUEVWY XPOVOCELPWY. OL XPOVOOELPEG AUTOV TOU
TOTIOV ATOTEAOVUVTAL OO OUOTIUEG OVTOTNTEG, OL OToleg €ediooovtal 0e £va KOO
ovotnpa xpovou. To cloTnua pag eival pla yevikeupévn vAomoinon tng epyaciag
[Giac15] kat xpnowoTotlel to Adypoappua MapdAANAwy Zowv Y& Vo avaTopooToeL
OTITIKA TIWG Ui OUAS A OVTOTI TWV OUV-£EEAICTETAL TAPAAANAC OTO TIEPAT U TOL XPOVOU.
Ma va yevikeboovpe To TOALO GUOTNHUN, TAPOUCIAJOUVUE Wi vEA AVATIAPACTHON
Se80UEVWOV TNV EVOLAPEST AVATIHPAGTAGT), T OTIO (A XPT|OLUOTIOLEITAL YL VAL LETATPEWOUUE
TouG S1APopous TUTIOUG TAPAAANAQ €EEALCOOUEVWY YXPOVOOELPWV GE WK TILO YEVIKY)
AVOTOPACTHCT. AUTH 1 QVATIOPACTHOT] XPTOCLUOTIOLEITAL YO VO QVATIOPACTHCOUUE
OTITIKA TNV €EEAEN piag opddag ovrtoTwy wg évav 2A Tiivaka, 6Tov K&Be ovtoTnTo
avTioTolXel o€ plo ypappr, K&Be xpovikny oTiyun avTiotolyel o pia oTHAN Kol 1) EVIACELS
TWV XPWUATWV KABE KEALOU avATOPLOTOVV TO HEYEDOG TNG SpaoTNPLOTNTAS Yl TOV
oUVSLAOUO OVTOTNTAG KL XPOVIKNG oTLyuns. INa va pumopécovpe SLaxelploToUUE TO
UEYEDOG TWV OVTOTHTWV KAL XPOVIKWY GTIYU®V UTTOPOVUE VA TIS OUASOTIO|COVE OF
OMGdeG Kol (PAoElS avTtioTolya, HECW EVOG UNYOVIOUOV LEPAPXIKNG opadotoinong
(uéBodog Agglomerative clustering) mou vAomoujoape. To epyadeio emiTpémel Vv
Hey£Buvon/ oUiKpuVeoT TOU SLoy pAUATOG, TNV ELPAVLIOT AETITOUEPELWV, TNV ATTOOKEVO
NV EVOLAUEOTG AVATIAPACTAONG O€ apxelo, TNV amofnkevon Tov SlaypAUUATOS o€ Eva
.png apxelo, v ewoaywyn/eaywyn twv opadomompévwv Sedopévwv. Télog, TO
oUOTNUA HOG VAOTIOMONKE pe TPOTO TOU KABLOTA €0KOAN TNV EMEKTAOT TOU YLA TNV

VT TNPLEN TIEPLOGATEPWV TUTIWV TAPAAANAQ EEEALGGOUEVWV XPOVOCELPWV.

A€EEIG KAWL Ypovooelpés, OTITIKY avamapdotaot, lEpapyky opadomoinon, Java,

JavaFX

— Vi —

—vii —

— viii —

Index

Chapter 1. Introduction 1
1.1 TRESIS SUDJECT ettt seese e esseesss e e b esse s s et 1
1.2 TRESIS SLIUCTUTE covuveereeseeteetseesseessentsessssesse s s sse s sssass bbb s b b ssnes 2

Chapter 2. Subject description 3
200 B N 4 1) (3= {0 Y- TP 3
2N Y1 U/=To R) o TP 3

2.2.1 Plutarch’s Parallel Lives 4
2.2.2 CloudLines 4
2.2.3 TimeNotes 5
2.24 CodeTimelLine 6
2.3 ReqUIrements analySiS ... rrmeerreermeeeeseesssesssesssessseessesssesssssssessssssssesssesssesssssssssssessees 7

Chapter 3. Design & Implementation 15
3.1 Problem definition and SOIUtION ...t ssesse s ssssessesssesssessssssnns 15
3.2 Software design and architeCture ... eeeeresesseesseessesssesssessseenns 16

3.2.1 Software Architecture 17
3.2.2 Backend Description 18
3.2.3 Frontend Description 24
3.3 Software teSting dESIZI .. e s s sssessseesssssans 25
3.3.1 Testing Methodology. 25
3.3.2 Detailed test description 25
3.4 Technical details and USEr GUIAE.......couereereeneeuriereeseieee s ssessessees 27
34.1 Technical details 27
3.4.2 Installation guide 27
343 Userguide 28
3.5 Software eXpandability ... esessans 32
3.5.1 Add new file format support 32
3.5.2 Change the clustering methods 32

—iX —

Chapter 4. Experimental validation 34

4.1 Experimentation MethodOlOZY ... enenieneneinsessisesseesessssssesseessssssssssssssssssessseans 34
4.2 Detailed TESULILS ...ttt s bbbt 35
Chapter 5. Conclusion 39
51 Summary and CONCIUSIONS. ..o ssees 39
5.2 FULUIE WOTK ettt ess et s sessse bbb s nss s 40

—Xi—

Figures Index

Figure 1: [Giac15] Parallel Lives Diagram ... creneensinseeeessesssessesssssessssssssssessssssesssssssssessssanes 4
Figure 2: [KIBK11] ClOUALINES ...cieueeeeriesreeeseeesessessseesssesssesssesssesssesssens 5
Figure 3: [WaBJ16] TIMENOLEScccouerierreurieseereesessessseesstssesssessssssessssssessessssssssssessssssssssssssssssssssssssssssssanes 6
Figure 4: [KuSt12] CodeTimeLine, (Left) Collaboration view, (Right) sourcecloud flow
L2 TS 7
Figure 5: UC1 Load tsv/csv dataset to intermediate representation........oeoneenernseenees 8
Figure 6: UC2 Load schema evolution dataset to intermediate representation...........ccoee.... 9
Figure 7: UC3 Export intermediate representation to a tsv fileoenenreenneensecssecnnne 10
Figure 8: UC4 SUMMATIZE QAL .. meereerrereesseesseesseesseesesseesssessesssessseessessssssssssssesssessssssssesssessseesssssans 10
Figure 9: UC5 Visualize data USING PLD ... sessesssssessesssssessessesssesssssssssesasees 11
Figure 10: UC6 SaVe PLD @S @ PIIG...uccrirrererereesrersessersesssessessssssesssssesssessesssssssssssssessssssessssssessssssesasees 11
Figure 11: UC7 Zoom in and oUt the PLD ... ssesssesssssssssesasees 12
Figure 12: UC8 Get the details of a SPecific Phase......oeneenreerecrnecrneeeneeeeerseesseesseesseeseeens 12
Figure 13: UC9 Get the details of a specific entity Sroupeeneneeneeneenneenseeseesseesseeens 13
Figure 14: UC10 Sort summarized data using one of the available sorting types................ 13
Figure 15: UC11 Import data snapshot from files (tem & gpm)ccoecnreereereerrneenreeseessecsseeenne 14
Figure 16: UC12 Export data snapshot to files (tem & gPIm)....ccncreenmeenmrerreerseeenseeseesseesseeene 14
Figure 17: Class diagram of intermediate and summarized representation models......... 16
Figure 18: Package diagramcoeerereesseeseeseeesessessseessssssesssessssessesssssssssssssssssssssssssssssssssesssessans 18
Figure 19: Intermediate representation models diagramcconeereenecreenseseenseeseeseeseessesneees 20
Figure 20: Class diagram for PACKage 10coeeeeeeemmeernsersnesseesseesseesssessesssessssssssesssssssessssssssssnss 22
Figure 21: Clustering class diagram......cereneeenneeneeseiseesesess s ssssssssesssssesssssssssssssesasees 24
Figure 22: UNIt eSS s sssssssssssssasssass 26
Figure 23: Main view (WithOoUt data).....ceeeeneeneeeseesseessesssessseessssssssssssssssssssssessssssssssssssssesans 28
Figure 24: SIMPIE CSV Il ..ttt s s ss s s 28
Figure 25: Schema evolution folder StrUCtUTre ... 29
Figure 26: tables_DetailedStatS.tSV PArt 1 ... cneneeneeserecsseesessesssesesssesssessessesssssssssssssssasees 29
Figure 27: tables_DetailedStats.tSV PArt 2 ... eeeeeesnsersneesessseesseesssssesssessssssssesssssssessssssssssans 29
Figure 28: SchemaHeartBeat.tSV Part L. 29
Figure 29: SchemaHeartBeat.tSV PArt 2. ereeneeseseeseeeessessesse e sssssssssesssssessssssssssssssssees 29
Figure 30: SchemaHeartBeat.tSV PArt 3.......ceeeeeesneesseesssesssessssessessssssssssessssssssssssssssessssssssssass 29

— Xii —

Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

18 0= 0 S) 110 o R o1 VT 29

Intermediate representation file....... e seseees 30
CIUSEETING AIAl0G ccvureuieerieeetrnetseesseet et sssess bbb s s ss s saens 30
GroupPhaseMeasurement file (PIMNLESV) cc.oerrereeeneeeneerneeseesseesssessssesseesseessesssesssessens 31
Sorted PLD and details ... ssesssssesssssssssssssssesssssssssssssanes 32
Sample of the eXperiments reSUILS ... ——— 34
Scatter plot (entities/beats, computation time) ... 35
Scatter plot (cells, comMpPUtation tIME) ... 36
Scatter plot (non-empty cells, computation time) ... 36
Scatter plot top-20 (entities/beats, computation time)......einenreneennns 37
Scatter plot top-20 (cells, cOmputation tIME)......coceenreenrieseeesseesseeseesseeeseeessesseesens 38
Scatter plot top-20 (non-empty cells, computation time)c.cecneereerseseenseeseennes 38

— xiii -

Chapter 1. Introduction

1.1 Thesis subject

We live in a digital era and everyday huge amounts of data are produced. These data come
in a variety of forms. In this thesis, we are going to focus on a specific type of data, the

parallelly evolving time-series.

