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ABSTRACT
UML sequence diagrams are commonly used to represent
object interactions in software systems. This work consid-
ers the problem of extracting UML sequence diagrams from
existing code for the purposes of software understanding and
testing. A static analysis for such reverse engineering needs
to map the interacting objects from the code to sequence
diagram objects. We propose an interprocedural dataflow
analysis algorithm that determines precisely which objects
are the receivers of certain messages, and assigns the appro-
priate diagram objects to represent them. Our experiments
indicate that the majority of message receivers can be de-
termined exactly, resulting in highly-precise object naming
for reverse-engineered sequence diagrams.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

General Terms
Algorithms

Keywords
Static analysis, UML, reverse engineering

1. INTRODUCTION
Sequence diagrams play a central role in UML modeling

of object interactions [16, 9]. Such diagrams show several
objects and the messages that are exchanged among these
objects. The diagrams may also contain additional informa-
tion about the flow of control during the interaction, such
as if-then conditions (”if c send message m”) and iteration
(”send message m multiple times”).
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1.1 Reverse-Engineered Sequence Diagrams
Reverse engineering of sequence diagram allows the auto-

matic extraction of such diagrams from existing code. This
is often necessary during iterative development. A typical
scenario is to perform design recovery through reverse en-
gineering of class diagrams and sequence diagrams in the
beginning of the current iteration, based on the last iter-
ation’s code [7]. The resulting design documents serve as
the starting point for subsequent design work. Additional
reverse engineering is also usually necessary during an iter-
ation.

Software maintenance activities can also benefit from re-
verse-engineered sequence diagrams. These diagrams are
particularly well-suited for representing object interactions
in object-oriented software. The growing body of such soft-
ware, even for newer languages like Java, will create chal-
lenging maintenance problems for many years into the fu-
ture. Automatic design recovery of object interactions for
the purposes of software understanding and maintenance
can be made possible by tools for reverse engineering of se-
quence diagrams.
Object interactions are an essential consideration for test-

ing of object-oriented software [2]. Various testing approaches
consider the interactions represented by sequence diagrams
(or the similar collaboration diagrams) as part of their cov-
erage requirements. These coverage goals can be defined
with respect to different elements of statically-constructed
sequence diagrams which are extracted from the code under
test. Subsequent run-time analysis during test execution can
be used to determine the coverage of these diagram elements
and to highlight potential test weaknesses [12].

1.2 Object Naming in the Diagrams
The analysis described in this paper was implemented

as part of the ongoing work on the Red tool for reverse
engineering of sequence diagrams. The goal of this project
is to provide high-quality tool support for reverse engineer-
ing of UML 2.0 sequence diagrams from Java code. The
tool uses several static analyses, including call graph con-
struction [13], call chain analysis [11], control flow analysis
[15], and the object naming analysis described here. One
of the central questions we needed to answer in this project
was: Given some call site x.m() in the code, how should
the receiver object(s) at this site be represented in the dia-
gram? The answer to this question defines an object naming
scheme which maps the potential run-time receiver objects
at call sites to different objects represented in a sequence
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diagram. Our attempts to resolve this issue revealed var-
ious challenging technical problems, and eventually led to
the object naming analysis described in this paper.

1.2.1 Singleton Call Sites
We approached the problem in two stages. First, we con-

sidered the following question: given a call site x.m(), is it
true that there is only one possible run-time receiver object
at this site, regardless of how many times the site is exe-
cuted? Such call sites will be referred to as singleton sites.
We designed a static analysis algorithm for Java that iden-
tifies singleton call sites. Whenever Red represents such a
call site in the reverse-engineered diagram, it is guaranteed
that a single diagram object is sufficient to represent pre-
cisely the receiver object at the site. If a call site is not a
singleton site, in general there is no guarantee that it is pos-
sible to have precise diagram representation of the run-time
receiver objects for that site; later in the paper we present
examples that illustrate this point.
In addition to identifying singleton sites, the algorithm

determines an equivalence relation between such sites. Two
sites are equivalent if their unique run-time receiver objects
are guaranteed to be the same. This information is im-
portant in the construction of the diagrams, because if two
run-time messages are sent to the same run-time object, the
corresponding messages in the diagram should be sent to
the same diagram object. For such call sites, the diagrams
are guaranteed to represent correctly the semantics of the
analyzed code.
To design the algorithm, we first defined an interproce-

dural dataflow problem which formalizes the intuitions out-
lined above. This problem was inspired by the constant
propagation dataflow problem which is traditionally used in
compiler optimizations. The underlying machinery used in
our approach is similar to the techniques used to construct
constant propagation analyses. We then defined a flow- and
context-sensitive algorithm that solves the dataflow prob-
lem precisely—that is, it computes exactly the meet-over-
all-valid-paths solution, which is the standard notion of pre-
cision in interprocedural dataflow analysis [18].

1.2.2 Generalization and Evaluation
The second stage of the work generalized the analysis of

singleton call sites in several dimensions. First, a more pre-
cise treatment of object fields was introduced. Additionally,
the set of call sites for which precise naming is possible was
extended to include certain non-singleton sites. This allowed
the analysis to become more powerful in the sense of provid-
ing precise object naming for a larger set of call sites from
the code.
We implemented the generalized analysis and evaluated

its performance on a set of 21 subject components. Our re-
sults indicate that the proposed approach has practical cost
and achieves very high precision. For 18 of the 21 com-
ponents, the analysis successfully determined precise object
names for more than 75% of the considered call sites; for 7
components, this percentage was higher than 90%. Thus, in
the majority of cases, the diagrams that are based on the
analysis provide precise object naming which reflects cor-
rectly the meaning of the underlying code. Ultimately, this
analysis brings us a step closer to providing Red users with
sequence diagrams that are precise, concise, and easy to use
in the context of software understanding and testing.

class X { ... }
class A {

public void m(X a, int b) {
a.p1();

X c = this.m2(a);

c.p4();

X d = this.m4();

d.p6();

X e = d;

if (b > 0) { e = new X(); e.p7(); }
e.p8();

}
public X m2(X f) {

f.p2();

X q = this.m3(f);

return q;

}
public X m3(X g) {

g.p3();

return g;

}
public X m4() {

this.fld.p5();

return this.fld;

}
private X fld = new X();

}

Figure 1: Running example.

