
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.11.1

1.2.11.2

1.2.11.3

1.2.11.4

1.2.11.5

1.2.11.6

1.2.11.7

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

Table	of	Contents
Introduction

Best	practices

Checklist

Version	Control

Code	Quality

Code	Review

Licensing

Communication

Testing

Releases

Documentation

Standards

Language	Guides

Java

JavaScript	and	TypeScript

Python

OpenCL	and	CUDA

R

C	and	C++

Fortran

Intellectual	Property	and	Licensing

Executive	summary

About	the	Law

Trademarks

Trade	Secrets	and	Patents

Database	Rights

Copyright

Software	Licenses

Examples:	Using	Libraries

More	Examples

1

1.4

1.4.1

1.4.2

1.5

1.6

1.7

1.8

1.9

1.9.1

1.9.2

1.9.2.1

1.9.3

1.9.3.1

1.9.3.2

1.9.3.3

1.9.3.4

1.9.3.5

1.9.3.6

1.9.4

1.9.4.1

1.9.4.2

1.9.4.3

1.9.4.4

Publishing

Making	software	citable

eScience	Conferences,	Journals,	and	Workshops

Findability

Governance

Reproducibility

Contributing	to	this	Guide

NLeSC	specific

Chapter	Owners

Access	to	(Dutch)	e-Infrastructure

DAS-5

Projects

new	Project()

Kickoff	Meeting

Project	Planning

Project	Reviews

Communication

End	of	a	Project

Checklist

Development	stages	matrix

Prototype	phase

Prerelease	phase

Mature	phase

2

Guide
This	is	a	guide	to	software	development	and	projects	at	the	Netherlands	eScience	Center.	It
both	serves	as	a	source	of	information	for	exactly	how	we	work	at	the	eScience	Center,	and
as	a	basis	for	discussions	and	reaching	consensus	on	this	topic.

This	Guide	is	a	work	in	progress

The	source	of	this	book	can	be	found	on	GitHub:	https://www.github.com/nlesc/guide

Introduction

3

https://www.github.com/nlesc/guide

Software	Development
In	this	chapter	we	give	an	overview	of	the	best	practices	for	software	development	at	the
Netherlands	eScience	Center,	including	a	rationale.

Best	practices

4

Software	checklist
Here	we	provide	a	short	checklist	for	software	projects,	the	rest	of	this	chapter	elaborates	on
the	various	point	in	this	list.

The	bare	minimum	that	every	software	project	should	do,	from	the	start,	is:

Pick	&	include	an	open	source	license
Use	version	control
Use	a	publicly	accessible	version	control	repository
Add	a	readme	describing	the	project

We	recommend	that	you	also	do	the	following	(from	the	start	of	the	project):

Use	code	quality	tools
Testing
Use	standards

Additional	steps	depend	on	the	goal	of	the	software	(zero	or	more	can	apply):

I'm	publishing	a	paper
I'm	expecting	users
I'm	expecting	contributors

I'm	publishing	a	paper
Add	a	CITATION.cff	file
Make	your	software	citable
Cite	DOI	in	paper

I'm	expecting	users
Release	your	software
Provide	user	documentation
Easy	installation
Provide	issue	tracker

I'm	expecting	contributors

Checklist

5

Provide	development	documentation
Provide	a	means	of	communication
Implement	and	add	a	code	of	conduct
Contribution	guideline

Checklist

6

Version	control
Why	would	you	use	version	control	software	and	hosting	(such	as	GitHub)?

Easier	to	collaborate	Version	control	makes	it	easier	to	work	on	the	same	code
simultaneously,	while	everyone	still	has	a	well	defined	version	of	the	software	(in
contrast	to	a	google-docs	or	shared	file	system	type	of	system).	Moreover,	version
control	hosting	websites	such	as	Github	provide	way	to	communicate	in	a	more	structed
way,	such	as	in	code	reviews,	about	commits	and	about	issues.
Reproducibility	By	using	version	control,	you	never	lose	previous	versions	of	the
software.	This	also	gives	you	a	log	of	changes	and	allows	you	to	understand	what
happened.
Backup	Version	control	is	usually	pushed	to	an	external	a	shared	server,	which
immediately	provides	a	backup.
Integration	Version	control	software	and	host	makes	it	more	easy	to	integrate	with
other	software	that	support	modern	software	development,	such	as	testing	(continuous
integration	,automatically	run	tests,	build	documentation,	check	code	style,	integration
with	bug-tracker,	code	review	infrastructure,	comment	on	code).

GitHub
Netherlands	eScience	center	uses	GitHub	GitHub	for	version	control.	To	keep	our	code
transparent	and	findable	the	preferred	code	hosting	platform	is	GitHub	and	version
management	is	git.	The	repository	should	preferably	be	public	from	the	start.

By	default	an	eScience	Research	Engineer	is	expected	to	create	a	new	GitHub	organization
for	each	project	and	create	repositories	in	there.	However	a	new	repository	should	be	made
in	the	Netherlands	eScience	Center	GitHub	organization	(https://github.com/NLeSC)	when
the	repository	is	used	in	multiple	projects.

Policy

No	repositories	which	the	Netherlands	eScience	Center	is	paying	for	should	be	in
personal	accounts,	they	SHOULD	always	be	in	either	the	Netherlands	eScience	Center
GitHub	organization	or	in	a	project	based	GitHub	organization
GitHub	supports	two-factor	authentication.	This	SHOULD	be	enabled	for	your	account
Project	based	GitHub	organizations

MUST	have	at	least	two	owners	that	are	Netherlands	eScience	center	employees

Version	Control

7

https://www.github.com
https://help.github.com/articles/creating-a-new-organization-account/
https://github.com/NLeSC
https://github.com/NLeSC
https://help.github.com/articles/about-two-factor-authentication/

MUST	be	registered	at	https://nlesc.github.io/,	to	keep	track	of	all	the	project
organizations
Private	repositories	can	be	created.	Free	when	GitHub's	education	discount	is
requested.	NOTE:	The	Netherlands	eScience	Center	IP	policy	applies	to	any
software	we	contribute	to,	so	the	repository	SHOULD	become	open	source	at	some
point.	To	prevent	private	repositories	from	remaining	unnecessarily	private	forever
please	add	a	brief	statement	in	the	README	of	your	repository,	clarifying:

Why	is	this	repository	private?
On	which	date	can	this	repository	be	made	public?
Who	should	be	consulted	if	we	would	like	to	make	the	repository	public	in	the
future?

Netherlands	eScience	center	Github	organization	(https://github.com/NLeSC)
Only	Netherlands	eScience	center	employees	are	members
All	members	have	permission	to	create	new	repositories
Collaborators	SHOULD	be	used	to	grant	access	to	non-members
A	limited	number	of	slots	for	private	repositories	is	available,	but	using	them	is
discouraged
To	prevent	private	repositories	from	remaining	unnecessarily	private	forever	please
add	a	brief	statement	in	the	README	of	your	repository,	clarifying:

Why	is	this	repository	private?
On	which	date	can	this	repository	be	made	public?
Who	should	be	consulted	if	we	would	like	to	make	the	repository	public	in	the
future?

Version	control	from	the	beginning	of	the
project
It	is	highly	recommended	to	start	using	version	control	on	day	one	of	the	project.

Use	git	as	version	control	system
Other	version	control	systems	can	be	used	if	the	project	does	not	start	in	the	eScience
Center	and	does	not	use	git,	or	when	the	prevailing	version	control	system	in	the	particular
community	is	not	git.	Even	then,	changing	version	control	systems	should	be	considered
(especially	if	Subversion	or	another	centralised	system	is	used).

Git	documentation:

Version	Control

8

https://github.com/NLeSC/nlesc.github.io#adding-an-github-organization
https://nlesc.github.io/
https://education.github.com/
https://www.esciencecenter.nl/nlesc_ip_policy_2017.pdf
https://github.com/NLeSC
https://help.github.com/articles/inviting-collaborators-to-a-personal-repository/

GitHub	help:	http://help.github.com
Git	homepage:	http://git-scm.com/
Pro	Git	Online	Book:	http://git-scm.com/book
Reference:	http://gitref.org/index.html
In	depth	book:	Version	Control	with	Git
for	those	who	know	subversion	and	want	to	learn	git:	Git	-	SVN	Crash	Course

Choose	one	branching	model
A	branching	model	describes	how	the	project	deals	with	different	versions	of	the	codebase,
like	releases	and	various	development	versions,	and	how	to	accept	code	contributions.
Make	the	choice	explicit	in	the	contribution	guidelines,	and	link	to	documentation	on	how	to
get	started	with	it.	Our	default	choice	is	GitHub	flow	branching	model

GitHub	flow	is	a	very	simple	and	sane	branching	model.	It	supports	collaboration	and	is
based	on	pull	requests,	therefore	relies	heavily	on	GitHub.	The	Pro	Git	book	describes	in
detail	the	workflow	of	collaboration	on	the	project	with	use	of	git	branches,	forks	and	GitHub
in	Contributing	to	a	Project	chapter.	Other	more	complicated	models	could	be	used	if
necessary,	but	we	should	strive	for	simplicity	and	uniformity	within	the	eScience	Center
since	that	will	enhance	collaboration	between	the	engineers.	Learning	a	new	branching
model	should	not	stand	in	the	way	of	contributions.	You	can	learn	more	about	those	other
models	from	atlasian	page.

Repositories	should	be	public
A	public	code	repository	has	several	benefits:

It	makes	your	code	findable.
It	is	a	central	point	for	users	and	collaborators.
It	shows	your	code	to	world,	allowing	(re)use	and	enables	you	to	get	credit	for	your
work.
It	is	usually	not	hosted	on	your	laptop,	and	hence	provides	an	external	backup.

Unless	code	cannot	be	open	(e.g.	when	working	with	commercial	partners,	or	when	there
are	competitiveness	issues)	it	should	be	in	a	public	online	repository.	In	case	the	code	uses
data	that	cannot	be	open,	an	engineer	should	try	to	keep	sensitive	parts	outside	of	the	main
codebase.	If	you	accidentally	included	copyrighted	files	in	your	repository,	you	need	to
remove	them	from	the	HEAD	as	well	as	from	history.	There	is	a	gist	that	explains	how.

Version	Control

9

http://help.github.com
http://git-scm.com/
http://git-scm.com/book
http://gitref.org/index.html
http://www.amazon.com/Version-Control-Git-collaborative-development/dp/1449316387/ref=sr_1_1?ie=UTF8&qid=1347950111&sr=8-1&keywords=git
http://git-scm.com/course/svn.html
https://guides.github.com/introduction/flow/
https://git-scm.com/doc
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project
https://www.atlassian.com/git/tutorials/comparing-workflows
https://gist.github.com/jspaaks/df292d42ecbd5e28d4620f011c602b90

Meaningful	commit	messages
Commit	messages	are	the	way	for	other	developers	to	understand	changes	in	the	codebase.
In	case	of	using	GitHub	flow	model,	commit	messages	can	be	very	short	but	pull	request
comments	should	explain	all	the	changes.	It	is	very	important	to	explain	the	why	behind
implementation	choices.	To	learn	more	about	writing	good	commit	messages,	read	tpope’s
guide	and	this	post

GitHub	has	some	interesting	features	that	allow	you	to	close	issues	directly	from	commit
messages.

Code	snippets	library
Sometimes,	we	develop	small	snippets	of	code	that	can	be	directly	reused	in	other	projects,
but	that	are	too	small	to	put	in	a	library.	We	store	these	code	snippets	in	git,	in	GitHub	Gists.

Version	Control

10

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://who-t.blogspot.nl/2009/12/on-commit-messages.html
https://help.github.com/articles/closing-issues-via-commit-messages/
https://gist.github.com/

Code	Quality
There	are	several	ways	to	improve	software	quality	and	find	bugs	quickly	and	easily.	By
following	a	set	of	conventions,	code	will	look	'cleaner'	and	be	more	understandable.	It	will
also	help	spot	syntax	errors	and	other	errors	early,	without	having	to	run	or	compile	all	the
time.

Coding	style
A	coding	style	gives	guidance	on	those	parts	of	programming	that	are	irrelevant	to	the
compiler	or	interpreter.	For	instance,	what	do	you	call	your	variables?	do	you	use	spaces	or
tabs	for	indentation?	Where	do	you	put	comments?	etc.

Here	is	a	very	nice	article	about	why	coding	styles	matter,	and	increase	software	quality:
Improving	software	quality,	why	Coding	Style	Matters

For	style	guides	see	the	different	languages	in	the	Language	Guides.	Google	has	a	style
guide	for	most	languages	google	style	guide	page.

Editorconfig
Use	editorconfig	to	adhere	to	the	basic	code	style	rules.

Using	editor	config	is	not	necessary,	but	saves	a	lot	of	time	and	keeps	developers	from
straying	from	the	style	of	choice	and	helps	to	avoid	some	problems	caused	by	formatting
differences	(line	ending,	tabs	vs	spaces).

There	is	support	for	editorconfig	in	most	editors.	The	Editorconfig	website	provides	plugins
for	your	editor	of	choice.	If	you	use	eclipse,	use	this	plugin.

The	eScience	Center	has	a	shared	editor	config	file

Automatic	code	formatters	and	linters
These	are	small	programs	that	check	if	your	code	follows	a	specific	coding	style.	Some	code
formatters	can	find	more	issues	(unused	variables,	missing	documentation,	...)	They	are
often	langauge	dependent,	and	can	be	integrated	with	an	editor.

Code	Quality

11

http://coding.smashingmagazine.com/2012/10/25/why-coding-style-matters/
https://code.google.com/p/google-styleguide/
http://editorconfig.org/
http://editorconfig.org/
https://github.com/ncjones/editorconfig-eclipse
https://raw.githubusercontent.com/NLeSC/exemplum/master/.editorconfig

Online	software	quality	improvement	tools
There	are	several	web	services	that	analyze	code	and	make	the	quality	of	the	code	visible.

Code	quality	analysis	services	are	web	applications	which	have	the	following	features:

Automaticly	analyse	your	code	after	a	Github	push
Usually	free	for	open	source	projects
Most	supports	multiple	programming	languages,	but	not	every	language	will	be	have	the
same	level	of	features
Grade	or	score	for	the	quality	of	all	of	the	code	in	the	repository
List	of	issues	with	the	code,	grouped	by	severity
Drill	down	to	location	of	issue
Default	list	of	checks	which	the	service	provider	finds	the	best	practice
Can	be	configured	to	make	the	list	of	checks	more	strict	or	relaxed
Can	be	configured	to	ignore	files	or	extensions
Can	read	configuration	file	from	repository
Tracks	issues	over	time	and	send	alerts	when	quality	deteriorates
Optionally	reports	on	code	coverage	generated	by	a	CI	build

See	the	language	guides	for	good	options	per	language.

For	a	list	of	choices	see	http://shields.io/	or	https://github.com/ripienaar/free-for-dev#code-
quality

Name	spaces
If	your	language	supports	namespaces,	use	nl.esciencecenter

Code	reviews
See	the	Code	Reviews	section.

Code	Quality

12

http://shields.io/
https://github.com/ripienaar/free-for-dev#code-quality

Code	reviews

Introduction
At	the	eScience	Center,	we	value	software	quality.	Higher	quality	software	has	fewer
defects,	better	security,	and	better	performance,	which	leads	to	happier	users	who	can	work
more	effectively.

Code	reviews	are	an	effective	method	for	improving	software	quality.	McConnell	(2004)
suggests	that	unit	testing	finds	approximately	25%	of	defects,	function	testing	35%,
integration	testing	45%,	and	code	review	55-60%.	While	that	means	that	none	of	these
methods	are	good	enough	on	their	own,	and	that	they	should	be	combined,	clearly	code
review	is	an	essential	tool	here.

Code	review	also	improves	the	development	process.	By	reviewing	new	additions	for	quality,
less	technical	debt	is	accumulated,	which	helps	long-term	maintainability	of	the	code.
Reviewing	lets	developers	learn	from	each	other,	and	spreads	knowledge	of	the	code
around	the	team.	It	is	also	a	good	means	of	getting	new	developers	up	to	speed.

The	main	downside	of	code	reviews	is	that	they	take	time	and	effort.	In	particular,	if
someone	from	outside	the	project	does	the	reviewing,	they'll	have	to	learn	the	code,	which	is
a	significant	investment.	Once	up	to	speed,	the	burden	is	reduced	significantly	however,	and
the	returns	include	a	much	smaller	amount	of	time	spent	debugging	later.

Approach
It's	important	to	distinguish	between	semi-formal	code	reviews	and	formal	code	inspections.
The	latter	involve	"up	to	six	participants	and	hours	of	meetings	paging	through	detailed	code
printouts"	(SMARTBEAR	2016).	As	this	extra	formality	does	not	seem	to	yield	better	results,
we	limit	ourselves	to	light-weight,	informal	code	reviews.

Process
We	haven't	yet	decided	on	how	to	integrate	code	reviews	into	our	working	process.	While
that	gets	hashed	out,	here	is	some	general	advice	from	various	sources	and	experience.

Review	everything,	nothing	is	too	short	or	simple

Code	Review

13

Try	to	have	something	else	to	do,	and	spread	the	load	throughout	your	working	day.
Don't	review	full-time.

Don't	review	for	more	than	an	hour	at	a	time,	after	that	the	success	rate	drops	quite
quickly

Don't	review	more	than	400	lines	of	code	(LOC)	at	a	time,	less	than	200	LOC	is	better

Take	the	time,	read	carefully,	don't	review	more	than	500	LOC	/	hour

Prerequisites
Before	handing	over	a	change	or	a	set	of	code	for	review,	the	following	items	should	be
there	for	the	reviewer	to	work	with:

Documentation	on	what	was	changed	and	why	(feature,	bug,	issue	#,	etc.)
Comments	/	annotations	by	the	author	on	the	code	itself
Test	cases

Also,	before	doing	a	code	review,	make	sure	any	tools	have	run	that	check	the	code
automatically,	e.g.	checkers	for	coding	conventions	and	static	analysis	tools,	and	the	test
suite.	Ideally,	these	are	run	as	part	of	the	continuous	integration	infrastructure.

Review	checklist
This	section	provides	two	checklists	for	code	reviews,	one	for	the	whole	program,	and	one
for	individual	files	or	proposed	changes.

In	all	cases,	the	goal	is	to	use	your	brain	and	your	programming	experience	to	figure	out
how	to	make	the	code	better.	The	lists	are	intended	to	be	a	source	of	inspiration	and	a
description	of	what	should	be	best	practices	in	most	circumstances.	Some	items	on	this	list
may	not	apply	to	your	project	or	programming	language,	in	which	case	they	should	be
disregarded.

Excluded	from	this	checklist

The	following	items	are	part	of	a	software	quality	check,	but	are	better	done	by	an
automated	tool	than	by	a	human.	As	such,	they've	been	excluded	from	this	checklist.	If	tools
are	not	available,	they	should	be	checked	manually.

Coding	conventions	(e.g.	PEP	8)
Test	coverage

Code	Review

14

Rubric	for	assessing	code	quality

All	code	should	be	level	3	or	4.

Level 1 2 3 4

names

names
appear
unreadable,
meaningless
or
misleading

names
accurately
describe	the
intent	of	the
code,	but	can
be	incomplete,
lengthy,
misspelled	or
inconsistent
use	of	casing

names
accurately
describe	the
intent	of	the
code,	and	are
complete,
distinctive,
concise,
correctly
spelled	and
consistent	use
of	casing

all	names	in
the	program
use	a
consistent
vocabulary

headers

headers	are
generally
missing	or
descriptions
are
redundant
or	obsolete;
use	mixed
languages
or	are
misspelled

header
comments	are
generally
present;
summarize	the
goal	of	parts	of
the	program
and	how	to	use
those;	but	may
be	somewhat
inaccurate	or
incomplete

header
comments	are
generally
present;
accurately
summarize	the
role	of	parts	of
the	program
and	how	to	use
those;	but	may
still	be	wordy

header
comments	are
generally
present;
contain	only
essential
explanations,
information
and	references

comments

comments
are
generally
missing,
redundant
or	obsolete;
use	mixed
languages
or	are
misspelled

comments
explain	code
and	potential
problems,	but
may	be	wordy

comments
explain	code
and	potential
problems,	are
concise

comments	are
only	present
where	strictly
needed

layout

old
commented
out	code	is
present	or
lines	are
generally
too	long	to
read

positioning	of
elements
within	source
files	is	not
optimized	for
readability

positioning	of
elements
within	source
files	is
optimized	for
readability

positioning	of
elements	is
consistent
between	files
and	in	line	with
platform
conventions

indentation,
line	breaks,

indentation,
line	breaks, formatting

Code	Review

15

formatting
formatting	is
missing	or
misleading

spacing	and
brackets
highlight	the
intended
structure	but
erratically

spacing	and
brackets
consistently
highlight	the
intended
structure

formatting
makes	similar
parts	of	code
clearly
identifiable

flow

there	is
deep
nesting;
code
performs
more	than
one	task	per
line;
unreachable
code	is
present

flow	is	complex
or	contains
many
exceptions	or
jumps;	parts	of
code	are
duplicate

flow	is	simple
and	contains
few	exceptions
or	jumps;
duplication	is
very	limited

in	the	case	of
exceptions	or
jumps,	the
most	common
path	through
the	code	is
clearly	visible

idiom

control
structures
are
customized
in	a
misleading
way

choice	of
control
structures	is
inappropriate

choice	of
control
structures	is
appropriate;
reuse	of	library
functionality
may	be	limited

reuse	of	library
functionality
and	generic
data	structures
where	possible

expressions

expressions
are
repeated	or
contain
unnamed
constants

expressions
are	complex	or
long;	data
types	are
inappropriate

expressions
are	simple;
data	types	are
appropriate

expressions
are	all
essential	for
control	flow

decomposition

most	code	is
in	one	or	a
few	big
routines;
variables
are	reused
for	different
purposes

most	routines
are	limited	in
length	but	mix
tasks;	routines
share	many
variables
instead	of
having
parameters

routines
perform	a
limited	set	of
tasks	divided
into	parts;	use
of	shared
variables	is
limited

routines
perform	a	very
limited	set	of
tasks	and	the
number	of
parameters
and	shared
variables	is
limited

modularization

most	code	is
in	one	or	a
few	large
modules;	or
modules	are
artificially
separated

modules	have
mixed
responsibilities,
contain	many
variables	or
contain	many
routines

modules	have
clearly	defined
responsibilities,
contain	few
variables	and	a
somewhat
limited	amount
of	routines

modules	are
defined	such
that
communication
between	them
is	limited

no	need	to	assess	a	level	that	is	not	relevant	to	the	software

Code	Review

16

level	2	implies	that	the	features	in	level	1	are	not	present,	level	4	implies	that	the
features	in	level	3	are	also	present

This	rubric	is	based	on:

Stegeman,	Barendsen,	&	Smetsers	(2016).	Designing	a	rubric	for	feedback	on	code
quality	in	programming	courses.	In	proceedings	of	the	16th	Koli	Calling	International
Conference	on	Computing	Education	Research.	ACM.

Program	level	checklist

Here	is	a	list	of	things	to	consider	when	looking	at	the	program	as	a	whole,	rather	than	when
looking	at	an	individual	file	or	change.

Documentation

Documentation	is	a	prerequisite	for	using,	developing	and	reviewing	the	program.	Here	are
some	things	to	check	for.

Is	there	a	description	of	the	purpose	of	the	program	or	library?
Are	detailed	requirements	listed?
Are	requirements	ranked	according	to	MoSCoW?
Is	the	use	and	function	of	third-party	libraries	documented?
Is	the	structure/architecture	of	the	program	documented?	(see	below)
Is	there	an	installation	manual?
Is	there	a	user	manual?
Is	there	documentation	on	how	to	contribute?

Including	how	to	submit	changes
Including	how	to	document	your	changes

Architecture

These	items	are	mainly	important	for	larger	programs,	but	may	still	be	good	to	consider	for
small	ones	as	well.

Is	the	program	split	up	into	clearly	separated	modules?
Are	these	modules	as	small	as	they	can	be?
Is	there	a	clear,	hierarchical	or	layered,	dependency	structure	between	these	modules?

If	not,	functionality	should	be	rearranged,	or	perhaps	heavily	interdependent
modules	should	be	combined

Can	the	design	be	simplified?

Code	Review

17

https://creativecommons.org/licenses/by-nc/4.0/
http://dl.acm.org/citation.cfm?id=2999555

Security

If	you're	making	software	that	is	accessible	to	the	outside	world	(e.g.	a	web	application),
then	security	becomes	important.	Security	issues	are	defects,	but	not	all	defects	are	security
issues.	A	security-conscious	design	can	help	mitigate	the	security	impact	of	defects.

Which	modules	deal	with	user	input?
Which	modules	generate	output?
Are	input	and	output	compartmentalised?

If	not,	consider	making	separate	modules	that	manage	all	input	and	output,	so
validation	can	happen	in	one	place

In	which	modules	is	untrusted	data	present?
The	fewer	the	better

Is	untrusted	data	compartmentalised?
Ideally,	validate	in	the	input	module	and	pass	only	validated	data	to	other	parts

Legal

"I'm	an	engineer,	not	a	lawyer!"	is	an	oft-overheard	phrase,	but	being	an	engineer	doesn't
give	you	permission	to	ignore	the	legal	rights	of	the	creators	of	the	code	you're	using.	Here
are	some	things	to	check.	When	in	doubt,	ask	your	licensing	person	for	advice.

Are	the	licenses	of	all	modules/libraries	that	are	used	documented?
Are	the	requirements	set	by	those	licenses	fulfilled?

Are	the	licenses	included	where	needed?
Are	copyright	statements	included	in	the	code	where	needed?
Are	copyright	statements	included	in	the	documentation	where	needed?

Are	the	licenses	of	all	the	parts	compatible	with	each	other?
Is	the	project	license	compatible	with	all	libraries?

File/Change	level	checklist

When	you're	checking	individual	changes	(e.g.	pull	requests)	or	files,	the	code	itself
becomes	the	subject	of	scrutiny.	Depending	on	the	language,	files	may	contain	interfaces,
classes	or	other	type	definitions,	and	functions.	All	these	should	be	checked,	as	well	as	the
file	overall:

Does	this	file	contain	a	logical	grouping	of	functionality?
How	big	is	it?	Should	it	be	split	up?
Is	it	easy	to	understand?
Can	any	of	the	code	be	replaced	by	library	functions?

Code	Review

18

Interfaces

Is	the	interface	documented?
Does	the	concept	it	models	make	sense?
Can	it	be	split	up	further?	(Interfaces	should	be	as	small	as	possible)

Note	that	most	of	the	following	items	assume	an	object-oriented	programming	style,	which
may	not	be	relevant	to	the	code	you're	looking	at.

Classes	and	types

Is	the	class	documented?
Does	it	have	a	single	responsibility?	Can	it	be	split?
If	it's	designed	to	be	extended,	can	it	be?
If	it's	not	designed	to	be	extended,	is	it	protected	against	that?	(e.g.	final	declarations)
If	it's	derived	from	another	class,	can	you	substitute	an	object	of	this	class	for	one	of	its
parent	class(es)?
Is	the	class	testable?

Are	the	dependencies	clear	and	explicit?
Does	it	have	a	small	number	of	dependencies?
Does	it	depend	on	interfaces,	rather	than	on	classes?

Function/Method	declarations

Are	there	comments	that	describe	the	intent	of	the	function	or	method?
Are	input	and	output	documented?	Including	units?
Are	pre-	and	postconditions	documented?
Are	edge	cases	and	unusual	things	commented?

Function/Method	definitions

Are	edge	cases	and	unusual	things	commented?
Is	there	incomplete	code?
Could	this	function	be	split	up	(is	it	not	too	long)?
Does	it	work?	Perform	intended	function,	logic	correct,	...
Is	it	easy	to	understand?
Is	there	redundant	or	duplicate	code?	(DRY)
Do	loops	have	a	set	length	and	do	they	terminate	correctly?
Can	debugging	or	logging	code	be	removed?
Can	any	of	the	code	be	replaced	by	library	functions?

Code	Review

19

Security

If	you're	using	a	library,	do	you	check	errors	it	returns?
Are	all	data	inputs	checked?
Are	output	values	checked	and	encoded	properly?
Are	invalid	parameters	handled	correctly?

Tests

Do	unit	tests	actually	test	what	they	are	supposed	to?
Is	bounds	checking	being	done?
Is	a	test	framework	and/or	library	used?

Providing	feedback
The	main	purpose	of	a	code	review	is	to	find	issues	or	defects	in	a	piece	of	code.	These
issues	then	need	to	be	communicated	back	to	the	developer	who	proposed	the	change,	so
that	they	can	be	fixed.	Doing	this	badly	can	quickly	spoil	everyone's	fun.

Perhaps	the	most	important	point	in	this	guide	therefore	is	that	the	goal	of	a	code	review	is
not	to	provide	criticism	of	a	piece	of	code,	or	even	worse,	the	person	who	wrote	it.	The	goal
is	to	help	create	an	improved	version.

So,	when	providing	feedback,	stay	positive	and	constructive.	Suggest	a	better	way	if
possible,	rather	than	just	commenting	that	the	current	solution	is	bad.	Ideally,	submit	a	patch
rather	than	an	issue	ticket.	And	always	keep	in	mind	that	you're	not	required	to	find	anything,
if	the	code	is	fine,	it's	fine.	If	it's	more	than	fine,	file	a	compliment!

Most	of	our	projects	are	hosted	on	GitHub,	so	most	results	will	be	communicated	through
pull	requests	and	issues	there.	However,	if	you	find	something	particularly	bad	or	weird,
consider	talking	in	person,	where	a	lengthy,	complicated,	or	politically	sensitive	explanation
is	easier	to	do.

Communicating	results	through	GitHub

If	you	are	reviewing	a	pull	request	on	Github,	comments	should	be	added	in	the		Files
changed		section,	so	they	can	be	attached	to	a	particular	line	of	code.	Make	many	small
comments	this	way,	rather	than	a	big	ball	of	text	with	everything	in	it,	so	that	different	issues
can	be	kept	separate.	Where	relevant,	refer	to	existing	Issues	and	documentation.

Code	Review

20

If	you're	reviewing	existing	code	rather	than	changes,	it	is	still	handy	to	use	pull	requests.	If
you	find	an	issue	that	has	an	obvious	fix,	you	can	submit	a	pull	request	with	a	patch	in	the
usual	way.

If	you	don't	have	a	fix,	you	can	add	an	empty	comment	to	the	relevant	line,	and	create	a	pull
request	from	that	as	a	patch.	The	relevant	line(s)	will	then	light	up	in	the	pull	request's		Files
changed		overview,	and	you	can	add	your	comments	there.	In	this	case,	either	the	pull
request	is	never	merged	(but	the	comments	processed	some	other	way,	or	not	at	all),	or	the
extra	comments	are	reverted	and	replaced	by	an	agreed-upon	fix.

In	all	cases,	file	many	small	pull	requests,	not	one	big	one,	as	GitHub's	support	for	code
reviews	is	rather	limited.	Putting	too	many	issues	into	a	single	pull	request	quickly	becomes
unwieldy.

References
Atwood,	Jeff	(2006)	Code	Reviews:	Just	Do	It

Burke,	Kevin	(2011)	Why	code	review	beats	testing:	evidence	from	decades	of	programming
research.