Parallelly evolving time-series are multiple time-series that follow the same rules. They
use the same timeframe, they consist of peer entities and their measurements are of the
same quantity/metric. Data like these are stocks, software components version control

data, history of country indicators (e.g. babies per woman each year) etc.

These data are of great importance because they describe the history of their entities. This
history can prove to be very useful. It could help us identify the good and the bad features
of the entities and this way we could avoid the same mistakes and even predict the future

evolution of this entities.

In 2015, in the University of loannina, Giachos Theophanes introduced Parallel Lives
Diagram(PLD) as part of his MSc Thesis [Giac15]. A PLD is a strong parallelly evolving
time-series visualization tool, it uses a 2D matrix to demonstrate the data. The rows
correspond to the entities, the columns correspond to the time-points, and the color
intensity of the cells correspond to the volume of activity for the combination of entity
and time-point. However, the tool of [Giac15] supports only relational schema evolution

data.
Our contributions in this Diploma Thesis are the following:

e The introduction of a generalized parallel time-series format, which we call
intermediate representation. Using an intermediate representation for a set of
lives of entities that parallelly evolve, allows us to be able to incorporate any
such dataset (e.g. stocks, evolving relational tables, population data etc.) via the

appropriate conversion.

e The development of a system that implements the Parallel Lives Diagram
without its one-type restrictions. This system comes with a variety of other
features that will be analyzed in the following chapters.

e We also studied the system’s performance when converting relational schema

evolution data to the intermediate language.

1.2 Thesis structure

In the following chapters we are going to describe the Diploma Thesis in detail.

The second chapter will contain the thesis goal, the summaries of the related work that
we studied in the field of time-series visualization, and the system requirements as use

cases.

In the third chapter we are going to define the problem and the solution we introduce, by
presenting the system design and architecture. This chapter also contains the test cases
we used to ensure the correct function of our system, the tools that we used for the system
developing, a user guide and some tips to expand our system.

In the fourth chapter, we introduce the experimental methodology that we used to

compute the performance of our system and we present and comment our experimental

results.

Finally, the fifth chapter will contain a summary of this thesis, our conclusions and a

section about the future work that can be made to improve and expand our system.

Chapter 2. Subject description

2.1 Thesis goal

The goal of this Diploma Thesis is to provide a system that will facilitate the simultaneous

visual representation of the lives of peer entities, that co-evolve at the same time-frame.

We call this kind of datasets parallelly evolving time-series and they consist of three
features. There must be a common time system for the whole dataset (think of it as the
columns), a group of peer-entities that contains the same kind of entities, and the

measurements of the entities which must be of the same quantity /metric.

This kind of data can be stocks, measurements of the same quantity/metric for different
entities (e.g. population in different countries of the world from 1900 to 2020), software

components version control data like classes, tables of relational schemas etc.

The functionality of the system will include data conversion to our format which is called
intermediate representation. This format is basically our version of parallelly evolving
time-series. Its purpose is to make other more complicated data formats (in our case

relational schema histories) compatible with our system.

The system also offers the ability to create a summary of the data using clustering
methods. In many cases the data contain too many entities (rows) or too many time-beats
that cannot fit in a screen. By using clustering, we can reduce them to the desired size

without losing too much information.

Parallel Lives Diagram (PLD) is another feature of the system. It is a custom chart that
visualizes parallel time-series in 2-dimensions. It can be zoomed in/out and exported as

PNG file.

Finally, the rows of the data can be sorted by any of our supported sorting types (birth

date, duration, activity).

2.2 Related work

In this section we describe Plutarch’s Parallel Lives of Giachos [Giac15] which is the tool
that we want to rebuild from scratch and make its functionality compatible with more

kinds of time series. Furthermore, we describe three interesting visualization techniques.

CloudLines of Milo’s Krstaji'c, Enrico Bertini kot Daniel A. Keim [KrBK11], TimeNotes of
James Walker, Rita Borgo and Mark W. Jones [WaBJ16] and finally the CodeTimeLines of
Adrian Kuhn and Mirko Stocker [KuSt12].

2.2.1 Plutarch’s Parallel Lives

Giachos in his MSc Thesis studies the schema evolution in databases[Giac15]. This study
is particularly interesting because the changes in tables’ schemata can affect the
applications that are based on a database. The visualization of the data seems to be a

difficult task because these data consist of numerous changes per version of the database.

Giachos in his work introduces two algorithms that help with the summarized
representation of a database’s history. The first algorithm is a properly modified, to group
time moments, agglomerative clustering implementation. It groups the time moments to
phases based on their similarity. The second algorithm is also a modified agglomerative
clustering method, but it is used to create clusters of schemata(entities) based on their
similarity. By creating the summary of the data Giachos is able to fit the large data in a

screen without sacrificing significant amount of information.

These two algorithms are implemented in the “Plutarch’s Parallel Lives Tool” which we

will try to recreate in a more generalized version in this Diploma Thesis.

Parallel Lives Diagram | Same Width Over Time
Table name
Cluster 0
Cluster 1
Cluster 2
Cluster 3

Cluster 4
Cluster 5
Cluster &
Cluster 7
Cluster 8
Cluster 9
Cluster 10
Cluster 11
Cluster 12
Cluster 13

Figure 1: [Giac15] Parallel Lives Diagram

2.2.2 CloudLines

In this work [KrBK11] the authors try to solve some visualization problems about non-
equidistant time-series data. This kind of time-series are time-series of a specific news
topic. The data are generated from many sources in different periods of time and the

objective is to identify when the data are important.

The authors designed this method to handle the following tasks:

o Time-series visualization by granting more screen space to the more recent data
so they can be displayed in more detail.
e Important events detection.

o Keep the entire data information and give access in atomic level.

The authors use a method of logarithmic compression to save space from the older data,

so they have more available space to display the recent data in more detail.

The important data are detected in dense areas, where they cause overplotting. The
authors handle this problem with two functions:

e Importance function

e Cut-off function

By mapping the importance function to the transparency factor and the cut-off function

to the dot size they succeeded to create a smoother visualization without the overplotting.

Finally, the authors implemented a magnification lens to provide the user with more

details in the dense areas by giving him access to atomic level information of the data.

w

I

v
!

R - e
*__-....-_, - LS es RS SOERSISEEERS OO ® S W0 W e
GEes ---

b e -

e - e

e —

- — —eotillDGEINENS° GBEWAESS° 00 00 GO0 OO
- - ——

——— T —— - —— O . = -
B = — I == -

Figure 2: [KrBK11] CloudLines

2.2.3 TimeNotes

weat mbarak

Masmmar Gadsati

Barack obass

Zire £ AMISIne fen AT
Wicalas Sackary

Avpela Merkel

Wichile alliot-Marte
W lary Redian Clistsn
osar saletean

A4 ahaul lnk Saleh
Mohaned Cloarade!
David Camercn

Recwp Tayyts Frdegan
Satf a-xsTas o) -caseef!

Guide westerwelle

Karl-Taeoder 2u Gutterberg

TimeNotes [WaBJ16] is a visualization tool that gives the user the ability to choose a

specific area of the data to get a more detailed display.

This display is hierarchical in the form of a tree. The tree’s root represents the initial data
and the node’s children are the detailed displays of the selected areas. Children nodes are
connected to their parents through edges in the form of stripes. In this way they manage
smooth transition from the parent nodes to the more detailed children nodes.

The nodes can be moved and resized by the user.

To free up space in the display area, we can also minimize the nodes and the sub-trees to

small rectangles that are named bookmarks. User can restore the minimized nodes.

Another feature of the tool is the ability to place many nodes to the same window with

overlapping to offer a more direct data comparison.

Finally, the user can create and format notes for every node.

i Gliding through the
high ehitude f
" Akl e "
Uit o i by

Thermalling to
1gain altitude

b |J| ’|: A |F| ool]ll- I'L I‘I |'.[| |"| f
L l..,,-,ll .L V1 Wi ’ul.,‘.f‘nv;' I’.," l\’;"; ._.1J HTAVAVA

(SR R Ay’ | | |l|i | i |||
In".l) |’v| |U.]w: uII'r‘“I,lrLl.,,'l'.lJl' b1 L-JJ'*H LW

Y
v Y

Figure 3: [WaBJ]16] TimeNotes

2.2.4 CodeTimeLine

The authors try to solve a problem that comes up when working with software systems,

specifically the visual display of the system history to the developers.

The solution that the authors of [KuSt12] suggest, is a pinboard that contains two

visualization tools the collaboration view and the sourcecloud flow view.