2. PROBLEM DEFINITION
The input to Red contains a set of Java classes that form

the component under analysis. The input also contains all
other classes that are (transitively) referenced by component
classes. The tool first builds a call graph for the component
and all of its transitive callees. Our current implementa-
tion constructs the call graph using the points-to analysis
from [13]; the technique from [14] is used to handle the case
when the analyzed component is not a complete program.
A tool user chooses a method m from the analyzed compo-

nent (we will refer to it as the start method for the diagram),
and Red produces a sequence diagram that represents the
potential sequences of run-time events that could be ob-
served when m is invoked. For example, consider Figure 1,
and assume that the analyzed component contains classes
A and X. Furthermore, for the sake of brevity, assume that
methods p1 through p8 in class X do not make any calls. If
a tool user chooses start method m, Figure 2 shows two pos-
sible sequence diagrams for this method. The part of the
diagram labeled opt represents optional behavior guarded
by some condition, as defined in UML 2.0 [9].
As part of the diagram construction, Red needs to de-

cide how to represent the run-time objects that are possi-
ble receivers at call sites. For example, for call site c.p4()

from Figure 1, the first diagram in Figure 2 uses the di-
agram object labeled c to represent the run-time receiver
object of message p4. The choice of this representation
scheme has very significant impact on the quality of the
produced diagrams. In the rest of the paper, we will refer
to this scheme as the object naming scheme for the reverse-
engineering analysis. Note that by “name” here we mean
the actual object shown in the diagram (e.g., the object la-
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Figure 2: (a) Naming scheme in ControlCenter (b) Naming scheme in our approach

beled c), rather than simply the label (e.g., c) used inside
that object.

2.1 Naming Based on Variable Names
The diagram in Figure 2(a) was constructed from the code

in Figure 1 using the reverse-engineering functionality of the
Borland Together ControlCenter modeling tool. (For ease of
presentation, we slightly modified the visual representation
of the diagram without altering its meaning). The object
naming scheme used in this state-of-the-art commercial tool
has not been published, but the diagram suggests that the
scheme is based on the names of the variables that are used
in invocation expressions. As a result, the same run-time
object may be represented by several diagram objects. For
example, the objects labeled a, c, d, f, and g actually corre-
spond to the same run-time object—namely, the object that
is referred to by the first formal parameter of m.
Such a naming scheme has serious shortcomings. First,

it may introduce redundant objects in the diagram. Fur-
thermore, it may incorrectly show that messages are sent to
different objects when in reality they are sent to the same
object. For example, messages p1, p2, p3, and p4 have dif-
ferent receiver objects in Figure 2(a), even though at run
time they are sent to the same object. It is also possible to
have messages that appear to be sent to the same object,
but in reality may be sent to different objects. For example,
messages p7 and p8 are not necessarily sent to the same ob-
ject at run time, but in the diagram the two messages have
the same receiver object.
A programmer or tester that examines such a diagram

may be easily confused, and may have to spend valuable
time and effort investigating the code in order to recover
the true nature of object interactions. The imprecision due
to this naming scheme is likely to occur often in practice, be-
cause object references are routinely used as parameters and
return values of method calls, and typically several variables
in different methods refer to the same object. To address

this problem, we propose the use of a naming scheme that is
based on interprocedural dataflow analysis which tracks the
flow of object references across method boundaries.

2.2 Singleton vs. Non-singleton Call Sites
Consider again the code in Figure 1. The calls to methods

p1, p2, p3, and p4 are guaranteed to have as a receiver a
single run-time object, which is the object that formal a

refers to when m is invoked. Similarly, the calls to p5 and
p6 have as a receiver the object to which this.fld refers
to before m is called. Finally, the receiver for the call to
p7 is the object created by the allocation expression inside
m. Having this information, a reverse-engineering analysis
can construct the diagram shown in Figure 2(b). Clearly,
this diagram reflects the behavior of the code more precisely
than the one in Figure 2(a), and therefore is preferable for
the purposes of program understanding and testing. Our
goal is to define a static analysis that makes possible the
creation of this more precise diagram.
A call site c is a singleton call site if, for a given call-

ing context of the start method, there is only one possible
receiver object at c. (A formal definition of this notion is
available in [4].) All call sites in Figure 1 except e.p8() are
singleton sites with respect to start method m. We want to
distinguish between singleton and non-singleton call sites be-
cause a reverse-engineered diagram can represent precisely
the receiver objects for singleton sites, as illustrated by the
diagram in Figure 2(b). For a non-singleton site, the repre-
sentation is not as straightforward. For example, consider
e.p8() which has two possible receivers. There are several
possible representations of this call. First, we could show a
message to only one of the two possible receivers, as done
in Figure 2(a). Second, we could introduce an auxiliary
“helper” object that represents either of the two possible
receivers. Third, the diagram could show two messages, one
sent to the object labeled this.fld and the other sent to the
object labeled e. Fourth, a reverse-engineering tool could
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create two separate diagrams, one for each of the two alter-
natives. Each of these possible treatments of non-singleton
sites has potential advantages and disadvantages. For exam-
ple, introducing helper objects makes the diagrams larger
and somewhat imprecise, since multiple diagram objects
now represent the same run-time object. Showing multiple
receiver objects for the same call site may significantly clut-
ter the diagram, especially if there are many non-singleton
call sites.
The complexity introduced by non-singleton sites moti-

vated us to separate our work into two stages. First, we
defined techniques for identifying singleton call sites and for
creating the appropriate diagram objects for them. The re-
sults from this work are described in this paper. As the
experiments from Section 6 show, our approach successfully
creates precise diagram objects for the majority of call sites.
Second, we considered the different possible ways of han-
dling non-singleton call sites, and the inherent tradeoffs of
these techniques. This effort is currently under way, and it
is not discussed further in this paper.

