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An algorithm and program for calculation of
Kendall's rank correlation coefficient

ALFRED L. BROPHY
Behavioral Science Associates, West Chester, Pennsylvania

Although less widely used than Spearman's rho, Ken
dall's (1938, 1975) rank correlation coefficient (tau) pos
sesses advantages that may make it a preferred statistic:
Its distribution under the null hypothesis is approximately
normal even when the sample size (n) is fairly small'; it
allows determination of confidence interval bounds; and
it can be applied to partial correlation (Kendall, 1975).
Nevertheless, many statistics texts do not discuss tau, and
some that do offer only fragmentary information. A few
texts (e.g., McCall, 1980; Walker & Lev, 1953) present
rho in considerable detail, mention the advantages of tau,
and then ironically say nothing more about the use or cal
culation of tau.

Kendall (1975) described the calculation of tau as in
volving comparison of every pair of ranks within each
of the two distributions being studied. For a given pair
of ranks Xi and Xi> where i < j, a score of +1 is assigned
if Xi < Xj; a score of -1 is assigned if Xi > Xj; and a score
of 0 is assigned if r, = x; The statistic S, which is linearly
related to tau, is then obtained by summing the products
of the resulting scores for each corresponding pair of ranks
in the two distributions. After a little simplification, the
calculations can be summarized by the equation

n-[ n

S = E E sgn [(xj-X,)(yj-Yi)], (1)
i=lj=i+l

where X and Yrepresent ranks in the first and second dis
tributions, respectively. Note that X and Ycan represent
raw scores other than ranks and that this procedure re
quires neither sorting of the data nor assignment of ranks.
Equation 1 comprises the main part of an algorithm for
calculation of tau. [Tau = SID, where D is the maximum
possible value of S for a given n. When there are no tied
ranks, D = n(n - 1)12. Ties decrease D, and thus in
crease tau for a given value of S.]

Kendall (1938, 1975) proposed shortcut methods for
calculating S, one of which appears to be the most com
mon current method. It requires the sorting into natural
order of ranks in one distribution, together with ranks for
corresponding subjects in the second distribution. A score
of +1 or -1 is assigned to each pair of ranks in the sec
ond distribution, depending on whether the rank for the
second member of the pair is greater than or less than
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the rank for the first member. A score of zero is assigned
if there is a tie in either or both rankings. S is then ob
tained by summing the scores. In this method, raw scores
other than ranks can be used, but data in one of the dis
tributions must be sorted.

There is some confusion about the use of the latter
method with tied ranks. For example, Siegel's (1956) in
fluential manual does not explain that a zero score should
be assigned when there is a tie in either of the two rank
ings.' Schaeffer and Levitt (1956) noted the same over
sight in another source. In any case, the method is not
particularly efficient in a computer implementation.

A Program. Table 1 shows a BASIC program for cal
culation of S and tau that applies the algorithm of Equa
tion 1. The program compares favorably in features and
efficiency with other published procedures (e.g., Bottcher
& Posthoff, 1973; Knight, 1966; Stuart, 1977). The rou
tine in Lines 60-100 was selected from several similar rou
tines because it is relatively fast. Data can beentered either
from the keyboard or from data statements.

The program counts the number of tied pairs in each
distribution to correct tau for ties according to Equa
tion 3.3 in Kendall (1975, p. 35). The program also cal
culates the variance of S for use in the normal approxi
mation to the distribution of S so that the significance of
S, and consequently tau, can be tested. The method of
calculating the variance, which is valid for rankings with
or without ties, is derived from Equation 14 in Kendall
(1947). This equation, which is seldom used, is simpler
to adapt for the program than equivalent formulas given
by Kendall (1947, 1975, p. 55). Because the equation is
for the variance of 2S, it is first divided by 4 to obtain
the equation for the variance of S:

S2 = [n(n-l)(n - 2)/3 - 1:t(t-l)(t-2)/3]
[n(n-l)(n-2)/3-1:u(u-l)(u-2)/3]
/[n(n -l)(n -2)] + [n(n-1) - 1:t(t-l)]
[n(n-l)-1:u(u-l)]/[2n(n-l)], (2)

where t is the number of scores in each set of ties in the
first distribution, and u is the number of scores in each
set of ties in the second distribution. Without tied scores,
Equation 2 reduces to n(n - 1)(2n+5)/ 18, the variance of
S with no ties. Kendall (1947) showed that his Equation 14
also reduces to the formulas for the variance of 2S for
all possible combinations of distributions containing ties,
no ties, and dichotomies.