The collaboration view is visualization technique of software source control data. The
columns display all the programmers that have contributed to the software, the rows

display the different versions of the software and the dots display the commits.

The sourcecloud flow view use the source code and other changes that occurred in every
version. In each version a cloud is formed by the words that were either deleted (red) or

added (blue).

The authors add one more level of interactivity in these two applications by giving the
user the ability to add notes, photos, email etc. on the events to motivate the users
(programmers) to connect their memories or the events with software that they

contributed on.

Use drag & drop or double click to add lifetime events...

Timeline of Outsight —— J‘[T Timeline of JUnit —

Use drag & drop or double click to add lifetime events...

B T
¢ B’ i finz=hedwarehor |
< Builder
b ! e F|les TemporaryFolder #newfFile creates
14 NE! tvm Y randomly named nexw file! y %
g
wmsPar “DUMMY Bl =
3 Wiged unresolved P countirg
Managment provided a 1 oid ‘5.‘;,2 Eogfgmg __ﬁé’“' o
bug fix, horray! #epic | ¢ BN RU |é Token Fome
1 Lk { ¢ 1L 49 — e Statem ont coumer
[I- [[(R R . ¢ [l 9 Exan;,I\ LES Ao g oeis poly
H] il 4 3 3
JULID THE s ILREl
bl of
s 2
b g Kent presents JUnitMax Homs Foklgu)
@] GREEN is back, reverting all at Agile Forum 2009. Bauce o L <t
@ of BLUE's dangling braces =) el N Expectad
2.0 <] Celebrating Release 2.0! ‘
1.15 1 Introduction of Rules, see
Blog post by David [more]
lhe(unagoml
1.14 1 Theory €XPErimental
{ Due to popular demand, (4.5 e— o Data theories
q added Hamcrest matchers. ey e
Bt
end Pt racrely 1 Va tf hat 44 We moved
es = . g
,yMgt‘qh o to Github!
mﬂ{:‘;\""rc. = - l|0;(?lngnqec SS?"{iore
’ H
leLll De ath t4
Hackathon in Bern, Oct 2007 4.3 +—A ni
N 3 rr"ay long
| For -:]Té'a 5 Nothing makes Kent as happy ,r?cc,l
. guerloade JI: "l‘"e” as removing dead code =) batThat
Teaching the Swiss how to | Fiko Crgllnélé;(’gg;sggrhat i
pronounce "Interpreter” =) UStan ES Jg","'}\‘-i — 42 D
/ odje ‘SC‘QOO,?,'\“VE I: 9 Arg
% Useps o) nntl%gm e ChildiekéticHash
¥ l tmedCauses ,n,t,ah,anon(nmplot(‘

Arefime, usesOverioaded
U
4.1 e——NeaSu classes%re Caus
’ %5 %eg‘gh compat«bltngylmeb
1

v3ﬁ'se°;“2?3|%m Sas !
objects

GREEN leaves the team, S “0 time

E
BLUI :aks overT) more...

Figure 4: [KuSt12] CodeTimelLine, (Left) Collaboration view, (Right) sourcecloud flow view

2.3 Requirements analysis

This tool will provide the following set of features for the parallel time-series study:

1. Load .tsv/csv datasets of any numerical metric, evolving over time, for a group of

peer-entities, to the intermediate representation.
2. Load schema evolution (Hecate) datasets to the intermediate representation.
3. Export the intermediate representation to a .tsv file.

4. Summarize data using clustering methods in both rows(entities) and

columns(time beats).

5. Visualize data using parallel lives diagram(pld).

6. Export the diagram as pictures (png).

7. Zoom in and out the diagram.

8. Get the details of a specific phase.

9. Get the details of a specific entity group.

10. Sort rows by birth date or life duration or activity (ascending or descending).
11. Import a data snapshot from a specific folder (tem.tsv, gpm.tsv).

12. Export a snapshot of our loaded data (intermediate and summarized

representations) to a specific folder (tem.tsv, gpm.tsv)

Use case: Load tsv/csv dataset to intermediate language

ID: UC1

Actors(id): Analyst(A1)

Preconditions:

1. Datasets are in a supported format (csv, tsv)

Flow of events:

1. The use case starts when the Analyst imports the path of the dataset in the
system.
2. The system detects the dataset’s type.
3. [Ifthe type is supported and equals either csv or tsv:
3.1. The system initializes the suitable loader.
3.2. The system parses the dataset
3.3. The system loads the file in the intermediate representation.
3.4. The system returns the intermediate representation.
4. If the type is not supported:

4.1. System prints an error message, and the use case ends.

Postconditions: The dataset is loaded on the system.

Figure 5: UC1 Load tsv/csv dataset to intermediate representation

Use case: Load schema evolution dataset to intermediate language

ID: UC2

Actors(id): Analyst (A1)

Preconditions:

1. The given dataset folder contains a folder named “results” that contains the

following files: SchemaHeartbeat.tsv, tables_DetailedStats.tsv, transitions.csv

Flow of events:

1. The use case starts when the Analyst imports the path of the dataset in the
system.
2. The system detects the dataset’s type.
3. Ifthe type is supported and equals schema_evo:
3.1. The system initializes the custom SchemaEvoLoader.
3.2. The system parses the dataset’s files.
3.3. The system aggregates the transactions to measurements.
3.4. The system loads the measurements in the intermediate representation.
3.5. The system returns the intermediate language.
3.6. The system initializes the UC3 with output path project_folder/figures/PPL.
4. Ifthe type is not supported:

4.1. System prints an error message, and the use case ends.

Postconditions: The dataset is loaded on the system.

Figure 6: UC2 Load schema evolution dataset to intermediate representation

Use case: Export intermediate representation to a tsv file

ID: UC3

Actors(id): Analyst(A1)

Preconditions:

1. The system is loaded with a dataset.

Flow of events:

1. The use case starts when the Analyst imports the path of the output file in the
system.
2. The system generates a string from the loaded data.

3. The system writes the generated string to given file path.

Postconditions: The intermediate representation is stored in a .tsv file.

Figure 7: UC3 Export intermediate representation to a tsv file

Use case: Summarize data

ID: UC4

Actors(id): Analyst(A1)

Preconditions:

1. The system is loaded with a dataset.

2. The given clustering profile has valid values.

Flow of events:

The use case starts when the Analyst creates a clustering profile.
The A1l imports the clustering profile to the system.

The system initializes the selected PhaseExtractor.

The system cluster time-beats and generates phases.

The system initializes the selected EnityGroupExtractor.

The system cluster entities and generates entity groups.

N o ok w e

The system converts the TimeEntityMeasurements (intermediate representation)

to GroupPhaseMeasurements (summarized representation)

Postconditions: A new summarized representation of the data is stored in the system.

Figure 8: UC4 Summarize data

10

Use case: Visualize data using PLD

ID: UC5

Actors(id): Analyst(A1)

Preconditions:

1. The system is loaded with a summarized representation of a dataset.

Flow of events:

1. The use case starts when the Analyst clicks the “show pld” button.
2. The system loads data on the parallel lives diagram.

3. The system shows the diagram.

Postconditions: The system shows the data using a pld.

Figure 9: UC5 Visualize data using PLD

Use case: Save PLD as a png

ID: UC6

Actors(id): Analyst(A1)

Preconditions:

1. The system is showing the data using a pld.

Flow of events:

The use case starts when the Analyst clicks the “save screenshot” button.
The system asks the Analyst to enter the output path.
The Analyst enters an output path.

B oW N

The system saves the diagram as a .png file in the output path.

Postconditions: The diagram is saved as a png file in the output path.

Figure 10: UC6 Save PLD as a png

11

Use case: Zoom in and out the PLD

ID: UC7

Actors(id): Analyst(A1)

Preconditions:

1. The system is showing the data using a pld.

Flow of events:

1. The use case starts when the Analyst places the mouse in the pld area and scrolls
up or down.

2. Ifthe Analyst scrolls down.
2.1. The system zooms out the diagram.

3. If Analyst scrolls up.

3.1. The system zooms in the diagram.

Postconditions: The diagram is zoomed in or out.

Figure 11: UC7 Zoom in and out the PLD

Use case: Get the details of a specific phase

ID: UC8

Actors(id): Analyst(A1)

Preconditions:

1. The system is showing the data using a pld.

Flow of events:

1. The use case starts when the Analyst right clicks on a phase cell and selects “show
details”.
2. The system retrieves the details of the selected phase.

3. The system shows a panel with the phase details.

Postconditions: A pane with the details of the selected phase is created.

Figure 12: UC8 Get the details of a specific phase

12

Use case: Get the details of a specific entity group

ID: UC9

Actors(id): Analyst(A1)

Preconditions:

1. The system is showing the data using a pld.

Flow of events:

1. The use case starts when the Analyst clicks on an entity group cell.
2. The system retrieves the details of the selected entity group.

3. The system shows a panel with the entity group details.

Postconditions: A pane with the details of the selected entity group is created.

Figure 13: UC9 Get the details of a specific entity group

Use case: Sort summarized data using one of the available sorting types

ID: UC10

Actors(id): Analyst(A1)

Preconditions:

1. The system is loaded with a summarized representation of a dataset.

Flow of events:

1. The use case starts when the Analyst selects one of the available sorting options.
2. The system sorts the data by the selected sorting option.
3. Ifthe data are already displayed in the PLD:

3.1. The displayed data are sorted automatically.

Postconditions: The system has a sorted summarized representation available for use.