2.3 Naming Based on Equivalence Classes
Intuitively, two singleton call sites c1 and c2 are equiva-

lent if they always have the same run-time receiver object.
(A formal definition of equivalence is available in [4].) The
equivalence relation can be used to define equivalence classes
of singleton call sites. For start method m in Figure 1, there
are four equivalence classes:

{this.m2(a), this.m3(f), this.m4()}
{a.p1(), f.p2(), g.p3(), c.p4()}

{this.fld.p5(), d.p6()}
{X(), e.p7()}

Each equivalence class corresponds to a diagram object in
Figure 2(b). More generally, consider any static analysis
that identifies a set of call sites as singleton sites and pro-
duces an equivalence partitioning of this set. Such an anal-
ysis defines an object naming scheme in which each equiv-
alence class is mapped to a different object in the reverse-
engineered diagram, and the messages at singleton sites are
represented accordingly. Of course, this naming scheme is
partial because it does not apply to non-singleton sites.
The goal of this work is to identify a large number of sin-

gleton call sites and to determine their equivalence. Our
initial attempt to solve this problem considered points-to
analysis. Points-to analysis is a popular form of interproce-
dural analysis that computes relationships of the form “at
program statement s1 reference variable v may point to some
object allocated by program statement s2”. Unfortunately,
such relationships cannot be used to identify singleton call
sites. Even if we know that at v.m() variable v points only to
objects allocated by s2, it is of course possible for s2 to cre-
ate multiple objects (e.g., under different calling contexts).
Furthermore, v.m() could be a singleton site even if v may
point to objects created by several program statements. For
example, in Figure 1, method m could by invoked by other
parts of the system using as actual parameters different in-
stances of X allocated by many distinct object allocation
sites. Points-to analysis will report that formal a inside m

may point to all of these objects. However, during a partic-
ular invocation of m, formal a points to only one object, and
therefore a.p1() is a singleton call site.
The approach we have taken uses different techniques,

based on ideas from traditional dataflow analysis. The next
section defines a dataflow analysis problem that is at the
core of this approach.

3. DATAFLOW PROBLEM
Our analysis identifies singleton call sites and finds the

sources of the receiver objects at these sites. This section
describes two such sources; later in the paper we provide a
more general discussion of other sources. One category of
sources are the formal parameters of the start method. For
example, for m in Figure 1, there are two such sources: a and
the implicit formal this. We would like to associate certain
call sites with these sources, in the following sense: if a site
ci is associated with a formal fj of the start method, then ci

is a singleton site at which the receiver object is guaranteed
to be the same as the object that fj refers to at the time
when the start method is invoked.
Another category of sources are object allocation sites sj

that represent the creation of exactly one object during the
execution of the start method and its transitive callees. We
will refer to such allocation sites as singleton allocation sites.
Statement e = new X() in Figure 1 illustrates this property.
We want to associate a call site ci with a singleton allocation
site sj whenever it is true that the receiver at ci is definitely
the unique run-time object created by sj ; of course, this
implies that cj is a singleton call site. Not every object al-
location site creates a single run-time object. In particular,
if an allocation site is inside a method that could be exe-
cuted multiple times (i.e., a method that is reachable along
multiple executions paths from the start method), it poten-
tially creates multiple objects and cannot be considered as
the source of receiver objects for singleton call sites. If a
method is reachable from the start method only along a sin-
gle execution path, an allocation site in this method is a
singleton site only if it is not located inside a loop. It it
straightforward to analyze the call graph and the control-
flow graphs of all reachable methods in order to identify
allocation sites sj that are definitely executed only once.

3.1 Lattice
Based on these observations, we define a lattice of values

that is used to define the dataflow problem. Each reference-
typed formal of the start method corresponds to a distinct
lattice element. Similarly, each singleton allocation site is
represented by a separate lattice element. In addition, the
lattice contains a top element � and a bottom element ⊥.
The lattice for our running example is {�,⊥, lthis , la, lalloc1 },
where lalloc1 corresponds to e = new X().
The goal of the analysis is to associate lattice elements

with different program variables. For example, in the final
solution computed for our running example, la will be as-
sociated with variables a, c, f, and g at the calls through
these variables. This means that there is only one possible
receiver at all such calls: the object that a points to when
m is invoked. This information defines an equivalence class
for these calls.
If ⊥ is associated with some variable v, this means that

v could refer to more than one object, and therefore calls
through v are not singleton calls. Variable e in the running
example has this property: at call site e.p8() the analysis
solution associates ⊥ with e, which shows that this call site
is not a singleton site.
The partial order in the lattice is ⊥ ≤ li ≤ �, and the
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meet operation ∧ is defined as follows:

x ∧ ⊥ = ⊥, x ∧ � = x, x ∧ x = x, x ∧ y = ⊥
The meet operation is used by the analysis to merge in-
formation about values that are propagated along different
execution paths. In particular, consider the last rule (appli-
cable when x �= y, x �= �, and y �= �). If a variable may
refer to one object along one execution path, and to another
object along a different execution path, the variable is as-
sociated with ⊥ and calls through it are not singleton calls.
This lattice resembles the lattice for the constant propaga-
tion problem, which is a classic dataflow problem. Constant
propagation determines expressions that definitely have the
same value along all execution paths; similarly, our analy-
sis determines variables that are guaranteed to refer to the
same unique object along all execution paths.