McConnell,	Steve	(2004)	Code	Complete:	A	Practical	Handbook	of	Software	Construction,
Second	Edition.	Microsoft	Press.	ISBN-13:	978-0735619678

SMARTBEAR	(2016)	Best	practices	for	code	review.

Code	Review

21

http://blog.codinghorror.com/code-reviews-just-do-it/
https://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

Licensing

Why	use	a	license	in	the	first	place?
Without	a	license,	all	rights	are	at	the	author	of	the	code,	and	that	means	nobody	else	can
use,	copy,	distribute,	or	modify	it	work	without	consent.	A	license	gives	this	consent.

If	you	don't	have	a	licence	for	your	software,	it	is	effectively	unusable	by	the	whole	research
community,	and	those	potential	collaborators	will	turn	to	someone	else's	software.

Why	choose	a	permissive	open-source
license?
As	a	researcher,	you	want	to	encourage	use	of	your	software,	because	use	of	software
leads	to	credit	for	your	software.	A	permissive	open-source	license	gives	the	least	amount	of
restrictions	(while	still	requiring	attribution),	removing	most	barriers	for	usage.

Apache	2	license
Apache	2	license

The	Apache	License	version	2.0	is	the	default	choice	for	licensing	software	developed	at	the
Netherlands	eScience	Center.	Other	licenses	can	be	used	in	special	cases,	e.g.	when	we
add	to	existing	software	that	already	has	a	different	license	(see	below),	or	if	there	are
commercial	partners	that	require	different	licensing.

The	formal	text	of	the	licence	is	here:	http://www.apache.org/licenses/LICENSE-2.0.html	An
informal	explanation	of	what	that	means	is	here:	http://www.oss-
watch.ac.uk/resources/apache2

License	grant
Each	source	file	in	your	program	or	library	should	start	with	the	following	copyright	statement
in	a	comment	block	at	the	top	(but	underneath	a	shebang	line	if	present,	for	technical
reasons):

Licensing

22

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.oss-watch.ac.uk/resources/apache2

Copyright	<years>	Netherlands	eScience	Center	and	<Legal	entities	of	project	partners>

Licensed	under	the	Apache	License,	version	2.0.	See	LICENSE	for	details.

The	same	notice	should	be	somewhere	in	your	README	file,	which	should	also	contain	an
overview	of	dependencies	and	which	licenses	they	are	under.	For	,	you	should	list	all	years
in	which	changes	were	published,	so	if	you	started	in	a	private	repository	in	2015,	opened	it
up	in	2016,	and	did	the	final	commit	in	2017,	should	be	2016,	2017.	For	our	"standard"
projects,	the	default	is	to	share	the	copyright	between	the	eScience	Center	and	the	PI(s)
institutions,	but	other	arrangements	may	have	been	made.	So	check	that,	and	make	sure
everyone	is	represented	under	.

Compatible	licenses	of	all	libraries
All	software	used	in	the	project	MUST	HAVE	compatible	licenses.	Compatibility	should	be
checked	when	new	external	code	is	added	to	the	project.	See	the	Intellectual	Property
section	for	more	information.

LICENSE
The	actual	license	of	the	code	is	stored	in	the	LICENSE	file.	Github	can	add	this	file
automatically	when	you	create	a	new	repository,	or	you	can	add	it	via	the	repositories	Github
page.

NOTICE
The	NOTICE	file	is	the	Apache	License'	way	of	dealing	with	attributions.	If	you	have	any
dependencies	that	are	distributed	under	the	Apache	License,	and	you	redistribute	them	(in
either	binary	or	source	code	form),	then	you	must	include	the	original	NOTICE	file(s)	as	well.
If	you	have	any	attribution	requirements	of	your	own,	you	can	add	them	in	your	own	NOTICE
file.	If	you	do	not	distribute	the	dependencies,	but	only	e.g.	list	them	in	a	requirements.txt,
then	you	do	not	need	to	include	their	NOTICE	files	in	your	program.

NOTICE	should	contain	the	following	text,	adapted	with	the	product's	name	and	copyright
dates:

Licensing

23

https://help.github.com/articles/adding-a-license-to-a-repository/

		[PRODUCT_NAME]

		Copyright	[XXXX-XXXX]	The	Netherlands	eScience	Center,	[PROJECT_PARTNERS]

		This	product	includes	software	developed	at

		The	Netherlands	eScience	Center	(https://www.esciencecenter.nl/)

		For	the	[PROJECT_NAME]	project

If	any	of	the	software	dependencies	has	a	NOTICE	file,	its	contents	shoud	be	appended
below.	Read	more	in	the	ASF	licensing	how-to.

Modifying	existing	software
If	you	are	modifying	a	file	written	by	someone	else,	which	already	has	its	own	copyright
statement	and	Open	Source	license	grant	(possibly	with	a	different	license),	then	that
existing	statement	and	the	grant	must	be	kept.	If	you've	added	more	than	a	trivial	fix,	add	the
first	of	the	two	lines	above	to	the	copyright	statement,	but	keep	the	existing	license	grant.	In
these	cases,	we	simply	release	our	contributions	under	the	same	license	the	other
contributors	have	chosen,	as	this	avoids	a	lot	of	unnecessary	complexity.	If	the	software	is
proprietary,	ask	for	advice	first.

Licensing

24

http://www.apache.org/dev/licensing-howto.html

Communication
Communication	to	the	outside	world	is	important	for	visibility	of	Netherlands	eScience	Center
projects	and	for	building	the	user	base.

Communication	to	other	developers	is	a	way	to	build	community	and	contributors.	It	also
increases	our	visibility	in	development	world.

Home	page
The	software	should	have	a	homepage	with	all	the	necessary	introduction	information,	links
to	documentation,	source	code	(github)	and	latest	release	download	(e.g.	github.io	pages)

The	page	should	be	created	at	the	latest	when	the	software	is	ready	to	be	seen	by	the
outside	world.	It	is	the	place	where	people	will	learn	about	software,	so	it	is	important	to
describe	its	goals	and	functionality.	It	should	be	targeted	towards	non-programming	users
(unless	software	is	meant	for	programers	i.e	library)	but	should	have	pointers	for	developers
to	more	advanced	resources	(README.md)

Discussion	list
Github	issues,	mailing	list,	not	private	email,	for	all	project	related	discussions	from	the
beginning	of	the	project

There	should	be	no	private	discussions	about	the	project.	Therefore	once	discussions	are
started	(in	the	email),	either	move	them	to	github	issues	or	if	they	don’t	fit	into	issues	format
any	more,	create	the	mailing	list.

Demo	docker	image	in	dockerhub	(with
Dockerfile)
When	applies,	ususally	for	services.

If	software	is	the	service	Docker	image	should	be	created	at	the	very	early	stage.	This	will
allow	for	easier	testing	and	platform	independent	use.

An	online	demo

Communication

25

https://pages.github.com/

Only	for	web	applications

Online	demo	should	be	available	since	first	stable	release.	When	the	website	is	the	user
interface	for	researchers,	make	sure	there	is	a	development	version	running	somewhere	so
that	they	can	play	around	with	it	and	give	usability	feedback.

Screencast
For	most	software	it	should	be	possible	to	create	a	screencast.	This	is	very	useful	for	people
to	get	a	quick	impression	of	what	exactly	you	are	doing	without	diving	into	the	code	itself.	In
case	your	software	does	not	have	a	graphical	user	interface,	even	a	screencast	of	a	terminal
session	can	be	quite	informative.	Try	to	add	audio,	or	at	least	subtitles,	so	people	know	what
is	going	on	in	the	video.

At	the	Netherlands	eScience	Center	we	gather	screencasts	in	our	Youtube	Channel.

Communication

26

https://www.youtube.com/user/NLeScienceCenter

Testing
Write	tests	obviously	takes	time,	so	why	should	you	do	it?	Test	save	time	later	on,	and
increase	the	quality	of	the	software.	More	specifically:

Makes	you	more	confident	that	your	software	is	correct.
It	saves	time	in	finding	bugs,	the	tests	give	an	indication	where	the	bug	is.
Makes	it	easier	to	make	changes	to	the	code,	the	tests	will	catch	changes	to	way	the
software	functions.
Tests	communicate	how	software	is	intended	to	function.

These	points	do	not	apply	to	prototype	/	throwaway	phase.

unit	tests
unit	tests
Guide:	Writing	Testable	Code

Continuous	integration
To	run	testing,	perform	code	quality	analysis	and	build	artifacts	a	Continuous	Integration
server	can	be	used.	The	build	will	be	performed	every	git	push	and	pull	request.	Using	a	CI
server	will	help	with		it	works	for	me		problems.	The	Netherlands	eScience	Center	uses
continuous	integration	services	as	much	as	possible	when	creating	code.

continuous	integration	(CI),	public	on	Travis

CI	meaning:	compile,	unit	test,	integration	test,	quality	analysis	etc.	Once	there	is	some	build
process	established	and	tests	set	up,	CI	should	be	configured	too.	It	will	save	you	a	lot	of
time	on	debugging	and	allow	for	much	quicker	problem	diagnosis.

Travis-CI

The	Netherlands	eScience	Center	public	repositories	should	be	built	with	Travis-CI.	Travis-
CI	is	free	for	Open	Source	projects.	A	Github	repository	can	be	added	to	Travis-CI	by	a
Github	user	with	admin	right	on	the	repository.	At	the	moment	Travis-CI	performs	builds	in
Ubuntu	and	OS	X	operating	systems.

Getting	started	with	Travis	CI

Testing

27

https://en.wikipedia.org/wiki/Unit_testing
http://misko.hevery.com/code-reviewers-guide/
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://travis-ci.org
http://docs.travis-ci.com/user/getting-started/

PS.	If	you	want	to	get	mails	from	Travis-CI	then	you	have	to	login	at	https://travis-ci.org

AppVeyor

To	build	repositories	inside	the	Microsoft	Windows	operation	system	use	AppVeyor.
AppVeyor	is	free	for	Open	Source	projects.

Nightly	builds

Most	CI	builds	are	triggered	by	a	git	push,	but	sometimes	the	repository	must	be	build	every
night.	Possible	reasons	for	nightly	builds:

Make	sure	the	repository	stays	working	even	if	there	are	no	changes	pushed	to	the
repository,	but	it's	dependencies	are	changing	possibly	breaking	the	code	in	the
repository.
The	build	performs	an	action	that	needs	to	be	performed	daily	like	updating	a	cache.

For	triggering	nightly	builds	in	Travis-CI	Cron	jobs	can	be	used.

Polling	tools

All	major	CI	services	support	some	form	of	cctray.xml	feed.	This	feed	can	be	read	by	polling
tools	to	automatically	keep	an	eye	on	your	project	builds.	For	instance,	BuildNotify,	CCMenu
and	CCTray	give	you	a	tray	icon	that	turns	red	when	a	build	fails.

Code	coverage
Code	coverage	is	a	measure	which	describes	how	much	of	the	source	code	is	exercised	by
the	test	suite.	At	the	Netherlands	eScience	Center	we	require	minimum	of	70%	coverage.

Setting	up	code	coverage	for	a	repository	depends	on	the	programming	language,	see	the
language	specific	guides	for	setup	instructions.

The	code	coverage	should	be	performed	when	a	test	suite	is	run	as	part	of	Continuous
Integration	build	job.	The	code	coverage	results	can	be	published	on	code	coverage	and/or
code	quality	services.

Code	coverage	services

The	publishing	of	the	code	coverage	can	be	performed	during	a	Continuous	Integration	build
job.	The	code	coverage	service	offers	a	visualization	of	the	coverage	and	a	metric	which	can
be	displayed	as	a	badge/shield	icon	on	the	repository	website.	See	the	language	specific

Testing

28

https://travis-ci.org
https://www.appveyor.com/
https://docs.travis-ci.com/user/cron-jobs/
https://bitbucket.org/Anay/buildnotify/wiki/Home
http://ccmenu.org/
http://cruisecontrolnet.org/projects/ccnet/wiki/CCTray_Download_Plugin

guides	which	code	coverage	services	are	available	and	preferred	for	that	language.

Code	coverage	services	support	many	languages	and	a	usually	free	for	Open	Source
projects.	Below	is	a	short	list	of	services	and	their	strengths.

Codecov

Shows	unified	coverage	and	separate	coverage	for	build	matrix	e.g.	different	Python
versions.	For	example	project	see	https://codecov.io/gh/xenon-middleware/xenon,	with	a
Java	7/8	and	Linux/Windows/OSX	OS	build	matrix.

Coveralls

More	popular	then	Codecov.	For	example	project	see	https://coveralls.io/r/NLeSC/MAGMa

End2end	tests
For	(web)	user	interfaces.	example	with	protractor	and	angular

Once	the	web	page	has	any	interface,	e2e	tests	should	be	implemented.

Dependencies	tracking
David	or	other	service	depending	on	codebase	language.

Checking	for	dependency	updates	should	be	done	regularly.	It	can	save	a	lot	of	time,
avoiding	code	dependent	on	deprecated	functionality.

Testing

29

https://codecov.io
https://docs.travis-ci.com/user/customizing-the-build/#Build-Matrix
https://codecov.io/gh/xenon-middleware/xenon
https://coveralls.io
https://coveralls.io/r/NLeSC/MAGMa
https://angular.github.io/protractor/#/
https://david-dm.org/

Release
Releases	are	a	way	to	mark	or	point	to	a	particular	milestone	in	software	development.	This
is	useful	for	users	and	collaborators,	e.g.	I	found	a	bug	running	version	x.	For	publications
that	refer	to	software,	refering	to	a	specific	release	enhances	the	reproducability.

Apache	foundation	describes	their	release	policy.

Release	cycles	will	depend	on	the	project	specifics,	but	in	general	we	encourage	quick	agile
development:	release	early	and	often

Semantic	versioning

Releases	are	identified	by	a	version	number.	Semantic	Versioning	(semver)	is	the	most
accepted	and	used	way	to	add	numbers	to	software	versions.	It	is	a	way	of	communicating
impact	of	changes	in	the	software	on	users.

A	version	number	consists	of	three	numbers:	major,	minor,	and	patch,	separated	by	a	dot:
2.0.0.	After	some	changes	to	the	code,	you	would	do	a	new	release,	and	increment	the
version	number.	Increment	the:

MAJOR	version	when	you	make	incompatible	API	changes,
MINOR	version	when	you	add	functionality	in	a	backwards-compatible	manner,	and
PATCH	version	when	you	make	backwards-compatible	bug	fixes.

Very	often	package	managers	depend	on		semver		and	will	not	work	as	expected	otherwise.

Releasing	code	on	github

Github	makes	it	easy	to	do	a	release	straight	from	your	repositories	website.	See	github
releases	for	more	information.

CHANGELOG.md

A	change	log	is	a	way	to	communicate	notable	changes	in	a	release	to	the	users	and
contributors.	It	is	typically	a	text	file	at	the	root	of	your	repository	called	CHANGELOG.md.
Every	release	should	have	relevant	entry	in	change	log.

See	Keep	a	CHANGELOG	for	some	best	practices.

One	command	install

Releases

30

http://www.apache.org/
http://www.apache.org/dev/release.html
http://semver.org/
https://help.github.com/categories/releases/
http://keepachangelog.com/

To	not	scare	away	users	and	(potential)	collaborators,	installing	the	software	should	be	easy,
a	one	command	process.	The	process	itself	typically	includes	installing	dependencies,
compiling,	testing,	and	finally	actual	installation,	and	can	be	quite	complex.	The	use	of	a
proper	build	system	is	strongly	recommended.

Package	in	package	manager

If	your	software	is	useful	for	a	wider	audience,	create	a	package	that	can	be	installed	with	a
package	manager.	Package	managers	can	also	be	used	to	install	dependencies	quickly	and
easily.

For	Python	use	pip
For	Javascript	use	npm
C,	C++,	Fortran,	...	use	packages	from	your	distributions	official	repository.	List	your
actual	dependencies	in	the	INSTALL.md	or	README.md

Some	standard	solutions	for	building	(compiling)	code	are:

The	Autotools:	autoconf,	automake,	and	libtool.	See	the	Autotools	Documentation,	or	an
introductionary	presentation	by	Thomas	Petazzoni
CMake
Make

Release	quick-scan	by	other	engineer

A	check	by	a	fellow	engineer	to	see	if	the	documentation	is	understandable?	can	the
software	be	installed?	etc.

Think	of	it	as	a	kind	of	code	review	but	with	focus	on	mechanics,	not	code.	The	reviewer
should	check	if:	(i)	there	is	easily	visible	or	findable	documentation,	(ii)	download	works,	(iii)
there	are	instructions	on	how	to	(iv)	install	and	(v)	start	using	software,	some	of	the	things	in
this	scan	could	be	automated	with	continuous	integration.

Citeable

Create	a	DOI	for	each	release	see	Making	software	citable.

Dissemination

When	you	have	a	first	stable	release,	or	a	subsequent	major	releases,	let	the	world	know!
Inform	your	coordinator	and	our	Communications	Advisor	(Lode)	so	we	can	write	news	item
on	our	site,	add	it	to	the	annual	report,	etc.

Releases

31

https://pypi.python.org/pypi/pip
https://www.npmjs.com/package/npm
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://elinux.org/images/4/43/Petazzoni.pdf
https://cmake.org/
https://www.gnu.org/software/make/

Releases

32

Documentation
Developed	programs	should	be	documented	at	multiple	levels,	from	code	comments,
through	API	documentation,	to	installation	and	usage	documentation.	Comments	at	each
level	should	take	into	account	different	target	audience,	from	experienced	developers,	to	end
users	with	no	programming	skills.

Example	of	good	documentation:	A	Guide	to	NumPy/SciPy	Documentation

Markdown
Markdown	is	a	lightweight	markup	language	that	allows	you	to	create	webpages,	wikis	and
user	documentation	with	a	minimum	of	effort.	Documentation	written	in	markdown	looks
exactly	like	a	plain-text	document	and	is	perfectly	human-readable.	In	addition,	it	can	also	be
automatically	converted	to	HTML,	latex,	pdf,	etc.	More	information	about	markdown	can	be
found	here:

http://daringfireball.net/projects/markdown/

http://en.wikipedia.org/wiki/Markdown

Retext	is	a	markdown	aware	text	editor,	that	can	be	used	to	edit	markdown	files	and	convert
them	into	HTML	or	PDF.	It	can	be	found	at:

https://github.com/retext-project/retext

Alternatively,	'pandoc'	is	a	command	line	utility	that	can	convert	markdown	documents	to	into
several	other	formats	(including	latex):

http://johnmacfarlane.net/pandoc/

An	Eclipse	plugin	for	previewing	the	HTML	generated	by	markdown	is	available	on	this
page:

https://marketplace.eclipse.org/content/markdown-text-editor

Readme
Clear	explanation	of	the	goal	of	the	project	with	pointers	to	other	documentation	resources.

Documentation

33

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://daringfireball.net/projects/markdown/
http://en.wikipedia.org/wiki/Markdown
https://github.com/retext-project/retext
http://johnmacfarlane.net/pandoc/
https://marketplace.eclipse.org/content/markdown-text-editor

Use	GitHub	flavoured	markdown	for,	e.g.,	syntax	highlighting.	(If	reStructuredText	or	another
format	that	GitHub	renders	is	idiomatic	in	your	community,	use	that	instead.)	README	is
targeted	towards	developers,	it	is	more	technical	than	home	page.	Keeping	basic
documentation	in	README.md	can	be	even	useful	for	lead	developer,	to	track	steps	and
design	decisions.	Therefore	it	is	convenient	to	create	it	from	the	beginning	of	the	project,
when	initialising	git	repository.

StackOverflow	on	good	readme
short	gist	with	README.md	template
The	art	of	README	from	nodejs	community

Well	defined	functionality
Ideally	in	README.md

Source	code	documentation

Code	comments

Code	comments,	can	be	block	comments	or	inline	comments.	They	are	used	to	explain	what
is	the	piece	of	code	doing.	Those	should	explain	why	something	is	done	in	the	domain
language	and	not	programming	language	-	why	instead	of	what.

API	documention

API	documentation	should	explain	function	arguments	and	outputs,	or	the	object	methods.
How	they	are	formulated	will	depend	on	the	language.

Usage	documentation
User	manual	(as	PDF)	in	the	"doc"	directory.	This	is	the	real	manual,	targeted	at	your
users.	Make	sure	this	is	readable	by	domain	experts,	and	not	only	software	developers.
Make	sure	to	include:

Netherlands	eScience	Center	logo.
Examples.
Author	name(s).
Versions	numbers	of	the	software	and	documentation.
References	to:

The	eScience	Center	web	site.

Documentation

34

https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://web.archive.org/web/20170426031931/http://stackoverflow.com:80/questions/2304863/how-to-write-a-good-readme
https://gist.github.com/jxson/1784669
https://github.com/noffle/art-of-readme/blob/master/README.md

The	project	web	site.
The	Github	page	of	the	project.
Location	of	the	issue	tracker.
More	information	(e.g.	research	papers).

Documented	development	setup
(good	example	is	Getting	started	with	khmer	development)	It	should	be	made	available	once
there	is	more	than	one	developer	working	on	the	codebase.	If	your	development	setup	is
very	complicated,	please	consider	providing	a	Dockerfile	and	docker	image.

Contribution	guidelines
Contribution	guidelines	make	it	easier	for	collaborators	to	contribute,	and	smooth	the
process	of	collaboration.

Guidelines	should	be	made	available	once	the	code	is	available	online	and	there	is	a
process	for	contributions	by	other	people.	Good	guidelines	will	save	time	of	both	lead
developer	and	contributor	since	things	have	to	be	explained	only	once.	A	good
CONTRIBUTING.md	file	describes	at	least	how	to	perform	the	following	tasks:

How	to	install	the	dependencies
How	to	run	(unit)	tests
What	code	style	to	use
Reference	to	code	of	conduct
When	using	a	git	branching	model,	the	choice	of	branching	model	An	extensive
example	is	Angular.js's	CONTRIBUTING.md.	Note	that	GitHub	has	built	in	support	for	a
CONTRIBUTING.md	file.

Code	of	conduct
A	code	of	conduct	is	a	set	of	rules	outlining	the	social	norms,	religious	rules	and
responsibilities	of,	and	or	proper	practices	for	an	individual.	Such	a	document	is
advantagous	for	collaberation,	for	several	reasons:

It	shows	your	intent	to	work	together	in	a	positive	way	with	everyone.
It	reminds	everyone	to	communicate	in	a	welcoming	and	inclusive	way.
It	provides	a	set	of	guidelines	in	case	of	conflict.

contributor	covenant

Documentation

35

http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
https://github.com/blog/1184-contributing-guidelines
http://contributor-covenant.org/

CofC	should	be	attached	from	the	beginning	of	the	project.	There	is	no	gain	from	having	it
with	one	developer,	but	it	does	not	cost	anything	to	include	it	in	the	project	and	will	be	handy
when	more	developers	join.

Documented	code	style
From	the	beginning	of	the	project,	a	decision	on	the	code	style	has	to	be	made	and	then
should	be	documented.	Not	having	a	documented	code	style	will	highly	increase	the	chance
of	inconsistent	style	across	the	codebase,	even	when	only	one	developer	writes	code.	The
Netherlands	eScience	Center	should	have	a	sane	suggestion	of	coding	style	for	each
programming	language	we	use.	Coding	styles	are	about	consistency	and	making	a	choice,
and	not	so	much	about	the	superiority	of	one	style	over	the	other.	A	sane	set	of	guides	can
be	found	on	in	google	documentation.

How	to	file	a	bug	report
Describing	how	to	properly	report	a	bug	will	save	a	lot	of	developers's	time.	It	is	also	useful
to	point	users	to	good	bug	report	guide	like	one	from	Simon	Tatham

An	example	of	such	a	document	for	Mozilla	projects
Other	example	from	Ubuntu	Docuementation

Explained	meaning	of	issue	labels
Once	users	start	submitting	issues	labels	should	be	documented.

DOI	or	PID
making	your	code	citable

Identifiers	should	be	associated	with	releases	and	should	be	created	together	with	first
release.

Software	citation
To	get	credit	for	your	work,	it	should	be	as	easy	as	possible	to	cite	your	software.

Documentation

36

https://github.com/google/styleguide
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines
https://help.ubuntu.com/community/ReportingBugs
https://guides.github.com/activities/citable-code/

Your	software	should	contain	sufficient	information	for	others	to	be	able	to	cite	your	software,
such	as:	authors,	title,	version,	journal	article	(if	there	is	one)	and	DOI	(as	described	in	the
DOI	section).	It	is	recommended	that	this	information	is	contained	on	a	single	file.

You	can	use	the	Citation	File	Format	to	provide	this	information	on	a	human-	and	machine-
readable	format.

Read	more	in	the	blog	post	by	Druskat	et	al..

Print	software	version
Make	it	easy	to	see	which	version	of	the	software	is	in	use.

if	it's	a	command	line	tool:	print	version	on	the	command	line
if	it's	a	website:	print	version	within	the	interface
if	the	tool	generates	the	output:	output	file	should	contain	the	version	of	software	that
generated	the	output

Documentation

37

https://citation-file-format.github.io/
https://software.ac.uk/blog/2017-12-12-standard-format-citation-files

Use	standards
Standard	files	and	protocols	should	always	be	a	primary	choice.	Using	standards	improves
the	interoperability	of	your	software,	thereby	improving	its	usefulness.

Exchange	formats
Examples	include	Unicode	W3C,	OGN,	NetCDF,	etc.

Protocols
Examples	include	HTTP,	TCP,	TLS,	etc.

Standards

38

This	chapter	provides	practical	info	on	each	of	the	main	programming	languages	of	the
Netherlands	eScience	Center.

This	info	is	(on	purpose)	high	level,	try	to	provide	"default"	options,	and	mostly	link	to	more
info.

Each	chapter	should	contain:

Intro:	philosophy,	typical	usecases.
Recommended	sources	of	information
Installing	compilers	and	runtimes
Editors	and	IDEs
Coding	style	conventions
Building	and	packaging	code
Testing
Code	quality	analysis	tools	and	services
Debugging	and	Profiling
Logging
Writing	documentation
Recommended	additional	packages	and	libraries
Available	templates

Preferred	Languages
At	the	Netherlands	eScience	Center	we	prefer	Java	and	Python	over	C++	and	Perl,	as	these
languages	in	general	produce	more	sustainable	code.	It	is	not	always	possible	to	choose
which	libraries	we	use,	as	almost	all	projects	have	existing	code	as	a	starting	point.

(In	alphabetical	order)

Java
JavaScript	(preferably	Typescript)
Python
OpenCL	and	CUDA
R

Selecting	tools	and	libraries
On	GitHub	there	is	a	concept	of	an	"awesome	list",	that	collects	awesome	libraries	and	tools
on	some	topic.	For	instance,	here	is	one	for	Python:	https://github.com/vinta/awesome-
python

Language	Guides

39

https://github.com/vinta/awesome-python

Now,	someone	has	been	smart	enough	to	see	the	pattern,	and	has	created	an	awesome	list
of	awesome	lists:	https://awesome.re/

Highly	recommented	to	get	some	inspiration	on	available	tools	and	libraries!

Development	Services
To	do	development	in	any	language	you	first	need	infrastructure	(code	hosting,	ci,	etc).
Luckily	a	lot	is	available	for	free	now.

See	this	list:	https://github.com/ripienaar/free-for-dev

Language	Guides

40

https://awesome.re/
https://github.com/ripienaar/free-for-dev

Java	code	has	the	big	advantage	of	being	very	portable.

Recommended	sources	of	information
Javadoc	API	Documentation

Installing	Compilers	and	Runtimes
Its	recommended	to	use	the	latest	official	Oracle	version	(Java	8)	if	at	all	possible.	OpenJDK
is	usually	ok	as	well,	but	definitely	avoid	gcj.

Download	Oracle	Java
Installing	Oracle	Java	in	Ubuntu	(via	Webupd8)

Editors	and	IDEs
For	Java	we	normally	use	the	Eclipse	IDE.

Coding	style	conventions
We	follow	the	standard	coding	style	defined	by	SUN.

Latest	version	seems	to	be	the	Java	Coding	Style	on	Scribd.

We	have	standard	code	formatting	settings	for	eclipse.

TODO:	describe	tabs-vs-spaces	and	indentation	size.

code_format_nlesc_v2.xml	code_cleanup_nlesc.xml

Automated	checking	of	the	code	style	can	be	done	with	PMD	and	FindBugs.`

TODO:	add	(a	link	to)	our	standard	ruleset.

Building	and	packaging	code
As	a	build	system	we	normally	use	Gradle.	This	also	determines	the	project	layout,	and	has
standard	features	for	packaging	code.

Java

41

http://docs.oracle.com/javase/8/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.webupd8.org/2014/03/oracle-java-8-stable-released-install.html
https://www.eclipse.org/
https://www.scribd.com/doc/15884743/Java-Coding-Style-by-Achut-Reddy
http://gradle.org/

Testing
The	standard	unit	testing	framework	in	Java	is	JUnit.	Try	to	use	Junit	4	if	at	all	possible.

Use	following	naming	scheme	to	distinguish	unit	and	integration	tests:

Unit	tests:	/Test*.java,	/Test.java,	and	**/TestCase.java
Integration	tests:	/IT*.java,	/IT.java,	and	**/ITCase.java

Test	coverage	can	be	measured	with	Jacoco.	For	running	and	viewing	Jacoco	code
coverage,	use	eclemma

Code	quality	analysis	tools	and	services

SonarQube

SonarQube	is	an	open	platform	to	manage	code	quality	which	can	also	show	code	coverage
and	count	test	results	over	time.	SonarQube	can	analyze	Java,	C,	C++,	Python	and
Javascript.	The	analysis	can	be	done	in	IDE	or	command	line	using	http://www.sonarlint.org/
For	example	project	see	https://sonarqube.com/dashboard?id=nlesc%3Axenon-cli
Notifications	of	each	project	must	be	configured	in	your	own	account	settings.

Codacy

Code	quality	and	coverage	grouped	by	file.	Can	setup	goals	to	improve	quality	or	coverage
by	file	or	category.	For	example	project	see	https://www.codacy.com/app/xenon-
middleware/xenon/dashboard

Codecov

Can	show	code	coverages	for	many	languages	including	Java,	Python	and	Javascript.
Shows	unified	coverage	and	separate	coverage	for	matrix	builds.	For	example	project	see
https://codecov.io/github/xenon-middleware/xenon

Debugging	and	Profiling
Use	jConsole	or	jVisualVM.

Logging

Java

42

http://junit.org/junit4/
http://eclemma.org/jacoco/
http://www.eclemma.org/
https://about.sonarqube.com/
http://www.sonarlint.org/
https://sonarqube.com/dashboard?id=nlesc%3Axenon-cli
https://www.codacy.com
https://www.codacy.com/app/xenon-middleware/xenon/dashboard
https://codecov.io
https://codecov.io/github/xenon-middleware/xenon

For	logging,	we	use	the	slf4j	api.	The	advantage	of	slf4j	is	that	it	is	trivial	to	change	logging
implementations.	The	API	distribution	also	contains	a	few	simple	implementations.

To	get	logging	info	into	Eclipse,	one	option	is	to	use	logback	beagle.

Writing	documentation
Java	has	the	inbuild	JavaDoc	system	for	generating	API	documentation,	usually	in	the	form
of	HTML.	Highly	recommended.

Recommended	additional	packages	and
libraries
JFreeChart	is	a	Java	library	that	allows	to	do	nice	looking	charts.