Figure 14: UC10 Sort summarized data using one of the available sorting types

13

Use case: Import data snapshot from files (tem & gpm)

ID: UC11

Actors(id): Analyst(A1)

Preconditions:

1. The folder that contains the snapshot contains the files (tem.tsv & gpm.tsv)

Flow of events:

1. The use case starts when the Analyst enters the path of the folder that contains
the snapshot.

2. The system executes UC1 for the tem.tsv file.
The system parses the gpm.tsv.

4. The system combines the intermediate representation with the parse data from
the gpm.tsv to generate the phases and the entity groups.

5. The system converts the load TimeEntityMeasurements to

GroupPhaseMeasurements using the phases and the entity groups.

Postconditions: The system has loaded a summarized version of the data.

Figure 15: UC11 Import data snapshot from files (tem & gpm)

Use case: Export data snapshot to files (tem & gpm)

ID: UC12

Actors(id): Analyst(A1)

Preconditions:

1. The system is loaded with a summarized representation of a dataset.

2. The folder path is valid

Flow of events:

1. The use case starts when the Analyst enters the path of an output folder.
2. The system executes UC3 with path the file (tem.tsv) in the given folder path.
3. The system writes another file (gpm.tsv) in the given folder that contains the

indexes of the phase and entity components.

Postconditions: The given folder contains a file tem.tsv (intermediate representation)

and a file gpm.tsv (with the necessary data to reconstruct summarized representation)

Figure 16: UC12 Export data snapshot to files (tem & gpm)

14

Chapter 3. Design & Implementation

3.1 Problem definition and solution

The first problem that we faced when we started designing our system was finding the
common denominator between the different parallel time-series formats. On the one
hand we have the schema evolution datasets which are relatively complicated data and

on the other hand we have some GapMinder datasets which have a simple format.

So, we came up with a generalized format which we call intermediate representation

format. This format consists of four key classes.

1. Beats: A common timeframe that consists of unique time beats and represent
the columns.

2. Entities: Peer entities that represent the rows.

3. Measurements: The common quantity/metric measurements that represent
the cell values.

4. TimeEntityMeasurement(TEM): The combination of an entity, a beat, and a

measurement.

The challenge is to convert the relation schema evolution data to the intermediate
representation. We solved this by aggregating the transactions of each entity in each time

beat, thus we generated TimeEntityMeasurement for schema evolution data.

Since we were able to convert such a complex format to intermediate representation, we

assume that other parallel time-series formats can also be converted.

The next challenge we faced was to develop the system in a way that is easily expandable.
After all, our goal was to make a universal parallelly evolving time-series visualization
tool. Of course, we could not add support for all the possible parallelly evolving time-
series formats. So, we tried to make it easy for the developer to add his custom
loader/converter to our system in cases he wanted to use our tool with an unsupported
format. We created the ILoader interface that sets the rules that must be followed by the

programmer to add support for a new format.

Finally, we added the option to summarize data using clustering methods like in [Giac15],
to be able to fit the data in a screen because this kind of data tends to be big. In our

implementation we use the following terminology for the summarized data:

1. Phase: A phase is a group of consecutive Beats.

15

2. EntityGroup: A group of Entities.

3. GroupPhaseMeasurement(GPM): Sum of all the TimeEntityMeasurements that

map to an EntityGroup and a Phase.

We create the summaries using agglomerative clustering. In the following class

diagram, we can identify the relations between the intermediate and the summarized

representation.

<<lava Class>>
(9Phase

daintiness. clustering

o phaseld int
anhasEOumpanEnlsldList: List<integer=

ODFhaSE(IHl Beat)
& Phase(int List<integer>)
@ getPhasekd()-int

-phase

=<=Java Class=>
(2 GroupPhaseMeasurement
daintiness. clustering. measurements

@ getPhaseComponents():List<Beat=

© getPhaseCompanentsidList{) List<integer=
@ addBeat{Beat):void

@ getFirstPhaseBeat().Beat

@ getLastPhaseBeat():Beat

@ containsBeat({int):boolean

@ mergeWithPhas e(Phase)-void

@ setPhaseld(int):void

@ toString()-Siring

-phaseComponents | 0..*

s=Java Classs>
(5 Beat

daintiness.models

of beatid: int
of raw Date: String
of date: LocalDateTime

& Bleat(int String LocalDateTime)
@ getBeatld():int

@ getRaw Date():-String

@ getDate() LocalDateTime

@ toString():String

@ getDateAsSiring():-String

a1

-(:-;'D‘B‘a't"'ff_'

()cGrou pPhas eMeasurement{EntityGroup,Phase)
@ getEntity Group()-Entity Group

@ getPhase()-Phase

@ gefTemlList{)List<TimeEntityMeasurements=
@ getMeasurementlist{) List=IMeasurement>

& addTEW(TimeEntity Measurements):void

@ containsMeasurementTy pe{MeasurementType. AggregationType):int

-temlist |0+

entity Group
o1

<=Java Class==
(9 TimeEntityMeasurements

daintiness.models

{)c'l'\ meEnkity Measurements(Entity. Beat List<IMeasurement=)

@ getEntity ()-Entity

@ getBeal() Beat

@& getMeasurements():List<IMeasurement-

@ containsMeasurementTy pe(MeasurementType AggregationType):int
@ getheasurementOf Ty pe(MeasurementType A ggregationTy pe)-double

™

-measurements |0.* -measurementList

=<<Java Interface=>
@ IMeasurement
daintiness. modals. measuremant

@ getAgaregationType():AggregationType

@ getMeasurementType()-MeasuremeniType
@ gefValue()-double

@ addToValue{double):void

@ setColor(String)-void

@ getColor():String

<afava Classss

(3 EntityGroup

daintiness. clustering

o entity Groupkd: int
anrou pComponentsHames: List<Siring=
o ifeDetails: LifeDetails

& Entity Group(int, Entity)

GcEnl'n'yGruu p(int List<String=, Lif eDetails)
@ getEntity Groupkd{):int

@ setEntity Groupld(int)-v oid

@ getGroupComponents():List<Entity>

@ getGroupComponentsNames () List=String>
@ getl ifeDetails() LifeDetails

@ addEntityinGroup{Entity):v oid

B updateGroupLifeDetails({Lif eDetails)-void
B isAliveinPhas e{int)-boolean

@ mergeWithEntity Group{Entity Group):vaid
@ getGPMTy pe(intint):GPMType

® phaseContainsBeat(int,int,inf) boolean

-groupComponents (0._*

<zJava Classss=
O Entity

daintiness. models

o entityld: int
nFentrtyName: String
of WeDetails: LifeDetais

& Entity(int String,Li eDetails)
@ getEnkitykd():int

@ getEntityMName()-String

@ getl if eDetails () Lif eDetails
@ toString():String

Figure 17: Class diagram of intermediate and summarized representation models

3.2 Software design and architecture

In this section, we describe the core components of the system and the dependencies

between them through the package, the class diagrams, and the class descriptions.

The system’s backend consists of three main interfaces the IDataHandler, the
IFileHandler and the IClusteringHandler. In a nutshell, the IDataHandler keeps the
data in intermediate representation, the IFileHandler loads and convert the supported file

formats to intermediate representation, and is responsible for storing the data to files, the

[ClusteringHandler applies clustering methods on the data to create a summarized

16

representation of them. Moreover, there is the IMainController which works like an API,

it exports all the main features of the system by combining the core backend components.

The frontend’s main component is the Controller class that connects the backend with the

frontend.

3.2.1 Software Architecture

The main engine consists of six packages plus three other application packages.

The main packages are the following:

Maincontroller package contains the API of the backend.

Models package contains the intermediate representation models.

10 package contains the file handling code (read/write/convert).

Data package contains the intermediate representation handler.

Clustering package contains all the necessary for the summarization of the data
code (clustering, models, structures).

Utilities is a package that contains some globally used enums.

The application packages are:

Gui package which contains the desktop application.
App package which contains a command line tool that generates and exports the
intermediate representation of the given dataset.

Experiments package which contains a script that we used to time the tool.

17

1 1 1
<=Java Package>= ==Java Package>> ==Java Package>>
i daintiness.experiments i daintiness.app FH daintiness.gui
] W e

<<Java Package>=
4 daintiness.maincontroller

==Java Package>> ==Java Package>> .
H daintiness.io H H daintiness.clustering.measurements | .-~
" L P by b g
=<<Java Package== i ' : <<Java Package==
fH daintiness.ioinput| |/ P 3 daintiness.clustering

=<Java Package>=

Hidaintiness.data ’

—
==Java Package>> .
i daintiness.models i

B N SO
<<Java Package=>
H daintiness.models.measurement

Figure 18: Package diagram

3.2.2 Backend Description

3.2.2.1 Data Models

The system uses a variety of models for the different data representations. These models
could be grouped as Intermediate Representation models, Summarized Representation
models and General-Purpose Models.

Entity: this class holds the main information about the entities which are the rows of our

data

18

Beat: this class represents the time unit of our data and we could also think of it as the

header of its column of our data
LifeDetails: this class describes the life details of Entities and EntityGroups.