3.2 Control-Flow Graphs
Consider the control-flow graphs (CFGs) for all methods

that are reachable in the call graph from the start method.
We will use V to denote the set of all reference-typed for-
mal parameters and local variables in these methods. CFG
nodes represent program statements, and CFG edges repre-
sent possible flow of control between these statements. For
brevity, we discuss only the following categories of nodes:

• v1 = v2, where v1, v2 ∈ V and v1 �= v2

• v1 = v2.fld , where v1, v2 ∈ V and fld is a field

• v1.fld = v2, where v1, v2 ∈ V and fld is a field

• v = new X, where v ∈ V and X is a class. We assume
that such a statement represents only the allocation
of heap memory, but not the invocation of the corre-
sponding constructor. The constructor call is treated
as a separate statement v.X(. . .).

• c or v = c, where v ∈ V and c is a call expression

• return v, where v ∈ V

• branch node: e.g., the condition of an if, switch, or
while statement. We assume that the condition does
not have side effects—i.e., no values are changed when
the condition is evaluated. Only a branch node can
have multiple CFG successors.

• irrelevant node: e.g., i = 5

Call expressions have two possible forms. An instance call
expression is v0.m(v1, . . . , vn), where vi ∈ V and m is an
instance method. A static call expression is m(v1, . . . , vn),
where vi ∈ V and m is a static method.
Assumptions similar to the ones from above are com-

monly used to simplify the definition of dataflow problems.
The assumptions can typically be ensured by introducing
(implicit or explicit) temporary variables: e.g., statement
this.fld.p4() can be broken down to temp=this.fld and
temp.p4(). It is important to note that our implementation
of the analysis (used for the experiments from Section 6)
takes into account the full generality of possible Java state-
ments, with the following exceptions. First, the analysis
is designed for single-threaded code, and therefore we do
not model multiple threads and their interactions. Second,

since Red currently does not represent exceptional behav-
ior in the sequence diagrams, all code related to throw and
catch statements in Java is ignored. Finally, indirect ac-
cesses through reflection are not taken into account by the
analysis.

3.3 Transfer Functions
We associate a map Sn : V → L with each CFG node n;

here L is the lattice described earlier. If Sn(v) is some lattice
element other than � and ⊥, the value of v immediately
before the execution of n is guaranteed to be the unique
object corresponding to that element. A value Sn(v) = ⊥
shows that the analysis could not determine that v refers
only to a particular object represented by a single lattice
element. In the beginning of the analysis Sn(v) = � for all
n and v, indicating that no information is currently known.
The effects of program statements on the solution can be

represented by dataflow transfer functions. For each CFG
node n, the analysis defines a function fn : (V → L) →
(V → L). If Sn provides information about the values of
variables immediately before n, map fn(Sn) shows the val-
ues immediately after n. For any map S : V → L, we will
use the notation S[v �→ l] to denote a new map that is the
same as S except for the value associated with v ∈ V , which
is changed to l ∈ L. The transfer functions are as follows:

• for v1 = v2: fn(S) = S[v1 �→ S(v2)]

• for v1 = v2.fld : fn(S) = S[v1 �→ ⊥]

• for v1.fld = v2: fn(S) = S

• for v = new X, if this is a singleton allocation site
with lattice element lalloc : fn(S) = S[v �→ lalloc ]

• for a non-singleton allocation site v = new X: fn(S) =
S[v �→ ⊥]

• for calls and returns: discussed below

• for a branch node or an irrelevant node: fn(S) = S

For an assignment v1 = v2, the analysis propagates the cur-
rent value of v2 to v1. When the value is obtained through
an object field in v1 = v2.fld , a conservative assumption is
made that any object reference could be assigned to v1, and
therefore ⊥ is propagated. Later in the paper we discuss an
approach for more precise treatment of fields.
The handling of calls requires the introduction of an in-

terprocedural CFG (ICFG) [18], in which the method CFGs
are linked through interprocedural edges. Each method-
level CFG is assumed to have an artificial start node and
an artificial exit node. Each CFG node that represents a
call is broken down into two nodes: a call-site node and a
return-site node. There are interprocedural edges from a
call-site note to the start nodes of all methods that could
be invoked by the call; there are also corresponding edges
from the exit nodes of these methods to the return-site node.
Transfer functions are associated with these (call-site,start)
and (exit,return-site) edges to represent the effects of pa-
rameter passing and return values. These effects are similar
to assignments: for example, for a formal v1 with a corre-
sponding actual v2, the effects are analogous to an assign-
ment v1 = v2. For brevity, we omit the technical details of
this aspect of the problem.
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The transfer function fp for a path p in the ICFG is the
composition of the functions for the nodes and the interpro-
cedural edges on the path. Not all ICFG paths represent
possible executions. A valid path has interprocedural edges
that are properly matched: each (exit,return-site) edge is
matched correctly with the last unmatched (call-site,start)
edge on the path, in the sense that both edges correspond
to the same call site. Intuitively, on a valid path, a method
always returns to the appropriate call site. The precise so-
lution of the dataflow problem is defined with respect to the
set of all valid ICFG paths.
The meet-over-all-valid-paths solution MVPn for a CFG

node n describes the variable values immediately before the
execution of n. This solution is defined as

MVPn =
^

p∈VP(n)

fp(MVPstart )

where

• start is the start CFG node for the start method of
the sequence diagram

• VP(n) is the set of all valid paths p leading from start
to n (p does not include n itself)

• MVP start is the solution immediately before start . This
solution takes into account the lattice elements that
correspond to the formals of the start method. For
any reference-typed formal v of the start method with
a corresponding lattice element lv, MVP start(v) = lv.
For all other v ∈ V , MVPstart (v) = � indicating that
currently there is no information about the value of v.