Available	Templates
There	are	currently	no	Java	templates	available.	See	The	Xenon	repo	on	GitHub	as	a
(rather	complex)	example.

Distribution
We	use	Bintray	to	publish	packages.

To	make	the	package	easy	for	users	to	install,	the	packages	can	be	added	to	JCenter.
JCenter	is	the	largest	repository	in	the	world	for	Java	and	Android	OSS	libraries,	packages
and	components.	In	a	Gradle	build	file	the	JCenter	repository	can	be	used	by	adding:

repositories	{

				jcenter()

}

Packages	developed	at	the	Netherlands	eScience	Center	can	be	found	in	the	Bintray
NLeSC	repository.

Java

43

http://www.slf4j.org
http://logback.qos.ch/beagle
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.jfree.org/jfreechart/
https://github.com/xenon-middleware/xenon
https://bintray.com/howbintrayworks
http://jcenter.bintray.com/
https://bintray.com/nlesc

Getting	started
To	learn	about	JavaScript,	view	the	presentations	by	Douglas	Crockford:

Crockford	on	JavaScript
JavaScript:	The	Good	Parts
JavaScript	trilogy:

The	JavaScript	Programming	Language	(1h50m)
Theory	of	the	DOM	(1h18m)
Advanced	JavaScript	(1h07m)

In	this	video	(47m04s),	Nicholas	Zakas	talks	about	sustainability	aspects,	such	as	how	to
write	maintainable	JavaScript,	how	to	do	JavaScript	testing,	and	good	programming	style
(much	needed	in	JavaScript).	Among	others,	he	mentions	the	following	style	guides:

Google's	style	guide	for	JavaScript;
Crockford's	style	guide	integrates	with	JSLint,	which	in	turn	is	available	as	a	plugin	for
Eclipse.
Zakas	has	also	written	an	excellent	book	on	writing	maintainable	JavaScript,	also	within
the	context	of	working	in	teams.	The	appendix	contains	a	style	guide	with	explanation.

These	video	tutorials	(totaling	a	couple	of	hours)	are	useful	if	you're	just	starting	with
learning	the	JavaScript	language.

Another	source	of	information	for	javascript,	is	the	"web	standards	curriculum"	made	by	the
Web	Education	Community	Group	as	part	of	W3C:

http://www.w3.org/community/webed/wiki/Main_Page

In	particular,	see	the	page	about	Javascript	best	practices

Frameworks
To	develop	a	web	application	it	is	no	longer	enough	to	sprinkle	some	JQuery	calls	on	a	html
page,	a	JavaScript	based	front	end	web	application	framework	must	be	used.	The	are	very
many	frameworks,	popularity	is	a	good	way	to	pick	one.	Currently	the	most	popular
frameworks	are

Angular
React
Vue.js

JavaScript	and	TypeScript

44

http://en.wikipedia.org/wiki/Douglas_crockford
http://www.youtube.com/playlist?list=PL7664379246A246CB
http://www.youtube.com/watch?v=hQVTIJBZook
http://www.youtube.com/watch?v=v2ifWcnQs6M
http://www.youtube.com/watch?v=Y2Y0U-2qJMs
http://www.youtube.com/watch?v=DwYPG6vreJg
http://www.youtube.com/watch?v=c-kav7Tf834
https://google.github.io/styleguide/javascriptguide.xml
http://javascript.crockford.com/code.html
http://www.jslint.com/
http://shop.oreilly.com/product/0636920025245.do
http://www.youtube.com/watch?v=yQaAGmHNn9s&list=PLA56F6A06883A2AD8
http://www.w3.org/community/webed/wiki/Main_Page
http://www.w3.org/community/webed/wiki/JavaScript_best_practices
https://jquery.com/
https://angular.io/
https://reactjs.org/
https://vuejs.org/

All	these	frameworks	have	a	command	line	utility	to	generate	an	application	skeleton	which
includes	the	serve,	build	and	test	functionality.

Angular
Angular	is	a	application	framework	by	Google	written	in	TypeScript.

To	create	a	Angular	application	use	Angular	CLI.

React
React	is	a	library	which	can	used	to	create	interactive	User	Interfaces	by	combining
components.	It	is	developed	by	Facebook.	Where	Angular	and	Vue.js	are	frameworks,
including	all	the	rendering,	routing,	state	management	functonality	inside	them.	React	only
does	rendering	so	other	libraries	must	be	used	for	routing	and	state	management.	Redux
can	be	used	to	let	state	changes	flow	through	React	components.	React	Router	can	be	used
to	navigate	the	application	using	URLs.

To	create	a	React	application	use	the	Create	React	App	How	to	develop	the	bootstrapped
app	further	is	described	in	the	README.md.

TypeScript	React	Starter	is	a	Typescript	version	of	create	react	app.

Vue.js
Vue.js	is	an	open-source	JavaScript	framework	for	building	user	interfaces.

To	create	a	Vue.js	application	use	Vue	CLI.

TypeScript	Vue	Starter	is	a	guide	to	write	Vue	applications	in	TypeScript.

JavaScript	outside	browser
Most	JavaScript	is	run	in	web	browsers,	but	JavaScript	can	also	be	run	on	outside	browsers
with	NodeJS.

On	Ubuntu	(18.04)	based	systems,	you	can	use	the	following	commands	to	install	NodeJS:

JavaScript	and	TypeScript

45

https://angular.io/
https://www.typescriptlang.org/
https://cli.angular.io/
https://facebook.github.io/react/
http://redux.js.org/
https://reacttraining.com/react-router/
https://github.com/facebookincubator/create-react-app
https://github.com/Microsoft/TypeScript-React-Starter#typescript-react-starter
https://vuejs.org/
https://cli.vuejs.org/
https://github.com/Microsoft/TypeScript-Vue-Starter#typescript-vue-starter
https://nodejs.org

#	system	packages	(Ubuntu/Debian)

curl	-sL	https://deb.nodesource.com/setup_10.x	|	sudo	-E	bash	-

sudo	apt-get	install	-y	nodejs

NodeJS	comes	with	a	package	manager	called	npm.	The	package	manager	uses
https://www.npmjs.com/	as	the	package	repository.

Editors	and	IDEs
These	are	some	good	JavaScript	editors:

Atom	by	GitHub
Brackets	by	Adobe
WebStorm	by	JetBeans
Visual	Studio	Code	by	Microsoft

The	best	JavaScript	editors	are	currently	WebStorm	and	Visual	Studio	Code.	Atom	can	have
some	performance	problems,	especially	with	larger	files.

Debugging
In	web	development,	debugging	is	typically	done	in	the	browser.

The	best	debugging	tool	suite	is	currently	the	debugger	built	into	the	Google	Chrome
webbrowser,	and	its	open-source	counterpart,	Chromium.	It	can	watch	variables,	step
through	the	code,	lets	you	monitor	network	traffic,	and	much	more.	Activate	the
debugger	through	the	F12	key.
On	Firefox,	use	either	the	built-in	debugging	functionality	(again	accessible	through	the
F12	button)	or	install	the	Firebug	Addon	for	some	more	advanced	debugging
functionality.
Microsoft	has	a	debugging	toolset	called	'F12'	for	their	Internet	Explorer	and	Edge
browsers.	It	offers	similar	capability	as	that	of	Google	Chrome,	Chromium,	and	Firefox.
In	Safari	on	OS	X,	press	⌘⌥U.

Sometimes	the	JavaScript	code	in	the	browser	is	not	an	exact	copy	of	the	code	you	see	in
your	development	environment,	for	example	because	the	original	source	code	is
minified/uglified	or	transpiled	before	it's	loaded	in	the	browser.	All	major	browsers	can	now
deal	with	this	through	so-called	source	maps,	which	instruct	the	browser	which	symbol/line
in	a	javascript	file	corresponds	to	which	line	in	the	human-readable	source	code.	Look	for
the	'create	sourcemaps'	option	when	using	minification/uglification/transpiling	tools.

JavaScript	and	TypeScript

46

https://www.npmjs.com/
https://www.npmjs.com/
http://atom.io
http://brackets.io/
https://www.jetbrains.com/webstorm/
https://code.visualstudio.com
https://addons.mozilla.org/en-US/firefox/addon/firebug/

Hosting	data	files
To	load	data	files	with	JavaScript	you	can't	use	any	file	system	URLs	due	to	safety
restrictions.	You	should	use	a	web	server	(which	may	still	serve	files	that	are	local).	A	simple
webserver	can	be	started	from	the	directory	you	want	to	host	files	with:

python3	-m	http.server	8000

Then	open	the	webbrowser	to	http://localhost:8000.

Documentation
JSDoc	works	similarly	to	JavaDoc,	in	that	it	parses	your	JavaScript	files	and	automatically
generates	HTML	documentation.	The	Tag	Dictionary	is	an	overview	of	the	tag	names	you
can	use	to	document	your	code.

Testing
Jasmine,	a	behavior-driven	development	framework	for	testing	JavaScript	code.
Karma,	Test	runner,	runs	tests	in	web	browser	with	code	coverage.	Use	PhantomJS	as
headless	webbrowser	on	CI-servers.
Tape,	a	minimal	testing	framework	that	helps	remove	some	of	the	black-box	approach
of	some	of	the	other	frameworks.
Jest,	a	test	framework	from	Facebook	which	is	integrated	into	the	Create	React	App

Web	based	tests
To	interact	with	web-browsers	use	Selenium.

Test	with

Local	web	browser
Web	browsers	hosted	by	Sauce	Labs,	it	has	a	matrix	of	web-browsers	and	Operating
Systems.	Free	for	open	source	projects.

Coding	style

JavaScript	and	TypeScript

47

http://usejsdoc.org/
http://usejsdoc.org/#JSDoc3_Tag_Dictionary
http://jasmine.github.io/
http://karma-runner.github.io/
http://phantomjs.org/
https://github.com/substack/tape
https://github.com/facebook/jest
https://github.com/NLeSC/create-react-app
http://docs.seleniumhq.org/
https://saucelabs.com/

See	general	front	dev	guidelines	and	Airbnb	JavaScript	Style	Guide.

Use	a	linter	like	eslint	to	detect	errors	and	potential	problems.

Showing	code	examples
Code	examples	can	be	stored	in	Gists	in	GitHub.	bl.ocks.org	allows	you	to	view	the	resulting
page,	and	serve	as	a	small	demo.	There's	also	jsfiddle,	which	shows	you	a	live	preview	of
your	web	page	while	you	fiddle	with	the	underlying	HTML,	JavaScript	and	CSS	code.

Code	quality	analysis	tools	and	services
Code	climate	can	analyze	Javascript	(and	Ruby,	PHP).	For	example	project	see
https://codeclimate.com/github/NLeSC/PattyVis
Codacy	can	analyze	Java,	Python,	Javascript	and	Typescript	(and	CSS,	PHP,	Scala).
The	analysis	for	Java	and	Python	is	not	as	good	as	for	Javascript.	The	analysis	is	quite
slow,	as	it	analyzes	each	past	commit.	For	example	project	see
https://www.codacy.com/app/3D-e-Chem/molviewer-tsx/dashboard
SonarCloud	is	an	open	platform	to	manage	code	quality	which	can	also	show	code
coverage	and	count	test	results	over	time.	Can	analyze	Java	(best	supported),	C,	C++,
Python,	Javascript	and	Typescript.	For	example	project	see
https://sonarcloud.io/dashboard?id=e3dchem%3Amolviewer

TypeScript
http://www.typescriptlang.org

Typescript	is	a	typed	superset	of	JavaScript	which	compiles	to	plain	JavaScript.	Typescript
adds	static	typing	to	JavaScript,	which	makes	it	easier	to	scale	up	in	people	and	lines	of
code.

At	the	Netherlands	eScience	Center	we	prefer	TypeScript	over	JavaScript	as	it	will	lead	to
more	sustainable	software.

Getting	Started
To	learn	about	TypeScript	the	following	resources	are	available:

JavaScript	and	TypeScript

48

https://github.com/bendc/frontend-guidelines
https://github.com/airbnb/javascript
https://eslint.org/
http://bl.ocks.org
https://jsfiddle.net/
https://codeclimate.com
https://codeclimate.com/github/NLeSC/PattyVis
https://www.codacy.com
https://www.codacy.com/app/3D-e-Chem/molviewer-tsx/dashboard
https://sonarcloud.io
https://sonarcloud.io/dashboard?id=e3dchem%3Amolviewer
http://www.typescriptlang.org

youtube:	tutorials	playlist	about	TypeScript
tutorial	from	Microsoft's	TypeScript	website
blog	post	about	how	TypeScript	can	be	used	with	the	Google	Chrome/Chromium
debuggers	(and	presumably	Firefox,	and	Internet	Explorer)	through	the	use	of	so-called
'source	maps'.	(Follow	this	link	to	set	up	source	mapping	for	Firefox,	also	useful	for
debugging	minified	JavaScript	code).
blog	post	that	supposedly	is	the	definitive	guide	to	TypeScript
TypeScript	Language	Specification

Quickstart
To	install	TypeScript	compiler	run:

npm	install	-g	typescript

Dealing	with	Types
In	TypeScript,	variables	are	typed	and	these	types	are	checked.	This	implies	that	when
using	libraries,	the	types	of	these	libraries	need	to	be	installed.	More	and	more	libraries	ship
with	type	declarations	in	them	so	they	can	be	used	directly.	These	libraries	will	have	a
"typings"	key	in	their	package.json.	When	a	library	does	not	ship	with	type	declarations	then
the	libriaries		@types/<library-name>		package	must	be	installed	using	npm:

npm	install	--save-dev	@types/<library-name>

For	example	say	we	want	to	use	the		react		package	which	we	installed	using		npm	:

npm	install	react	--save

To	be	able	to	use	its	functionality	in	TypeScript	we	need	to	install	the	typings.	We	can	search
for	the	correct	package	at	http://microsoft.github.io/TypeSearch/	.

And	install	it	with:

npm	install	--save-dev	@types/react

JavaScript	and	TypeScript

49

http://www.youtube.com/playlist?list=PLyJiOytEPs4d9QUQHHSuY3n3nBmkBuqro
http://www.typescriptlang.org/Tutorial
http://www.aaron-powell.com/posts/2012-10-03-typescript-source-maps
http://blog.oio.de/2014/04/04/internet-explorer-11-source-map-based-debugging/
http://www.codeproject.com/Articles/649271/How-to-Enable-Source-Maps-in-Firefox
http://www.sitepen.com/blog/2013/12/31/definitive-guide-to-typescript/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://microsoft.github.io/TypeSearch/

The		--save-dev		flag	saves	this	installation	to	the	package.json	file	as	a	development
dependency.	Do	not	use		--save		for	types	because	a	production	build	will	have	been
transpiled	to	Javascript	and	has	no	use	for	Typescript	types.

Editors	and	IDEs
These	are	some	good	TypeScript	editors:

Atom	by	GitHub,	with	the		atom-typescript		Atom	package.
Brackets	by	Adobe
Visual	Studio	Code	by	Microsoft
WebStorm	by	JetBeans

The	best	TypeScript	editors	is	currently	Visual	Studio	Code	as	Microsoft	develops	both	the
editor	and	Typescript.

Debugging
In	web	development,	debugging	is	typically	done	in	the	browser.	Typescript	can	not	be	run
directly	in	web	browser	so	it	must	be	transpiled	to	Javascript.	To	map	a	breakpoint	in	the
browser	to	a	line	in	the	original	Typescript	file	source	maps	are	required.	Most	frameworks
have	a	project	build	system	which	generate	source	maps.

Documentation
It	seems	that	TypeDoc	is	a	good	tool	to	use.	Alternative	could	be	TSdoc

Style	Guides
TSLint	is	a	good	tool	to	check	your	codestyle.

For	the	sim-city-cs	project	we	use	this	tslint.json	file.

JavaScript	and	TypeScript

50

http://atom.io
http://brackets.io/?lang=en
https://code.visualstudio.com
https://www.jetbrains.com/webstorm/
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://typedoc.io/
https://www.npmjs.com/package/tsdoc
https://github.com/palantir/tslint
https://github.com/indodutch/sim-city-cs/
https://github.com/ReGIS-org/regis/blob/develop/tslint.json

Python
Python	is	the	"dynamic	language	of	choice"	of	the	Netherlands	eScience	Center.

Project	setup
When	starting	a	new	Python	project,	consider	using	our	Python	template.	This	template
provides	a	basic	project	structure,	so	you	can	spend	less	time	setting	up	and	configuring
your	new	Python	packages,	and	comply	with	the	software	guide	right	from	the	start.

Python	versions
Currently,	there	are	two	Python	versions:	2	and	3.	Should	I	use	Python	2	or	Python	3	for	my
development	activity?	Generally,	Python	2.x	is	legacy,	Python	3.x	is	the	present	and	future	of
the	language.	However,	not	all	Python	libraries	are	compatible	with	Python	3.

Six:	Python	2	and	3	Compatibility	Library
2to3:	Automated	Python	2	to	3	code	translation
python-modernize:	wrapper	around	2to3

The	philosophy	of	Python	is	summarized	in	the	Zen	of	Python.	In	Python,	this	text	can	be
retrieved	with	the		import	this		command.

Recommended	sources	of	information
A	good	way	to	learn	Python	is	by	doing	it	the	hard	way	at
http://learnpythonthehardway.org/
Introduction	to	python	for	data	science:	http://skillsmatter.com/podcast/java-
jee/introducing-python-for-data-science
Blog	by	Ian	Ozsvald,	mostly	on	high	performance	python.
Planet	Python
Using		pylint		and		yapf		while	learning	Python	is	an	easy	way	to	get	familiar	with	best
practices	and	commonly	used	coding	styles

Dependencies	and	package	management

Python

51

https://github.com/NLeSC/python-template
https://wiki.python.org/moin/Python2orPython3
https://pythonhosted.org/six/
https://docs.python.org/2/library/2to3.html
https://github.com/mitsuhiko/python-modernize
https://www.python.org/dev/peps/pep-0020/
http://learnpythonthehardway.org/
http://skillsmatter.com/podcast/java-jee/introducing-python-for-data-science
http://ianozsvald.com/
http://planetpython.org
https://www.pylint.org
https://github.com/google/yapf

Use		pip		or		conda		(note	that	pip	and	conda	can	be	used	side	by	side,	see	also	what	is	the
difference	between	pip	and	conda?).

If	you	are	planning	on	distributing	your	code	at	a	later	stage,	be	aware	that	your	choice	of
package	management	may	affect	your	packaging	process.	See	Building	and	packaging	for
more	info.

Pip	+	virtualenv

Create	isolated	Python	environments	with	virtualenv.	Very	much	recommended	for	all
Python	projects	since	it:

installs	Python	modules	when	you	are	not	root,
contains	all	Python	dependencies	so	the	environment	keeps	working	after	an	upgrade,
and
lets	you	select	the	Python	version	per	environment,	so	you	can	test	code	compatibility
between	Python	2.x	and	3.x.

To	manage	multiple	virtualenv	environments	and	reference	them	only	by	name,	use
virtualenvwrapper.	To	create	a	new	environment,	run		mkvirtualenv	environment_name	,	to
start	using	it,	run		workon	environment_name		and	to	stop	working	with	it,	run		deactivate	.

If	you	are	using	Python	3	only,	you	can	also	make	use	of	the	standard	library	venv	module.
Creating	a	virtual	environment	with	it	is	as	easy	as	running		python3	-m	venv
/path/to/environment	.	Run		.	/path/to/environment/bin/activate		to	start	using	it	and
	deactivate		to	deactivate.

With	virtualenv	and	venv,	pip	is	used	to	install	all	dependencies.	An	increasing	number	of
packages	are	using		wheel	,	so	pip	downloads	and	installs	them	as	binaries.	This	means
they	have	no	build	dependencies	and	are	much	faster	to	install.	If	the	installation	of	a
package	fails	because	of	its	native	extensions	or	system	library	dependencies	and	you	are
not	root,	you	have	to	revert	to	Conda	(see	below).

To	keep	a	log	of	the	packages	used	by	your	package,	run		pip	freeze	>	requirements.txt		in
the	root	of	your	package.	If	some	of	the	packages	listed	in		requirements.txt		are	needed
during	testing	only,	use	an	editor	to	move	those	lines	to		test_requirements.txt	.	Now	your
package	can	be	installed	with

pip	install	-r	requirements.txt

pip	install	-e	.

Python

52

http://stackoverflow.com/questions/20994716/what-is-the-difference-between-pip-and-conda
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.org
https://docs.python.org/3/library/venv.html
http://pythonwheels.com

The		-e		flag	will	install	your	package	in	editable	mode,	i.e.	it	will	create	a	symlink	to	your
package	in	the	installation	location	instead	of	copying	the	package.	This	is	convenient	when
developing,	because	any	changes	you	make	to	the	source	code	will	immediately	be
available	for	use	in	the	installed	version.

Conda

Conda	can	be	used	instead	of	virtualenv	and	pip.	It	easily	installs	binary	dependencies,	like
Python	itself	or	system	libraries.	Installation	of	packages	that	are	not	using		wheel		but	have
a	lot	of	native	code	is	much	faster	than		pip		because	Conda	does	not	compile	the	package,
it	only	downloads	compiled	packages.	The	disadvantage	of	Conda	is	that	the	package
needs	to	have	a	Conda	build	recipe.	Many	Conda	build	recipes	already	exist,	but	they	are
less	common	than	the		setup.py		that	generally	all	Python	packages	have.

There	are	two	main	distributions	of	Conda:	Anaconda	and	Miniconda.	Anaconda	is	large	and
contains	a	lot	of	common	packages,	like	numpy	and	matplotlib,	whereas	Miniconda	is	very
lightweight	and	only	contains	Python.	If	you	need	more,	the		conda		command	acts	as	a
package	manager	for	Python	packages.

Use		conda	install		to	install	new	packages	and		conda	update		to	keep	your	system	up	to
date.	The		conda		command	can	also	be	used	to	create	virtual	environments.

For	environments	where	you	do	not	have	admin	rights	(e.g.	DAS-5)	either	Anaconda	or
Miniconda	is	highly	recommended,	since	the	install	is	very	straightforward.	The	installation	of
packages	through	Conda	seems	very	robust.	If	you	want	to	add	packages	to	the	(Ana)conda
repositories,	please	check	Build	using	conda.	A	possible	downside	of	Anaconda	is	the	fact
that	this	is	offered	by	a	commercial	supplier,	but	we	don't	foresee	any	vendor	lock-in	issues.

Editors	and	IDEs
Every	major	text	editor	supports	Python,	either	natively	or	through	plugins.	At	the
Netherlands	eScience	Center,	often	used	editors	are	atom,	Sublime	Text	and	vim.
PyDev	is	an	open	source	IDE.	The	source	code	is	available	in	the	PyDev	GitHub
repository.	It	has	debugging,	unit	testing,	and	reporting(code	analysis,	code	coverage)
support.
For	those	seeking	an	IDE,	JetBrains	PyCharm	is	the	Python	IDE	of	choice.	PyCharm
Community	Edition	is	open	source.	The	source	code	is	available	in	the	python	folder	of
the	IntelliJ	repository.	It	has	visual	debugger,	unit	testing	and	code	coverage	support,
profiler.	JetBrains	provides	a	list	of	all	tools	in	PyCharm.

Python

53

http://conda.pydata.org/docs/
http://continuum.io/downloads
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/build_tutorials.html
https://atom.io/
https://www.sublimetext.com/
https://realpython.com/blog/python/vim-and-python-a-match-made-in-heaven/
http://www.pydev.org/
https://github.com/fabioz/Pydev
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm
https://github.com/JetBrains/intellij-community/tree/master/python
https://www.jetbrains.com/pycharm/features/tools.html

Coding	style	conventions
The	style	guide	for	Python	code	is	PEP8	and	for	docstrings	it	is	PEP257.	The		autopep8	
package	can	automatically	format	most	Python	code	to	conform	to	the	PEP	8	style	guide.
The	more	comprehensive		yapf		tool	can	automatically	format	code	for	optimal	readability
according	to	a	chosen	style	(PEP	8	is	the	default).	The		isort		package	automatically
formats	and	groups	all	imports	in	a	standard,	readable	way.

Many	linters	exists	for	Python,		prospector		is	a	tool	for	running	a	suite	of	linters,	it	supports,
among	others:

pycodestyle
pydocstyle
pyflakes
pylint
mccabe
pyroma

Make	sure	to	set	strictness	to		veryhigh		for	best	results.		prospector		has	its	own
configuration	file,	like	the	.prospector.yml	default	in	the	Python	template,	but	also	supports
configuration	files	for	any	of	the	linters	that	it	runs.	Most	of	the	above	tools	can	be	integrated
in	text	editors	and	IDEs	for	convenience.

Building	and	packaging	code
To	create	an	installable	Python	package,	create	a	file		setup.py		and	use	the		setuptools	
module.	Make	sure	you	only	import	standard	library	packages	in		setup.py	,	directly	or
through	importing	other	modules	of	your	package,	or	your	package	will	fail	to	install	on
systems	that	do	not	have	the	required	dependencies	pre-installed.	Set	up	continuous
integration	to	test	your	installation	script.	Use		pyroma		(can	be	run	as	part	of		prospector)	as
a	linter	for	your	installation	script.

For	packaging	your	code,	you	can	either	use		pip		or		conda	.	Neither	of	them	is	better	than
the	other	--	they	are	different;	use	the	one	which	is	more	suitable	for	your	project.		pip		may
be	more	suitable	for	distributing	pure	python	packages,	and	it	provides	some	support	for
binary	dependencies	using		wheels	.		conda		may	be	more	suitable	when	you	have	external
dependencies	which	cannot	be	packaged	in	a	wheel.

Use	twine	to	upload	your	package	to	the	Python	Package	Index	(PyPI)	(so	it	can	be
installed	with	pip)	(tutorial)

Packages	should	be	uploaded	to	PyPI	using	your	own	account
For	packages	co-owned	by	the	Netherlands	eScience	Center	it	is	advised	to	make

Python

54

http://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://github.com/google/yapf
http://timothycrosley.github.io/isort/
https://github.com/landscapeio/prospector
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pydocstyle
https://pypi.python.org/pypi/pyflakes
https://www.pylint.org/
https://github.com/PyCQA/mccabe
https://github.com/regebro/pyroma
https://github.com/NLeSC/python-template/blob/master/%7B%7Bcookiecutter.project_slug%7D%7D/.prospector.yml
https://setuptools.readthedocs.io
https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
http://pythonwheels.com
https://github.com/pypa/twine
https://pypi.org
http://blog.securem.eu/tips%20and%20tricks/2016/02/29/creating-and-publishing-a-python-module/
https://pypi.org/account/register

the	PyPI		nlesc		account	an	collaborator	with	the	owner	role.	This	will	give	the
center	a	way	to	perform	emergency	maintenance	of	the	package	if	the	original
uploader	is	unable	to.
When	distributing	code	through	PyPI,	non-python	files	(such	as		requirements.txt)
will	not	be	packaged	automatically,	you	need	to	add	them	to	a		MANIFEST.in		file.
To	test	whether	your	distribution	will	work	correctly	before	uploading	to	PyPI,	you
can	run		python	setup.py	sdist		in	the	root	of	your	repository.	Then	try	installing
your	package	with		pip	install	dist/<your_package>tar.gz.	

Build	using	conda
If	possible,	add	packages	to	conda-forge.	Use	BioConda	or	custom	channels
(hosted	on	GitHub)	as	alternatives	if	need	be.

Python	wheels	are	the	new	standard	for	distributing	Python	packages.	For	pure	python
code,	without	C	extensions,	use		bdist_wheel		with	a	Python	2	and	Python	3	setup,	or
use		bdist_wheel	--universal		if	the	code	is	compatible	with	both	Python	2	and	3.	If	C
extensions	are	used,	each	OS	needs	to	have	its	own	wheel.	The	manylinux	docker
images	can	be	used	for	building	wheels	compatible	with	multiple	Linux	distributions.
See	the	manylinux	demo	for	an	example.	Wheel	building	can	be	automated	using	Travis
(for	pure	python,	Linux	and	OS	X)	and	Appveyor	(for	Windows).

Testing
pytest	is	a	full	featured	Python	testing	tool.	You	can	use	it	with		unittest	.	Pytest	intro
Using	mocks	in	Python
unittest	is	a	framework	available	in	Python	Standard	Library.	Dr.Dobb's	on	Unit	Testing
with	Python
doctest	searches	for	pieces	of	text	that	look	like	interactive	Python	sessions,	and	then
executes	those	sessions	to	verify	that	they	work	exactly	as	shown.	Always	use	this	if
you	have	example	code	in	your	documentation	to	make	sure	your	examples	actually
work.

Using		pytest		is	preferred	over		unittest	,		pytest		has	a	much	more	concise	syntax	and
supports	many	useful	features.

Please	make	sure	the	command		python	setup.py	test		can	be	used	to	run	your	tests.	When
using		pytest	,	this	can	be	easily	configured	as	described	in	the		pytest		documentation.

Code	coverage

Python

55

https://stackoverflow.com/questions/1612733/including-non-python-files-with-setup-py
http://conda.pydata.org/docs/build_tutorials.html
https://conda-forge.github.io/
http://pythonwheels.com/
https://packaging.python.org/distributing/#wheels
https://packaging.python.org/distributing/#pure-python-wheels
https://packaging.python.org/distributing/#universal-wheels
https://github.com/pypa/manylinux
https://github.com/pypa/python-manylinux-demo
http://pytest.org/latest/
http://pythontesting.net/framework/pytest/pytest-introduction/
http://www.drdobbs.com/testing/using-mocks-in-python/240168251
https://docs.python.org/3/library/unittest.html
http://www.drdobbs.com/testing/unit-testing-with-python/240165163
https://docs.python.org/3/library/doctest.html
https://docs.pytest.org/en/latest/goodpractices.html#integrating-with-setuptools-python-setup-py-test-pytest-runner

When	you	have	tests	it	is	also	a	good	to	see	which	source	code	is	exercised	by	the	test
suite.	Code	coverage	can	be	measured	with	the	coverage	Python	package.	The	coverage
package	can	also	generate	html	reports	which	show	which	line	was	covered.	Most	test
runners	have	have	the	coverage	package	integrated.

The	code	coverage	reports	can	be	published	online	in	code	quality	service	or	code	coverage
services.	Preferred	is	to	use	one	of	the	code	quality	service	which	also	handles	code
coverage	listed	below.	If	this	is	not	possible	or	does	not	fit	then	use	one	of	the	generic	code
coverage	service	list	in	the	software	guide.

Code	quality	analysis	tools	and	services
Code	quality	service	is	explained	in	the	Generic	software	guide.	There	are	multiple	code
quality	services	available	for	Python.	There	is	not	a	best	one,	below	is	a	short	list	of	services
with	their	different	strenghts.

Codacy

Code	quality	and	coverage	grouped	by	file.	Can	setup	goals	to	improve	quality	or	coverage
by	file	or	category.	For	example	project	see	https://www.codacy.com/app/3D-e-
Chem/kripodb/dashboard.	Note	that	Codacy	does	not	install	your	depencencies,	which
prevents	it	from	correctly	identifying	import	errors.

Scrutinizer

Code	quality	and	coverage	grouped	by	class	and	function.	For	example	project	see
https://scrutinizer-ci.com/g/NLeSC/eEcology-Annotation-WS/

Landscape

Dedicated	for	Python	code	quality.	Celery,	Django	and	Flask	specific	behaviors.	The
Landscape	analysis	tool	called		prospector		can	be	run	locally.	For	example	project	see
https://landscape.io/github/NLeSC/MAGMa

Debugging	and	profiling

Debugging

Python	has	its	own	debugger	called	pdb.	It	is	a	part	of	the	Python	distribution.
pudb	is	a	console-based	Python	debugger	which	can	easily	be	installed	using	pip.