IMeasurement: this interface holds the information(value, color, type) of a cell, there are

three classes that implement this interface.

e Measurement: this kind of measurement represents the value of a non-empty
cell.

e EmptyMeasurement: this measurement holds the information about the cells

without value. A cell can be without value because it is a birth or death or
active(the entity is alive but there is no value) or inactive (the entity is either

dead or yet to be born) cell.
MeasurementFactory: this class helps the generation of IMeasurement type of classes.

TimeEntityMeasurement(TEM): this class packs an Entity, a Beat, and a list of the
available IMeasurements. It is the core component of the intermediate representation. It
holds all the necessary info of a cell. The Entity represents the row, the Beat represents

the column and the IMeasurement represents the value of the cell.

EntityGroup: this class is produced by the entity clustering; it represents a generated
group of entities.

Phase: this class is produced by the beat clustering; it represents a generated group of

beats.

GroupPhaseMeasurement(GPM): this class packs an EntityGroup, a Phase and a list of
the available IMeasurements; it is created by aggregating the TEMs that are contained by

the EntityGroup and Phase components.
GroupMeasurements: this class maps an EntityGroup with its GPMs.

ChartGroupPhaseMeasurement: this class is a simplified form of the
GroupMeasurements class; the difference is that ChartGroupPhaseMeasurement holds
only a specified type of IMeasurements; it is used in the GU], in file exporting and in data

sorting.

19

s=lava Class=>
(3 DataHandlerFactory

daintiness.data

& DataHandierFactory()
© getDatarandier(Siring) DataHandier

<<lava Class>> s
(© DataHandler

daintiness.data

@ Datariander()

@ init(List<Beat>,List<Entity > List<TimeEntity Measuremenis>)-void
© gefType()FieType

® gethumberOfTEMS(int

© sefType(FieType)void

© getTimeline() List<Beat>

@ getPopulationy) List<Entiy>
® ¥Map-<String ement
® ¥ Map<integer Map=Siring ement

© gefTem(Entity Beat) TimeEntityMeasurements
@ mapTEMS():vaid

@ getEntity(int)-Eniity

© getEntityByName(Siring) Entity

© getBeal(int) Beat

@ getTimeEntityMeasurementasString():String
@ getTimelines String():String

= getMeasurementsAs String()-String

ki I
<<Java interface>>
@ IDataHandler

daintiness. data

@ getEntity (int)-Entity

@ getEntiyByName(String)-Entity
© getBeat(int) Beat

@ setType(FicType)vaid

@ getType()FieType

© gefTimeline() List<Beat=

@ getPopulation() List<Entiy>

®):Map=String ement

@) gerMap<Siring ement
© getTem{Eniity Beat) TimeSntityMeasurements

@ getTimeEntityMeasurementa s String()-String

© ini(Lisi<Beat> List<Enty> List<TimeEntiyMeasurements=J:void

© gethumberOf TEMS ()int

-mpastfrementsLgl 0 *

=<<Java Class=>
(@ TimeEntityMeasurements

daintiness.modzls

& Beat

@ getEntity ()Entiy

<heasurems

population\ p * -entty 41

<<Java Classs>

@Entity

daintiness.modsls

@ Entity(in String Lif eDetails)
@ getEnttyld{yint

@ getEntiyName():String

© getlifeDetais() LieDetais

-ifeDetais | 0.1

<<lava Class=>
(@ LifeDetails

daintiness.modzls

& LifeDetais(int int boolean, int)
& LifeDetais(intint bookean)

© getfirthBeatid(yint

© getDeathBeatidyint

@ sAIVE():badiean

@ getDuration{):int

© taSiring():Sring

beat\ 0.1 -fimeliné
3

<<Java Class>
(@Beat
daintiness. models

& Beatint String LocaDateTime)
@ getBeatia(yint

 getRaw Date()-String

@ getDate() LocaDateTime

-meafurements

<<lava terface==
@ImMeasurement
dsintiness madsls messurement

@ getAgaregationType():A garegationType

=xJava Class=>
(©MeasurementFactory
dairtiness models messursmant

© getBeat() Beat
@ getheasurements(y-List<Measurements © get Type():M Type &)
@ emen ementType.Agar inl @ getValug()-doutle ®9 ggreg p
© getheasurementOfType(MeasurementType AggregationType) double @ addTovalue(double)-void @ getD: Agg

@ selColor{Stiing)-void @ leasurement

© getColor() String

5 =

<<lava Casss>

© getAgoregationType():A ggregationType
@ getheasurementType()MeasurementType
© getValue():double

@ addToValug(doubie) vaid

@ getColor():String

@ setColor(String)-vaid

Figure 19: Intermediate representation models’ diagram

3.2.2.2 FileHandler Logic

<<lava Classs>

& toSting():String & tostring()'String (@Measurement (®EmptylMeasurement
@ gelDateAsString{)-String daintiness. medels. measurement daintiness. models.measurement
&M Tyoe Aga &FEmptyMeasurement{GPMType)

@ getAggregationType():AggregationType
@ gethleasuremeniType()MeasurementType
© getValue()-double

@ addToValue{doubie)vaid

@ setColor(String)-vaid

@ getColor():String

This group of classes are responsible for the data input, output and the conversion of them

to the intermediate representation. It supports a variety of file formats.
FileHandlerFactory: this factory class helps us generate [FileHandler type of classes.

IFileHandler: this interface sets the rules of a FileHandler; it is created this way to give

the option to other programmers to use different kind of FileHandlers in our tool.

FileHandler: this class is our implementation of IFileHandler; it is responsible for the

data input and output.

20

CsvReader: this class is responsible for the csv/tsv files parsing; it returns a list (rows)

of String arrays(columns).
LoaderFactory: this factory class helps us generate [Loader type of classes.
ILoader: this class is a simple interface that our Loaders use.

SimpleLoader: this class implements [Loader and is used to load csv and tsv files directly

as intermediate representation; it also gets custom separators as arguments.

SchemaEvoLoader: this implementation of the ILoader is used to parse schema evo
datasets; it parses three files that are contained in the input folder file
(SchemaHeartbeat.tsv, tables_DetailedStats.tsv, transitions.csv); SchemaHeartbeat.tsv
contains the timeline data (beats); tables_DetailedStats.tsv contains the population data
(entities); transitions.tsv contains all the transitions that have occurred in the database’s
lifetime (these data are converted to TimeEntityMeasurements by aggregating them by

transaction type)

TableBeatMetrics: this class is used only by SchemaEvoLoader; it stores the number of

different type of transactions that occurred to an entity in specific moment(beat).

21

P
ooz ==
O Fletanser
e atoare e
tonFie: e

@ loadTEM) Dstaransier

o gonFue: Fie
© geiPhasesOutal) Lstar)> o ouipuiP Fle
@ getEnttSroucData() Map=rteger Stingl)s projecihame: Siing

@ GefLancechhensus e riMO() Mptege Mapitege Dinitie~> o fieType: FieType

© parseProjectTol) vaid & phasesData st
© BCpOnFTORCHFI Sng STNGI VO & enmtyGroupTaCompanants Namahan: Map<irteger Stigl)>
@ wrteOntaToFbe(Fie Siringlvod (. bl
@ wrteDuaToFie(Strrg) Voo -
@ s oG erFieiFie) vod

@ seCHenFie(Fie FieType) void
© geFisTyos(FisTyoe

@ GEOUAPSIN Fle

Fricranger)
-...| @ seGwerFieFie) o
& seGiverFie(Fie FieType) v0d
P ni—
@ writeDataToFSe(Fie Siring) vaid
@ wiEeDsToF ST v
& xporiropeci(Fie Sting Srngivod
7| @ parsePromctmioduos
& gefPhesesDuta(Lstere>
P O —r—
& HLosds e as r hartlinc) MBs<rtagt Map<rhegt Daubie>>
' lo36GADaia() void
@FiteHa NracaRy - OIS 6Ny GroURCOmEOnents S nds Srndl]

—) .
Frieraraefaciany) g & acwses (Smallivad
@ getFisrander(String) FieHander & parseLs tFromSinng(Stnng) Strngl)

. & paseFiertoiFieron

& U Fle
@ getFieType() FieType
8 ScFE TP e it SR o

<“<ivareetaces
O ILoader

smrness inirgut__[@ernneenen

T Flamanicont e
L —_ © goscurayoe e s o
‘ - - i)

© transiions Path. Fie

. © timeLinePath: Fle
<<Jave Cass>> e - © tabiesPan Fie
@ simpleLoader | - & resubsFolder: Fle.

darerass gt
o fiuresFoer Fis

i 4 4 projecitame Sting
& SempleLoader(Fin) i T, o temeine: List<Beats

& SmoieLonder(Fie. Srg) T T ———— Rt T © entlies: List<Eréty>

© foacl) Caiatander "] & versionToBestedap HasrspeStreg ntegers.

s _] st eBents) © entyNameTonGEx. Mag<Strng Mleger>

& parseTmeLneiStrrgl]l ArtyLasteBeat> timeErityllessuremeres ListeTeeErttyhessuramerts
© formafToFCnts Tims{SirngLocsDatsTims B

o dstaPn Fie

[r———p——

8 generateFoderPanFie Seng) Fle

& guRLore Fie

- PqeciFies Fie) boclesn

E @ a0 Datatance

@ loadTemeLine(}void

o fermaiType: Row FarmarType & parseTimeSeax Sl et

& SergeRon Parsrt S) e py———

@ ety Erety - & parseTabie{Siringl it Erey

& spRameAndVaentyvod = © oacvatrcs(-voa

8 parseEity() o - 8 GeneeateTmeEryMessuremerts() veid

A o 8 CrEA TENGOMOraLOS{SHg L LR aS uramart>
8 DATSERON VR vl . W TS NMAD! v

8 parseRow Name(vod - & handieAtomicChangei{Stringll vo
 frosprsorrvsd - & parseTramactonType(Sirmg) Tramsactontyoe

& geifaw Vake() Singl] o & mepTetetres(Sirng t Trarmscteriype) vad.