4. ANALYSIS ALGORITHM
The dataflow problem from the previous section is an ex-

ample of an interprocedural distributive environment (IDE)
problem. In IDE problems, the information at a program
point is represented by a map from symbols to values (in
our case a map V → L). Sagiv et al. [17] define a general
approach for solving such problems precisely. We have in-
stantiated and adapted their approach to apply to the prob-
lem under consideration. The resulting flow- and context-
sensitive algorithm, described in this section, is provably pre-
cise in the sense of computing the meet-over-all-valid-paths
solution for each node.

4.1 Phase I: Flow of Values from Formals
The first phase of the analysis computes information that

relates the values of local variables inside a method to the
values of the formal parameters of this method. This infor-
mation is encoded in a set F of triples (n, v1, v2), where n is
an CFG node in some method m, v1 is a reference formal of
m, and v2 is a local variable or a formal parameter of m. A
triple (n, v1, v2) ∈ F shows that the value of v2 immediately
before n could be the same as the value of v1 at the entry of
the method. Essentially, this set encodes the flow of values
from formals to locals/formals within the same method.
In method m from Figure 1, the value of c after the call

to m2 is the same as the value of actual a at the entry of the
method, and therefore (n, a, c) ∈ F for all subsequent CFG
nodes n. Since a is not assigned, we also have (n, a, a) ∈ F
for all nodes n in the method. In m2, the value of q is
the same as the value of formal f, and (n, f, q) ∈ F for all
appropriates nodes n.

The computation of F requires information about the ef-
fects of method calls. This information is encoded by a
set SF which summarizes the flow of values through certain
calls. A pair (n, v) ∈ SF corresponds to a call-site node n
at which v is a reference actual used in the call. If the pair
is in SF , this means that the return value of some method
invoked by n may be the value that v had immediately be-
fore the call. In other words, the value of v may flow back
to the call site as a return value. For example, in Figure 1,
for call site c = this.m2(a) we have (n, a) ∈ SF . Similarly,
for q = this.m3(f), a pair (n, f) is used to show that the
called method returns the value of f.
The computation of F and SF is based on a worklist algo-

rithm. Set F is initialized with triples (n, fi, fi) where fi is a
formal and n is the start node of the corresponding method.
Initially SF is empty. Whenever a new triple is added to
F , it is also put on the worklist and is eventually processed.
The processing of a triple (n, v1, v2) depends on the type of
CFG node n. If the node does not assign a value to v2, new
triples (n′, v1, v2) are created for all CFG successors n′ of n.
If the node is an assignment v3 = v2, new triples (n′, v1, v3)
are created and propagated to the successor nodes n′.
Whenever the current triple (n, v1, v2) corresponds to a

call site n of the form v3 = c, where c is a call expression
which uses v2 as an actual, set SF is consulted to decide
whether (n′, v1, v3) should be created. Pairs are added to
SF when a triple (n, v1, v2) corresponds to return v2: all
callers of the surrounding method are examined and SF is
updated with pairs (n, v4), where v4 is the actual at call site
n which corresponds to formal v1. At this point of time,
the current solutions for all such v4 are propagated to the
corresponding left-hand-side variables at the call sites.

4.2 Phase II: Internal/Backward Propagation
The second and third phase of the algorithm compute the

actual lattice values. The second phase propagates such val-
ues within a method and from a method back to its callers,
while the third phase propagates information from callers to
callees. Both phases use an array S(n, v) to store the lattice
element associated with v ∈ V on top of CFG node n.
Whenever some lattice element l is propagated to S(n, v),

the value is updated as follows: S(n, v) := S(n, v) ∧ l. If
S(n, v) changes as a result, the pair (n, v) is put on a work-
list and eventually processed. The processing depends on
the type of statement that n represents. For example, if the
value of v is not changed by n, the current lattice element
in S(n, v) is simply propagated to S(n′, v) for all CFG suc-
cessors n′. For an assignment w = v, S(n, v) is propagated
to S(n′, w).
If a statement assigns a specific lattice element to v, this

element is propagated to S(n′, v) in the beginning of the
second phase. For our running example, due to the singleton
allocation site e = new X(), the solution for e is set to lalloc1
at e.p7(). For formal parameters fi of the start method of
the sequence diagram, S(n, fi) is initialized to lfi at the
start node n of that method.
If the current pair (n, v) represents a statement return v,

the value of S(n, v) is propagated back to all left-hand-side
variables at the corresponding invoking call sites. For the
running example, this.fld is returned by method m4, and
value ⊥ is propagated back to d at the call site (recall that
the transfer functions treat the values of object fields conser-
vatively). Thus, ⊥ is propagated to e after the assignment
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e = d. Since both ⊥ and lalloc1 are propagated to e at node
e.p8(), the meet of these two lattice elements is taken, and
⊥ is associated with e at this node.
If n represents a call site at which v is used as an actual, set

SF from phase I is examined to determine whether the value
of v should be propagated to the left-hand-side variable at
the call. For c = this.m2(a), since (n, a) ∈ SF , the value
la associated with a before the call is also associated with
c after the call. The partial solution after phase II is the
following:

• S(n, this) = lthis and S(n, a) = la for all CFG nodes
n in method m

• S(n, c) = la for all nodes n after the call to m2

• S(n, d) = ⊥ for all nodes n after the call to m4

• S(n, e) = ⊥ before the if statement

• S(n, e) = lalloc1 before e.p7()