Python

56

https://coverage.readthedocs.io
https://www.codacy.com
https://www.codacy.com/app/3D-e-Chem/kripodb/dashboard
https://scrutinizer-ci.com/
https://scrutinizer-ci.com/g/NLeSC/eEcology-Annotation-WS/
https://landscape.io
https://github.com/landscapeio/prospector
https://landscape.io/github/NLeSC/MAGMa
https://docs.python.org/3/library/pdb.html
https://github.com/inducer/pudb

If	you	are	looking	for	IDE's	with	debugging	capabilities,	please	check	Editors	and	IDEs
section.

If	you	are	using	Windows,	Python	Tools	for	Visual	Studio	adds	Python	support	for	Visual
Studio.

If	you	would	like	to	integrate	pdb	with	vim	editor,	you	can	use	Pyclewn.

List	of	other	available	software	can	be	found	on	the	Python	wiki	page	on	debugging
tools.

If	you	are	looking	for	some	tutorials	to	get	started:

https://pymotw.com/2/pdb
https://github.com/spiside/pdb-tutorial
https://www.jetbrains.com/help/pycharm/2016.3/debugging.html
https://waterprogramming.wordpress.com/2015/09/10/debugging-in-python-using-
pycharm/
http://www.pydev.org/manual_101_run.html

Profiling

There	are	a	number	of	available	profiling	tools	that	are	suitable	for	different	situations.

cProfile	measures	number	of	function	calls	and	how	much	CPU	time	they	take.	The
output	can	be	further	analyzed	using	the		pstats		module.
For	more	fine-grained,	line-by-line	CPU	time	profiling,	two	modules	can	be	used:

line_profiler	provides	a	function	decorator	that	measures	the	time	spent	on	each
line	inside	the	function.
pprofile	is	less	intrusive;	it	simply	times	entire	Python	scripts	line-by-line.	It	can	give
output	in	callgrind	format,	which	allows	you	to	study	the	statistics	and	call	tree	in
	kcachegrind		(often	used	for	analyzing	c(++)	profiles	from		valgrind).

More	realistic	profiling	information	can	usually	be	obtained	by	using	statistical	or	sampling
profilers.	The	profilers	listed	below	all	create	nice	flame	graphs.

vprof
Pyflame
nylas-perftools

Logging
logging	module	is	the	most	commonly	used	tool	to	track	events	in	Python	code.

Python

57

https://github.com/Microsoft/PTVS
https://docs.python.org/3/library/pdb.html
https://sourceforge.net/projects/pyclewn
https://wiki.python.org/moin/PythonDebuggingTools
https://pymotw.com/2/pdb
https://github.com/spiside/pdb-tutorial
https://www.jetbrains.com/help/pycharm/2016.3/debugging.html
https://waterprogramming.wordpress.com/2015/09/10/debugging-in-python-using-pycharm/
http://www.pydev.org/manual_101_run.html
https://docs.python.org/2/library/profile.html
https://github.com/rkern/line_profiler
https://github.com/vpelletier/pprofile
https://github.com/nvdv/vprof
https://github.com/uber/pyflame
https://github.com/nylas/nylas-perftools
https://docs.python.org/3/library/logging.html

Tutorials:
Official	Python	Logging	Tutorial
http://docs.python-guide.org/en/latest/writing/logging
Python	logging	best	practices	with	JSON	steroids

Writing	Documentation
Python	uses	Docstrings	for	function	level	documentation.	You	can	read	a	detailed
description	of	docstring	usage	in	PEP	257.	The	default	location	to	put	HTML	documentation
is	Read	the	Docs.	You	can	connect	your	account	at	Read	the	Docs	to	your	GitHub	account
and	let	the	HTML	be	generated	automatically	using	Sphinx.

Autogenerating	the	documentation

There	are	several	tools	that	automatically	generate	documentation	from	docstrings.	These
are	the	most	used:

pydoc
Sphinx	(uses	reStructuredText	as	its	markup	language)

Sphinx	quickstart
Restructured	Text	(reST)	and	Sphinx	CheatSheet
Instead	of	using	reST,	Sphinx	can	also	generate	documentation	from	the	more
readable	NumPy	style	or	Google	style	docstrings.	The	Napoleon	extension	needs
to	be	enabled.

We	recommend	using	Sphinx	and	Google	documentation	style.	Sphinx	can	easily	be
integrated	with	setuptools,	so	documentation	can	be	built	with	in	the	command		python
setup.py	build_sphinx	.

Recommended	additional	packages	and
libraries

General	scientific

NumPy
SciPy
Pandas	data	analysis	toolkit
scikit-learn:	machine	learning	in	Python
Cython	speed	up	Python	code	by	using	C	types	and	calling	C	functions

Python

58

https://docs.python.org/3/howto/logging.html#logging-basic-tutorial
http://docs.python-guide.org/en/latest/writing/logging
https://logmatic.io/blog/python-logging-with-json-steroids
https://www.python.org/dev/peps/pep-0257/
https://readthedocs.org
https://docs.python.org/2/library/pydoc.html
http://sphinx-doc.org
http://www.sphinx-doc.org/en/master/usage/quickstart.html
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://google.github.io/styleguide/pyguide.html
http://sphinxcontrib-napoleon.readthedocs.io/
http://www.sphinx-doc.org/en/stable/setuptools.html
http://www.numpy.org/
https://www.scipy.org/
http://pandas.pydata.org/
http://scikit-learn.org/
http://cython.org/

dask	larger	than	memory	arrays	and	parallel	execution

IPython	and	Jupyter	notebooks	(aka	IPython	notebooks)

IPython	is	an	interactive	Python	interpreter	--	very	much	the	same	as	the	standard	Python
interactive	interpreter,	but	with	some	extra	features	(tab	completion,	shell	commands,	in-line
help,	etc).

Jupyter	notebooks	(formerly	know	as	IPython	notebooks)	are	browser	based	interactive
Python	enviroments.	It	incorporates	the	same	features	as	the	IPython	console,	plus	some
extras	like	in-line	plotting.	Look	at	some	examples	to	find	out	more.	Within	a	notebook	you
can	alternate	code	with	Markdown	comments	(and	even	LaTeX),	which	is	great	for
reproducible	research.	Notebook	extensions	adds	extra	functionalities	to	notebooks.
JupyterLab	is	a	web-based	environment	with	a	lot	of	improvements	and	integrated	tools.
JupyterLab	is	still	under	development	and	may	not	be	suitable	if	you	need	a	stable	tool.

Visualization

Matplotlib	has	been	the	standard	in	scientific	visualization.	It	supports	quick-and-dirty
plotting	through	the		pyplot		submodule.	Its	object	oriented	interface	can	be	somewhat
arcane,	but	is	highly	customizable	and	runs	natively	on	many	platforms,	making	it
compatible	with	all	major	OSes	and	environments.	It	supports	most	sources	of	data,
including	native	Python	objects,	Numpy	and	Pandas.

Seaborn	is	a	Python	visualisation	library	based	on	Matplotlib	and	aimed	towards
statistical	analysis.	It	supports	numpy,	pandas,	scipy	and	statmodels.

Web-based:
Bokeh	is	Interactive	Web	Plotting	for	Python.
Plotly	is	another	platform	for	interactive	plotting	through	a	web	browser,	including	in
Jupyter	notebooks.
altair	is	a	grammar	of	graphics	style	declarative	statistical	visualization	library.	It
does	not	render	visualizations	itself,	but	rather	outputs	Vega-Lite	JSON	data.	This
can	lead	to	a	simplified	workflow.
ggplot	is	a	plotting	library	imported	from	R.

Database	Interface

psycopg	is	an	PostgreSQL	adapter
cx_Oracle	enables	access	to	Oracle	databases
monetdb.sql	is	monetdb	Python	client
pymongo	allows	for	work	with	MongoDB	database
py-leveldb	are	thread-safe	Python	bindings	for	LevelDb

Python

59

http://dask.pydata.org
https://ipython.org/
http://ipython.readthedocs.io/en/stable/interactive/index.html
http://jupyter.org/
https://nbviewer.jupyter.org/github/ipython/ipython/blob/4.0.x/examples/IPython%20Kernel/Index.ipynb
https://github.com/ipython-contrib/jupyter_contrib_nbextensions
https://github.com/jupyterlab/jupyterlab
http://matplotlib.org
http://stanford.edu/~mwaskom/software/seaborn/index.html
https://github.com/bokeh/bokeh
https://plot.ly/
https://github.com/ellisonbg/altair
https://github.com/yhat/ggpy
http://initd.org/psycopg/
http://www.postgresql.org
http://cx-oracle.sourceforge.net
https://www.oracle.com/database/index.html
https://www.monetdb.org/Documentation/Manuals/SQLreference/Programming/Python
https://www.monetdb.org
http://api.mongodb.org/python/current/
http://www.mongodb.com
https://code.google.com/p/py-leveldb/
https://github.com/google/leveldb

Parallelisation

CPython	(the	official	and	mainstream	Python	implementation)	is	not	built	for	parallel
processing	due	to	the	global	interpreter	lock.	Note	that	the	GIL	only	applies	to	actual	Python
code,	so	compiled	modules	like	e.g.		numpy		do	not	suffer	from	it.

Having	said	that,	there	are	many	ways	to	run	Python	code	in	parallel:

The	multiprocessing	module	is	the	standard	way	to	do	parallel	executions	in	one	or
multiple	machines,	it	circumvents	the	GIL	by	creating	multiple	Python	processess.
A	much	simpler	alternative	in	Python	3	is	the		concurrent.futures		module.
IPython	/	Jupyter	notebooks	have	built-in	parallel	and	distributed	computing	capabilities
Many	modules	have	parallel	capabilities	or	can	be	compiled	to	have	them.
At	the	eScience	Center,	we	have	developed	the	Noodles	package	for	creating
computational	workflows	and	automatically	parallelizing	it	by	dispatching	independent
subtasks	to	parallel	and/or	distributed	systems.

Web	Frameworks

There	are	a	lot	web	frameworks	for	Python	that	are	very	easy	to	run.

flask
cherrypy
Django
bottle	(similar	to	flask,	but	a	bit	more	light-weight	for	a	JSON-REST	service)

We	recommend		flask	.

NLP/text	mining

nltk	Natural	Language	Toolkit
Pattern:	web/text	mining	module
gensim:	Topic	modeling

Python

60

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html
https://ipython.org/ipython-doc/3/parallel/
http://nlesc.github.io/noodles/
http://flask.pocoo.org/
http://www.cherrypy.org/
https://www.djangoproject.com/
http://bottlepy.org/
http://www.nltk.org/
http://www.clips.ua.ac.be/pattern
https://radimrehurek.com/gensim/

OpenCL	&	CUDA

Sources	for	learning
please	add	university	courses	and	informative	videos

Parallel	Reduction	[Slides]
GPU	Memory	bootcamp	-	Tony	Scudiero	[git	repo]

Best	Practices	[Slides]	[Video]
Beyond	the	Best	Practices	[Slides]	[Video]
Collaborative	Access	Patterns	[Slides]	[Video]

CUB:	CUDA	Collective	primitives	library	[Git]	[Slides]	[Video]
Best	Practices	Guide	by	PRACE	[HTML]	[PDF]

Documentation
OpenCL	specification	[1.2]	[2.0]
CUDA	Toolkit	[latest]

CUDA	Programming	Guide
CUDA	Runtime	API

Source-to-source	translation	between	CUDA
and	OpenCL

vtsynergy	(https://github.com/vtsynergy)
This	was	shown	to	work	on	DAS5	after	copying	/usr/include/limits.h	to	$PWD	and
commenting	out	the	lines	around	#	include_next	(122-125)	:
"cu2cl-tool	host_code.cc	device_code.cu	--	-DGPU_ON	-I$PWD:/usr/include	-
I/usr/lib/gcc/x86_64-redhat-linux/4.8.2/include".

cutocl	(https://github.com/benvanwerkhoven/cutocl)

Overview	of	libraries
OpenCL-based	libraries

CLBlast

OpenCL	and	CUDA

61

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
https://github.com/tscudiero/MemBootcamp
https://github.com/tscudiero/MemBootcamp/blob/master/Slides/S5353_Scudiero_Bootcamp1.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5353.html
https://github.com/tscudiero/MemBootcamp/blob/master/Slides/S5376-Scudiero_Bootcamp2.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5376.html
https://github.com/tscudiero/MemBootcamp/blob/master/Slides/S6181-Scudiero_Bootcamp3.pdf
http://on-demand.gputechconf.com/gtc/2016/video/s6181-tony-scudiero-bootcamp-3.mp4
https://github.com/NVlabs/cub
http://on-demand.gputechconf.com/gtc/2015/presentation/S5617-Duane-Merrill.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5617.html
http://www.prace-ri.eu/best-practice-guide-gpgpu-january-2017/#gpu_programming
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-GPGPU-1.pdf
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://github.com/vtsynergy
https://github.com/benvanwerkhoven/cutocl
https://github.com/CNugteren/CLBlast

clFFT
CUDA-based	libraries

cuBLAS
NVBLAS
cuFFT
nvGRAPH
cuRAND
cuSPARSE

Foreign	Function	Interfaces	for	CUDA	and
OpenCL

C++:	[Cuda],	[OpenCL]
Python:	[PyCuda],	[PyOpenCL]
Java:	[JCuda],	[JOCL]

Testing
Unit	Testing

Example	of	a	unit	test	for	CUDA	kernel	using	the	Kernel	Tuner
comparing	floating-point	results

Debugging	and	Profiling	Tools
Nvidia	Visual	Profiler	[User	Guide]
CUDA-GDB
CUDA-MEMCHECK

Performance	Optimization
Resources:

Better	Performance	at	Lower	Occupancy	[Slides]	[Video]
Maxwell	Tuning	Guide
Pascal	Tuning	Guide

Generic	Auto	Tuners:

Kernel	Tuner	(Python)

OpenCL	and	CUDA

62

https://github.com/clMathLibraries/clFFT
http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/nvblas/index.html
http://docs.nvidia.com/cuda/cufft/index.html
http://docs.nvidia.com/cuda/nvgraph/index.html
http://docs.nvidia.com/cuda/curand/index.html
http://docs.nvidia.com/cuda/cusparse/index.html
https://github.com/eyalroz/cuda-api-wrappers/
https://github.com/KhronosGroup/OpenCL-CLHPP
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
http://www.jcuda.org/
http://www.jocl.org/
https://github.com/benvanwerkhoven/kernel_tuner/blob/master/examples/cuda/test_vector_add.py
http://docs.nvidia.com/cuda/floating-point/index.html
https://developer.nvidia.com/nvidia-visual-profiler
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/cuda-gdb/index.html
http://docs.nvidia.com/cuda/cuda-memcheck/index.html
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf
http://on-demand.gputechconf.com/gtc/2010/video/S12238-Better-Performance-at-Lower-Occupancy.mp4
http://docs.nvidia.com/cuda/maxwell-tuning-guide
http://docs.nvidia.com/cuda/pascal-tuning-guide
https://github.com/benvanwerkhoven/kernel_tuner

CLTune	(C++)

OpenCL	and	CUDA

63

https://github.com/CNugteren/CLTune

What	is	R?
R	is	a	functional	programming	language	and	software	environment	for	statistical	computing
and	graphics:	https://www.r-project.org/.

Philosophy	and	typical	use	cases
R	is	particularly	popular	in	the	social,	health,	and	biological	sciences	where	it	is	used	for
statistical	modeling.	R	can	also	be	used	for	signal	processing	(e.g.	FFT),	machine	learning,
image	analyses,	and	natural	language	processing.	The	R	syntax	is	similar	in	compactness
and	readability	as	python	and	matlab	by	which	it	serves	as	a	good	prototyping	environment
in	science.

One	of	the	strengths	of	R	is	the	large	number	of	available	open	source	statistical	packages,
often	developed	by	domain	experts.	For	example,	R-package	Seewave	is	specialised	in
sound	analyses.	Packages	are	typically	released	on	CRAN	The	Comprehensive	R	Archive
Network.

A	few	remarks	for	readers	familiar	with	Python:

Compared	with	Python,	R	does	not	need	a	notebook	to	program	interactively.	In
RStudio,	an	IDE	that	is	installed	separately,	the	user	can	run	sections	of	the	code	by
selecting	them	and	pressing	Ctrl+Enter.	Consequently	the	user	can	quickly	transition
from	working	with	scripts	to	working	interactively	using	the	Ctrl+Enter.
Numbering	in	R	starts	with	1	and	not	with	0.

Recommended	sources	of	information

Some	R	packages	have	their	own	google.group.	All	R	functions	come	with	documentation	in
a	standardized	format.	To	learn	R,	see	the	book	Advanced	R	by	Hadley	Wickham,	or	Writing
better	R	code	from	the	same	author.	Further,	stackoverflow	and	standard	search	engines
can	lead	you	to	answers	to	issues.

Getting	started
Setting	up	R

To	install	R	check	detailed	description	at	CRAN	website.

R

64

https://www.r-project.org/
http://rug.mnhn.fr/seewave/
http://cran.r-project.org
https://www.rstudio.com/
http://adv-r.had.co.nz
http://www.bioconductor.org/help/course-materials/2013/CSAMA2013/friday/afternoon/R-programming.pdf
http://cran.r-project.org

IDE

R	programs	can	be	written	in	any	text	editor.	R	code	can	be	run	from	the	command	line	or
interactively	within	R	environment,	that	can	be	started	with		R		command	in	the	shell.	To	quit
R	environment	type		q()	.

RStudio	is	a	free	powerful	integrated	development	environment	(IDE)	for	R.	It	features	editor
with	code	completion,	command	line	environment,	file	manager,	package	manager	and
history	lookup	among	others.	You	will	have	to	install	RStudio	in	addition	to	installing	R.
Please	note	that	updating	RStudio	does	not	automatically	update	R	and	the	other	way
around.

Within	RStudio	you	can	work	on	ad-hoc	code	or	create	a	project.	Compared	with	Python	an
R	project	is	a	bit	like	a	virtual	environment	as	it	preserves	the	workspace	and	installed
packages	for	that	project.	Creating	a	project	is	needed	to	build	an	R	package.	A	project	is
created	via	the	menu	at	the	top	of	the	screen.

Installing	compilers	and	runtimes

Not	needed	as	most	functions	in	R	are	already	compiled	in	C,	nevertheless	R	has	compiling
functionality	as	described	in	the	R	manual.	See	overview	by	Hadley	Wickham.

Coding	style	conventions
It	is	good	to	follow	the	R	style	conventions	as	posted	by	Hadley	Wickham,	which	is	seems
compatible	with	the	R	style	convention	as	posted	by	Google.

One	point	in	both	style	conventions	that	has	resulted	in	some	discussion	is	the	'<-'	syntax	for
variable	assignment.	In	the	majority	of	R	tutorials	and	books	you	will	see	that	authors	use
this	syntax,	e.g.	'a	<-	3'	to	assign	value	3	to	object	'a'.	Please	note	that	R	syntax	'a	=	3'	will
preform	exactly	the	same	operation	in	99.9%	of	situations.	The	=	syntax	has	less	keystrokes
and	could	therefore	be	considered	more	efficient	and	readable.	Further,	the	=	syntax	avoids
the	risk	for	typos	like	a	<	-1,	which	will	produce	a	boolean	if	'a'	exists,	and	a	<-	1	which	will
produce	an	object	'a'	with	a	numeric	value.	Further,	the	=	syntax	may	be	more	natural	for
those	who	already	use	it	in	other	computing	languages.

The	difference	between	'<-'	and	'='	is	mainly	related	to	scoping.	See	the	official	R	definition
for	more	information.	The	example	below	demonstrates	the	difference	in	behaviour:

Define	a	simple	function	named	addone	to	add	1	to	the	function	input:

addone	=	function(x)	return(x	+	1)

R

65

http://www.rstudio.com/products/RStudio/
https://stat.ethz.ch/R-manual/R-devel/library/compiler/html/compile.html
http://r-pkgs.had.co.nz/src.html
http://adv-r.had.co.nz/Style.html
https://google.github.io/styleguide/Rguide.xml
https://stat.ethz.ch/R-manual/R-devel/library/base/html/assignOps.html

addone(3)
will	produce	4

addone(b=3)
will	throw	an	error	message	because	the	function	does	not	know	argument	b

addone(b<-3)
will	produce	4	as	it	will	first	assign	3	to	b	and	then	uses	b	as	value	for	the	first
argument	in	addone,	which	happens	to	be	x

addone(x=3)
will	produce	4	as	it	will	assign	3	to	known	function	argument	x

The	<-	supporters	will	argue	that	this	example	demonstrates	that	=	should	be	avoided.
However,	it	also	demonstrates	that	=	syntax	can	work	in	the	context	of	function	input	if	=	is
only	used	for	assigning	values	to	input	arguments	that	are	expected	by	the	function	(x	in	the
example	above)	and	to	never	introduce	new	R	objects	as	part	of	a	function	call	(b	in	the
example	above).

From	a	computer	science	perspective	it	is	probably	best	to	adhere	to	the	<-	convention.
From	a	domain	science	perspective	it	is	understandable	to	use	=.	The	code	performs	exactly
the	same	and	guarantees	that	new	objects	created	as	part	of	a	function	call	result	in	an
error.	Please	note	that	it	is	also	possible	to	develop	code	with	=	syntax	and	to	transfer	it	to	<-
syntax	once	the	code	is	finished,	the	formatR	package	offers	tools	for	doing	this.	The	CRAN
repository	for	R	packages	accepts	both	forms	of	syntax.

Recommended	additional	packages	and
libraries

Plotting	with	basic	functions	and	ggplot2	and
ggvis
For	a	generic	impression	of	what	R	can	do	see:	http://www.r-graph-gallery.com/all-graphs/

The	basic	R	installation	comes	with	a	wide	range	of	functions	to	plot	data	to	a	window	on
your	screen	or	to	a	file.	If	you	need	to	quickly	inspect	your	data	or	create	a	custom-made
static	plot	then	the	basic	functions	offer	the	building	blocks	to	do	the	job.	There	is	a
Statmethods.net	tutorial	with	some	examples	of	plotting	options	in	R.

However,	externally	contributed	plotting	packages	may	offer	easier	syntax	or	convenient
templates	for	creating	plots.	The	most	popular	and	powerful	contributed	graphics	package	is
ggplot2.	Interactive	plots	can	be	made	with	ggvis	package	and	embeded	in	web	application,

R

66

http://www.r-graph-gallery.com/all-graphs/
http://www.statmethods.net/graphs/index.html
http://ggplot2.org
https://github.com/rstudio/ggvis

and	this	tutorial.

In	summary,	it	is	good	to	familiarize	yourself	with	both	the	basic	plotting	functions	as	well	as
the	contributed	graphics	packages.	In	theory,	the	basic	plot	functions	can	do	everything	that
ggplot2	can	do,	it	is	mostly	a	matter	of	how	much	you	like	either	syntax	and	how	much
freedom	you	need	to	tailor	the	visualisation	to	your	use	case.

Building	interactive	web	applications	with
shiny
Thanks	to	shiny.app	it	is	possible	to	make	interactive	web	application	in	R	without	the	need
to	write	javascript	or	html.

Building	reports	with	knitr
knitr	is	an	R	package	designed	to	build	dynamic	reports	in	R.	It's	possible	to	generate	on	the
fly	new	pdf	or	html	documents	with	results	of	computations	embedded	inside.

Preparing	data	for	analysis
There	are	packages	that	ease	tidying	up	messy	data,	e.g.	tidyr	and	reshape2.	The	idea	of
tidy	and	messy	data	is	explained	in	a	tidy	data	paper	by	Hadley	Wickham.	There	is	also	the
google	group	manipulatr	to	discuss	topics	related	to	data	manipulation	in	R.

Speeding	up	code
As	in	many	computing	languages	loops	should	be	avoided	in	R.	Here	is	a	list	of	tricks	to
speed	up	your	code:

read.table()	is	sometimes	faster	than	read.csv()
ifelse()
lapply()
sapply()
mapply()
grep()
%in%	for	testing	whether	and	where	values	in	one	object	occur	in	another	object
aggregate()
which()	for	identifying	which	object	indices	match	a	certain	condition

R

67

http://www.statmethods.net/advgraphs/ggplot2.html
http://shiny.rstudio.com
https://yihui.name/knitr/
https://github.com/hadley/tidyr
https://github.com/hadley/reshape
http://vita.had.co.nz/papers/tidy-data.html
https://groups.google.com/forum/#!forum/manipulatr

table()	for	getting	a	frequency	table	of	categorical	data
grep()
gsub()
dplyr	package,	see	also

Use	?functionname	to	access	fucntion	documentation.

Package	development
Building	R	packages

There	is	a	great	tutorial	written	by	Hadley	Wickam	describing	all	the	nitty	gritty	of	building
your	own	package	in	R.	It's	called	R	packages.

Package	documentation

Read	Documentation	chapter	of	Hadleys	R	packages	book	for	details	about	documenting	R
code.

Customary	R	uses		.Rd		files	in		/man		directory	for	documentation.	These	files	and	folders
are	automatically	created	by	RStudio	when	you	create	a	new	project	from	your	existing	R-
function	files.

If	you	use	'roxygen'	function	level	comments	starting	with		#'		are	recognised	by		roxygen	
and	are	used	to	automatically	generate	.Rd	files.	Read	more	about		roxygen		syntax	on	it's
github	page.		roxygen		will	also	populate		NAMESPACE		file	which	is	necessary	to	manage
package	level	imports.

R	function	documentation	offers	plenty	of	space	to	document	the	functionality,	including
code	examples,	literature	references,	and	links	to	related	functions.	Nevertheless,	it	can
sometimes	be	helpful	for	the	user	to	also	have	a	more	generic	description	of	the	package
with	for	example	use-cases.	You	can	do	this	with	a		vignette	.	Read	more	about	vignettes	in
Package	documentation	chapter	of	Hadleys	R	packages	book.

Available	templates
http://rapport-package.info/
http://shiny.rstudio.com/articles/templates.html
http://rmarkdown.rstudio.com/developer_document_templates.html

R

68

http://dplyr.tidyverse.org/
http://r-pkgs.had.co.nz
http://r-pkgs.had.co.nz/man.html
http://r-pkgs.had.co.nz
https://github.com/yihui/roxygen2
http://r-pkgs.had.co.nz/vignettes.html
http://r-pkgs.had.co.nz
http://rapport-package.info/
http://shiny.rstudio.com/articles/templates.html
http://rmarkdown.rstudio.com/developer_document_templates.html

Testing,	Checking,	Debugging	and
Profiling
Testing	and	checking

Testthat	is	a	testing	package	by	Hadley	Wickham.	Testing	chapter	of	a	book	R	packages
describes	in	detail	testing	process	in	R	with	use	of		testthat	.	Further,	testthat:	Get	Started
with	Testing	by	Whickham	may	also	provide	a	good	starting	point.

See	also	checking	and	testing	R	packages.	note	that	within	RStudio	R	package	check	and	R
package	test	can	be	done	via	simple	toolbar	clicks.

Continuous	integration

Continuous	integration	can	be	done	with	for	example	[Travis],	(https://travis-ci.org/),	see
Chapter	on	testing.

Debugging	and	Profiling

Debugging	is	possible	in	RStudio,	see	link.	For	profiling	tips	see	link

Not	in	this	tutorial	yet:
Logging

R

69

https://github.com/hadley/testthat
http://r-pkgs.had.co.nz/tests.html
http://r-pkgs.had.co.nz
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
http://r-pkgs.had.co.nz/check.html
http://r-pkgs.had.co.nz/tests.html
https://travis-ci.org/
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio
http://adv-r.had.co.nz/Profiling.html

C	and	C++
C++	is	one	of	the	hardest	languages	to	learn.	Entering	a	project	where	C++	coding	is
needed	should	not	be	taken	lightly.	This	guide	focusses	on	tools	and	documentation	for	use
of	C++	in	an	open-source	environment.

Standards

The	latest	ratified	standard	of	C++	is	C++17.	The	first	standardised	version	of	C++	is	from
1998.	The	next	version	of	C++	is	scheduled	for	2020.	With	these	updates	(especially	the
2011	one)	the	preferred	style	of	C++	changed	drastically.	As	a	result,	a	program	written	in
1998	looks	very	different	from	one	from	2018,	but	it	still	compiles.	There	are	many	videos	on
Youtube	describing	some	of	these	changes	and	how	they	can	be	used	to	make	your	code
look	better	(i.e.	more	maintainable).	This	goes	with	a	warning:	Don't	try	to	be	too	smart;
other	people	still	have	to	understand	your	code.

Practical	use

Compilers

There	are	two	main-stream	open-source	C++	compilers.

GCC
LLVM	-	CLANG

Overall,	these	compilers	are	more	or	less	similar	in	terms	of	features,	language	support,
compile	times	and	(perhaps	most	importantly)	performance	of	the	generated	binaries.	The
generated	binary	performance	does	differ	for	specific	algorithms.	See	for	instance	this
Phoronix	benchmark	for	a	comparison	of	GCC	9	and	Clang	7/8.

MacOS	(XCode)	has	a	custom	branch	of		clang	,	which	misses	some	features	like	OpenMP
support,	and	its	own	libcxx,	which	misses	some	standard	library	things	like	the	very	useful
	std::filesystem		module.	It	is	nevertheless	recommended	to	use	it	as	much	as	possible	to
maintain	binary	compatibility	with	the	rest	of	macOS.

If	you	need	every	last	erg	of	performance,	some	cluster	environments	have	the	Intel
compiler	installed.

These	compilers	come	with	a	lot	of	options.	Some	basic	literacy	in	GCC	and	CLANG:

C	and	C++

70

https://gcc.gnu.org/
http://llvm.org/
https://www.phoronix.com/scan.php?page=article&item=gcc9-stage3-skylake

	-O		changes	optimisation	levels
	-std=c++xx		sets	the	C++	standard	used
	-I*path*		add	path	to	search	for	include	files
	-o*file*		output	file
	-c		only	compile,	do	not	link
	-Wall		be	more	verbose	with	warnings

And	linker	flags:

	-l*library*		links	to	a	library
	-L*path*		add	path	to	search	for	libraries
	-shared		make	a	shared	library
	-Wl,-z,defs		ensures	all	symbols	are	accounted	for	when	linking	to	a	shared	object

Interpreter

There	is	a	C++	interpreter	called	Cling.	This	also	comes	with	a	Jupyter	notebook	kernel.

Build	systems

There	are	several	build	systems	that	handle	C/C++.	Currently,	the	CMake	system	is	most
popular.	It	is	not	actually	a	build	system	itself;	it	generates	build	files	based	on	(in	theory)
platform-independent	and	compiler-independent	configuration	files.	It	can	generate
Makefiles,	but	also	Ninja	files,	which	gives	much	faster	build	times,	NMake	files	for	Windows
and	more.	Some	popular	IDEs	keep	automatic	count	for	CMake,	or	are	even	completely	built
around	it	((CLion)[https://www.jetbrains.com/clion/]).	The	major	drawback	of	CMake	is	the
confusing	documentation,	but	this	is	generally	made	up	for	in	terms	of	community	support.
When	Googling	for	ways	to	write	your	CMake	files,	make	sure	you	look	for	"modern	CMake",
which	is	a	style	that	has	been	gaining	traction	in	the	last	few	years	and	makes	everything
better	(e.g.	dependency	management,	but	also	just	the	CMake	files	themselves).