& generateEresyint vos .

e

8 geiestBestoint vt

<cdava G
(@ TableBeatMetrics

dareness s moue scheme:

~csvRsadeh, 0.1

<ava Casse> o
@ CsvReader e
it ol & runberOfins stions. it
& PunberOMDeietions. it
5 nunbarOIUpantas: it

o puen Fie
I separstor. sting
o skirsader boolean & TableBeathtetrics ()

@ getimeerOfTabieBeatEy eres() 1t

FsvAmoniFae pooaan) .
FCavReade(Fie bosean Suing) o ssngo surg
o readh) LiteStrngl o asdrsarton() vt

@ 30wt ¥00
@ a0dUpdatei) void

@ OUTVMLRSYA gore0a0n Ty D8 Ay egaonype) doutle
@ geiumbeOfinsartions () int

@ gemserOieietons it

@ getumber Oflpdates ik

Figure 20: Class diagram for package io

3.2.2.3 DataHandler Logic
This set of classes store and give us access to the intermediate representation.
DataHandlerFactory: this factory class generate IDataHandler implementations.

IDataHandler: this interface set the rules to create different kind of DataHandlers that
are compatible with our tool.

DataHandler: this class is our IDataHandler implementation; this class keeps the
intermediate representation and give as access to it through a variety of different data

structures.

22

3.2.2.4 ClusteringHandler Logic

This set of classes generate a summarized version of the intermediate representation

using clustering methods.

ClusteringHandlerFactory: this factory class helps us generate IClusteringHandler type

of classes.

IClusteringHandler: this interface sets the rules of ClusteringHandler to be compatible

with our system.

ClusteringHandler: this is our IClusteringHandler implementation; it combines the

necessary components for both the beat and the entity clustering.

ClusteringProfile: this class packs a EntityClusteringProfile and BeatClusteringProfile

object; in other words, it contains all the necessary parameters for the clustering methods.

EntityClusteringProfile: this class contains the necessary parameters for the entity

clustering method (desired number of entity groups & weights).

BeatClusteringProfile: this class contains the necessary parameters for the beat

clustering method (desired number of phases & weights).

IEntityGroupExtractor: this interface sets the rules that an EntityGroupExtractor must

follow.

o AgglomerativeEntityGroupExtractor: this is our implementation of the
[EntityGroupExtractor interface and offers agglomerative clustering for the

Entities.

EntityGroupExtractorFactory: this class helps us generate objects of the

[EntityGroupExtractor implementations.
IPhaseExtractor: this interface sets the rules that a PhaseExtractor must follow.

o AgglomerativePhaseExtractor: this is our implementation of the

[PhaseExtractor interface and offers agglomerative clustering for the time Beats.

PhaseExtractorFactory: this class helps us generate objects of the [PhaseExtractor

implementations.

23

24

s Depematuncit 8|
0 o
e (st o
OO RSP ©

<t e P

B T
! DSBS SO RS EDRRIAIRE P
e
RTINS
<esseg oaees
omessrsmimotnap
—
Asegicrenro B ©)
ccrmm ps

"
(RO £ KRR ICIRONS M ©
P

B T RSO DR TR0 (RO

Figure 21: Class diagram of the package clustering

Main: this is main class of the desktop application; it initializes the app by loading the

Our GUI consists of the following set of classes and fxml files.

3.2.3 Frontend Description

Scene.fxml file.

Scene.fxml: this fxml file contains the basic design of the main window.

Controller: this class is responsible for the communication between the main engine API
and the gui; it also creates and shows dynamically some extra graphic components of the

main window.

PLDiagram: this is a class extends the javafx ScrollPane class; it contains the custom
diagram (Parallel Lives Diagram) that we created using the TableView class; this diagram

was created to visualize the data of parallel time-series.

ClusteringProfileDialog.fxml: this file contains the design of the dialog that we created

to enter the clustering parameters to the application.

ClusteringProfileDialogController: this class is responsible for the data initialization

and handling of the ClusteringProfileDialog.

EntityGroupDetails: this class creates ScrollPane that shows the details of a given

EntityGroup; it is used when we click on an EntityGroup on the PLD.

PhaseDetails: this class creates ScrollPane that shows the details of a given Phase; it is

used when we right click on a Phase on the PLD.

3.3 Software testing design

In this section, we describe the testing methodology we used on our system as well as the

test cases that we created.

3.3.1 Testing Methodology

To test our system, we used the black box testing methodology. We created tests that

check the systems correct functioning in common and in extreme cases.

All the tests that we created compare the expected output with the produced output given

a specific input. In some cases, we created our own data for the testing purposes.

3.3.2 Detailed test description

For the testing we used “Junit 5” and we have created the following test cases:

o LoaderTest: This test was created to check the correct loading and the
conversion to intermediate language. We tested three different input formats
(tsv, csv and schema evo data). We created mock datasets and we hard-coded

the expected values in the unit test.

25

TEMExporterTest: In this test, we write the intermediate representation to a
file and we load it back. Then we compare the initial data with the retrieved data.
ProjectlmporterTest: In this test, we load a dataset snapshot (tem.tsv &
gpm.tsv) and we compare the expected summarized representation with the
loaded one. We test a dataset both with and without clustering.
ProjectExporterTest: In this test, we write a snapshot of the dataset to files
(tem.tsv & gpm.tsv) and we try to retrieve it. Again, we test a dataset with
clustering and one without.

SortingTests: In this test, we test all the available sorting types. We load and
sort the dataset with each one of the available sorting types. We test them by

comparing each line with the next one.

Finished after 0.814 seconds

Runs: 1414 B Errors: 0 B Failures: 0

W @ SortingTests [Runner: JUnit 5] {0.237 s)

Sorting by descending activity test (0,026 =)
Sorting by descending birth test (0.084 =)
Sorting by ascending life duration test (0.044 =)
Sorting by descending life duration test (0.030 s)
Sorting by ascending birth test (0.03% 5]

Sorting by ascending activity test (0.033 =)

W @ ProjectlmporterTest [Funner: JUnit 5] (0,106 =)
Load project with clustering test (0.024 <)

Load project without clustering test (0.022 <)

W @ LoaderTest [Runner: JUnit 53] (0,015 s)

TSV Loader Test (0.004 5)
CSV Loader Test (0.004 5)
Schemabvo Loader Test (0,007 =)

W @ ProjectExporterTest [Runner: JUnit 3] (0,148 s)
Export project with clustering test (0,021 =)
Export project without clustering test (0.057 =)

W @ TEMExporterTest [Runner: JUnit 3] (0.010 =)

Export PopulationHistory to tsv Test (0.010 =)

Figure 22: Unit tests

26

3.4 Technical details and user guide

In this section, we list the technologies that we used to develop the system and we

describe the installation and user guides.

3.4.1 Technical details

For the development we used the eclipse IDE (2020-12) and Java 11. For the frontend we used
JavaFX 11 and for the testing we used Junit 5. We used ObjectAid that is bundled with the eclipse IDE to

generate the package and class diagrams.

We also used Apache Maven 4 to handle easier the dependencies of the project. Eclipse comes with a

maven plugin which is very helpful.

3.4.2 Installation guide

To install the project, the developer needs to follow these steps:

1. Open eclipse.

2. Goto File -> Import.

3. Select Git -> Projects (from Git with smart import)

4. Fill the repository’s information. (they can be found in this link:
https://github.com/DAINTINESS-Group/PlutarchParallelLives)
If everything is ok the IDE must be able to identify the project.
Click Finish.

Now Right Click on the project.

Go to Maven -> Update Project... and click it.

v o N o owun

In this dialog you must check the following boxes:

a. Inthe “Available Maven Codebases” the project must be checked.
b. Update dependencies.
c. Update project configuration using from pom.xml.
d. Refresh workspace resources from local filesystem.
e. Clean projects
10. Click OK and you are ready.
Notes: You must have installed in your system a jdk 11+ with correct JAVA_HOME
configuration. If you are using a different IDE, you may need to find how to import the
project from GitHub and how to get the dependencies using Maven(some IDEs doesn’t

come with built-in maven plugin and you may need to install it separately).

27

3.4.3 User guide

In this section, we describe the user guide for the desktop application.

1. Run MainGuiApp.

2. The main view will show up.

|87 Ploutarch Parallel Lives — O %

File Project PLD

Figure 23: Main view (without data)

3. Inthis phase, the user must load one of the available file formats:
i. Single-file data (no aggregation needed). These files can be either csv or
tsv. The first row contains the time beats separated (columns) and the
other rows are the entities (rows). The first column of each row contains
the name of the entity and the other columns contain the measurements
of this row’s entity for every time beat. To load this kind of files, select

File -> Load from file.