• S(n, e) = ⊥ before e.p8()

• S(n, v) = � for all other pairs (n, v)

4.3 Phase III: Internal/Forward Propagation
The last phase of the algorithm propagates information

from callers to callees. If n is a call node at which v is
used as an actual, the value of S(n, v) is propagated to the
corresponding formal(s). For example, la is propagated to
f due to the call to m2 in Figure 1. New values at formals
are propagated further into the bodies of the corresponding
methods, using the information computed in Phase I. For
method m2 we have (n, f, q) ∈ F for all n after the call to m3.
This means that the value of q at these nodes could be the
same as the value that f had upon entry of m2. Therefore,
la is propagated to S(n, q). Furthermore, since f is used
an actual in the call to m3, la is also propagated to g. The
additional values computed during this phase are:

• S(n, this) = lthis for all occurrences of this in meth-
ods m2, m3, and m4

• S(n, f) = la for all CFG nodes n in m2

• S(n, q) = la for all nodes n after the call to m3

• S(n, g) = la for all nodes n in m3

4.4 Equivalence Classes
Consider all call sites through this in m and m2. Since af-

ter Phase III we have S(n, this) = lthis at all such sites, the
analysis reports the following equivalence class of singleton
call sites:

{this.m2(a), this.m3(f), this.m4()}
Similarly, since a, f, g, and c are associated with la at the
corresponding call sites, the analysis computes equivalence
class

{a.p1(), f.p2(), g.p3(), c.p4()}
Finally, the call to p7 and the call to the constructor of X are
both associated with lalloc1 , resulting in equivalence class

{X(), e.p7()}

4.5 Correctness and Complexity
It can be proven that the algorithm is an instance of a

more general algorithm for solving interprocedural distribu-
tive environment (IDE) problems [17]. A corollary of this
result is that our algorithm terminates with a solution which
is exactly the same as the meet-over-all-valid paths solution
for the dataflow problem described in Section 3.
Assuming that the number of formals for each method is

bounded by some small constant, the computation in phase I
has time complexity in the order of Ecall +

P
m Em × Vm.

Here Ecall denotes the number of edges in the call graph,
and m is a node in this call graph (that is, m is a method
transitively reachable from the start method). The number
of edges in the CFG of m is Em, and the number of locals
and formals in m is Vm. The term Em × Vm corresponds
to the cost of constructing set F for method m, and Ecall

corresponds to the interprocedural propagation through set
SF . In phases II and III the value of S(n, v) can change
at most two times. Thus, the cost of intraprocedural and
interprocedural propagation during these two phases is also
in the order of Ecall +

P
m Em × Vm.

The algorithm can be optimized in a straightforward man-
ner as follows. Consider a local/formal v in some method
m, and suppose that there is at most one assignment v = . . .
in m. In this case it is not necessary to maintain different
values for v at all CFG nodes inside m. Thus, instead of
computing a separate S(n, v) for each CFG node n, the al-
gorithm can compute a single lattice element S(v) for the
entire method. It is easy to prove that this optimization
does not effect the correctness or precision of the analysis.
If there is only a constant number of v for which this opti-
mization cannot be applied, the complexity of the algorithm
is in the order of Ecall +

P
m Vm +

P
m Em. Here

P
m Vm

represents the cost of processing the optimized variables v,
and
P

m Em corresponds to the cost of handling the non-
optimized variables. The implementation of the algorithm
uses this optimization, since our experience indicates that
variables are typically not assigned multiple times.

5. ANALYSIS ENHANCEMENTS
The analysis described in the previous section can be re-

fined in several dimensions. Our implementation (used for
the experiments described in Section 6) employs all of these
refinements.

5.1 Static and Instance Fields
If a static field is not modified by any method reachable

from the starting method of the sequence diagram, the field
refers to the same object at all times and therefore can be
used as another source of receiver objects for singleton call
sites. For each read-only static field sf , we introduce a cor-
responding lattice element lsf and modify the transfer func-
tions accordingly. Since in Java code static fields are very
often final (i.e., immutable), this enhancement identifies
additional singleton call sites.
The algorithm from the previous section treats object fields

conservatively, and propagates ⊥ whenever an object field
is read. As a result, in the running example, the calls to p5

and p6 are determined to be non-singleton calls. However,
there is only one possible receiver object at these call sites:
the object to which this.fld refers to in the beginning of
start method m.
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This problem can be solved by the following generaliza-
tion. After running the analysis described earlier, we ex-
amine all statements of the form v1 = v2.fld and determine
whether the computed value of v2 at this assignment is dif-
ferent from ⊥. If this is true, then v2 refers to some unique
object oi at this program point. Furthermore, suppose that
fld is never assigned in the start method or any of its callees.
In this case we know that the value of fld in object oi does
not change, and therefore expression v2.fld is guaranteed to
refer to a unique object. A new lattice element can be in-
troduced to represent this unique object, and this element
can be propagated to v1 at assignment v1 = v2.fld . This ap-
proach requires straightforward changes to the propagation
algorithm described in the previous section.
In the running example, this in method m4 is associated

with lthis and therefore “return this.fld” propagates a
lattice element lthis.fld to d. As a result, the calls to p5 and
p6 are associated with this new element; thus, both calls are
singleton calls and they form an equivalence class. The pro-
cess of introducing these new lattice elements continues until
the solution stabilizes. This approach may introduce lattice
elements that represent chains of field accesses: e.g., ele-
ments of the form lx .fld1 .fld2 .fld3 . Our experiments indicate
that the solution typically stabilizes with maximum chain
length between 3 and 5.