Traditionally,	the	auto-tools	suite	(AutoConf	and	AutoMake)	was	the	way	to	build	things	on
Unix;	you'll	probably	know	the	three	command	salute:

>	./configure	--prefix=~/.local	

				...

>	make	-j4

				...

>	make	install

With	either	one	of	these	two	(CMake	or	Autotools),	any	moderately	experienced	user	should
be	able	to	compile	your	code	(if	it	compiles).

C	and	C++

71

https://rawgit.com/vgvassilev/cling/master/www/index.html
http://jupyter.org/try
https://www.jetbrains.com/research/devecosystem-2018/cpp/
https://ninja-build.org/
https://www.jetbrains.com/clion/

There	are	many	other	systems.	Microsoft	Visual	Studio	has	its	own	project	model	/	build
system	and	a	library	like	Qt	also	forces	its	own	build	system	on	you.	We	do	not	recommend
these	if	you	don't	also	supply	an	option	for	building	with	CMake	or	Autotools.	Another
modern	alternative	that	has	been	gaining	attention	mainly	in	the	GNU/Gnome/Linux	world	is
Meson,	which	is	also	based	on	Ninja.

Library	ecosystem

There	is	no	standard	package	manager	like		pip	,		npm		or		gem		for	C++.	The	first	go-to	for
libraries	should	be	your	OS	package	manager.	If	the	target	package	is	not	in	there,	try	to	see
if	there	is	an	equivalent	library	that	is,	and	see	what	kind	of	software	uses	it.	A	good,	cross-
platform	option	nowadays	is	to	use		miniconda	,	which	works	on	Linux,	macOS	and
Windows.	The		conda-forge		channel	especially	has	a	lot	of	C++	libraries;	specify	that	you
want	to	use	this	with	command	line	option		-c	conda-forge	.

If	you	do	have	to	install	a	library,	or	you	are	working	in	a	cluster	environment	without	the
apropriate	module	(module	avail),	you	enter	what	is	called	dependency	hell.	Some	agility	in
compiling	and	installing	libraries	is	essential.	You	can	install	libraries	in		/usr/local		or	in
	${HOME}/.local		if	you	aren't	root,	but	there	you	have	no	package	management.

One	way	around	this	if	the	system	does	use		module		is	to	use	Easybuild,	which	makes
installing	modules	in	your	home	directory	quite	easy.	Many	recipes	(called	Easyblocks)	for
building	packages	or	whole	toolchains	are	available	online.	These	are	written	in	Python.

Another	simple	solution	is	to	use	something	like		xstow	.	XStow	is	a	poor-mans	package
manager.	You	install	each	library	in	its	own	directory	(~/.local/pkg/<package>		for	instance),
then	running		xstow		will	create	symlinks	to	the	files	in	the		~/.local		directory	(one	above
the	XStow	package	directory).	Using	XStow	in	this	way	alows	you	to	keep	a	single	additional
search	path	when	compiling	your	next	library.

A	lot	of	libraries	come	with	a	package	description	for		pkg-config	.	These	descriptions	are
installed	in		/usr/lib/pkgconfig	.	You	can	point		pkg-config		to	your	additional	libraries	by
setting	the		PKG_CONFIG_PATH		environment	variable.	This	also	helps	for	instance	when	trying
to	automatically	locate	dependencies	from	CMake,	which	has		pkg-config		support	as	a
fallback	for	when	libraries	don't	support	CMake's		find_package	.

Note	that	C++20	will	bring	Modules,	which	can	be	used	as	an	alternative	to	including
(precompiled)	header	files.	This	will	allow	for	easier	packaging	and	will	probably	cause	the
ecosystem	landscape	to	change	considerably.

Editors

This	is	largely	a	matter	of	taste,	but	not	always.

C	and	C++

72

http://mesonbuild.com/
https://ninja-build.org/
https://conda.io/miniconda.html
https://easybuild.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest/version-specific/Supported_software.html
http://xstow.sourceforge.net/

In	theory,	given	that	there	are	many	good	command	line	tools	available	for	working	with
C(++)	code,	any	code	editor	will	do	to	write	C(++).	Some	people	also	prefer	to	avoid	relying
on	IDEs	too	much;	by	helping	your	memory	they	can	also	help	you	to	write	less	maintainable
code.	People	of	this	persuasion	would	usually	recommend	any	of	the	following	editors:

Vim,	recommended	plugins:
NERDTree	file	explorer.
editorconfig
stl.vim	adds	STL	to	syntax	highlighting
Syntastic
Integrated	debugging	using	Clewn

Emacs:
Has	GDB	mode	for	debugging.

More	modern	editors:	Atom	/	Sublime	Text	/	VS	Code
Rich	plugin	ecosystem
Easier	on	the	eyes...	I	mean	modern	OS/GUI	integration

In	practice,	sometimes	you	run	into	large/complex	existing	projects	and	navigating	these	can
be	really	hard,	especially	when	you	just	start	working	on	the	project.	In	these	cases,	an	IDE
can	really	help.	Intelligent	code	suggestions,	easy	jumping	between	code	segments	in
different	files,	integrated	debugging,	testing,	VCS,	etc.	can	make	the	learning	curve	a	lot	less
steep.	Good/popular	IDEs	are

CLion
Visual	Studio	(Windows	only,	but	many	people	swear	by	it)
Eclipse

Code	and	program	quality	analysis

C++	(and	C)	compilers	come	with	built	in	linters	and	tools	to	check	that	your	program	runs
correctly,	make	sure	you	use	those.	In	order	to	find	issues,	it	is	probably	a	good	idea	to	use
both	compilers	(and	maybe	the	valgrind	memcheck	tool	too),	because	they	tend	to	detect
different	problems.

Static	code	analysis	with	GCC

To	use	the	GCC	linter,	use	the	following	set	of	compiler	flags	when	compiling	C++	code:

C	and	C++

73

https://github.com/scrooloose/nerdtree
https://github.com/editorconfig/editorconfig-vim
https://vim.sourceforge.io/scripts/script.php?script_id=4293
https://github.com/scrooloose/syntastic
http://clewn.sourceforge.net/

-O2	-Wall	-Wextra	-Wcast-align	-Wcast-qual	-Wctor-dtor-privacy	-Wdisabled-optimization

	-Wformat=2	

-Winit-self	-Wlogical-op	-Wmissing-declarations	-Wmissing-include-dirs	-Wnoexcept	-Wol

d-style-cast	

-Woverloaded-virtual	-Wredundant-decls	-Wshadow	-Wsign-conversion	-Wsign-promo	-Wstric

t-null-sentinel	

-Wstrict-overflow=5	-Wswitch-default	-Wundef	-Wno-unused

and	these	flags	when	compiling	C	code:

-O2	-Wall	-Wextra	-Wformat-nonliteral	-Wcast-align	-Wpointer-arith	-Wbad-function-cast

	

-Wmissing-prototypes	-Wstrict-prototypes	-Wmissing-declarations	-Winline	-Wundef	

-Wnested-externs	-Wcast-qual	-Wshadow	-Wwrite-strings	-Wno-unused-parameter	

-Wfloat-equal

Use	at	least	optimization	level	2	(-O2)	to	have	GCC	perform	code	analysis	up	to	a	level
where	you	get	all	warnings.	Use	the		-Werror		flag	to	turn	warnings	into	errors,	i.e.	your	code
won't	compile	if	you	have	warnings.	See	this	post	for	an	explanation	of	why	this	is	a
reasonable	selection	of	warning	flags.

Static	code	analysis	with	Clang	(LLVM)

Clang	has	the	very	convenient	flag

-Weverything

A	good	strategy	is	probably	to	start	out	using	this	flag	and	then	disable	any	warnings	that
you	do	not	find	useful.

Static	code	analysis	with	cppcheck

An	additional	good	tool	that	detects	many	issues	is	cppcheck.	Most	editors/IDEs	have
plugins	to	use	it	automatically.

Dynamic	program	analysis	using		-fsanitize	

Both	GCC	and	Clang	allow	you	to	compile	your	code	with	the		-fsanitize=		flag	,	which	will
instrument	your	program	to	detect	various	errors	quickly.	The	most	useful	option	is	probably

-fsanitize=address	-O2	-fno-omit-frame-pointer	-g

C	and	C++

74

https://stackoverflow.com/questions/5088460/flags-to-enable-thorough-and-verbose-g-warnings

which	is	a	fast	memory	error	detector.	There	are	also	other	options	available	like		-
fsanitize=thread		and		-fsanitize=undefined	.	See	the	GCC	man	page	or	the	Clang	online
manual	for	more	information.

Dynamic	program	analysis	using	the	valgrind	suite	of	tools

The	valgrind	suite	of	tools	has	tools	similar	to	what	is	provided	by	the		-fsanitize		compiler
flag	as	well	as	various	profiling	tools.	Using	the	valgrind	tool	memcheck	to	detect	memory
errors	is	typically	slower	than	using	compiler	provided	option,	so	this	might	be	something
you	will	want	to	do	less	often.	You	will	probably	want	to	compile	your	code	with	debug
symbols	enabled	(-g)	in	order	to	get	useful	output	with	memcheck.	When	using	the
profilers,	keep	in	mind	that	a	statistical	profiler	may	give	you	more	realistic	results.

Debugging

Most	of	your	time	programming	C(++)	will	probably	be	spent	on	debugging.	At	some	point,
surrounding	every	line	of	your	code	with		printf("here	%d",	i++);		will	no	longer	avail	you
and	you	will	need	a	more	powerful	tool.	With	a	debugger,	you	can	inspect	the	program	while
it	is	running.	You	can	pause	it,	either	at	random	points	when	you	feel	like	it	or,	more	usually,
at	so-called	breakpoints	that	you	specified	in	advance,	for	instance	at	a	certain	line	in	your
code,	or	when	a	certain	function	is	called.	When	paused,	you	can	inspect	the	current	values
of	variables,	manually	step	forward	in	the	code	line	by	line	(or	by	function,	or	to	the	next
breakpoint)	and	even	change	values	and	continue	running.	Learning	to	use	these	powerful
tools	is	a	very	good	time	investment.	There	are	some	really	good	CppCon	videos	about
debugging	on	YouTube.

GDB	-	the	GNU	Debugger,	many	graphical	front-ends	are	based	on	GDB.
LLDB	-	the	LLVM	debugger.	This	is	the	go-to	GDB	alternative	for	the	LLVM	toolchain,
especially	on	macOS	where	GDB	is	hard	to	setup.
DDD	-	primitive	GUI	frontend	for	GDB.
The	IDEs	mentioned	above	either	have	custom	built-in	debuggers	or	provide	an
interface	to	GDB	or	LLDB.

Libraries
Historically,	many	C	and	C++	projects	have	seemed	rather	hestitant	about	using	external
dependencies	(perhaps	due	to	the	poor	dependency	management	situation	mentioned
above).	However,	many	good	(scientific)	computing	libraries	are	available	today	that	you
should	consider	using	if	applicable.	Here	follows	a	list	of	libraries	that	we	recommend	and/or
have	experience	with.

C	and	C++

75

https://clang.llvm.org/docs/index.html
http://valgrind.org/info/tools.html
https://en.wikipedia.org/wiki/Profiling_%28computer_programming%29#Statistical_profilers

Usual	suspects

These	scientific	libraries	are	well	known,	widely	used	and	have	a	lot	of	good	online
documentation.

GNU	Scientific	library	(GSL)
FFTW:	Fastest	Fourier	Transform	in	the	West
OpenMPI.	Use	with	caution,	since	it	will	strongly	define	the	structure	of	your	code,	which
may	or	may	not	be	desirable.

Boost

This	is	what	the	Google	style	guide	has	to	say	about	Boost:

Definition:	The	Boost	library	collection	is	a	popular	collection	of	peer-reviewed,
free,	open-source	C++	libraries.
Pros:	Boost	code	is	generally	very	high-quality,	is	widely	portable,	and	fills	many
important	gaps	in	the	C++	standard	library,	such	as	type	traits	and	better	binders.
Cons:	Some	Boost	libraries	encourage	coding	practices	which	can	hamper
readability,	such	as	metaprogramming	and	other	advanced	template	techniques,
and	an	excessively	"functional"	style	of	programming.

As	a	general	rule,	don't	use	Boost	when	there	is	equivalent	STL	functionality.

xtensor

xtensor	is	a	modern	(C++14)	N-dimensional	tensor	(array,	matrix,	etc)	library	for	numerical
work	in	the	style	of	Python's	NumPy.	It	aims	for	maximum	performance	(and	in	most	cases	it
succeeds)	and	has	an	active	development	community.	This	library	features,	among	other
things:

Lazy-evaluation:	only	calculate	when	necessary.
Extensible	template	expressions:	automatically	optimize	many	subsequent	operations
into	one	"kernel".
NumPy	style	syntax,	including	broadcasting.
C++	STL	style	interfaces	for	easy	integration	with	STL	functionality.
Very	low-effort	integration	with	today's	main	data	science	languages	Python,	R	and
Julia.	This	all	makes	xtensor	a	very	interesting	choice	compared	to	similar	older	libraries
like	Eigen	and	Armadillo.

General	purpose,	I/O

Configuration	file	reading	and	writing:

C	and	C++

76

https://www.gnu.org/software/gsl/doc/html/index.html
http://www.fftw.org
https://www.open-mpi.org
http://quantstack.net/xtensor
https://blog.esciencecenter.nl/irregular-data-in-pandas-using-c-88ce311cb9ef?gi=23ebfce3ae77

yaml-cpp:	A	YAML	parser	and	emitter	in	C++
JSON	for	Modern	C++

Command	line	argument	parsing:
argagg
Clara

fmt:	pythonic	string	formatting
hdf5-cpp:	The	popular	HDF5	binary	format	C++	interface.

Parallel	processing

Intel	TBB	(Threading	Building	Blocks):	template	library	for	task	parallelism
ZeroMQ:	lower	level	flexible	communication	library	with	a	unified	interface	for	message
passing	between	threads	and	processes,	but	also	between	separate	machines	via	TCP.

Style

Style	guides

Good	style	is	not	just	about	layout	and	linting	on	trailing	whitespace.	It	will	mean	the
difference	between	a	blazing	fast	code	and	a	broken	one.

C++	Core	Guidelines
Guidelines	Support	Library
Google	Style	Guide
Google	Style	Guide	-	github	Contains	the	CppLint	linter.

Project	layout

A	C++	project	will	usually	have	directories		/src		for	source	codes,		/doc		for	Doxygen
output,		/test		for	testing	code.	Some	people	like	to	put	header	files	in		/include	.	In	C++
though,	many	header	files	will	contain	functioning	code	(templates	and	inline	functions).	This
makes	the	separation	between	code	and	interface	a	bit	murky.	In	this	case,	it	can	make
more	sense	to	put	headers	and	implementation	in	the	same	tree,	but	different	communities
will	have	different	opinions	on	this.	A	third	option	that	is	sometimes	used	is	to	make	separate
"template	implementation"	header	files.

Sustainability

Testing

C	and	C++

77

https://github.com/jbeder/yaml-cpp
https://nlohmann.github.io/json/
https://github.com/vietjtnguyen/argagg
https://github.com/catchorg/Clara
https://github.com/fmtlib/fmt
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse
https://www.threadingbuildingblocks.org
http://zeromq.org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/Microsoft/GSL
https://google.github.io/styleguide/cppguide.html
https://github.com/google/styleguide

Use	Google	Test.	It	is	light-weight,	good	and	is	used	a	lot.	Catch2	is	also	pretty	good,	well
maintained	and	has	native	support	in	the	CLion	IDE.

Documentation

Use	Doxygen.	It	is	the	de-facto	standard	way	of	inlining	documentation	into	comment
sections	of	your	code.	The	output	is	very	ugly.

A	newer	but	less	mature	option	is	cldoc.

Resources

Online

CppCon	videos:	Many	really	good	talks	recorded	at	the	various	CppCon	meetings.
CppReference.com
C++	Annotations
CPlusPlus.com
Modern	C++,	according	to	Microsoft

Books

Bjarne	Soustrup	-	The	C++	Language
Scott	Meyers	-	Effective	Modern	C++

C	and	C++

78

https://github.com/google/googletest
https://github.com/catchorg/Catch2
http://www.stack.nl/~dimitri/doxygen/
http://jessevdk.github.io/cldoc/
https://www.youtube.com/user/CppCon
http://en.cppreference.com/w/
http://www.icce.rug.nl/documents/cplusplus/
http://www.cplusplus.com/
https://msdn.microsoft.com/en-us/library/hh279654.aspx

Fortran
Disclaimer:	In	general	the	Netherlands	eScience	Center	does	not	recommend	using
Fortran.	However,	in	some	cases	it	is	the	only	viable	option,	for	instance	if	a	project
builds	upon	existing	code	written	in	this	language.	This	section	will	be	restricted	to
Fortran90,	which	captures	majority	of	Fortran	source	code.

The	second	use	case	may	be	extremely	performance-critical	dense	numerical	compute
workloads,	with	no	existing	alternative.	In	this	case	it	is	recommended	to	keep	the	Fortran
part	of	the	application	minimal,	using	a	high-level	language	like	Python	for	program	control
flow,	IO,	and	user	interface.

Recommended	sources	of	information
Fortran90	official	documentation
Fortran	wiki
Fortran90	handbook

Compilers
gfortran:	the	official	GNU	Fortran	compiler	and	part	of	the	gcc	compiler	suite.
ifort:	the	Intel	Fortran	compiler,	widely	used	in	academia	and	industry	because	of	its
superior	performance,	but	unfortunately	this	is	commercial	software	so	not
recommended.	The	same	holds	for	the	Portland	compiler	pgfortran

Debuggers	and	diagnostic	tools
There	exist	many	commercial	performance	profiling	tools	by	Intel	and	the	Portland	Group
which	we	shall	not	discuss	here.	Most	important	freely	available	alternatives	are

gdb:	the	GNU	debugger,	part	of	the	gcc	compiler	suite.	Use	the	-g	option	to	compile
with	debugging	symbols.
gprof:	the	GNU	profiler,	part	of	gcc	too.	Use	the	-p	option	to	compile	with	profiling
enabled.
valgrind:	to	detect	memory	leaks.

Fortran

79

http://www.fortran90.org/
http://fortranwiki.org/fortran/show/HomePage
http://micro.ustc.edu.cn/Fortran/Fortran%2090%20Handbook.pdf

Editors	and	IDEs
Most	lightweight	editors	provide	Fortran	syntax	highlighting.	Vim	and	emacs	are	most	widely
used,	but	for	code	completion	and	refactoring	tools	one	might	consider	the	CBFortran
distribution	of	Code::Blocks.

Coding	style	conventions
If	working	on	an	existing	code	base,	adopt	the	existing	conventions.	Otherwise	we
recommend	the	standard	conventions,	described	in	the	official	documentation	and	the
Fortran	company	style	guide.	We	would	like	to	add	the	following	advice:

Use	free-form	text	input	style	(the	default),	with	a	maximal	line	width	well	below	the	132
characters	imposed	by	the	Fortran90	standard.
When	a	method	does	not	need	to	alter	any	data	in	any	module	and	returns	a	single
value,	use	a	function	for	it,	otherwise	use	a	subroutine.	Minimize	the	latter	to	reasonable
extent.
Use	the	intent	attributes	in	subroutine	variable	declarations	as	it	makes	the	code	much
easier	to	understand.
Use	a	performance-driven	approach	to	the	architecture,	do	not	use	the	object-oriented
features	of	Fortran90	if	they	slow	down	execution.	Encapsulation	by	modules	is
perfectly	acceptable.
Add	concise	comments	to	modules	and	routines,	and	add	comments	to	less	obvious
lines	of	code.
Provide	a	test	suite	with	your	code,	containing	both	unit	and	integration	tests.	Both
automake	and	cmake	provide	test	suite	functionality;	if	you	create	your	makefile
yourself,	add	a	separate	testing	target.

Fortran

80

http://cbfortran.sourceforge.net/
http://www.fortran90.org/src/best-practices.html#fortran-style-guide
http://www.fortran.com/Fortran_Style.pdf

Intellectual	Property
As	with	anything	else	in	society,	some	of	what	you	can	and	cannot	do	in	software
development	is	determined	by	the	law.	Most	of	the	constraints	in	this	particular	domain	stem
from	intellectual	property	laws:	laws	that	make	abstract	things	like	designs,	stories,	or
computer	programs	resemble	physical	objects	by	allowing	them	to	be	owned.

This	chapter	aims	to	give	a	brief	summary	of	relevant	intellectual	property	laws	(enough	to
be	able	to	read	most	software	licenses),	explain	Free	and	open	source	software	licensing,
and	explain	how	combining	software	from	different	sources	works	from	a	legal	perspective.	It
also	gives	some	rules	we	have	worked	out	to	deal	with	common	situations.

This	is	far	from	an	exhaustive	resource;	only	laws	that	are	relevant	to	our	software
development	practice	(i.e.	they	come	up	regularly	at	the	Netherlands	eScience	Center)	are
described.	If	you're	interested	in	protecting	a	plant,	boat	hull,	or	microprocessor	mask,	then
you	should	look	elsewhere.	Also,	there	are	areas	of	law	beyond	intellectual	property	that
often	show	up	in	software	development	practice,	like	contract	law	and	consumer	law;	these
are	also	not	covered	here.

Of	course,	we'll	begin	with	a	disclaimer:	Good	legal	advice	is	timely,	specific,	and	given	by
an	expert;	this	chapter	is	none	of	these.	It	was	written	by	an	engineer,	not	by	a	lawyer,	and
it's	a	heavily	simplified	overview	of	a	very	complex	field.	The	intent	is	to	give	you	an
overview	of	the	basics,	so	that	you	will	know	when	to	check	whether	something	you	want	to
do	has	potential	legal	ramifications.	Don't	make	any	important	decisions	based	solely	on	the
contents	of	this	chapter.

Intellectual	Property	and	Licensing

81

Executive	summary
Intellectual	property	is	a	complex	subject	matter,	and	we're	interested	in	developing	code,
not	doing	legal	analysis.	While	we	cannot	always	get	away	from	doing	some	legal	analysis	in
more	complex	cases,	the	majority	of	things	we	run	into	are	relatively	simple,	and	can	be
resolved	by	following	some	simple	rules.	This	section	gives	such	a	set	of	rules,	and	does	so
rather	conservatively,	i.e.	it	lists	only	things	that	the	eScience	Center	is	definitely	okay	with.	If
your	particular	case	is	not	listed	here,	then	it	may	still	be	possible,	but	only	after	careful
consideration.	So	in	that	case,	read	on	and/or	ask	for	help.

I	want	to	publish	my	source	code,	not	including	any	of	its	dependencies,	is	that	ok?

If

you	publish	your	source	code	(and	only	your	source	code)	under	the	Apache	License
version	2.0,
and	you	do	not	include	any	externally-developed	libraries	you	used,
and	all	of	the	externally-developed	libraries	you	used	are	under	a	free/open	source
license	(see	below)	then	you	are	good	to	go.

For	the	purpose	of	this	rule,	the	following	dependency	licenses	are	okay

MIT
BSD	2-clause
BSD	3-clause
Apache	License	version	2.0
GNU	Lesser	General	Public	License	v2	or	later

and	any	other	licenses,	including	"for	academic	use	only"	and	similar	statements,	are	not
okay.

I	want	to	use	a	library	with	license	X,	is	that	ok?

This	is	certainly	no	problem	if	the	library	has	one	of	the	following	licenses:

MIT
BSD	2-clause
BSD	3-clause
Apache	License	version	2.0

These	are	all	permissive	licenses	that	impose	very	little	restrictions	on	how	your	program
can	be	used.	So	go	right	ahead.

Executive	summary

82

We	try	to	avoid	copyleft	licenses,	such	as	the	GNU	Lesser	General	Public	License	(LGPL)
and	GNU	General	Public	License	(GPL),	but	if	there	is	no	alternative	available,	then	using	a
library	licensed	under	the	(L)GPL	is	fine	too.

Rationale:	The	Netherlands	eScience	Center	is	a	publicly	funded	institution,	and	a	such	we
want	to	maximise	the	number	of	ways	in	which	people	and	organisations,	including
commercial	ones,	can	use	the	software	we	develop.	Copyleft	licenses	restrict	this
somewhat,	so	we	try	to	avoid	them.	However,	any	Free	Software	can	still	be	used	by	anyone
for	any	purpose,	redistributed,	forked,	and	commercialised,	which	is	enough	freedom	that	we
will	not	do	a	lot	of	extra	work	just	to	avoid	copyleft.

I	want	to	publish	a	data	set,	is	that	ok?

If

You	or	your	collaborators	collected	the	data	yourselves,	as	part	of	the	project,
and	you	all	agree	that	you	want	to	publish	it	under	the	Creative	Commons	CC-BY	4.0
license	then	you	are	good	to	go.

If	the	data	set	contains	(possibly	processed)	data	you	obtained	from	elsewhere,	then	the
licensing	situation	of	that	data	needs	to	be	evaluated	first.	If	you	or	our	collaborators	want	to
use	a	different	license,	then	this	should	be	discussed	first.

Executive	summary

83

About	the	law
Laws	are	documents	that	describe	what	you	are	allowed	to	do	in	a	particular	jurisdiction.
They	are	made	by	(hopefully	democratically	elected)	legislators,	and	they're	written	for
humans	to	interpret.	Laws	can	be	very	specific	on	some	points,	but	often	also	leave	certain
things	vague.	Sometimes	this	is	even	done	on	purpose,	when	the	legislators	decide	that
they	cannot	foresee	all	the	cases	that	will	develop	in	the	future.

In	case	of	some	conflict,	either	between	society	and	some	individual	or	company	in	it,	or
between	companies	or	individuals,	some	interpretation	of	how	the	law	applies	to	this	specific
case	has	to	be	made.	This	is	done	by	a	judge.	Judges	will	take	into	account	the	text	of	the
law	itself,	the	(recorded)	discussions	that	took	place	when	it	was	made,	and	rulings	by	other
judges	in	similar	cases.	By	doing	the	latter,	they	try	to	keep	things	consistent	and	therefore
fair.

The	collected	rulings	of	earlier	cases	are	together	known	as	case	law	("jurisprudentie"	in
Dutch).	Over	time,	the	vague	areas	in	a	law	are	filled	in	by	case	law.	However,	this	is	a	slow
process,	and	it	is	always	incomplete:	if	the	law	is	vague	and	there	is	no	case	law	yet,	or	no
sufficiently	similar	case,	then	a	gray	area	remains.

As	a	result,	it	often	makes	more	sense	to	think	about	legal	issues	in	terms	of	probabilities
and	risk,	rather	than	in	terms	of	truth.	This	means	that	decisions	on	how	to	act	given	the
legal	situation	always	have	a	policy	component	to	them.	How	important	is	what	you	want	to
do,	and	how	much	risk	are	you	willing	to	take?

Of	course,	there	is	always	an	ethical	side	to	these	kinds	of	decisions	as	well:	something	may
be	strictly	speaking	legal,	but	that	doesn't	automatically	make	it	the	right	thing	to	do.	While	it
may	be	impossible	in	some	cases	to	say	with	absolute	certainty	whether	something	we	want
to	do	is	legal,	we	should	always	make	sure	that	it's	the	right	thing	to	do.

About	the	Law

84

Trademarks
A	trademark	is	the	exclusive	right	to	the	use	of	a	sign	or	design	for	the	purpose	of	identifying
the	manufacturer	of	a	product	or	supplier	of	a	service.	Trademarks	are	typically	words	or
logos,	but	protection	may	extend	to	colors	and	even	smells.

Trademarks	protect	brands	and	reputations,	and	serve	to	avoid	confusion	in	the
marketplace.	Because	of	this,	similar	or	even	identical	trademarks	may	coexist,	if	the
corresponding	companies	sell	different	kinds	of	goods	or	services,	or	operate	in	different
areas.

As	an	example,	Apple	Records	and	Apple	Computer	can	co-exist	peacefully	despite	the
similar	names,	as	it	is	obvious	that	an	Apple	laptop	comes	from	Apple	Computer,	and	an
Apple	CD	from	Apple	Records.	But	when	Apple	Computer	added	a	sound	chip	to	the	Apple
IIGS,	Apple	Records	sued	them	(and	later	sued	them	again	over	the	Mac's	system	sound,
and	then	about	iTunes),	because	they	were	now	in	the	same	(music)	market.

Getting	a	trademark
Trademarks	can	be	registered	with	the	patent	and	trademark	office,	after	which	they're
marked	with	an	®	symbol.	In	some	countries,	notably	the	US,	this	in	not	required,	and	just
using	it	in	practice	to	identify	your	products	is	in	principle	enough.	Non-registered
trademarks	are	marked	with	a	™	symbol.

Our	Netherlands	eScience	Center	logo	is	an	example	of	a	(non-registered)	service	mark	(℠,
although	there	is	no	legal	protection	for	unregistered	marks	here).	Service	marks	are
essentially	the	same	thing	as	trademarks,	but	they	don't	identify	physical	products	(we	don't
make	any)	but	services	or	intangible	products,	and	as	such	are	applied	to	equipment	and
uniforms	and	such.	The	idea	is	the	same	however.

Losing	a	trademark
Trademarks	lose	their	protection	if	they	no	longer	identify	a	particular	manufacturer,	but
become	general	terms	for	a	category	of	products.	For	instance,	a	walkman	is	a	portable
audio	cassette	player.	Sony®	owns	a	trademark	on	that	word,	but	in	2002	an	Austrian	judge
ruled	that	since	the	word	was	in	the	dictionary	as	describing	any	portable	audio	cassette
player,	it	had	become	a	general	term	that	is	therefore	not	eligible	for	trademark	protection.

Trademarks

85

Companies	do	not	want	to	lose	their	trademarks,	so	they're	usually	quite	active	about
protecting	them.	Most	companies	have	a	trademark	policy	that	is	designed	to	protect	their
trademarks	from	becoming	generic.	Google®'s	trademark	policy	for	instance	says	that	you
should	tell	people	to	"do	a	Google	search"	for	something	rather	than	"Google	it",	as	the	latter
uses	the	term	generically	to	mean	doing	a	web	search.	If	you	infringe	on	someone's
trademark,	you're	likely	to	get	a	more-or-less	friendly	letter	telling	you	to	quit	it	or	be	sued.

Using	a	trademark
Using	trademarked	words	to	refer	to	the	corresponding	product	or	company	is	generally	fine,
just	make	sure	that	you	use	them	together	with	the	generic	term,	as	in	the	example	above.	If
you	use	a	trademark,	you	should	acknowledge	that	it	is	a	trademark	using	one	of	those
ubiquitous	notices	like	"Sony®	is	a	registered	trademark	of	Sony	Corporation".	Almost	all
companies	have	rules	on	what	to	do	exactly,	a	web	search	for	"<company>	trademark
guidelines"	will	show	you	the	way.

Software	licenses	(even	Free	Software	licenses)	typically	do	not	give	out	trademark	rights,
so	you	may	have	to	rename	a	fork	if	the	origin	considers	your	fork	harmful	to	their	brand.
See	e.g.	Firefox®	(a	registered	trademark	of	the	Mozilla	Foundation)	and	IceWeasel.