Albania,t

Algeria,t

Angola,@

Antigua and Barbuda,®.8159,60

Figure 24: Simple CSV file

ii. Schema evolution data. This kind of data are part of the Heraclitus tool

output. Our tool requires specific folder structure because it is

28

compatible with the Heraclitus output data. The minimum folder
structure that is required is in figure 25 (without figures/PPL folders).4
File -> Load from folder

~ biosql

~ figures\ PPL

= biosql_detailedPLD.tsv

~ results
SchemaHeartbeat.tsv

tables DetailedStats.tsv

B transitions.csv
Figure 25: Schema evolution folder structure

The first file we need is tables_DetailedStats.tsv. [t contains the required

for the entity information (name, birth, death, duration).

£ tables_DetailedStats.tsy X

Version BirthDate LKVDate YearOfBirth YearOfLKV DurationDays SchemaSize@8irth
30:31 2012-09-10 10:18:40 © 1 2 a 34 2 4 2 0.9 0.4 2

30:31 2012-09-10 10:18:4

Figure 26: tables_DetailedStats.tsv part 1

SchemaSizeAvg SchemaSizeResizeRatio SumUpd CountVwlpd ATU UpdRate AvgUpdVolume SurvivalClass ActivityClass LADClass

Figure 27: tables_DetailedStats.tsv part 2

The second file we need is SchemaHeartbeat.tsv. It contains the required

time beats information (id, date, time).

£ SchemaHeartbeal tsv

Figure 28: SchemaHeartBeat.tsv part 1

tablesIns tablesDel attrsInskithTableIns attrsbDelWithTableDel attrsInjected attrsEjected attrsWithTypelUpd attrsInPKUpd tableDelta attrDelta attrBirthsSum

Figure 29: SchemaHeartBeat.tsv part 2

attrDeathsSum attrUpdsSum Expansion Maintenance TotalAttrActivity

Figure 30: SchemaHeartBeat.tsv part 3
Finally, the third file we need is transitions.csv. It contains all the

transaction from every time beat to the next one for each entity.

B transitions.csv X

H

1 trID;oldVer;newVer;Table; EventType;attriName; attrType;iskey;pkey;fkey
1;1012181431.591;1014631726.sql;location_qualifier_val sertion:UpdateTable;qualifier_int_value;INT(10);false;0;-
1;1012181431.5q1;1014631726.5ql; location_qualifier value;Deletion:UpdateTable;slot value;INT(10);false;0;-

Figure 31: transitions.csv

29

iii. = Converted tsv data (aggregated data generated by this tool). This
format is created by us. We call it intermediate representation or tem
(TimeEntituGroups) file. The first line contains the time beats in human
date time format. The other line contains entities, the first column of
each entity column contains the needed info (name, birth, death, status)
and the other columns represent the measurement of an entity in a
specific time moment.

biosql detailedPLD.tsv X

biosgl > figures > PPL> = ailedPLD.tsv
1 |{name, birthId, deathId, status[} 2002-81-28 01:30:31 2002-02-25 10:08:46 2002-02-26

{biodatabase,®,46,1}
{bioentry,®,46,1}
{bioentry_date,0,2,0}
{biocentry dblink,10,22,0}

Figure 32: Intermediate representation file

4. When we have chosen the desired dataset, the clustering dialog will load.

5.

B Set clustering profile X
Time-clustering parameters v
Desired number of phases a7
Distance weights Egaonges E;;

Entity-clustering parameters |/

Desired number of entityGroups | 45

Cancel

Figure 33: Clustering dialog

In this dialog, we can decide if we are going to summarize our data (clustering)
to make the fit in our screen. We can set the desired number of Phases
(columns) and EntityGroups (rows) and the phase clustering weights. If we
leave the desired numbers unchanged there will be no clustering because the
default values are the actual numbers of rows and columns of the dataset.

We can also import a dataset snapshot which consists of a two-file folder
(tem.tsv: intermediate representation & gpm.tsv summarized
representation). This way we can skip the clustering process. The gpm file has
a special format to keep the phase and entity group information. The first row
has tab-separated the phases information {phase id, first time beat, last time
beat }. The other rows contain the entity groups information entity group id
\tab {list of component entity names} \tab {list of phase id : measurement

pairs}. (Look figure 34)

30

g

1e,0,1} {1,2,3} {2,4,5} {3,6,7} {4,8,8} { 1€ {6,11,11} {7,12,12}

(%]

=

3
6

{biodatabase}
{bioentry_keywords,biocentry description,bioentry date} {}

{bioentry_reference} {5:1,15:6}

{bioentry_taxa,bioentry direct_ links} {1:3}
{biosequence} {1:1,5:6,9:1,108:1,15:6,17:3,18:1,19:2}
{cache_corba_support} {}

{comment,biocentry} {5:6,9:1,10:"
{location_qualifier_value}

Figure 34: GroupPhaseMeasurement file (gpm.tsv)

7. Now we have successfully loaded a dataset in our system and we can do the

following things:

I.
ii.

jii.

We can sort the rows with one of the available sorting types.
We can show the display the data in the PLD.
We can export our data as a snapshot (intermediate representation &

summarized representation).

8. We can click the “Show PLD” button to show the Parallel Lives Diagram. When

the diagram is displayed, we can do a variety of things.

i.
il.
ii.
iv.
V.
Vi.

vil.

We can export it as a PNG.

We can sort the data.

We can display other generated types of our data.

We can left click on an entity group to get its details.
We can right click on a phase to get its details.

We can hover on a measurement cell to get its details.

We can zoom in and out by scrolling the mouse wheel.

9. Parallel Lives Diagram User Guide:

i.

il

jil.

Cell colors: Gray :: inactive entities, Black :: life related beat (life or
death), Shades of Green :: the lightest one maps to an active entity
without measurement that moment, the other three darker shades map
to three different value buckets that are generated according to the min
and the max measurement of the dataset.

EntityGroup colors: Red :: dead EntityGroup, Blue :: alive EntityGroup
As we see in the EntityGroups column (in figure 35), some cells contain
string and other integers. The string (EntityName) is used when the line
maps to only one Entity. The integer (EntityGroupID) is used when the

line is an EntityGroup that contains more than on Entities.

31

7 Ploutarch Parallel Lives

fie Project PLD

R ———— Paralle Lives
lypes:

confirm

Group id: 3
GrouplifeDetails:
->Birth: 0
->Deathi 2

GroupPhase
->Duration: 3

Measurement
-»Alive: false .
e Details N
Components =
id: 7, name: bioentry_keywords, birth: 0, death: 2, duration: 3 k. IR

id: 5, name: bioentry_description, birth: 0, death: 2, duration: 3
id: 2, name: bioentry_date, birth: 0, death: 2, duration: 3

Details Pane
(Entity Groups/
Phases)

Figure 35: Sorted PLD and details

3.5 Software expandability

Our system can be employed in other applications, it can be extended, and it can be
modified to the user needs. We will list some tips for some of the possible changes that

someone may want to make.

3.5.1 Add new file format support

To make the system compatible with a new dataset format a developer must follow the

next steps:

1. Create a proper ILoader implementation and add it as option to the
LoaderFactory.

2. Add the new file type in the FileType enums.

3. Modify properly the parseFileInfo method in the FileHandler.

3.5.2 Change the clustering methods

The following process is similar for both PhaseExtractor (column clustering) and

EntityGroupExtractor (row clustering).

1. Create a proper IPhaseExtractor implementation and add it as option to the

PhaseExtractorFactory.

32

2. Either add a parameter in the generatePhases method of the MainController to
be able to choose between the different methods or just replace the current

method with the desired one in the generatePhases method.

33

Chapter 4. Experimental validation

In this chapter, we describe the experimentation methodology that we followed to

calculate the performance of our system and we discuss the results.

4.1 Experimentation methodology

The experiment we tried to test the performance of our system is the following. We want
to check whether the conversion process of a complex parallelly evolving time-series

format to the intermediate language is performing well.

The most complex format we have in our hands is the relational schema evolution format,
so we timed our system using 196 different datasets of different sizes. To time the

datasets, we created a script that applies the following steps for each dataset:

Load the dataset.

Convert the data to the intermediate representation.

Write the data to new file using the intermediate representation.
Time the computation time.

Repeat the steps 1-4 ten times.

A o A

Save the mean computation time.

We also stored the following features for each dataset:
e Number of Entities
e Number of Beats

e Number of Cells (Entities x Beats)

e Number of Non-Empty Cells

We used the above data to create a tsv file that can be subsequently used to analyze the

performance of the system.