5.2 Non-singleton Object Allocation Sites
The second enhancement considers non-singleton alloca-

tion sites. For example, consider a method mi which con-
tains a statement sj of the form x = new X(), and suppose
that sj is not located inside a CFG loop. If mi is called by
several other methods, sj is not a singleton allocation site
according to the definition presented earlier. However, if for
example we have statements x.k(); y = x; y.n() after sj

inside mi, in Red we would like to show that the receiver
object at these two calls is the same as the one created by sj .
To achieve this, we introduce a special lattice element lallocj

corresponding to sj , and we propagate it inside method mi

during phase II. However, during this phase, the value is
not propagated back to the callers: if the value reaches a re-
turn statement, instead of back-propagating lallocj we back-
propagate ⊥. This guarantees that the value is confined
within the allocating method mi. If allocation site sj is in-
side a loop, Red uses a single diagram object to represent
the unbounded set of run-time objects allocated by the state-
ment; thus, in this case we also introduce and propagate a
special lattice element lallocj . During phase III (which prop-
agates values from callers to callees), the new lattice values
are propagated to the transitive callees of mi. For example,
for the call y.n() from above, lallocj is propagated to this

in n. Thus, if n contains a call this.p(), the diagram will
show that the receiver object of this call is the one created
by sj .

5.3 Limited Forward Propagation
A Red user can choose to limit the reverse-engineered di-

agram in two ways. First, calls made by “uninteresting”
methods—for example, certain library methods—are omit-
ted when displaying the diagram. (Of course, such methods
are still analyzed by the static analysis). Second, the depth
of calling relationships can be restricted to make the dia-
grams easier to comprehend. The depth of call chains (i.e.,
relationships “the start method calls m1 which calls m2 which

Comp Start Time [s] Sites Resolved
checked 10 0.2 (0.48) 10 100%
pushback 18 0.2 (0.30) 13 100%
bigdecimal 30 1.1 (0.09) 322 55.6%
vector 30 0.4 (0.21) 66 97.0%
gzip 32 1.1 (0.11) 255 93.3%
boundaries 39 0.8 (0.17) 367 83.4%
io 46 8.7 (0.14) 300 85.0%
decimal 48 3.6 (0.09) 1361 96.3%
date 56 9.3 (0.08) 2173 90.5%
collator 62 2.2 (0.12) 1154 79.3%
zip 77 2.6 (0.12) 1075 88.7%
message 84 23.7 (0.10) 4003 77.5%
calendar 101 12.0 (0.13) 918 87.5%
sql 109 6.3 (0.08) 411 99.0%
pdf 146 67.7 (2.32) 2261 79.2%
math 166 26.2 (0.13) 5831 60.6%
html 214 25.7 (0.11) 4910 84.1%
jflex 237 13.2 (0.11) 4657 87.6%
mindbright 328 44.3 (0.11) 10618 82.2%
bytecode 450 32.1 (0.13) 11012 78.0%
jess 457 1695.3 (0.89) 100974 71.1%

Table 1: Experimental results.

calls m3 etc.”) in the visual representation can be limited by
a user-defined parameter; the default depth limit is 5. Based
on these constraints, the analysis can determine the set of
call graph edges that will be represented visually as messages
in the reverse-engineered diagram. In phase III, values are
forward-propagated from callers to callees only along such
call edges.

6. EMPIRICAL STUDY
We performed an experimental evaluation of the analysis

on the 21 subject components listed in Table 1. The analysis
implementation is based on the Soot framework [21] and was
executed on a 900 MHz Sun Fire 280-R machine. The com-
ponents are from various domains and typically are parts
of reusable libraries. The column labeled “Start” shows the
number of component methods that contain at least one in-
teresting call.1 Each of these methods was considered as a
potential start method of a sequence diagram, and the anal-
ysis was executed on the method and all of its transitive
callees, including non-component callees. Call graph edges
were determined using the approach from [13, 14]. The in-
put to the analysis is the program representation produced
by Soot for all these methods, together with the correspond-
ing method-level control-flow graphs. The analysis output
are the solutions S(n, v) inside all methods whose behav-
ior would be need to be represented in a reverse-engineered
diagram.
The total time (in seconds) to run the analysis for all

start methods is shown in the third column of the table.
For example, for checked, the table shows the time to run
the analysis 10 times, once for each of the 10 potential start
methods. The running time includes phases I, II, and III
of the algorithm from Section 4, using the enhancements

1We did not consider as interesting the calls to methods from
java.lang.String and from the standard numeric types (e.g.,
java.lang.Integer), since these are essentially primitive types.
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described in Section 5. It is important to note that for each
start method, there are usually dozens or hundreds of non-
component library methods that are included in the set of
all transitive callees. All these methods are processed fully
by the analysis, and their processing time is included in the
measurements in the third column of Table 1.
We also normalized the absolute running time by the num-

ber of analyzed CFG nodes; the number in parentheses in
the third column shows the time to analyze one thousand
CFG nodes. Typically, the running time was around a hun-
dred to a few hundred milliseconds per thousand CFG nodes,
with the exception of pdf and to a lesser degree jess. These
results indicate that the analysis cost is practical, and there-
fore running time will not be an obstacle for the use of the
algorithm in real-world tools.
Sequence diagrams in Red represent the effects of com-

ponent methods up to a certain depth of call chains, as de-
scribed in Section 5.3. A call site in such a method will be
shown as a message in a reverse-engineered diagram, and the
analysis solution can be used to determine which diagram
object should be the receiver of that message. The next-to-
last column contains the total number of such call sites for
all diagrams.2 The last column shows what percentage of
these call sites were resolved by the analysis to a value other
than ⊥. The higher the percentage, the more call sites are
guaranteed to have precise object naming in the diagrams.
The results show that the analysis can successfully re-