Trademark	acknowledgements
Apple	is	a	trademark	of	Apple,	Inc.,	registered	in	the	U.S.	and	other	countries.

Firefox®	and	Mozilla®	are	registered	trademarks	of	the	Mozilla	Foundation.

Google™	is	a	trademark	of	Google,	Inc.

Sony®	is	a	registered	trademark	of	Sony	Corporation.

Trademarks

86

Trade	Secrets
A	trade	secret	is	a	secret	with	an	economic	benefit	to	the	company	that	holds	it.	The	recipe
for	Coca-Cola®	is	an	oft-cited	example,	the	source	code	for	a	proprietary	software	program
may	be	another.

Trade	secrets	are	protected	by	Non-Disclosure	Agreements:	contracts	that	forbid	you	from
sharing	them	with	anyone.	In	The	Netherlands,	there	is	no	specific	law	on	trade	secrets,	so
these	contracts	are	all	that	protect	them.

In	particular,	that	means	that	if	someone	spills	your	trade	secret,	then	you	can	sue	that
person,	but	you	can't	do	anything	against	the	recipient	of	the	secret.	In	the	US,	this	is
different:	there	it	is	a	criminal	offense	to	make	use	of	a	leaked	trade	secret,	and	you	can	go
to	jail	for	doing	so.

Patents
From	a	societal	point	of	view,	trade	secrets	can	be	considered	damaging.	Progress	can	be
made	much	more	quickly	if	competitors	can	build	on	each	other's	inventions,	but	that	is
impossible	if	everyone	keeps	their	inventions	a	secret.	Patents	("octrooien"	in	Dutch,
"patent"	means	that	you're	looking	good)	are	intended	to	remedy	this	situation.

A	patent	is	the	exclusive	right	to	make,	use	and	sell	an	invention,	in	exchange	for	publication
of	a	description	of	it.	Patents	have	a	limited	duration,	which	varies	from	place	to	place	but	is
usually	around	20	years.	Patents	cover	devices	that	are	new,	inventive,	and	applicable	to
some	problem.	Discoveries,	designs,	business	models,	software	and	visualizations	can	not
be	patented	(but	see	below).

Getting	a	patent
Patents	are	obtained	by	writing	up	a	description	of	the	patent,	with	a	list	of	claims	that
describe	the	claimed	invention,	and	submitting	that	description	to	the	patent	office	of	the
country	where	you	want	protection,	together	with	a	hefty	fee.

The	patent	office	will	then	do	a	(often	very	cursory)	check	to	see	if	the	patent	meets	the
requirements,	and	grant	it.	Once	you	have	a	patent,	you	are	the	only	one	allowed	to	use	or
sell	the	claimed	invention;	anyone	else	will	need	to	buy	a	license	from	you,	or	prove	that	the
patent	is	invalid	when	you	sue	them.

Trade	Secrets	and	Patents

87

Software	patents
While	software	cannot	be	patented	because	it's	not	a	device,	a	computer	is	a	device.	Some
time	ago,	clever	lawyers	(especially	in	the	US)	therefore	started	filing	patents	for	a	machine
that	performs	certain	computational	steps.	While	a	piece	of	software	or	an	algorithm
therefore	technically	cannot	be	patented,	anyone	using	that	software	or	algorithm	would	still
infringe	the	patent.

The	main	problem	with	software	patents	is	that	there	are	a	huge	number	of	them	out	there,
and	they're	written	in	obfuscated	legalese.	Many	are	likely	invalid	due	to	not	being	new,
being	too	obvious,	or	being	overly	broad	(the	patent	office's	checks	are	minimal),	but
defending	against	someone	with	a	lot	of	patents	is	very	expensive	unless	it's	completely
obvious	that	you're	not	infringing	anything.

It	is	therefore	quite	easy	to	extort	money	from	people	by	collecting	a	pile	of	patents,	and
threatening	to	sue	them.	Meanwhile,	the	benefit	to	society	is	long	lost,	because	no	one	uses
patents	to	figure	out	how	to	solve	programming	problems.

Unfortunately,	there's	not	much	we	can	do	to	remedy	this	situation.	In	practice,	just	avoid
using	things	that	you	know	are	patented,	and	hope	for	the	best.

Trademark	acknowledgements
Coca-Cola®	is	a	trademark	of	The	Coca-Cola	Company,	registered	in	the	U.S.	and	other
countries.

Trade	Secrets	and	Patents

88

Database	Rights
Database	rights	are	a	very	new	addition	to	the	IP	stable,	and	they	exist	only	in	the	EU	and	a
few	other	countries.	Database	rights	protect	the	investment	made	to	create	a	particular
collection	of	information.	According	to	these	laws,	whoever	invests	in	the	creation	of	a
database	gets	the	exclusive	right	to	extract	or	reuse	(make	available	to	others)	substantial
parts	of	the	database,	or	repeatedly	extract	or	reuse	insubstantial	parts	of	the	database.

Getting	database	rights
So,	if	you	pay	someone	to	collect	data	and	put	it	into	a	database,	then	you	own	the	database
rights	on	that	database	for	the	next	15	years	(in	the	EU	at	least).	If	you	then	offer	access	to
the	database	on	a	web	site,	people	can	query	it	and	use	the	information	they	got	out	of	it,
but	they're	not	allowed	to	download	the	entire	database	and	share	it	with	others.	Also,
making	another	web	site	that	forwards	queries	to	yours	and	returns	the	results	is	not
allowed.

Other	protections	for	databases
The	individual	data	items	in	a	database	are	not	protected	by	database	rights,	but	they	may
be	protected	by	other	IP	laws.

For	instance,	if	you	pay	someone	to	scan	a	large	number	of	newspaper	articles	and	put
them	into	a	database,	then	you	get	to	own	the	database	rights	to	that	database	(because
you	paid	to	make	it).	However,	each	individual	article	is	also	protected	by	copyright,	which	is
owned	by	the	newspaper.	Simple	facts	cannot	be	copyrighted	however,	so	e.g.	individual
measurements	in	a	database	of	sensor	data	are	not	protected.

A	database	can	also	be	protected	by	copyright,	if	the	selection	and	arrangement	of	the
contents	makes	it	a	creative	work.	If	you	manually	select	newspaper	articles	and	order	them
in	a	particular	way	so	as	to	tell	a	story,	the	resulting	database	may	be	eligible	for	copyright
protection,	also	in	places	where	database	rights	do	not	exist.	Furthermore,	the	data	structure
of	a	database	(e.g.	the	DDL	description	of	an	SQL	database	structure)	may	be	protected	by
copyright,	just	like	software	is.

Licensing	database	rights

Database	Rights

89

Permission	to	extract	and	reuse	substantial	parts	of	a	database	can	be	given	to	others	by
the	owner	of	the	database	rights	via	a	license.	Starting	with	version	4.0,	the	well-known
Creative	Commons	(CC)	licenses	include	a	grant	of	database	rights,	making	them	suitable
for	use	with	databases.	There	is	also	the	Open	Database	License,	which	predates	CC	4.0,
and	has	a	more	academic	origin.

The	default	database	license	at	the	Netherlands	eScience	Center	is	the	Creative	Commons
Attribution	4.0	license.	Putting	this	license	on	your	database	will	simultaneously	license	both
the	database	rights	and	the	copyright	(if	any)	on	the	database	itself	and	on	its	contents	all
under	the	same	well-known	and	widely	used	terms.

Database	Rights

90

https://www.creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Copyright
Copyright	covers	original	works	of	authorship	(works	of	art	or	science,	as	Dutch	law	puts	it),
like	books,	plays,	films,	music	and	photographs,	provided	there	was	some	creativity	involved
in	making	them.	Copyright	also	covers	collections,	like	anthologies	or	coffee	table	books	with
nicely	arranged	photographs.

The	owner	of	the	copyright	in	a	work	has	the	exclusive	right	to	copy	that	work,	and	to	make
derivative	works.

A	derivative	work	is	itself	a	work,	but	one	that	depends	on	another	work.	A	translation	of	a
book	is	an	example,	because	translating	is	itself	a	creative	act,	but	the	translation	also
derives	from	the	original.	Subtitles	for	TV	series	or	a	new,	updated	edition	of	a	textbook	are
also	examples	of	derivative	works.

Getting	copyrights
In	any	country	that	has	signed	the	Berne	convention	on	copyright,	all	works	of	authorship
are	automatically	protected	by	copyright	as	soon	as	they	are	made.	Since	1989,	when	the
US	signed	the	Berne	convention,	this	goes	for	all	major	countries,	but	before	that,	there
were	countries	where	it	was	necessary	to	explicitly	claim	copyright	on	a	work,	by	adding	the
©	symbol	or	a	phrase	like	"All	rights	reserved".	Other	than	in	Iraq,	Somalia,	North	Korea	and
a	few	other	such	countries,	this	is	now	no	longer	needed,	and	we	don't	do	it.

Copyrights	can	be	transferred,	e.g.	by	selling	them	or	giving	them	away.	In	many	countries,
including	in	Europe,	there	are	some	rights	that	always	remain	with	the	author	however,	such
as	the	right	to	be	recognised	as	the	author	and	to	have	your	reputation	protected	with
regards	to	the	work.

A	very	common	way	in	which	copyright	ends	up	in	the	hands	of	someone	other	than	the
author	is	by	work	for	hire:	if	you	make	something	as	part	of	your	employment,	your	employer
gets	the	copyright,	unless	otherwise	agreed.

Copyright	and	software
Copyright	predates	software,	but	since	software	is	a	work	of	authorship,	it	is	also	protected
(these	days	most	copyright	laws	mention	it	explicitly).	Copyright	on	software	covers	copying
of	the	program	(in	whichever	form)	and	making	derivative	works.

Copyright

91

This	includes	copying	from	disk	to	RAM	so	as	to	run	the	program.	Dutch	law	has	an	explicit
exception	for	this:	if	you	have	a	legal	copy	on	disk,	then	you're	allowed	to	copy	it	to	RAM	so
as	to	run	it.

Exactly	what	constitutes	a	derivative	work	of	a	computer	program	or	library	is	a	gray	area,
with	little	to	no	case	law	available.	In	other	words,	no	one	knows	for	sure	what	a	judge	would
decide.	On	the	other	hand,	there	is	a	kind	of	common	understanding	of	how	it	should
probably	work,	and	people	operate	on	those	assumptions	with	few	problems	so	far.

Licensing	copyright
If	you	own	the	copyright	for	a	work,	including	a	computer	program	or	library,	then	you	can
give	others	permission	to	make	copies	and	derivative	works	by	giving	them	a	license	(that's
actually	specifically	mentioned	in	the	law).	A	license	is	a	specific	or	general	offer	of	the	right
to	make	copies.

For	example,	Dell™	has	a	license	from	Microsoft®	to	make	copies	of	Microsoft	Windows®
and	install	them	on	the	computers	they	sell.	This	is	a	specific	offer	written	down	in	a	contract
between	the	companies.	If	we	put	up	some	code	on	the	web	under	an	open	source	license,
then	we	are	making	a	general	offer	–	to	anyone	who	wants	it	–	to	use	our	code	under	those
terms.

Note	that	the	End	User	License	Agreement	that	often	pops	up	when	you	install	software,	is	–
despite	the	name	–	typically	not	a	copyright	license,	since	it	doesn't	give	you	permission	to
copy	or	create	derivative	works.	Instead,	it's	legally	a	contract,	which	is	why	you	have	to
click	OK	to	accept	it.

There	are	many	software	licenses	out	there,	including	some	common	Free	and	Open
Source	Software	licenses.	More	on	these	and	how	to	use	them	is	in	the	next	chapter.

Trademark	acknowledgements
Dell™	is	a	trademark	of	Dell,	Inc.

Microsoft®	and	Microsoft	Windows®	are	either	registered	trademarks	or	trademarks	of
Microsoft	Corporation	in	the	United	States	and/or	other	countries.

Copyright

92

Software	licenses
There	are	many	software	licenses	in	existence.	Many	of	those	allow	the	licensee	to	do	very
little,	but	some	give	you	more	freedom	to	use	and	re-use	the	licensed	software.	To	make
some	sense	of	this	variety,	we	can	categorize	them	as	follows.

License	categories

Free

ProprietaryCopyleft
Permissive

Strong Weak

GPL
CDDL

LGPL
MPL

BSD	MIT
Apache

Research-only	No	copying
No	modification

Free	software
The	main	distinction	among	software	licenses	is	that	of	Free	software	versus	proprietary
software.	Free	software	is	software	with	license	terms	that	give	you	(Stallman,	1986)

1.	 The	freedom	to	run	the	program	as	you	wish,	for	any	purpose	(freedom	0).
2.	 The	freedom	to	study	how	the	program	works,	and	change	it	so	it	does	your	computing

as	you	wish	(freedom	1).	Access	to	the	source	code	is	a	precondition	for	this.
3.	 The	freedom	to	redistribute	copies	so	you	can	help	your	neighbor	(freedom	2).
4.	 The	freedom	to	distribute	copies	of	your	modified	versions	to	others	(freedom	3).	By

doing	this	you	can	give	the	whole	community	a	chance	to	benefit	from	your	changes.
Access	to	the	source	code	is	a	precondition	for	this.

These	four	freedoms	together	effectively	neutralize	copyright:	freedoms	1	and	3	let	you
create	derivative	works,	and	freedoms	2	and	3	let	you	make	copies.

Note	that	it's	perfectly	fine	to	sell	copies	of	Free	software,	or	warranty,	or	development
services;	this	is	about	freedom	to	do	things	with	the	software,	not	about	its	price.

There	are	two	other,	similar	definitions	in	use,	the	Open	Source	Institute's	Open	Source
Definition	and	the	Debian	Free	Software	Guidelines.	The	Free	Software	definition	above,
due	to	Richard	Stallman,	is	the	simplest	and	most	concise,	and	in	practice	the	categories
they	define	are	almost	identical.

Software	Licenses

93

https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/osd-annotated
https://www.debian.org/social_contract#guidelines

Software	that	is	not	Free	is	proprietary.	Software	that	you're	not	allowed	to	copy	or	modify
falls	into	this	category,	as	does	software	with	usage	restrictions,	e.g.	"For	research	use	only"
or	"For	non-commercial	use	only".

There	are	some	confusingly-named	subcategories	of	proprietary	software.	Freeware	is
software	that	can	be	copied	without	paying	anyone,	but	comes	without	source	and	cannot	be
modified.	Shared	source	comes	with	source,	but	without	permission	to	modify.	Neither	of
these	are	Free	in	the	above	sense.

Derivative	software
Within	the	category	of	Free	software,	there	are	several	subcategories,	which	are
distinguished	by	what	is	allowed	when	making	derivative	software.	There	are	two	basic	ways
of	making	a	derivative	work	of	a	program	or	library:	modifying	it	(forking),	and	combining	it
with	other	software	(e.g.	using	a	library	in	your	program).	Of	course,	you	can	modify	and
then	combine	as	well.

Modifying	a	program	leads	to	a	new	program	that	is	derived	from	the	original,	much	like	a
new	edition	of	a	textbook	is	derived	from	the	original.	Both	the	original	and	the	modified
version	are	works	under	copyright	law,	and	both	of	them	may	be	licensed.

As	an	example	of	combining	software,	imagine	a	program	A	that	uses	two	pre-existing
libraries	B	and	C.	The	complete	program	A	will	consist	of	library	B,	library	C,	and	some	code
D	that	connects	the	libraries	together	and	perhaps	adds	additional	functionality.	Each	of
these	four	items	is	a	work	of	authorship	with	a	license,	with	A	sometimes	referred	to	as	the
"Combined	work",	"Work	as	a	whole"	or	"Larger	work".

Different	Free	software	licenses	place	different	constraints	on	how	modified	versions	and
combined	works	can	be	licensed.

Permissive	licenses
As	the	name	implies,	permissive	Free	software	licenses	are	the	least	restrictive.	They	let	you
distribute	the	software	unchanged	under	that	license,	with	or	without	source	code.	They	will
also	let	you	distribute	a	modified	version	under	any	license	you	like,	and	let	you	distribute	a
combined	work	under	any	license.

Examples	of	well-known	permissive	licenses	are	the	various	BSD	licenses,	the	MIT	license,
and	the	Apache	License	2.0	that	we	have	standardized	on.

Software	Licenses

94

Copyleft
Copyleft	licenses	add	some	restrictions	to	the	licensing	of	derivative	works.	Like	permissive
licenses,	they	let	you	distribute	the	software	unchanged	under	that	license,	but	if	you
distribute	a	binary,	then	you	have	to	include	the	source	code	as	well.	Modified	versions	have
to	be	distributed	under	the	same	license	as	the	original;	you	are	not	allowed	to	change	the
license.

When	creating	a	combined	work,	a	further	distinction	can	be	made.	Strong	copyleft	licenses
on	a	component	require	a	combined	work	to	be	licensed	under	the	same	license	as	the
component.	In	the	example	above,	if	library	B	is	distributed	under	a	strong	copyleft	license
such	as	the	GNU	GPL,	then	program	A	must	be	distributed	under	that	same	license.

Weak	copyleft	licenses	allow	the	combined	work	(A)	to	be	distributed	under	any	license,	as
long	as	the	source	for	the	licensed	component	(B)	is	made	available	as	well	under	its
original	license.	They	may	also	require	that	the	recipient	of	the	combined	work	can	relink	the
modules	after	modifying	the	component.

Permission	overview

Copyleft
Permissive Proprietary

Strong Weak

Use	for
anything Yes Yes Yes Sometimes

Private
changes Yes Yes Yes Rarely

Distribute
original

Same	license,
with	source

Same	license,
with	source

Same	license,
also	binary-only* Rarely

Distribute
modified

Same	license,
with	source

Same	license,
with	source**

Any	license,	also
binary-only Rarely

Distribute
combined

Same	license,
with	source

Any	license,
binary	additions

Any	license,	also
binary-only Rarely

Under	any	license	for	the	MIT	license	**	Relicensing	LGPL	to	GPL	is	allowed

License	compatibility

Software	Licenses

95

If	you	use	multiple	external	components	in	your	program,	then	you	may	end	up	with	multiple
different	constraints	on	the	license	of	the	combined	work.	If	these	constraints	conflict,	then
you	cannot	legally	distribute	the	result	(if	proprietary	software	is	involved,	then	you	may	not
legally	be	able	to	make	the	combined	work	at	all).

If	two	licenses	specify	incompatible	constraints	on	the	license	of	the	combined	work,	then
they	are	incompatible.

The	GNU	GPL	for	instance	is	incompatible	with	proprietary	licenses,	because	it	requires	the
combined	work	to	be	licensed	under	the	GPL,	with	no	additional	restrictions	allowed.	Having
a	part	of	the	work	under	a	proprietary	license	is	such	an	additional	restriction,	so	you	cannot
distribute	such	a	combination	(unless	the	copyright	owner	of	the	GPL	code	gives	a	special
permission).

When	you	use	different	pieces	of	software	together	to	solve	a	problem,	and	want	to
distribute	the	result,	here	are	the	questions	you	have	to	answer:

Which	separate	works	are	there,	and	what	is	derived	from	what?
Can	the	works	be	distributed,	i.e.	do	the	licenses	allow	this	and	are	they	compatible?
How	should	the	work(s)	be	licensed?

The	next	section	shows	some	examples	of	how	this	is	done.

Software	Licenses

96

Examples:	Using	Libraries
Many	of	the	examples	in	this	section	relate	to	xtas.	xtas	is	a	natural	language	processing
toolkit	for	Python	that	reuses	many	third-party	libraries,	programs	and	data	sets,	and
therefore	provides	a	variety	of	nice	examples.

xtas	itself	is	written	in	Python,	and	it	uses	a	number	of	Python	libraries	that	are	licensed
under	common	Free	licenses.	These	include	the	simple	permissive	BSD	and	MIT	licenses,
the	permissive	Apache	License	version	2.0	(ALv2),	the	GNU	Lesser	General	Public	License
version	2.1	(LGPLv2.1),	and	the	GNU	General	Public	License	version	2	or	later	(GPLv2+).

(Note	that	the	dependency	on	the	GPLv2+	Python	library	has	now	been	removed,	but	for	the
sake	of	these	examples	we	will	assume	it	to	still	be	there.)

xtas'	own	Python	code	is	distributed	by	us	under	the	Apache	License	version	2.0.	Since	we
own	the	copyright,	we	can	license	it	any	way	we	like	(although	there's	a	gray	area	with
respect	to	GPL	dependencies,	see	below).	We	do	not	distribute	any	combined	works	or
binaries,	but	in	the	examples	below	we'll	assume	that	there	is	a	combined	work,	so	that	we
can	consider	how	it	should	be	licensed.

In	the	following	examples,	we'll	simplify	most	of	this	away,	and	look	at	one	or	a	few
dependencies	in	turn.

xtas	vs.	Snowball

Examples:	Using	Libraries

97

http://xtas.net

xtas	uses	Snowball,	a	Python-based	stemming	library.	Snowball	is	published	under	the	3-
clause	BSD	license.	Considering	only	xtas	and	Snowball,	we	can	answer	the	three
questions	as	follows.

Which	separate	works	are	there,	and	what	is	derived	from
what?

There	are	three	works:	Snowball,	the	xtas	Python	code,	and	the	combined	work	xtas.	The
combined	work	derives	from	Snowball	and	from	the	xtas	Python	code.	The	others	are
independent	works.

Note	that	the	ALv2	and	the	LGPL	v2.1	explicitly	state	that	source	code	that	is	intended	to
work	in	combination	with	a	library	is	not	a	derivative	work,	while	the	binary	resulting	from
(statically	or	dynamically)	linking	the	pieces	together	is;	other	licenses	including	the	GPL	do
not	make	any	explicit	statement	about	this.

As	far	as	I	know,	there	is	no	case	law	on	this;	we	will	assume	it	to	be	the	case	in	these
examples.

Can	the	works	be	distributed,	i.e.	do	the	licenses	allow	this
and	are	they	compatible?

Snowball	is	licensed	under	a	permissive	license,	so	it	can	be	redistributed	under	that
license,	and	there	are	no	constraints	on	the	license	of	derivative	works.	We	own	the
copyright	to	the	xtas	Python	code,	so	we	can	license	it	in	any	way	we	want.

Examples:	Using	Libraries

98

How	should	the	work(s)	be	licensed?

The	xtas	Python	code,	and	the	xtas	combined	work,	can	be	licensed	under	any	license	we
want,	so	we	should	use	the	default	eScience	Center	license,	which	is	the	Apache	License
v2.0.

If	we	redistribute	Snowball,	we	must	do	so	under	the	BSD	license	granted	by	its	authors.
(We	cannot	give	additional	permissions	for	Snowball,	since	we	don't	own	the	copyright,	and
additional	restrictions	would	be	unenforceable	for	the	same	reason.)

xtas	vs.	chardet

xtas	uses	chardet,	a	Python	library	for	detecting	the	character	set	used	in	a	string	of	text.
Chardet	is	published	under	the	GNU	Lesser	General	Public	License	v2.1.	Considering	only
xtas	and	chardet,	we	can	answer	the	three	questions	as	follows.

Which	separate	works	are	there,	and	what	is	derived	from
what?

There	are	three	works:	chardet,	the	xtas	Python	code,	and	the	combined	work.	The
combined	work	derives	from	chardet	and	from	the	xtas	Python	code.	The	others	are
independent	works.

Examples:	Using	Libraries

99

Can	the	works	be	distributed,	i.e.	do	the	licenses	allow	this
and	are	they	compatible?

Chardet	is	licensed	under	a	weak	copyleft	license,	so	it	can	be	redistributed	under	the	terms
of	that	license.	Derivative	works	can	be	licensed	under	any	license,	but	the	LGPL	v2.1	does
require	that	the	recipient	can	(and	is	allowed	to)	modify	the	library	and	use	the	modified
library	with	the	derivative	work.

How	should	the	work(s)	be	licensed?

xtas	as	a	whole,	and	the	xtas	Python	code,	can	be	licensed	in	any	way	we	want,	so	we	use
the	default	eScience	Center	license,	which	is	the	Apache	License	v2.0.	If	we	distribute
chardet,	we	must	do	so	under	the	LGPL	v2.1	license	granted	by	its	copyright	owners.

xtas	vs.	unidecode

xtas	previously	used	unidecode,	a	Python	library	for	converting	text	encoded	according	to
The	Unicode®	Standard	into	an	ASCII	approximation	of	it.	Unidecode	is	published	under	the
GNU	General	Public	License	version	2	or	later	(GPLv2+).	Considering	only	xtas	and
unidecode,	we	can	answer	the	three	questions	as	follows.

Which	separate	works	are	there,	and	what	is	derived	from
what?

Examples:	Using	Libraries

100

There	are	three	works:	unidecode,	the	xtas	Python	code,	and	the	combined	work.	The
combined	work	derives	from	unidecode	and	from	the	xtas	Python	code.

Whether	the	xtas	Python	code	is	a	derivative	work	of	unidecode	is	not	clearly	defined	by	the
law,	and	there	is	no	case	law	on	this.	The	Apache	license	and	the	LGPL	explicitly	state	that
it	is	not	for	the	purpose	of	those	licenses,	but	the	GPL	does	not	contain	such	a	clause.

As	they	are	developed	separately	and	there	is	no	code	from	unidecode	in	the	xtas	code,	we
assume	here	that	it	is	not	a	derivative	work.

Can	the	works	be	distributed,	i.e.	do	the	licenses	allow	this
and	are	they	compatible?

Unidecode	is	licensed	under	a	strong	copyleft	license,	so	it	can	be	redistributed	under	the
terms	of	that	license.	Derivative	works	must	be	licensed	under	the	same	license.

Unidecode	is	licensed	under	the	GPL	version	2	or	later.	This	is	known	as	a	disjunctive
license.	The	copyright	owners	of	unidecode	offer	everyone	a	GPLv2	license,	but	also	a
GPLv3	license,	and	even	proactively	any	later	version	of	the	GNU	GPL	that	may	be	created
in	the	future.	A	potential	user	may	choose	to	accept	any	one	of	these	licenses,	or	a
combination	of	them,	if	they	want	to	copy	the	work	or	make	derivative	works.

How	should	the	work(s)	be	licensed?

If	we	distribute	unidecode,	we	should	do	so	under	the	GPL	version	2	or	higher,	as	arbitrarily
removing	licenses	from	someone	else's	code	does	not	make	sense.	The	combined	work
xtas	must	be	distributed	under	the	same	licenses,	or	a	subset	of	them.	The	xtas	Python
code	can	be	licensed	in	any	way	we	want.

We	should	choose	a	license	for	the	xtas	Python	code	that	is	compatible	with	at	least	one	of
the	licenses	that	unidecode	can	be	distributed	under,	so	that	others	can	assemble	and
distribute	combined	works.	Our	default	license,	the	ALv2,	is	compatible	with	the	GPLv3	(but
not	with	the	GPLv2,	for	technical	reasons),	so	we	can	use	it	here.

The	combined	work	should	then	be	licensed	under	the	GPL	version	3	or	later.	If	it	is
important	that	it	can	be	used	under	the	GPLv2	as	well,	then	we	can	license	the	xtas	Python
code	under	both	the	ALv2	and	the	GPLv2	(i.e.	we	offer	both	licenses,	and	the	user	can
choose	to	accept	either	or	both),	and	the	combined	work	under	the	GPL	version	2	or	later.

Finally,	if	it	is	decided	at	some	point	in	the	future	that	the	xtas	Python	source	code	is	a
derivative	work	of	unidecode	because	it	calls	into	it,	even	if	none	of	unidecode	is	included	in
the	work,	then	we	must	distribute	the	xtas	Python	code	under	at	least	one	of	the	GPL

Examples:	Using	Libraries

101

licenses	that	unidecode	is	distributed	under.	In	that	case,	we	can	offer	xtas	under	the	ALv2
and	GPLv2+	set	of	licenses.

The	simplest	solution	in	this	case	would	be	to	simply	license	the	xtas	Python	code	and	the
derived	work	under	the	GPLv3.	However,	we	want	people	to	be	able	to	use	as	much	of	our
software	as	possible	in	proprietary	software,	which	is	why	our	preferred	license	is	the
permissive	ALv2.

As	is	probably	clear	by	now,	dependencies	that	are	under	a	strong	copyleft	license
complicate	your	life	if	you	want	people	to	be	able	to	make	proprietary	works	based	on	your
software.	For	this	reason,	we	try	to	avoid	them.

All	together	now

Now,	we	will	consider	all	three	of	the	above	examples	at	the	same	time.

How	many	separate	works	are	there,	and	what	is	derived
from	what?

There	are	five	works:	Snowball,	chardet,	unidecode,	the	xtas	Python	code,	and	xtas	the
combined	work.	The	combined	work	is	derived	from	all	its	components.

Can	the	works	be	distributed,	i.e.	do	the	licenses	allow	this
and	are	they	compatible?

The	four	components	are	under	Free	Software	licenses,	and/or	we	own	the	copyright,	so
they	can	be	distributed.	The	BSD,	LGPLv2.1	and	GPLv2+	all	allow	licensing	the	combined
work	under	the	GPL	version	2	or	higher,	so	there	is	at	least	one	license	that	the	combined
work	can	be	licensed	under.

Examples:	Using	Libraries

102

How	should	the	work(s)	be	licensed?

The	xtas	Python	code	should	be	licensed	under	our	default	Apache	License	v2,	and	the
combined	work	under	the	GPL	version	3	or	higher.	(See	the	unidecode	example	above	for
alternatives.)

In	the	Clouds
For	the	project	"Towards	Large-Scale	Cloud-Resolving	Climate	Simulations",	we	want	to
combine	the	OpenIFS	global	circulation	model	with	the	DALES	large-eddy	simulation	model.
Both	these	models	are	available	as	libraries,	so	the	project	entails	combining	the	OpenIFS
and	Dales	libraries	into	a	single	program.

(This	is	a	simplified	example,	the	reality	of	this	project	is	a	notch	or	two	more	complicated,
and	the	below	is	not	exactly	what	we	do.)

The	OpenIFS	library	(part	of	the	ECMWF	weather	model	code)	is	available	under	a
proprietary	license	that	allows	running	the	program	and	making	private	modifications,	but
does	not	allow	distributing	the	program	or	any	derivatives.	DALES	is	published	under	the
GPL	version	3.

How	many	separate	works	are	there,	and	what	is	derived
from	what?

There	are	four	works:	OpenIFS,	DALES,	the	rest	of	the	program	written	by	us,	and	the
combination	of	them	all.	The	combined	work	is	derived	from	its	components.

Can	the	works	be	distributed,	i.e.	do	the	licenses	allow	this
and	are	they	compatible?

The	OpenIFS	license	does	not	allow	redistribution,	so	it	cannot	be	distributed.	DALES	can
be	distributed,	under	the	GPLv3.	The	rest	of	the	program	is	written	by	us	and	can	be
licensed	by	us	if	we	want	to.

The	whole	combined	work	cannot	be	distributed,	since	it	incorporates	OpenIFS.	If	it	did	not
include	OpenIFS,	it	would	have	to	be	distributed	under	the	GPLv3,	because	of	the	DALES
dependency.

Can	we	work	on	this	privately,	without	distributing
anything?

Examples:	Using	Libraries

103

The	GPL	allows	making	private	modifications	of	software	covered	by	it,	with	no	restrictions,
provided	the	changed	software	is	not	distributed	at	all.	The	OpenIFS	license	also	allows
making	private	modifications.	So	we	can	work	on	this	project	(and	prepare	and	run
combined	works)	within	the	Netherlands	eScience	Center	without	violating	the	licenses,	as
long	as	we	do	not	share	the	results	with	anyone.

