The History, Present, and Future of ETL Technology

[DOLAP 2023 Test-of-Time Award – Invited Talk]

Alkis Simitsis
Athena Research Center
alkis@athenarc.gr

Spiros Skiadopoulos
University of the Peloponnese
spiros@uop.gr

Panos Vassiliadis
University of Ioannina
pvassil@cs.uoi.gr
Agenda

- What is ETL?
- A trip down history lane: a 20-year recap
- Conceptual modeling for ETL
- ETL – present times
- ETL – the future
- Conclusions
What is ETL?
What is ETL? – traditional approach

Extract
- DB_1
- DB_2

Transform
- Operational data sources
- Data Staging Area (DSA)

Load
- Data Warehouse

- OLTP
 - Recent operational data
 - Size in GBs, TBs
 - Simple queries
 - Low latency
 - Read/write operations
 - Row-store
 - Day-to-day operations

- OLAP
 - Historical data
 - Size in TBs, PBs
 - Complex queries
 - High latency
 - Read operations
 - Column-store
 - Analytics, decision-making

Simitsis, Skiadopoulos, Vassiliadis - The History, Present, and Future of ETL Technology – March 2023
Challenges (take #1)

- **Design aspects**
 - **Schema mappings**
 - Data integration, data exchange
 - **Data cleansing and data quality**
 - Rules based on integrity constraints
 - Duplicate/error detection
 - ML to improve accuracy of cleansing
 - **Additional complex transformations**
 - Data lineage, 1-N mappings, generating new values and new fields (e.g., SK), analytics, UDFs, ...
 - Hard or infeasible to express most ETL transformations w/ traditional relational ops
 - **Data and control flow**
 - How do we measure how ‘good’ an ETL flow is?

- **Engineering aspects**
 - **Decide cadence**
 - When, how often, …?
 - Batch, micro-batches, streaming?
 - **Data extraction**
 - Without impacting the sources significantly
 - Without losing on freshness
 - **Various data types**
 - Structured, semi-structured, unstructured, flexible schema
 - **Many data sources, targets, engines**
 - Heterogeneous, federated, distributed
 - **Programming heterogeneity**
 - Complex, multi-fragment flows
 - Scripts, SQL constructs, UDFs, lambda, workflows –all in the same flow
 - **Conflicting objectives**
 - Performance, maintenance, fault-tolerance
 - **Optimization**
 - End-to-end / individual transformations
A trip down history lane
ETL research: a 20-year recap

• ETL Design
 • Logical model [DMDW’02] & Conceptual design [DOLAP’02] –first work on ETL conceptual modeling
 • UML, BPMN, BPEL modeling
 • Business process models, Web services, Hypercubes
 • Semantic Web, ontologies to automate ETL design creation
 • Graph-based logical ETL design
 • Automated mapping from conceptual to logical models

• End-to-end ETL Optimization
 • Optimization as a state-space problem [ICDE’05] –first work on ETL optimization
 • Multiple optimization objectives: performance, maintainability, fault-tolerance
 • Intermediate results materialization
 • Parallelization and partition-based workload scheduling
 • Physical design and scheduling
 • Data flows with MapReduce-like UDFs
 • Multi-engine flow optimization
ETL research: a 20-year recap

- **Optimization of ETL operations**
 - Efficient extraction of delta values
 - Schema transformations
 - data mappers, pivot/unpivot
 - Data cleansing transformations
 - Lineage of data transformations
 - Efficient resumption of interrupted data flows
 - Change-table techniques for incremental view maintenance
 - Efficient data cubes
 - Cardinality estimation in ETL processes
 - ETL tasks in the context of Map-Reduce
 - Real-time processing of ETL operations

- **ETL lifecycle & governance**
 - Monitoring/testing through regression tests
 - Explaining ETL processes with NL descriptions
 - Managing ETL evolution
 - Cataloguing frequent ETL patterns
 - ETL benchmarks
 - 10+ research system prototypes
ETL research timeline [20-years: 2002-2022]

~400 publications
- 270 papers
- 100 articles

avg #pubs/year
- 01-10: 10
- 11-21: 26

- UML design, logical models, design quality
- ETL design: business process, web services, semantic web
- ETL tuning, incr. loading, conc2log
- partitioning, fault-tolerance, active DW
- BPMN design, metadata, multi-engine ETL flows
- Hadoop YARN, HTAP
- ETL optimization
- Spark
- Incremental multi-flow processing
- ETL and blockchain
- conceptual model [DOLAP’02]
- Logical model [DMDW’02]
- near-real time, multi-objective optimization, card estimation, ETL evolution, ETL benchmark, BPEL design
- ETL-MaReduce, requirement driven design, hypercubes, parallelization
- multi-engine, optimization, physical design scheduling, graph ETL
- on-demand ETL, ETL security, SPARQL ETL
- Delta Lake, Lakehouse
- Data lakes
- HFMS polystore
- NoDB in-situ processing
- ETL UDFs parallelization and cost model

Simitsis, Skiadopoulos, Vassiliadis - The History, Present, and Future of ETL Technology – March 2023
ETL research publications [20-years: 02-22]

Search query: ETL$ [papers with ETL in the title – i.e., not all ETL related papers]

~400 publications

19 in DOLAP
2nd venue for ETL

[source: DBLP - https://dblp.uni-trier.de]
... but how did we start? ...
Real-world ETL scenarios