solve the majority of call sites. For 18 components, more
than 75% of the call sites were associated with the appro-
priate precise object names. For 7 components, this per-
centage was higher than 90%. Therefore, for the majority
of messages, the reverse-engineered diagrams are guaranteed
to provide precise object naming which represents correctly
the behavior of the analyzed code. This result is important
because it indicates that it is possible to create precise dia-
grams in Red and in similar reverse-engineering tools. Users
of such tools can benefit from this precision when perform-
ing software maintenance tasks and when writing tests for
Java software. Of course, there preliminary results need to
be confirmed with additional data points and eventually by
real-world tool users.
We examined component bigdecimal, which has the low-

est resolution percentage. This component contains class
java.math.BigDecimal, which has several occurrences of
the following situation: method m returns one of several pos-
sible objects, depending on a variety of conditions. Another
method contains a call y = x.m(). For all subsequent calls
through y, there are multiple possible run-time receiver ob-
jects that are generated from different sources (e.g., some
objects come from static fields read by m, and others are
newly created by m). Due to this pattern (and similar ones),
the analysis legitimately reported ⊥ for 125 out of the 143
call sites that could not be resolved. We are currently con-
sidering generalizations of the naming scheme that can han-
dle this situation, as part of our ongoing work on naming
techniques for non-singleton call sites.

7. RELATED WORK
Reverse engineering of sequence diagrams could be done

through static or dynamic analysis. Some approaches an-

2Call sites this.m(..) are excluded from this count because for
them a sequence diagram by default will show self-messages.

alyze run-time program behavior and build sequence dia-
grams or similar representations [19, 10, 5, 8, 3]. As with
many other program analysis problems, static and dynamic
approaches have both advantages and disadvantages. A
static approach produces a conservative model of run-time
behavior, and therefore may report infeasible object interac-
tions. Furthermore, the level of detail in the produced infor-
mation may be too high, and some abstraction mechanisms
may be necessary to make the reverse-engineered diagrams
easier to comprehend. As described in Section 5.3, Red
employs two such mechanisms. However, it is clear that a
more powerful set of abstraction techniques will be needed
to make the tool practical in real-world use.
A potential problem for dynamic analysis techniques is the

dependence of the diagram on the particular run-time exe-
cution that was observed. In some cases input data for such
execution may not be available, especially for incomplete
systems (e.g., reusable modules) that cannot be executed in
stand-alone manner. Furthermore, it is not possible to know
how well the execution covers all possible aspects of the in-
teraction. For example, it is not possible to have high con-
fidence in the consistency between design and code, if this
consistency is judged from sequence diagrams that were con-
structed from execution traces. Similarly, for reengineering
tasks, the incomplete run-time information may mislead the
programmer into performing incorrect code modifications.
Another potential disadvantage is that sequence diagrams
produced only with dynamic analysis cannot be used for
evaluating the adequacy of testing.
In reverse engineering through static analysis, the prob-

lem of object naming has not been investigated sufficiently.
As described earlier, the ControlCenter tool appears to use
a naming scheme that is based on variable names. Figure 2
illustrates the disadvantages of such a scheme. Kollman
and Gogolla [6] propose a static analysis for constructing
collaboration diagrams (which are similar to sequence dia-
grams); they do not discuss issues of object naming. Tonella
and Potrich [20] present reverse engineering techniques for
sequence diagrams and collaboration diagrams. They use a
points-to analysis (similar to Andersen’s analysis [1]) to con-
struct the call graph and to define an object naming scheme:
there is a separate diagram object for each new expression.
We decided against using points-to information as a nam-
ing scheme; the rationale for this decision was discussed in
Section 2.3.
Naming based on points-to analysis is an example of an

approach that uses may-alias information. For reverse-engi-
neered sequence diagrams it is more appropriate to use must-
alias information—that is, knowledge that expressions are
aliased for all run-time executions, rather than for some run-
time executions. Our analysis can be thought of as a lim-
ited form of must-alias analysis. While there has been some
work on must-alias analyses (e.g., for C programs), we are
not aware of any approaches that use techniques similar to
constant propagation.

8. CONCLUSIONS AND FUTURE WORK
We propose a low-cost algorithm that generates precise

diagram objects for the majority of call sites in our subject
components. The algorithm is a major step towards defining
a complete naming scheme for reverse-engineered sequence
diagrams. We are currently investigating approaches for ob-
ject naming at non-singleton call sites.
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One potential problem for static reverse engineering of
sequence diagrams is the complexity of the produced di-
agrams. In case the analyzed methods have complicated
behavior (e.g., significant intraprocedural flow of control,
behavioral variations based on calling context, etc.), the re-
sulting diagram may be hard to comprehend. Clearly, this
issue calls for extensive future investigations. It is likely
that some abstraction mechanisms will be necessary in or-
der to make complicated diagrams easier to understand and
use. One possible approach is to generate multiple sequence
diagrams for the same start method, where each diagram
corresponds to some restricted subset of the possible be-
haviors.3 With this approach, the object naming analysis
for each diagram should consider only the behaviors repre-
sented by that diagram, which could increase the number of
reported singleton call sites. Another possibility is to con-
struct a detailed diagram and then get user feedback about
uninteresting diagram elements in order to construct a sim-
plified diagram. This means that the reverse-engineering
tool should support an “exploration mode” in which the
user interactively refines the constructed diagram. This ap-
proach may require modifying the naming analysis to take
advantage of the user-defined constraints in order to im-
prove the precision of the analysis solution. Finally, it may
be desirable to move parts of the diagram into separate sub-
diagrams, which would produce a hierarchical structure that
may be easier to understand, display, and navigate.
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