However,	as	in	most	of	our	projects,	we	work	together	with	a	principal	investigator	outside
the	eScience	Center.	This	means	that	we	exchange	materials	between	different	legal
entities,	which	counts	as	distribution.	We	can	do	that	with	our	own	code	(which	we	can	even
publish	openly	under	the	ALv2)	and	with	DALES,	but	not	with	OpenIFS	or	any	combined
works.

What	other	options	are	there	in	this	kind	of	situation?

We	can	try	to	split	up	the	system	into	independent	programs	that	run	in	separate	processes
and	communicate	with	each	other	over	well-documented,	generic	interfaces.	In	this	way,
there	would	never	be	a	combined	work,	just	a	few	independent	works	that	exchange
information.	Exactly	how	separate	the	programs	have	to	be	to	not	be	considered	a	single
work	is,	again,	a	gray	area.

We	could	also	ask	the	OpenIFS	and	DALES	copyright	owners	for	permission	to	share
combined	works	between	the	eScience	Center	and	the	PI.	That	would	remove	all
uncertainty,	but	may	not	be	practical	in	general.

Another	option	would	be	to	replace	one	of	the	dependencies	by	one	written	by	ourselves.
This	is	usually	impractical,	both	due	to	time	constraints	and	because	the	new	version	would
not	have	the	scientific	pedigree	of	the	existing	one.

The	fundamental	issue	here	is	that	the	GPL	tries	to	make	everyone	shared	stewards	of	the
software	we	use,	while	proprietary	software	tries	to	keep	control	over	it	in	the	hands	of	a
single	owner.

Combining	them	in	a	single	project	is	complicated	and	not	without	legal	risk,	and	we	should
avoid	it.	If	that's	not	possible,	we	should	tread	carefully.

Trademarks
Unicode	is	a	registered	trademark	of	Unicode,	Inc.	in	the	United	States	and	other	countries.

Examples:	Using	Libraries

104

More	Examples

External	programs:	xtas	vs.	CoreNLP
xtas	can	run	the	Stanford	CoreNLP	program,	which	is	written	in	Java	and	distributed	under
the	GNU	GPL	version	3	or	later.	When	the	user	calls	the	corresponding	xtas	function,
CoreNLP	is	started	by	xtas,	the	user's	input	is	sent	to	it	through	a	pipe,	and	then	the
CoreNLP	output	is	handed	back	to	the	user	or	processed	further.

One	interpretation	of	this	situation	is	that	this	is	no	different	from	calling	a	function	in	a
library,	and	that	any	distribution	of	xtas	as	a	whole,	including	CoreNLP,	should	therefore	be
under	the	GPLv3+.	Contributing	to	this	interpretation	is	the	fact	that	xtas	will	download	and
install	CoreNLP	automatically	if	needed.

More	Examples

105

Another	interpretation	is	that	xtas	and	CoreNLP	are	separate	works,	and	that	xtas	merely
communicates	with	CoreNLP	over	its	standard	user	interface.

In	this	interpretation	xtas	is	a	separate	program	that	helps	a	user	use	the	CoreNLP	program
from	the	Python	language,	and	not	a	derivative	work	of	CoreNLP.	One	can	consider	xtas
analogous	to	a	package	installer	and	a	command	shell	here,	which	are	clearly	not	derivative
works	of	the	packages	they	install	or	the	programs	they	start.

Under	this	interpretation,	xtas	as	a	whole	(not	including	CoreNLP)	can	be	distributed	under
any	license	we	choose	(subject	to	restrictions	imposed	by	its	other	dependencies	of	course).

In	practice,	we	do	not	distribute	CoreNLP	at	all;	we	only	distribute	the	xtas	Python	code,
under	the	Apache	License	version	2.

Data	sets:	Movie	review	emotion
xtas	contains	a	function	that	detects	emotions	in	movie	reviews.	It	works	by	fitting	a	model	to
a	set	of	training	data,	and	then	applying	the	model	to	the	xtas	user's	data.

The	training	data	set	it	uses	is	available	on	the	Internet	from	the	website	of	a	European
university,	with	a	note	saying	that	it	can	be	used	for	academic	research	purposes	only.	xtas
automatically	downloads	this	data	set	the	first	time	the	user	calls	the	function.

Since	it	was	created	in	Europe,	the	training	data	set	is	protected	by	database	rights,	which
limit	copying	substantial	parts	of	it.	This	means	that	the	xtas	user	needs	permission	to	have
xtas	download	the	data	set,	which	they	only	have	if	they	use	the	data	for	research	purposes.

Since	the	download	happens	automatically	this	may	not	be	obvious,	so	it	is	documented	in
the	function's	documentation,	and	the	function	will	refuse	to	work	unless	a	named	argument
	for_academic_research=True		is	used	when	calling	it.

More	Examples

106

xtas	itself	is	not	a	database,	and	therefore	cannot	be	a	derivative	work	of	the	data	set.	The
same	goes	for	the	model	that	is	fit	to	the	data.

An	alternative	way	to	provide	this	functionality	would	be	to	fit	the	model	once,	and	then
distribute	the	model	(but	not	the	data	set)	with	xtas.	Whether	doing	so	constitutes	academic
research	is	debatable	however.

Mixed:	Download	a	car?
For	an	internal	research	project,	we	needed	annotated	images	of	cars	to	train	a	neural
network	on.	Such	images	can	be	found	easily	on	car	trading	web	sites,	and	so	the	question
arose	whether	we	could	just	grab	a	big	collection	of	images	from	such	a	site.

Dutch	database	law	contains	a	provision	(article	5.b.)	that	says	that	retrieval	of	a	substantial
part	of	the	contents	of	a	database	for	scientific	research	is	allowed,	as	long	as	the	source	is
acknowledged	and	the	use	is	non-commercial.

Unfortunately,	this	is	not	the	only	barrier.	The	photos	on	the	site	are	also	copyrighted	works,
owned	by	whoever	made	them,	and	making	a	copy	requires	their	permission.

Furthermore,	the	web	site	has	a	set	of	general	terms	and	conditions,	which	forbids	retrieving
a	substantial	portion	of	the	database.	These	apply	to	anyone	using	the	web	site.

Downloading	a	car?	Bad	idea.

Trademarks:	Back	to	the	future
We	have	a	research	project	on	using	deep	learning	for	time	series	data	called	mcfly,	named
after	the	main	character	of	the	Back	to	the	Future	movies.	Of	course,	this	is	a	commercial
franchise,	so	the	question	arose	whether	we	can	use	that	name	for	our	project.

A	simple	name	is	too	short	to	be	a	copyrightable	work,	but	names	can	be	trademarked.	A
trademark	search	revealed	an	English	band	called	McFly,	who	have	trademarked	that	name
for	the	class	of	entertainment	services.	Since	our	research	project	is	not	in	that	market,	this
is	no	problem.

There	is	also	a	registered	trademark	for	"McFly	&	Brown",	an	Amsterdam	recruitment
company,	and	that	registration	covers	the	class	of	"Scientific	and	technological	services	and
research	and	design	relating	thereto"	(even	though	this	company	does	not	seem	to	do	any
science	or	software	development	itself).

Of	course,	"McFly	&	Brown"	is	not	the	same	as	"mcfly",	and	the	question	in	this	case	is
whether	the	two	are	confusingly	similar.

More	Examples

107

https://github.com/NLeSC/mcfly

First,	the	two	names	are	not	actually	the	same,	as	we	don't	have	the	second	part.	Second,	it
seems	unlikely	that	anyone	would	assume	a	highly	technical	scientific	research	project
would	be	associated	with	a	recruitment	agency.	Third,	both	names	are	derived	from	a	well-
known	movie,	which	probably	makes	people	more	likely	to	conclude	that	the	similarity	is
coincidental.

Whether	any	of	that	reasoning	holds	up	in	court	we're	not	sure	of,	but	it	sounded	reasonable
enough	to	name	the	project	"mcfly".

More	Examples

108

Publishing	Scientific	Results

Ready-to-go	demos
For	many	projects,	we	will	prepare	attractive	demos.	We	want	to	be	able	to	show	a	working
demo	at	any	moment	in	time.	Therefore,	we	want	to	have	special	branches	in	git	that	contain
fully	stand-alone	demos,	including	a	slide	deck,	that	can	just	be	checked	out	and	used
directly.

Handling	datasets	and	results
Assuming	you	have	only	the	software	in	a	(private)	git	repo,	you	might	want	to	also	add	and
share	with	others	the	data	and	results	related	to	that	software:

Add	also	the	data	and	figures	using	git	lfs	(Git	Large	File	Storage).
If	not,	make	the	repo	public.

Available	archival	/	preprint	servers	or	services
arXiv	(physics,	mathematics,	computer	science,	quantitative	biology,	quantitative
finance,	statistics)
bioRxiv	(biology)
PeerJ	Preprints	(biological	and	medical	sciences)
CogPrints	(psychology,	neuroscience,	linguistics,	and	other	fields	related	to	cognition)
figshare	(all	disciplines)
GitHub	(all	disciplines)
Social	Science	Research	Network	(cognitive	sciences,	economics,	humanities,	law	and
more)

Data	storage	and	preservation
We	strongly	advise	to	store	your	research	data	in	a	secure	location	where	regular	back-ups
of	the	data	are	made,	before	you	start	working	with	the	data.	If	it	is	logistically	impossible	to
store	the	data	in	a	secure	location	immediately	after	data	collection	then	here	are	some	tips
on	how	to	improve	data	preservation	in	the	time	window	in	between	data	collection	and	data

Publishing

109

https://git-lfs.github.com/
http://arxiv.org/
http://biorxiv.org/
https://peerj.com/archives-preprints/
http://cogprints.org/
https://figshare.com/
https://github.com/
http://www.ssrn.com/en/

arrival	at	a	secure	location.	For	example,	you	collect	data	on	humans	in	an	environment
without	(secure)	internet	connection	and	need	to	temporarily	store	your	data	offline	on	a
laptop	before	being	able	to	upload	it	to	a	data	archive.

Planning	data	storage

We	recommend	that	you	start	as	early	as	possible	to	think	how	are	you	managing	your	data
during	and	after	your	project.	Some	questions	you	should	ask	yourself	are:

What	data	am	I	using	in	my	project	?	Think	about	measurements	coming	from
experiments	(performed	by	you	or	by	third	parties),	but	also	interviews,	statistical
information,	etc.
Where	is	my	data	coming	from	?	How	is	it	being	collected	?
Where	and	how	is	this	information	being	stored	?
Does	my	data	comply	with	the	required	standards	applicable	?	For	example	think	of	the
FAIR	principles,	GDPR,	or	other	ethical	restrictions.

These	type	of	considerations	should	usually	be	covered	by	your	data	management	plan,	if
your	funding	agency	requires	so.	And	when	it	is	not	required	by	your	funding	agency,	it	is
probably	a	good	idea	to	have	a	data	management	plan	for	yourself.	If	you	are	writing	a	data
management	plan,	considering	using	DMPOnline.

Tips	for	short	term	storage

Checksum	and	sign	your	data	archive:

Do	a	checksum	on	your	files	to	check	preservation	of	integrity.	This	means	you	will	need
to	store	the	checksum	somewhere,	usually	they	are	tiny,	so	they	can	be	provided	along
with	the	data.	In	fact,	some	Linux	distributions	provide	the	checksum	of	the	iso	image	so
you	can	check	your	image	when	you	download	it.	Storing	checksums	within	the
filename	is	not	common	practice	anymore.	A	lot	of	data	formats	allow	storing	the
checksum	in	the	file;	ie.	the	metadata	part	contains	the	checksum	of	the	data	part.

File	permissions	and	location:

If	you	need	to	work	with	your	data,	but	do	not	plan	to	change	it	then	set	file	access
permissions	to	read	only.
Try	to	avoid	processing	files	that	are	also	being	synced	with	a	cloud	platform	(like
dropbox	or	onedrive).
Try	to	make	a	back-up	if	possible	and	store	this	back-up	at	a	different	physical	location.

Publishing

110

https://dmponline.dcc.ac.uk/

Specific	remarks	on	person	identifiable	information:

Do	not	do	anything	without	consulting	your	privacy	consultant.

Tips	for	long	term	storage

For	long	term	storage	we	advise	researchers	based	in	The	Netherlands	to	explore	the
services	of	SURFsara	website,	the	Collaborative	organization	for	ICT	in	Dutch	education
and	research,	including	but	not	exclusively:

Surfdrive	for	secure	data	sharing	up	to	250	GB.
Data	archive	for	long	term	storage	of	extremely	large	datasets.

For	researchers	outside	the	Netherlands	alternative	data	storing	platforms	include:

https://www.re3data.org
https://zenodo.org/
http://rd-alliance.github.io/metadata-directory/standards/

Publishing

111

https://userinfo.surfsara.nl/
https://www.surf.nl/en/services-and-products/surfdrive/surfdrive.html
https://userinfo.surfsara.nl/systems/data-archive
https://www.re3data.org
https://zenodo.org/
http://rd-alliance.github.io/metadata-directory/standards/

Making	software	citable
Digital	Object	Identifiers	are	globally	unique	identifiers	which	can	point	to	any	digital	object,
such	as	a	version	of	a	paper,	a	version	of	software	etc.	This	has	the	advantage	that	it	is
unambigous	and	standardized.	For	papers,	using	DOIs	is	commonplace,	and	a	DOI	is
usually	provided	by	the	publisher.	For	software,	you	can	make	your	own	DOI	with	Zenodo:

1.	 You	can	tell	people	how	to	cite	your	software	by	including	a		CITATION.cff		file	in	the
root	of	your	repository	(You	can	read	up	on	the	rationale	of		CITATION.cff		files	in	this
blog).	However,	writing		CITATION.cff		files	by	hand	is	a	bit	tedious	and	error-prone,	so
instead	go	to	https://citation-file-format.github.io/cff-initializer-javascript/	and	fill	in	the
provided	web	form.

2.	 Make	a	Zenodo	account	and	link	it	with	your	GitHub	account	as	explained	on
guides.github.com/activities/citable-code.

3.	 You	can	tell	Zenodo	what	metadata	you	want	to	associate	with	the	software	by	including
a		.zenodo.json		file	in	the	root	of	your	repository,	but	writing	that	file	by	hand	is	also
error-prone.	Therefore	it	is	advisable	to	just	generate	it	from	the		CITATION.cff		file.	To
do	so,	you'll	need	a	command	line	tool		cffconvert		which	you	can	install	from	PyPI	by:

	pip	install	--user	cffconvert

4.	 Make	sure	that	your		CITATION.cff		is	valid	YAML	by	copy-pasting	the	contents	to
http://www.yamllint.com/.

5.	 Make	sure	that	your		CITATION.cff		is	valid	CFF,	by:

	#	(in	the	repository's	root	directory)

	cffconvert	--validate

If	the	command	does	not	return	anything,	that	means	the	CFF	is	valid.

6.	 Generate	the		.zenodo.json		file	using		cffconvert		as	follows:

	cffconvert	--ignore-suspect-keys	--outputformat	zenodo	--outfile	.zenodo.json

7.	 On	Zenodo,	make	sure	to	'Flip	the	switch'	to	the		on		position	on	the	GitHub	repository
that	you	want	to	make	a	release	of.

8.	 Go	to	your	Github	repository,	use	the	Create	a	new	release	button	to	create	a	release
on	GitHub.

Making	software	citable

112

https://zenodo.org/
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://citation-file-format.github.io/cff-initializer-javascript/
https://zenodo.org/
https://guides.github.com/activities/citable-code/
https://pypi.org/project/cffconvert/
http://www.yamllint.com/

9.	 Zenodo	should	automatically	be	notified	and	should	make	a	snapshot	copy	of	the
current	state	of	your	repository	(just	one	branch,	without	any	history),	and	should	also
assign	a	persistent	identifier	(DOI)	to	that	snapshot.

when	things	don't	work

In	case	the	GitHub-Zenodo	integration	does	not	work	as	expected,	there	are	two	places
to	go	and	look	for	information:

i.	 On	GitHub:
go	to		https://github.com/<org>/<repo>/	
select		Settings	
select		Webhooks	
select	select	the	Zenodo	webhook	(may	require	GitHub	login)
scroll	down	to		Recent	deliveries	
click	on	one	of	the	listed	deliveries	for	details	on	the	request,	the	response,
and	to	request	redelivery.

ii.	 On	Zenodo:
go	to		https://zenodo.org/account/settings/github/	
select	the	repository	that	you	want	to	see	the	diagnostic	information	of
click	on	one	of	the	releases	to	see	the	Payload	Zenodo	received	from	GitHub,
as	well	as	the	Metadata	that	Zenodo	has	associated	with	your	release,	or
Errors	if	there	were	any.

10.	 Use	the	DOI	whenever	you	refer	to	your	software,	be	it	in	papers,	posters,	or	even
tweets	and	blogs.

11.	 Add	the	software's	Zenodo	badge	to	your	repository's	README.

Making	software	citable

113

e-Science	Conferences,	Journals,	and
Workshops
This	is	a	list	of	Conferences,	Journals,	and	Workshops	related	to	eScience.

Conferences
The	IEEE	International	Conference	on	eScience	Yearly	(computer	science)	conference
on	eScience.

The	European	Geosciences	Union	General	Assembly	(EGU)	has	a	track	by	the	Division
on	Earth	and	Space	Science	Informatics	(ESSI).

Conference	of	Research	Software	Engineers.

There	is	also	a	community	page	with	a	list	of	upcoming	events	on	the	eScience	Center
website.

Journals
SoftwareX.

Journal	of	Open	Research	Software.

See	A	list	at	the	Software	Suistainability	Institute.

Workshops

eScience	Conferences,	Journals,	and	Workshops

114

https://escience-conference.org/
http://www.egu.eu/
http://www.egu.eu/essi/home/
http://www.software.ac.uk/news/2016-05-09-first-ever-conference-research-software-engineers-call-participation
https://www.esciencecenter.nl/community
http://www.journals.elsevier.com/softwarex/
http://openresearchsoftware.metajnl.com/
http://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software

Findability
This	is	a	stub.

Findability

115

Governance
This	is	a	stub.

Governance

116

Reproducibility
This	is	a	stub.

Reproducibility

117

Contributing
This	Knowledge	Base	is	primarily	written	by	the	eScience	Research	Engineers	at	the
Netherlands	eScience	Center.	The	intended	audience	is	anyone	interested	in	eScience	and
research	software	development	in	general	or	how	this	is	done	at	the	eScience	Center
specifically.

Scope
To	make	sure	the	information	in	this	knowledge	base	stays	relevant	and	up	to	date	it	is
intentionally	low	on	technical	details.	The	Knowledge	base	contains	information	on	the
process	we	use	to	do	projects	and	develop	software.

Workflow	for	making	contributions
Contributions	by	anyone	are	most	welcome.

Please	use	branches	and	pull	requests	to	contribute	content.	If	you	are	not	part	of	the
Netherlands	eScience	Center	organization	but	would	still	like	to	contribute	please	do	by
submitting	a	pull	request	from	a	fork.

git	clone	https://github.com/NLeSC/guide.git

git	branch	newbranch

git	checkout	newbranch

Add	your	new	awesome	feature,	fix	bugs,	make	other	changes.

To	view	changes	locally,	first	install		gitbook-cli		(Gitbook	command	line	interface)	and
	broken-link-checker		(may	require	root	permissions,	depending	on	your	setup).

npm	install	-g	gitbook-cli

npm	install	-g	broken-link-checker

To	install		gitbook	's	dependencies:

gitbook	install

To	build	the	documentation:

Contributing	to	this	Guide

118

gitbook	build

To	view	the	documentation	in	a	web	browser	(default	address:	http://localhost:4000):

gitbook	serve

To	check	if	there	are	any	broken	links:

blc	--recursive	http://localhost:4000

If	everything	works	as	it	should,		git	add	,		commit		and		push		like	normal.

Chapter	Owners
To	see	who	is	responsible	for	which	part	of	the	guide	see	chapter_owners.md.

Contributing	to	this	Guide

119

http://localhost:4000

Chapter	Owners
This	is	a	list	of	who	is	responsible	for	which	part	of	the	guide.

Overall	Maintainer:	Jason	Maassen

Introduction:	Jason	Maassen

Software	Development:

Overall:	Jason	Maassen
Code	Review:	Lourens	Veen

Language	Guides:
Introduction:	Jason	Maassen
Java:	Christiaan	Meijer
JavaScript	and	TypeScript:	Jurriaan	Spaaks
Python:	Janneke	van	der	Zwaan
OpenCL	and	CUDA:	Ben	van	Werkhoven
R:	Vincent	van	Hees
C	and	C++:	Johan	Hidding	and	Patrick	Bos
Fortran:	Gijs	van	den	Oord

Intellectual	Property:	Lourens	Veen
Publishing	Scientific	Results:	Willem	van	Hage
Access	to	e-Infrastructure:	Jason	Maassen
Projects:	Jisk	Attema
Contributing	to	this	Guide:	Jason	Maassen

Chapter	Owners

120

Access	to	(Dutch)	e-Infrastructure
To	successfully	run	a	project	and	to	make	sure	the	project	is	sustainable	after	it	has	ended,	it
is	important	to	choose	the	e-Infrastructure	carefully.	Examples	of	e-Infrastructure	used	by
eScience	Center	projects	are	High	Performance	Computing	machines	(Supercomputers,
Grids,	Clusters),	Clouds,	data	storage	infrastructure,	and	web	application	servers.

In	general	PI's	will	already	have	access	to	(usually	local)	e-Infrastructure,	and	are
encouraged	to	think	about	what	e-Infrastructure	they	need	in	the	project	proposal.	Still,	many
also	request	our	help	in	finding	suitable	e-Infrastructure	during	the	project.

Which	infrastructure	is	best	very	much	depends	on	the	project,	so	we	will	not	attempt	to
describe	the	optimal	infrastructure	here.	Instead,	we	describe	what	is	most	commonly	used,
and	how	to	gain	access	to	this	e-Infrastructure.

Lack	of	e-Infrastructure	should	never	be	a	reason	for	not	being	able	to	to	a	project	(well).	If
you	ever	find	yourself	without	proper	e-Infrastructure,	come	talk	to	the	Efficient	Computing
team.	We	should	be	able	to	get	you	going	quickly.

SURF
SURF	is	the	most	obvious	supplier	of	e-Infrastructure	for	Netherlands	eScience	Center
projects.	For	all	e-Infrastructure	needs	we	usually	first	look	to	SURF.	This	does	not	mean
SURF	is	our	exclusive	e-Infrastructure	provider.	We	use	whatever	infrastructure	is	best	for
the	project,	provided	by	SURF	or	otherwise.

Getting	access	to	SURF	infrastructure

In	general	access	to	SURFsara	resources	is	free	of	charge	for	scientists	in	The	Netherlands.
For	most	infrastructure	gaining	access	is	a	matter	of	filling	in	a	simple	web-form,	which	you
can	do	yourself	on	behalf	of	the	scientists	in	the	project.	Exceptions	are	the	Cartesius	and
Lisa,	for	which	a	more	involved	process	is	required.	For	these	machines,	only	the	PI	of	a
project	can	submit	(or	anyone	else	with	an	NWO	Iris	account).

The	Netherlands	eScience	Center	also	has	access	to	the	infrastructure	provided	by
SURFnet.	Access	is	normally	done	on	a	per-organization	basis,	so	may	vary	from	one
project	partner	to	the	next.

Available	systems	at	SURF

Access	to	(Dutch)	e-Infrastructure

121

Here	we	list	some	of	the	most	likely	to	be	used	resources	at	SURF.	See	the	overview	of	all
SURF	services	and	products,	and	detailed	information	on	the	SURFsara	infrastructure.

SURFsara:

Cartesius:	The	national	supercomputer	of	The	Netherlands.	It	contains	a	lot	of	very
high	performance	machines,	connected	through	a	fast	interconnect	(about	41000	cores
in	total,	plus	132	GPUs).	It	also	has	a	large	storage	system	(7+	Pb).	Cartesius	is
typically	designed	for	large	parallel	applications	that	require	thousands	of	cores	at	once.
Lisa:	National	Cluster.	Similar	machines	as	the	Cartesius,	without	the	interconnect
(about	8000	cores	in	total).	Storage	also	more	limited.	Lisa	is	typically	designed	to	run
lots	of	small	(1	to	16	core)	applications	at	the	same	time.
Grid:	Same	machines	again,	now	with	a	Grid	Middleware.	Not	recommended	for	use	in
eScience	Center	projects.
HPC	Cloud:	On	demand	computing	infrastructure.	Nice	if	you	need	longer	running
services,	or	have	a	lot	of	special	software	requirements.
Hadoop:	Big	Data	analytics	framework.
BeeHub:	Lots	of	storage	with	a	webDAV	interface.
Elvis:	Remote	rendering	cluster.	Creates	a	remote	desktop	session	to	a	Linux	machine
with	powerful	Nvidia	Graphics	installed.
Data	Archive:	Secure,	long-term	storage	of	research	data	on	tape.	Access	to	archive
included	with	Cartesius	and	Lisa	project	accounts.

SURFnet:

SURFconext:	Federated	identity	management.	Allows	scientists	to	login	to	services
using	their	home	organization	account.	Best	known	example	is	SURFspot.	Can	be
added	to	custom	services	as	well.
SURFdrive:	Dropbox-like	service	hosted	by	SURF.

Ask	questions	to:	helpdesk@surfsara.nl.

DAS-5
The	Netherlands	eScience	Center	participates	in	the	DAS-5	(Distributed	ASCI
Supercomputer),	a	system	for	experimental	computer	science.	Though	not	intended	for
production	work,	it	is	great	for	developing	software	on,	especially	HPC,	parallel	and/or
distributed	software.

DAS-5	consists	of	6	clusters	at	5	different	locations	in	the	Netherlands,	with	a	total	of	about
200	machines,	over	3000	cores,	and	about	800Tb	total	storage.	These	clusters	are
connected	with	dedicated	lightpaths.	Internally,	each	cluster	has	a	fast	interconnect.	DAS-5

Access	to	(Dutch)	e-Infrastructure

122

https://www.surf.nl/en/services-and-products
https://userinfo.surfsara.nl/systems
http://www.cs.vu.nl/das5

also	contains	an	ever	increasing	amount	of	accelerators	(mostly	GPU's).

DAS-5	is	explicitly	meant	as	an	experimentation	platform:	any	job	should	be	able	to	run
instantly,	long	queue	times	should	be	avoided.	Running	long	jobs	is	therefore	not	allowed
during	working	hours.	During	nights	and	weekends	these	rules	do	not	apply.	See	the	usage
policy.

Any	eScience	Center	employee	can	get	a	DAS-5	account,	usually	available	within	a	few
hours.

Security	and	convenience	when	committing
code	to	GitHub	from	a	cluster
When	accessing	a	cluster,	it	is	generally	safer	to	use	a	pair	of	keys	than	to	login	using	a
username	and	password.	There	is	a	guide	on	how	to	setup	those	keys.	Make	sure	you
encrypt	your	private	key	and	that	it	is	not	automatically	decrypted	when	you	login	to	your
local	machine.	Make	a	separate	pair	of	keys	to	access	your	GitHub	account	following
GitHub's	instructions.	It	involves	uploading	your	public	key	to	your	GitHub	account	and
testing	your	connection.

When	committing	code	from	a	cluster	to	GitHub,	one	needs	to	store	an	encrypted	private
key	in	the	$HOME/.ssh	directory	on	the	cluster.	This	is	inconvenient,	because	it	requires
submitting	a	password	to	unlock	the	private	key.	This	password	has	to	be	resubmitted	when
SSHing	to	a	local	node	from	the	head	node.	To	bypass	this	inconvenience	SSH	agent
forwarding	is	recommended.	It	is	very	simple.	On	your	local	machine,	make	a
$HOME/.ssh/config	file	to	contain	the	following:

Host	example.com

				ForwardAgent	yes

Replace	example.com	by	the	head	node	of	your	cluster,	i.e.	the	node	you	use	to	login	to.
Next,

chmod	600	$HOME/.ssh/config.

Done!

The	only	remaining	problem	is	that	SSH	keys	cannot	be	used	when	git	cloning	was	done
using	https	instead	of	SSH,	but	that	can	be	corrected:

git	remote	set-url	origin	git@github.com:username/repo.git

Access	to	(Dutch)	e-Infrastructure

123

http://www.cs.vu.nl/das5/usage.shtml
https://superuser.com/questions/303358/why-is-ssh-key-authentication-better-than-password-authentication
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://help.github.com/articles/testing-your-ssh-connection/
https://developer.github.com/guides/using-ssh-agent-forwarding/
http://stackoverflow.com/questions/6565357/git-push-requires-username-and-password

Commercial	Clouds
If	needed	a	project	can	use	commercial	cloud	resources,	normally	only	if	all	SURF	resources
do	not	meet	the	requirements.	As	long	as	the	costs	are	within	limits	these	can	come	out	of
the	eScience	Center	general	project	budget,	for	larger	amounts	the	PI	will	need	to	provide
funding.

We	do	not	have	an	official	standard	commercial	cloud	provider,	but	have	the	most
experience	with	Amazon	AWS.

Procolix
If	a	more	long	term	infrastructure	is	needed	which	cannot	be	provided	by	SURF,	the	default
company	we	use	for	managed	hosting	is	Procolix.	Procolix	hosts	our	eduroam/surfconext
authentication	machines.

In	principle	the	eScience	Center	will	not	pay	for	infrastructure	needed	by	projects.	In	these
cases	the	PIs	will	have	to	pay	the	bill.

GitHub	Pages
If	a	project	is	in	need	of	a	website	or	webapp	using	only	static	content	(javascript,	html,	etc),
it	is	also	possible	to	host	this	at	github.	See	https://pages.github.com/

Local	Resources
A	scientist	may	have	access	to	locally	available	infrastructure.

Other
This	list	does	not	include	any	resources	from	Nikhef,	CWI,	RUG,	Target,	etc,	as	these	are
(as	far	as	we	know)	not	open	to	all	scientists.

Avoid	if	possible

Access	to	(Dutch)	e-Infrastructure

124

https://www.procolix.com/
https://pages.github.com/

Try	to	avoid	using	self-managed	resources	(the	proverbial	machine	under	the	Postdoc's
desk).	This	may	seem	an	easy	solution	at	first,	but	will	most	probably	require	significant
effort	over	the	course	of	the	project.	It	also	increases	the	changes	of	the	infrastructure
disappearing	at	some	random	moment	after	the	project	has	finished.

Access	to	(Dutch)	e-Infrastructure

125

DAS-5
This	text	gives	a	couple	of	practical	hints	to	get	you	started	using	the	DAS-5	quickly.	It	is
intended	for	people	with	little	to	no	experience	using	compute	clusters.

First	of	all,	and	this	is	the	most	important	point	in	this	text:	read	the	usage	policy	and	make
sure	you	understand	every	word	of	it:	http://www.cs.vu.nl/das5/usage.shtml

The	DAS-5	consists	of	multiple	cluster	sites,	the	largest	one	is	located	at	the	VU,	which	you
can	reach	using	by	the	hostname		fs0.das5.cs.vu.nl	.	The	firewall	requires	that	your	IP	is
whitelisted,	which	means	you	will	be	able	to	access	the	DAS	from	the	eScience	Center
office,	but	not	directly	when	you	are	somewhere	else.	To	use	the	DAS	from	anywhere	you
can	use	eduVPN.