A correction for continuity of one unit is employed in
the normal approximation, as recommended by Kendall
(1975). The correction and the normal approximation it
self appear satisfactory in most cases, unless there are
numerous or lengthy ties." (Burr, 1960, recommended a
different correction when both distributions contain ties,
and both Burr and Kendall, 1975, suggested other cor
rections for dichotomous distributions.)
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Table I
BASIC Program to Calculate Kendall's Tau

10 DEFINT I,J,N,S-U
20 INPUT"Sample size "; N: N1=N-l: DIM X(N),Y(N)
30 INPUT"Enter data from (D)ata statements or (K)eyboard "; Z$
40 IF Z$="D" THEN FOR 1=1 TO N: READ X(l),Y(I): NEXT I: GOTO 60
50 FOR 1=1 TO N: PRINT"Subject I" I: INPUT" X, Y "; X(I),Y(I):

NEXT I
60 FOR 1=1 TO Nl: X=X(I): Y=Y(I): T=O: U=O: FOR J=I+l TO N
70 A=(X(J)-X)*(Y(J)-Y): IF A THEN S=S+SGN(A): GOTO 100
80 IF X=X(J) THEN T=T+l: Tl=Tl+l
90 IF Y=Y(J) THEN U=U+1: Ul=Ul+l
100 NEXT J: T2=T2+T*(T-l): U2=U2+U*(U-l): NEXT I
110 K=N*Nl/2: B=(K-Tl)*(K-Ul): R=S/SQR(B)
120 PRINT"tau =" R, "S =" S
130 L=N*Nl*(N-2): V=(L/3-T2)*(L/3-U2)/L+B/K
140 PRINT"Normal approximation:": Z=(ABS(S)-l)/SQR(V)
150 X=Z*Z: P=.5-SQR(1-EXP(-X*(.6366198-X*(9.564224E-03-X*.0004

))))/2: IF Z<O THEN P=l-P
160 PRINT" z =" Z, "p (one-tailed) = " USING"'.","; P
170 END

Finally, the program estimates the one-tailed probabil
ity (p) corresponding to the approximated normal devi
ate, using Brophy's (1983) modification of Cadwell's
(1951) compact approximation. The estimated p is ac
curate to three decimals, which is sufficient for the nor
mal approximation of S.

Language, Time, and Memory Requirements. The
program is written in IBM Personal Computer BASIC,
a version of Microsoft BASIC. Little or no modification
is necessary for use with most other BASIC dialects. The
DEFINT statement in Line 10 can be removed, if neces
sary, without affecting the results.

The program occupies 722 bytes of memory. On the
IBM PC microcomputer, a 12-subjectexample from Ken
dall (1975, pp. 55-56) ran in 2 sec, and a lOO-subject
problem ran in 73 sec. With data stored in data statements,
less than 2.5K bytes were required to execute the 100
subject problem.

Availability. A listing of the program can be obtained
without charge from the author.
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NOTES

I. The normal approximationto tau is usuallyconsidered applicable
when n > 10, although it sometimes provides less than three-decimal
accuracy even when n = 50 (Best, 1973; Best & Gipps, 1974).

2. The numerical example that Siegel (1956, pp. 218-219) gave for
tied ranks has no ties in the first distribution, which is used as the basis
of the sorting. Based on his computationalprocedure, S has a unique
value, and the result is correct. However, if the second distribution,
which has three two-way ties, is used for the sorting, Siegel's proce
dure yields S values ranging from 22 to 28, depending on the arbitrary
order of ranks in the first distributionthat are associatedwith tied ranks
in the seconddistribution. Tau would range from .34 to .43, with one
tailed probabililties between .07 and .03.

3. An anonymousreviewer, noting current reservations about use of
Yates's correction with the chi-square distribution, requested informa
tion on the effect ofthe correction for continuityon the normal approx
imationto the distributionof S. Accordingly, the one-tailedprobability
(p) was calculated for every possible value of S (with no tied scores)
for n = II through 20, 25, 50, and 100 using the normal approxima
tion with and without a correction for continuityof unity. Results were
comparedwithp values yielded by the Bestand Gipps (1974)computer
program, which is accurate to at least three decimal places. With the
correction for continuity, the maximumabsolute error of the approxi
mation of p was .004; without the correction, the maximumerror was
.032. The corrected approximation had a smaller maximum absolute
error at every value of n tested. The uncorrected approximation was,
however, more accurate than the corrected approximationat low levels
ofp (p < .01 or .02, depending on n), although the advantage wasnever
more than one unit in the third decimalplace. Evaluationof the approx
imations is complicatedwhen ties are present, but Best (1973) offered
someevidencethat the corrected approximationis fairly accurate when
there are only a few ties in one distribution.
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