1 |Dataset l#entities #TimeBea #cells #NonEmptyCells ComputationTime(milliseconds)
2 |opencart__opencart 283 516 146,028 449 1.632
3 |shopware_ shopware 227 11 2,497 o 0.257
4 |Ensembl 153 527 80,631 485 3.042
5 |joomlatools__joomla-platform 113 18 2,034 7 0.357
6 |damnpoet_yiicart 109 7 763 1] 0.29
7 |torrentpier__torrentpier 72 126 9,072 65 0.243
& |SeldonlO__seldon-server 70 2 140 0 0.101
9 |byteball__byteballcore 68 12 816 18 0.332
10 |energine-cmf__energine 65 29 1,885 26 0.267
11 |enova__landable 59 24 1,416 28 0.206
12 |studygolang__studygolang 359 46 2,714 37 0.217
13 |intelliants__subrion 56 266 14,896 94 0.562

Figure 36: Sample of the experiments results

34

For the experiments we used a Dell Inspiron 7559 laptop with the following
specifications:

e (CPU:inteli7-6700HQ 2.60 GHz

e RAM: 8GB

e 1TBHDD

4.2 Detailed results

We use scatter plots with different features as x-axis and the time needed to load the
input, convert it in an intermediate representation and store this intermediate
representation to a file, which we call computation time trying to find a correlation
between them. Unfortunately, most of our datasets were small. About 180/196 datasets
have less than 1000 cells. Nevertheless, we have created several scatter plots using all the

available datasets:

x_entities_y_time x_beats_y_time
--------- Linear (x_entities_y_time) Linear (x_beats_y_time)

3.5
m
2 3
3
225 y = 0.004x + 0.1283
= 2 _
= R? = 0.6965
- 2
@
£ y = 0.0049x +0.12
s R?=0.3238
]
w1
3
]
o o e e e
E05 [§ o 5 0. o 9 g ® o
S 2 2 s a8 afante’s e et B0
o 0 [SR H— h....A- i T

1 10 100 1000

(Blue)Number of Entities (log scale)
(Orange)Number of Beats (log scale)

Figure 37: Scatter plot (entities/beats, computation time)

In Figure 37, we depict the computation time of the 196 tables as a function of the number
of the peer entities appearing in each input dataset for the blue points, and, as a function
of the number of time-beats appearing in each input dataset for the orange points.

The performance of the system seems to be very weakly connected to the number of both
entities and time-beats for small volumes of them and seems to be affected only above the
threshold of 100 entities/time-beats. However, the performance seems to be slightly

more affected by the number of entities.

35

x_cells_y time

x_cells_y_time cererenns Linear (x_cells_y_time)

35
w
2 3
]
o y=2E-05x+0.171 X
£ 25 R? = 0.506
E
— 2
]
E
+ 15
c
2
T 1
S §
(=%
E 05
8 Na. 9 M. [, MO ‘.T........:..n..-n---"""'

0 O Vel e L bl
1 10 100 1,000 10,000 100,000 1,000,000

Number of cells {log scale)

Figure 38: Scatter plot (cells, computation time)

In Figure 38, we depict the computation time of the 196 tables as a function of the number

of the cells appearing in each input dataset.

The performance of the system seems to be very weakly connected to the number of cells
for small volumes of them and seems to be affected only above the threshold of 10000
cells. This makes sense, because the number of cells equals the number of entities

multiplied by the number of time-beats.

Xx_nec_y_time

X_Nec_y_time resreeres Linear (x_nec_y_time)

35
5 3
c
o
o
225 y=0.0046x +0.1328
= R?=0.7507
£,
@
£
=15
o
=]
S 1
3
= .
£ o0s T T
(] [gV VURTRY. [TELLLA

@ et
0 ' '....‘...............-‘-.-m-. & o'g W ® . ®
1 10 100 1000

Non-empty cells (log scale)

Figure 39: Scatter plot (non-empty cells, computation time)

In Figure 39, we depict the computation time of the 196 tables as a function of the number

of the non-empty cells appearing in each input dataset.

36

The performance of the system again seems to be very weakly connected to the number
of non-empty cells for small volumes of them and seems to be affected only above the

threshold of 100 non-empty cells.

These scatter plots do not tell us much. The small values in x-axis are so small that their
insignificant in our experiments and we could assume that these tiny computation times
are more related with the system load (the moment of the timing) than with the
datasets.

That is why we tried to do the same scatter plots with only the twenty highest values of

each feature.

X_beats_y_time ® x_entities_y_time
Linear (x_beats_y time) «eeee Linear (x_entities_y time)
35
I :
9 25 y =0.0032x + 0.4431
= y=0.0066x +0.4902 .~ R*=0.6822
E 2 RZ=0.4869 .~
5} hd
ET° '
= []
e 1 % e T
'8 | NPT TP i L SUUUUT YeseeL L ()
& 0.5 S oririist ey 2 2 .
é 0
8 1 10 100 1000

(Blue)Number of Entities (log scale)
(Orange)Number of Beats (log scale)

Figure 40: Scatter plot top-20 (entities/beats, computation time)

In Figure 40, we depict again the computation time of the 196 tables as a function of the
number of the peer entities appearing in each input dataset for the blue points, and, as a
function of the number of time-beats appearing in each input dataset for the orange
points.

In this scatter plot it is clearer than before that the number of entities affect the system’s
performance more than the number of time-beats. However, we do not have enough big

datasets to be sure.

37

x_cells_y_time

x_cells_y_time ceeseeees Linear (x_cells_y_time)
35
]
g °)
@ 25 y = 1E-05x + 0.3331
= R? =0.5828 ’
E
[
£
c
2 1
S
=3 L@t
g 05 .‘......‘......................-..........-
S o
400 4000 40000 400000
Number of cells (log scale)
Figure 41: Scatter plot top-20 (cells, computation time)
X_hec_y_time
X_nec_y_time ssesssses Linear (x_nec_y_time)
__ 35
5
c 3 e
S
Q25 y=0.0047x + 0.0987 i
= R2=0.8383 .~
g 2
w
£ 15 e
- L
c 1 > e
9
4+ SPTTTLLA
2 o v e
S 20 40 80 160 320

Number of non-empty Cells (log scale)

Figure 42: Scatter plot top-20 (non-empty cells, computation time)

Finally, in the Figures 41 and 42, we do not get any new information about our data, they

are very similar with the Figures 38 and 39.

38

Chapter 5. Conclusion

In this chapter, we conclude the contribution and the results of this Thesis and list some

ideas about the system’s future improvements and expansions.

5.1 Summary and conclusions

The goal of this diploma was the creation of a strong parallel time-series visualization
tool. Giachos has already created such a tool in his MSc study [Giac15] but the resulting
tool came up with some format restrictions. It supports only the relation schema
evolution format. Therefore, we recreated it from scratch in a more generalized version

that supports more parallelly evolving time-series formats.

To make this possible we had to create a new format for our system, the intermediate
representation. It was designed in a way that it would be easy to convert other parallelly

evolving time-series formats to it.

We developed our system in a way that it would be easy to attach a custom
loader/converter to it to extend its compatibility. Our first version of this system is
compatible with the commonly used GapMinder format and the relational schema

evolution format.

Both formats can be visualized using our Parallel Lives Diagram implementation. Our PLD
comes with a set of features (zooming, sorting, save as image etc.) to make easier the

parallel time-series analysis.

Sometimes these datasets can be big in size and they cannot be fully displayed in a screen.
As Giachos did in [Giac15], we also used agglomerative clustering to create summaries of
the datasets. This process helps us reduce the data to a desired size that now is easier to
be studied. Our system also allows to import/export from/to file the clustering data to

skip the step of the clustering in case it is already done.

We tested the correct functionality of our system and finally, we tried some experiments
to validate the performance of our system on loading schema evolution data, converting
them to intermediate representation and storing the intermediate representation to a
file. Unfortunately, we did not have enough big datasets to be sure of the results, but
according to the available datasets we found that the system’s performance is slightly

more affected by the number of entities.

39

5.2 Future work

There are several opportunities to extend and improve our system.

The first thing that should be changed in the future is the JavaFX TableView that we use
to implement the Parallel Lives Diagram. We noticed that our system breaks when we try
to display datasets that have more than 150 columns. This problem is caused by the
implementation of the TableView, we found out that there is an issue

[https://github.com/javafxports/openjdk-jfx /issues/409] in the JavaFX repository in

GitHub which basically says that TableView has restriction in the column’s
representation. That is why we would suggest replacing this component with a custom

one or with a JTable (JavaFX supports Swing components).

In the future we could make our GUI more beautiful and add more features to it like
adding a second diagram to display the data without clustering, enrich the details Pane

etc.

A complete CLI tool that converts the data to intermediate representation and generates

summaries of them would be useful.

These are the most important parts that can be improved in the future.

Our GitHub Repository: https://github.com /DAINTINESS-Group/PlutarchParallelLives

40

https://github.com/javafxports/openjdk-jfx/issues/409
https://github.com/DAINTINESS-Group/PlutarchParallelLives

Reference

[Giac15]

[KrBK11]

[WaBJ16]

[KuSt12]

T. Giachos. Biography Synopses for Evolving Relational Database
Schemata. MSc Thesis, Dept. of Comp. Sc. and Eng., 2015, Available at

https://www.cs.uoi.gr/wp-content/uploads/publications/MT-2015-

18.pdf

Milos Krstajic, Enrico Bertini, Daniel A. Keim, CloudLines: Compact
Display of Event Episodes in Multiple Time-Series, IEEE Transactions in
Visualization and Computer Graphics, 17(12), pp. 2432-2439, December
2011

James Walker, Rita Borgo, Mark W. Jones, TimeNotes: A Study on
Effective Chart Visualization and Interaction Techniques for Time-Series
Data, IEEE Transactions in Visualization and Computer Graphics, 22(1),

pp- 549-558, January 2016

A. Kuhn and M. Stocker, "CodeTimeline: Storytelling with versioning
data," 2012 34th International Conference on Software Engineering
(ICSE), Zurich, 2012, pp. 1333-1336, doi: 10.1109/ICSE.2012.6227086

41

https://www.cs.uoi.gr/wp-content/uploads/publications/MT-2015-18.pdf
https://www.cs.uoi.gr/wp-content/uploads/publications/MT-2015-18.pdf