When	you	login	in	it	means	you	are	logged	into	the	headnode,	this	node	should	not	be	used
for	any	computational	work.	The	cluster	uses	a	reservation	system,	if	you	want	to	use	any
node	that	is	not	the	head	node,	you	must	use	the	reservation	system	to	gain	access	to	a
compute	node.	The	reserveration	system	on	DAS-5	is	called	Slurm,	you	can	see	all	running
jobs	on	the	cluster	using		squeue		and	cancel	any	of	your	running	jobs	with		scancel
<jobid>	.

The	files	in	your	home	directory		/home/username/		will	be	backed	up	automatically,	if	you
accidently	delete	an	important	file	you	can	email	the	maintainer	and	kindly	request	him	to	put
back	an	old	version	of	the	file.	If	you	have	to	store	large	data	sets	put	them	under
	/var/scratch/username/	,	the	scratch	space	is	not	backed	up.

You	can	use	the	command		module		to	gain	access	to	a	large	set	of	preinstalled	software.
Use		module	list		to	see	what	modules	are	currently	loaded	and		module	avail		to	see	all
available	modules.	You	can	load	or	unload	modules	with	the	'module	load'	and		module
unload	.	You	may	want	to	add	some	of	the	modules	you	frequently	use	to	your	bashrc.	Note
that	all	that	these	modules	do	is	add	or	remove	stuff	from	your		PATH		and		LD_LIBRARY_PATH	
environment	variables.	If	you	need	software	that	is	not	preinstalled,	you	can	install	it	into
your	home	directory.	For	installing	Python	packages,	you	have	to	use	Anaconda	or		pip
install	--user	.

If	you	want	an	interactive	login	on	any	of	the	compute	nodes	through	the	reservation	system,
you	could	use:		srun	-N	1	--pty	bash	.	The	srun	command	is	used	to	run	a	program	on	a
compute	node,	-N	specifies	the	number	of	nodes,	--pty	specifies	this	is	an	interactive	job,
bash	is	the	name	of	the	program	being	launched.	This	reservation	is	only	cancelled	when
you	logout	of	the	interactive	session,	please	observe	the	rules	regarding	reservation	lengths.

DAS-5

126

http://www.cs.vu.nl/das5/usage.shtml

To	access	the	nodes	you've	reserved	quickly	it's	a	good	idea	to	generate	an	ssh	key	and
add	your	own	public	key	to	your	'authorized_keys'	file.	This	will	allow	you	to	ssh	to	nodes
you	have	reserved	without	password	prompts.

To	reserve	a	node	with	a	particular	GPU	you	have	to	specify	to	srun	what	kind	of	node	you
want.	I	have	the	following	alias	in	my	bashrc,	because	I	use	it	all	the	time:
	alias	gpurun="srun	-N	1	-C	TitanX	--gres=gpu:1"	

If	you	prefix	any	command	with		gpurun		the	command	will	be	executed	on	one	of	the
compute	nodes	with	an	Nvidia	GTX	Titan	X	GPU	in	them.	You	can	also	type		gpurun	--pty
bash		to	get	an	interactive	login	on	such	a	node.

Running	Jupyter	Notebooks	on	DAS-5	nodes
If	you	have	a	Jupyter	notebook	that	needs	a	powerfull	GPU	it	can	be	useful	to	run	the
notebook	not	on	your	laptop,	but	on	a	GPU-equipped	DAS-5	node	instead.

How	to	set	it	up

It	can	be	a	bit	tricky	to	get	this	to	work.	In	short,	what	you	need	is	to	install	jupyter,	for
example	using	the	following	command:

pip	install	jupyter

And	it's	recommended	that	you	add	this	alias	to	your	.bashrc	file:

`alias	notebook-server="srun	-N	1	-C	TitanX	--gres=gpu:1	bash	-c	'hostname;	XDG_RUNTIM

E_DIR=	jupyter	notebook	--ip=*	--no-browser'"`

Now	you	can	start	the	server	with	the	command		notebook-server	.

You	just	need	to	connect	to	your	jupyter	notebook	server	after	this.	The	easiest	way	to	do
this	is	to	start	firefox	on	the	headnode	(fs0)	and	connect	to	the	node	that	was	printed	by	the
	notebook-server		command.	Depending	on	what	node	you	got	from	the	scheduler	you	can
go	to	the	address		http://node0XX:8888/	.	For	more	details	and	different	ways	of	connecting
to	the	server	see	the	longer	explanation	below.

More	detailed	explanation

First	of	all,	you	need	to	install	jupyter	into	your	DAS-5	account.	I	recommend	using
miniconda,	but	any	Python	environment	works.	If	you	are	using	the	native	Python	2
installation	on	the	DAS	don't	forget	to	add	the		--user		option	to	the	following	pip	command.

DAS-5

127

You	can	install	Jupyter	using:		pip	install	jupyter	.

Now	comes	the	tricky	bit,	we	are	going	to	connect	to	the	headnode	of	the	DAS5	and	reserve
a	node	through	the	reservation	system	and	start	a	notebook	server	on	that	node.	You	can
use	the	following	alias	for	that,	I	suggest	storing	it	in	your	.bashrc	file:
	alias	notebook-server="srun	-N	1	-C	TitanX	--gres=gpu:1	bash	-c	'hostname;

XDG_RUNTIME_DIR=	jupyter	notebook	--ip=*	--no-browser'"	

Let's	first	explain	what	this	alias	actually	does	for	you.	The	first	part	of	the	command	is
similar	to	the		gpurun		alias	explained	above.	If	you	do	not	require	a	GPU	in	your	node,
please	remove	the		-C	TitanX	--gres=gpu:1		part.	Now	let's	take	a	look	at	what	the	rest	of
this	command	is	doing.

On	the	node	that	we	reserve	through		srun		we	execute	the	following	bash	command:
	hostname;	XDG_RUNTIME_DIR=	jupyter	notebook	--ip=*	--no-browser'	

This	is	actually	two	commands,	the	first	only	prints	the	name	of	the	host,	which	is	important
because	you'll	need	to	connect	to	that	node	later.	The	second	command	starts	with
unsetting	the	environment	variable	XDG_RUNTIME_DIR.

On	the	DAS,	we	normally	do	not	have	access	to	the	default	directory	pointed	to	by	the
environment	variable	XDG_RUNTIME_DIR.	The	Jupyter	notebook	server	wants	to	use	this
directory	for	storing	temporary	files,	if	XDG_RUNTIME_DIR	is	not	set	it	will	just	use	/tmp	or
something	for	which	it	does	have	permission	to	access.

The	notebook	server	that	we	start	would	normally	only	listen	to	connections	from	localhost,
which	is	the	node	on	which	the	notebook	server	is	running.	That	is	why	we	pass	the		--ip=*	
option,	to	configure	the	notebook	server	to	listen	to	incoming	connections	from	the
headnode.	Be	warned	that	this	is	actually	highly	insecure	and	should	only	be	used	within
trusted	environments	with	strict	access	control,	like	the	DAS-5	system.

We	also	need	the		--no-browser		no	browser	option,	because	we	do	not	want	to	run	the
browser	on	the	DAS	node.

You	can	type		notebook-server		now	to	actually	reserve	a	node	and	start	the	jupyter
notebook	server.

Now	that	we	have	a	running	Jupyter	notebook	server,	there	are	2	different	approaches	to
connect	to	our	notebook	server:

1.	 run	your	browser	locally	and	setup	a	socks	proxy	to	forward	your	http	traffic	to	the
headnode	of	the	DAS

2.	 starting	a	browser	on	the	headnode	of	the	DAS	and	use	X-forwarding	to	access	that
browser

Approach	1	is	very	much	recommended,	but	if	you	can't	get	it	to	work,	you	can	defer	to
option	2.

DAS-5

128

Using	a	SOCKS	proxy

In	this	step,	we	will	create	an	ssh	tunnel	that	we	will	use	to	forward	our	http	traffic,	effectively
turning	the	headnode	of	the	DAS	into	your	private	proxy	server.	Make	sure	you	that	you	can
connect	to	the	headnode	of	the	DAS,	for	example	using	a	VPN.	The	following	command	is
rather	handy,	you	might	want	to	save	it	in	your	bashrc:
	alias	dasproxy="ssh	-fNq	-D	8080	<username>@fs0.das5.cs.vu.nl"	

Do	not	forget	to	replace		<username>		with	your	own	username	on	the	DAS.

Option		-f		stands	for	background	mode,	which	means	the	process	started	with	this
command	will	keep	running	in	the	background,		-N		means	there	is	no	command	to	be
executed	on	the	remote	host,	and		-q		stands	for	quiet	mode,	meaning	that	most	output	will
be	surpressed.

After	executing	the	above	ssh	command,	start	your	local	browser	and	configure	your
browser	to	use	the	proxyserver.	Manually	configure	the	proxy	as	a	"Socks	v5"	proxy	with	the
address	'localhost'	and	port	8080.

After	changing	this	setting	navigate	to	the	page		http://node0XX:8888/	,	where		node0XX	
should	be	replaced	with	the	hostname	of	the	node	you	are	running	the	notebook	server	on.
Now	in	the	browser	open	your	notebook	and	get	started	using	notebooks	on	a	remote
server!

Using	X-Forwarding

Using	another	terminal,	create	an		ssh	-X		connection	to	the	headnode	of	the	DAS-5.	Note
that,	it	is	very	important	that	you	use		ssh	-X		for	the	whole	chain	of	connections	to	node,
including	the	one	used	to	connect	to	the	headnode	of	the	DAS	and	any	number	of
intermediate	servers	you	are	using.	This	also	requires	that	you	have	an	X	server	on	your
local	machine,	if	you	are	running	Windows	I	recommend	installing	VirtualBox	with	a	Linux
GuestOS.

On	the	headnode	type		firefox	http://node0XX:8888/	,	where		node0XX		should	be	replaced
with	the	hostname	of	the	node	you	are	running	the	notebook	server	on.	Now	in	the	browser
open	your	notebook	and	get	started	using	notebooks	on	a	remote	server!

DAS-5

129

Projects
The	Netherlands	eScience	Center	is	a	projects	based	organization.	Projects	are	done	in
partnership	with	scientists,	usually	from	a	Dutch	University.

Projects

130

new	Project()
There	are	several	ways	a	new	project	gets	initiated	at	the	Netherlands	eScience	Center.	In
general,	projects	are	started	via	one	of	our	project	calls.	See
https://www.esciencecenter.nl/project-calls	for	more	information.

new	Project()

131

https://www.esciencecenter.nl/project-calls

Kickoff	Meeting
Each	project	starts	with	a	kickoff	meeting	at	the	Netherlands	eScience	Center.	At	this
meeting	the	PI,	eScience	engineer,	Coordinator,	and	an	MT-member	are	present.	Other
project	partners	are	welcome.

For	this	meeting	the	standard	agenda	is:

Round	of	introductions.
Assignment	of	the	eScience	engineer(s)	and	coordinator.
Netherlands	eScience	Center	introduction	presentation	(by	coordinator).
Project	introduction	(by	PI).
Discussion	on	initial	project	planning	and	deliverables.
Any	other	business.

In	the	Netherlands	eScience	Center	introduction	presentation	several	important	topics	are
explained:

How	do	we	work.
What	is	the	role	of	the	eScience	engineer	and	coordinator.
Project	life	cycle	(annual	reviews	and	rapports,	payment,	project	end,	etc.).
How	to	communicate	with	the	Netherlands	eScience	Center.
Publications.
Intellectual	property	(IP).
Communication	by	the	Netherlands	eScience	Center	(project	page	at	eScience	Center
website,	pitches,	etc.).
Software	and	software	quality.
Role	of	eStep,	knowledge	base,	etc.

Kickoff	Meeting

132

Project	Planning

Project	Planning

133

Project	Reviews
For	all	project	longer	than	a	year	(typically	full	projects	and	alliances),	the	MT	organizes
annual	reviews.	The	details	are	described	in	Section	9.4.2	of	the	protocol	document.	The
annual	reviews	are	organized	and	chaired	by	an	MT	member,	and	the	PI,	eScience
engineer(s),	eScience	coordinator,	and	other	partners	(posdocs,	co-PIs,	etc)	are	present.

The	goals	are	as	follows:

Progress	of	project	relative	to	planning.
Innovation,	research,	deliverables,	eStep.
Identify	key	success	stories/messages	to	share	with	key	opinion	formers.
Ensure	efficient	use	of	engineer	resources,	identify	bottlenecks	and	areas	to	improve.
Financial	status.
Look	for	ways	to	extend	collaborations.
Consider	project	legacy	and	post-funding	support.
Potential	interaction	with	other	eScience	Center	projects.

The	standard	agenda	for	this	1.5	hour	meeting	is:

Presentation	by	the	PI	(20	minutes)
Presentation	eScience	Engineer	(20	minutes)	including	description	of	role	and
deliverables.
Discussion	(40	minutes)
Summary,	action	points	and	conclusions.

Project	Reviews

134

Communication

Pitch	presentation	(1	to	3	slides)
Pitch	presentation	should	be	prepared,	and	updated	on	a	regular	basis.

Communication

135

End	of	a	Project

End-of-project	document
Project	proposals	are	focused	on	their	scientific	domain,	and	are	not	always	clear	on	the
necessary	escience.	Also,	during	a	project	the	escience	requirements	can	change,	and	its
actual	escience	component	can	be	different	from	the	originally	proposed	methods	and	tools.
A	final	project	report	will	focus	on	the	scientific	domain	(published	papers)	and	financial
accounting.	All	in	all,	this	leaves	the	escience	part	of	projects	a	bit	undocumented.
Therefore,	we	could	use	a	small	informal	document,	for	internal	use,	describing	the	project
from	the	perspective	of	an	escience	engineer.	In	principle	the	escience	is	shared	with	the
engineer	and	coordinator,	and	is	discussed	during	the	project	reviews.	Any	reusable
software	is	added	to	eStep,	or	to	the	knowledgebase.	This	document	can	therefore	be	high-
level	and	short.	It	is	meant	to	facilitate	re-using	tools	and	techniques	for	other	escience
projects,	provide	(links	to)	information	and	background	material	for	escience	presentations	/
PR,	and	provide	a	possible	starting	point	for	continuation	of	the	project.

As	this	kind	of	documentation	is	only	valuable	if	engineers	can	freely	share	their	opinions
and	experiences	(also	negative	ones!),	this	document	itself	is	not	meant	for	external
distribution.

Contents

high-level	description	of	actual	escience	requirements	in	the	project
what	went	great,	what	could	have	gone	better
pointers	(URL)	to	project	documentation
motivation	for	chosen	approach,
high-level	description	of	used	or	developed	tools	and	references	to	them	(github,
website,)
eScience	presentation	for	(re-)use	in	the	form	of	a	powerpoint	document	(so	the
images,	text,	and	or	slides	can	be	extracted).	Check	the	pitch	and	project	presentations
to	see	if	they	are	sufficient,	ask	coordinator.

written	by

escience	engineer(s)	working	on	the	project

target	audience

End	of	a	Project

136

escience	engineers
escience	coordinators

schedule

should	be	written	during	the	last	weeks	of	the	project
Stored	on	the	internal	sharepoint	site

Support
The	Netherlands	eScience	Center	provides	very	limited	support	for	software.	During	a
project	we	make	every	effort	to	create	low-maintenance	code	by	building	on	as	many
standard	components	as	possible,	using	software	from	eStep,	and	putting	a	lot	of	effort	into
documenting	and	testing	software.	Also,	by	using	standard	file	formats	and	API's	we	try	to
limit	the	effort	required	to	maintain	software,	and	make	it	easier	to	continue	development.

After	a	project	has	finished	the	eScience	Center	will	in	principle	not	further	support	the
software.	Reported	bugs	in	our	own	software	will	of	course	have	a	high	chance	of	being
looked	at,	but	this	also	has	its	limits.	We	cannot	in	any	way	contribute	to	the	administration
of	infrastructure	needed	after	a	project	has	ended.

Because	of	the	lack	of	support	after	projects	is	is	a	good	idea	to	start	to	think	about	and
make	agreements	on	where	software	will	land	and	who	will	maintain	infrastructure	at	the
very	beginning	of	a	project.	The	project	proposal	should	already	contain	a	plan.

For	in-house	developed	eStep	software	we	do	provide	some	support,	though	even	here	only
limited	time	is	available	for	this.	See	the	technology	page	on	the	website
(https://www.esciencecenter.nl/technology)	for	the	list	of	supported	software.

End	of	a	Project

137

https://www.esciencecenter.nl/technology

Software	checklist
This	section	contains	a	list	of	items	which	are	required	to	help	software	reach	a	sufficient
quality	standard.	The	following	list	of	items	links	to	explanation	in	other	sections	of	this
chapter.

The	checklist	matrix	provides	an	indication	of	which	items	are	important	at	different
development	stages.

Version	control
version	control	from	the	beginning	of	the	project
use	git	as	version	control	system	(vcs)
choose	one	branching	model
public	vcs	repository
meaningful	commit	messages

Releases
semantic	versioning
tagged	releases
CHANGELOG.md
one	command	install
package	in	package	manager
discuss	release	cycle	with	coordinator
release	quick-scan	by	other	engineer
Dissemination

Licensing
Apache	2	license
compatible	license	of	all	libraries
NOTICE(.txt|.md)

Communication

Checklist

138

home	page
discussion	list
demo	docker	image	in	dockerhub	(with	Dockerfile)
an	online	demo
screencast

Code	Quality
use	editorconfig
code	style	applied	in	automated	way

Testing
unit	tests
continuous	integration
continuous	code	coverage
end2end	test
dependencies	tracking

Documentation
README.md
well	defined	functionality
source	code	documentation
usage	documentation
documented	development	setup
contribution	guidelines
code	of	conduct
documented	code	style
how	to	file	a	bug	report
explained	meaning	of	issue	labels
DOI	or	PID
CITATION.cff	file
print	software	version

Standards

Checklist

139

Exchange	formats
Protocols

Checklist

140

Checkmatrix	for	'eStep	friendly'	projects.
This	matrix	shows	what	parts	of	the	software	sustainability	checklist	should	be	taken	care	of
at	(perhaps	slightly	before)	what	state	of	a	project.

Though	very	generic	in	scope	and	context,	this	is	an	eScience	Center	specific	list.	This
allows	us	to	keep	the	number	of	"states"	low.

Explanation	of	project	states
Prototype	phase.	The	first	step	in	most	software	development	is	trying	out	different
things	with	no	intention	in	keeping	the	intermediate	results.	Signs	you	could	be	in	this
phase:

You	switch	programming	languages.
You	throw	away	all	of	your	code	once	in	a	while
You	work	on	the	code	by	yourself
You	are	waiting	with	showing	other	people	your	code	until	you	"clean	it	up	a	bit
first".

Pre-release	phase.	Eventually	you	get	software	you	intend	to	keep.	Signs	you	could	be
in	this	phase:

You	have	multiple	developers.
You	have	external	contributors.
You	are	working	up	to	a	release.
Users	ask	you	if	the	software	is	done	yet.

Maturity	phase:	Software	that	has	reached	maturity,	has	a	clear	function	and	scope,	and
is	used.	Signs	you	could	be	in	this	phase:

The	software	has	a	release.
The	software	has	users:	people	actually	using	your	software/code
You	have	external	contributor
The	software	is	actively	used	and	contributed	to	by	so	many	people	that	it	becomes
a	community	project	rather	than	an	eScience	Center	project.

These	states	happen	in	order	and	are	exclusive.

Version	Control

Development	stages	matrix

141

Item	/	Phase Prototype Pre-
release Mature

use	git	as	version	control	system	(vcs) X

use	GitHub	flow	branching	model	(use	feature
branches	and	pull	requests) X

public	vcs	repository	(github) X

meaningful	commit	messages X

Releases

Item	/	Phase Prototype Pre-
release Mature

semantic	versioning X

tagged	releases	(github	releases) X

CHANGELOG.md	(Keep	a	CHANGELOG) X

one	command	install	(pip,	npm	etc) X

package	in	package	manager	(pypi,	npm	etc) X

discuss	release	cycle	with	coordinator X

release	quick-scan	by	other	engineer	(is
documentation	understandable,	can	it	be	installed,
etc)

X

notify	Lode	for	dissemination	(news	item	on	site	/
annual	report,	etc) X

Licensing

Item	/	Phase Prototype Pre-
release Mature

Apache	2	license X

compatible	license	of	all	libraries X

	NOTICE(.txt	or	.md)		listing	licenses,	request
citation	of	paper	if	applicable X

Communication

Development	stages	matrix

142

https://guides.github.com/introduction/flow/
https://github.com/
http://semver.org/
https://help.github.com/categories/releases/
http://keepachangelog.com/
https://pypi.python.org/pypi/pip
https://www.npmjs.com/package/npm
https://pypi.python.org/pypi
https://www.npmjs.com/
http://www.apache.org/licenses/LICENSE-2.0

Item	/	Phase Prototype Pre-
release Mature

home	page	with	all	the	necessary	introduction
information,	links	to	documenation,	source	code
(github)	and	latest	release	download	(eg.	github.io
pages)

X

project	discussion	list	(github	issues,	mailing	list,
not	private	email)	for	all	project	related	discussions
from	the	beginning	of	the	project

X

for	services:	a	demo	docker	image	in	dockerhub
(with	Dockerfile) X

for	websites:	an	online	demo X

Pitch	presentation	(1	to	3	slides) X

Few	sentences	about	the	project	for	the
technology	pages	on	our	website X

Testing

Item	/	Phase Prototype Pre-
release Mature

unit	tests X

build	tests X

continuous	integration,	public	on	Travis X

continuous	code	coverage	and	code	quality
metrics	public,	minimum	70%	coverage	required X

end2end	test	for	(web)	user	interfaces X

track	dependencies	(with	David	or	other	service
depending	on	codebase	language) X

Documentation

Development	stages	matrix

143

https://pages.github.com/
https://www.esciencecenter.nl/technology
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://david-dm.org/

Item	/	Phase Prototype Pre-
release Mature

	README.md		-	clear	explanation	of	the	goal	of	the
project	with	pointers	to	other	documentation
resources.	Use	GitHub	flavored	markdown	for,
e.g.,	syntax	highlighting.

X

well	defined	functionality X

source	code	documentation X

usage	documentation X

documented	development	setup	(good	example	is
Getting	started	with	khmer	development) X

contribution	guidelines	egzample X

code	of	conduct	(contributor	covenant) X

documented	code	style X

meaning	of	issue	labels	used X

DOI	or	PID	(making	your	code	citable) X

Development	setup

Item	/	Phase Prototype Pre-
release Mature

using	the	eScience	Center	coding	style	is	required X

editorconfig X

applied	code	style	in	automated	way	if	possible	(i.e
using	linters	and	code	formaters) X

dev	environment	docker	images	in	Dockerhub
(with	Dockerfile) X

Use	standards

Item	/	Phase Prototype Pre-
release Mature

exchange	format	(Unicode,	W3C,	OGN,
NetCDF,	etc) X

protocols	(HTTP,	TCP,	TLS,	etc) X

Development	stages	matrix

144

https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
http://contributor-covenant.org/
https://guides.github.com/activities/citable-code/
http://editorconfig.org/

Development	stages	matrix

145

Checkmatrix	for	'eStep	friendly'	projects.
Printable	check-list	--	complete	this	checklist	to	ensure	your	project	is	eStep-ready.	If	you
can	tick	all	boxes	on	this	form,	your	project	should	be	included	as	an	eStep	Prototype
project.

Version	Control

Item	/	Phase Done

use	git	as	version	control	system	(vcs)

public	vcs	repository	(github)

meaningful	commit	messages

Licensing

Item	/	Phase Done

Apache	2	license

compatible	license	of	all	libraries

	NOTICE(.txt	or	.md)		listing	licenses,	request	citation	of	paper	if	applicable

Communication

Item	/	Phase Done

project	discussion	list	(github	issues,	mailing	list,	not	private	email)	for	all
project	related	discussions	from	the	beginning	of	the	project

Documentation

Item	/	Phase Done

	README.md		-	clear	explanation	of	the	goal	of	the	project	with	pointers	to	other
documentation	resources.	Use	GitHub	flavored	markdown	for,	e.g.,	syntax
highlighting.

Prototype	phase

146

https://github.com/
http://www.apache.org/licenses/LICENSE-2.0
https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks

Use	standards

Item	/	Phase Done

exchange	format	(Unicode,	W3C,	OGN,	NetCDF,	etc)

protocols	(HTTP,	TCP,	TLS,	etc)

Prototype	phase

147

Checkmatrix	for	'eStep	friendly'	projects.
Printable	check-list	--	complete	this	checklist	to	ensure	your	project	is	eStep-ready.	If	you
can	tick	all	boxes	on	this	form,	your	project	should	be	included	as	an	eStep	Pre-release
project.

Version	Control

Item	/	Phase Done

use	git	as	version	control	system	(vcs)

use	GitHub	flow	branching	model	(use	feature	branches	and	pull	requests)

public	vcs	repository	(github)

meaningful	commit	messages

Releases

Item	/	Phase Done

discuss	release	cycle	with	coordinator

Licensing

Item	/	Phase Done

Apache	2	license

compatible	license	of	all	libraries

	NOTICE(.txt	or	.md)		listing	licenses,	request	citation	of	paper	if	applicable

Communication

Prerelease	phase

148

https://guides.github.com/introduction/flow/
https://github.com/
http://www.apache.org/licenses/LICENSE-2.0

Item	/	Phase Done

project	discussion	list	(github	issues,	mailing	list,	not	private	email)	for	all
project	related	discussions	from	the	beginning	of	the	project

Pitch	presentation	(1	to	3	slides)

Testing

Item	/	Phase Done

unit	tests

build	tests

continuous	integration,	public	on	Travis

Documentation

Item	/	Phase Done

	README.md		-	clear	explanation	of	the	goal	of	the	project	with	pointers	to	other
documentation	resources.	Use	GitHub	flavored	markdown	for,	e.g.,	syntax
highlighting.

well	defined	functionality

source	code	documentation

usage	documentation

documented	development	setup	(good	example	is	Getting	started	with	khmer
development)

contribution	guidelines	egzample

code	of	conduct	(contributor	covenant)

documented	code	style

meaning	of	issue	labels	used

Development	setup

Prerelease	phase

149

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
http://contributor-covenant.org/

Item	/	Phase Done

using	the	eScience	Center	coding	style	is	required

editorconfig

applied	code	style	in	automated	way	if	possible	(i.e	using	linters	and	code
formaters)

dev	environment	docker	images	in	Dockerhub	(with	Dockerfile)

Use	standards

Item	/	Phase Done

exchange	format	(Unicode,	W3C,	OGN,	NetCDF,	etc)

protocols	(HTTP,	TCP,	TLS,	etc)

Prerelease	phase

150

http://editorconfig.org/

Checkmatrix	for	'eStep	friendly'	projects.
Printable	check-list	--	complete	this	checklist	to	ensure	your	project	is	eStep-ready.	If	you
can	tick	all	boxes	on	this	form,	your	project	should	be	included	as	an	eStep	Mature	project.

Version	Control

Item	/	Phase Done

use	git	as	version	control	system	(vcs)

use	GitHub	flow	branching	model	(use	feature	branches	and	pull	requests)

public	vcs	repository	(github)

meaningful	commit	messages

Releases

Item	/	Phase Done

semantic	versioning

tagged	releases	(github	releases)

CHANGELOG.md	(Keep	a	CHANGELOG)

one	command	install	(pip,	npm	etc)

package	in	package	manager	(pypi,	npm	etc)

discuss	release	cycle	with	coordinator

release	quick-scan	by	other	engineer	(is	documentation	understandable,	can	it
be	installed,	etc)

notify	Lode	for	dissemination	(news	item	on	site	/	annual	report,	etc)

Licensing

Mature	phase

151

https://guides.github.com/introduction/flow/
https://github.com/
http://semver.org/
https://help.github.com/categories/releases/
http://keepachangelog.com/
https://pypi.python.org/pypi/pip
https://www.npmjs.com/package/npm
https://pypi.python.org/
https://www.npmjs.com/

Item	/	Phase Done

Apache	2	license

compatible	license	of	all	libraries

	NOTICE(.txt	or	.md)		listing	licenses,	request	citation	of	paper	if	applicable

Communication

Item	/	Phase Done

home	page	with	all	the	necessary	introduction	information,	links	to
documenation,	source	code	(github)	and	latest	release	download	(eg.	github.io
pages)

project	discussion	list	(github	issues,	mailing	list,	not	private	email)	for	all
project	related	discussions	from	the	beginning	of	the	project

for	services:	a	demo	docker	image	in	dockerhub	(with	Dockerfile)

for	websites:	an	online	demo

Pitch	presentation	(1	to	3	slides)

Few	sentences	about	the	project	for	the	technology	pages	on	our	website

Testing

Item	/	Phase Done

unit	tests

build	tests

continuous	integration,	public	on	Travis

continuous	code	coverage	and	code	quality	metrics	public,	minimum	70%
coverage	required

end2end	test	for	(web)	user	interfaces

track	dependencies	(with	David	or	other	service	depending	on	codebase
language)

Documentation

Mature	phase

152

http://www.apache.org/licenses/LICENSE-2.0
https://pages.github.com/
https://www.esciencecenter.nl/technology
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://david-dm.org/

Item	/	Phase Done

	README.md		-	clear	explanation	of	the	goal	of	the	project	with	pointers	to	other
documentation	resources.	Use	GitHub	flavored	markdown	for,	e.g.,	syntax
highlighting.

well	defined	functionality

source	code	documentation

usage	documentation

documented	development	setup	(good	example	is	Getting	started	with	khmer
development)

contribution	guidelines	egzample

code	of	conduct	(contributor	covenant)

documented	code	style

meaning	of	issue	labels	used

DOI	or	PID	(making	your	code	citable)

Development	setup

Item	/	Phase Done

using	the	eScienc	Center	coding	style	is	required

editorconfig

applied	code	style	in	automated	way	if	possible	(i.e	using	linters	and	code
formaters)

dev	environment	docker	images	in	Dockerhub	(with	Dockerfile)

Use	standards

Item	/	Phase Done

exchange	format	(Unicode,	W3C,	OGN,	NetCDF,	etc)

protocols	(HTTP,	TCP,	TLS,	etc)

Mature	phase

153

https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
http://contributor-covenant.org/
https://guides.github.com/activities/citable-code/
http://editorconfig.org/

	Introduction
	Best practices
	Checklist
	Version Control
	Code Quality
	Code Review
	Licensing
	Communication
	Testing
	Releases
	Documentation
	Standards
	Language Guides
	Java
	JavaScript and TypeScript
	Python
	OpenCL and CUDA
	R
	C and C++
	Fortran

	Intellectual Property and Licensing
	Executive summary
	About the Law
	Trademarks
	Trade Secrets and Patents
	Database Rights
	Copyright
	Software Licenses
	Examples: Using Libraries
	More Examples

	Publishing
	Making software citable
	eScience Conferences, Journals, and Workshops

	Findability
	Governance
	Reproducibility
	Contributing to this Guide
	Chapter Owners
	Access to (Dutch) e-Infrastructure
	DAS-5

	Projects
	new Project()
	Kickoff Meeting
	Project Planning
	Project Reviews
	Communication
	End of a Project

	Checklist
	Development stages matrix
	Prototype phase
	Prerelease phase
	Mature phase