Can you spot the commonalities?
ETL technology – 20 years ago

- ETL was flourishing in the industry...
- 200+ commercial ETL tools in 2003

ETL Tools (current as of 2003)

1. ActaWorks
 Vendor: Acta Technologies
2. Amadea
 Vendor: ISoft
3. ASG-XPATH
 Vendor: Allen Systems Group

[srcref: https://web.imsi.athenarc.gr/~alkis/publications/ETLTools.htm]
ETL technology – 20 years ago

• ... but research wasn’t particularly thrilled

Reviewer #3
1: Is the paper relevant to VLDB Conference?: Yes

12: Detailed comments to authors:
see above

Reviewer #4
5: Technical depth: Weak reject
6: Presentation: Weak accept
7: Overall rating: Weak reject
8: Reviewer confidence: High

Simitsis, Skiadopoulos, Vassiliadis - The History, Present, and Future of ETL Technology – March 2023
Data Warehouses ≠ collections of materialized views!!

ETL workflows ≠ “big” queries!!

This has always been the vision
Data Warehouses ≠ collections of materialized views!!

ETL workflows ≠ “big” queries!!

This has always been the vision

Sources

DW

AddSPkey

SK

$2€

A2EDate

pkey

skey

source

source

source

source

Adate

Adate

Adate

Adate

Edate

$

€

$

$
Arktos II – Our in-house ETL design project

[circa 2000-2005]

The History, Present, and Future of ETL Technology – March 2023

Core Arktos team
- P. Georgantas
- N. Karayannidis
- G. Papastefanatos
- A. Simitsis
- T. Sellis
- S. Skiadopoulos
- M. Terrovitis
- Z. Vagena
- P. Vassiliadis
- Y. Vassiliou
ETL research publications [circa 2002]

DOLAP 2002

[source: DBLP - https://dblp.uni-trier.de]
Why a conceptual model?

• **Task**
 - Given fixed OLTP and OLAP schemas
 - Develop an **efficient** and **scalable** design to propagate data from the former to the latter

• **Challenges**
 - **Different audiences**: business users (the what) and IT professionals (the how)
 - Lack of any kind of methodology, formalism, standard, or even recorded collective experience
 - Ad hoc, in-house built solutions → hard to maintain, difficult to reuse
 - Scalable design to capture schema mappings, data/schema lineage, evolution
 - Provide a path to logical and physical models

• **State-of-the-art in early 2000**
 - Research: n/a
 - Industry: ad hoc, tedious, overcomplex, customized methods employing multiple documents, sheets, forms
Conceptual modeling for ETL
Conceptual modeling for ETL processes

Panos Vassiliadis, Alkis Simititis, Spiros Skiadopoulos
National Technical University of Athens
KDBS Laboratory
http://www.dbnet.ece.ntua.gr

In this paper, we focus on the conceptual part of the definition of the ETL process. More specifically, we are dealing with the earliest stages of the data warehouse design. During this period, the data warehouse designer is concerned with two main tasks which are practically executed in parallel. The first of these tasks involves the collection of requirements from the part of the users. The second task, which is of equal importance for the success of the data warehousing project, involves the analysis of the structure and content of the existing data sources and their eventual mapping to the common data model.
Early stages of design

- **Schema mappings:** Trace the mapping of the attributes of the data sources to the attributes of the DW tables...
- ... along with the necessary constraints and transformations for the ETL process...
- ... as well as provision alternatives, transformation composition, and an extensible palette of transformations

Rather surprising to have attributes and transformations as core concepts of the model
Conceptual modeling for ETL processes

Instantiation & Specialization Layers

Filters
Selection (s)
Not null (NN)
Primary key violation (PK)
Foreign key violation (FK)
Unique value (UV)
Domain mismatch (DM)

Unary transformations
Push
Aggregation (A)
Projection (P)
Function application (f)
Attribute key assignment (a)
Tuple normalization (N)
Table denormalization (DN)

Binary transformations
Union (U)
Join (n-1)
Diff (Δ)
Update detection (Δup)

Composite transformations
Slowly changing dimension (Type 1, 2, 3) (SSCD-1/2/3)
Format mismatch (FM)
Data type conversion (DTC)
Switch (s*)
Extended union (U)

File operations
BINARY to ASCII conversion (B2A)
Sort file (Sort)

Transfer operations
FTP (FTP)
Compress/Decompress (Z/DZ)
Encrypt/Decrypt (Cr/DCr)
ETL – present times
The analytics landscape

2012

The Big Data Landscape

[sr]: https://mattturck.com
The analytics landscape

2012

2017

[src: https://mattturck.com]
Evolution of the ETL architecture

Change Data Capture optimizations
- Apply trnx in the same order
- Batch-optimized
- Load w/ native perf, use MPP
- Capture and stream data changes into msg broker (e.g., Kafka)
Evolution of the ETL architecture

ELT particularly popular in cloud deployments
- Often “EL” → data replication
- Cheaper storage on-prem / cloud
- Cheaper compute: Spark, Hadoop, Beam, cloud engines
- Streaming data, ready for analysis at target

There are other flavors too
- ETLT, ELTL, ...

Diagram:
- DB to E to L (ELT)
- Staging tables
- Data tables
- DW
Trends in ETL processing

- **Streaming ETL**
 - Various sources, larger volumes, high speeds
 - Data sources/consumers should connect/disconnect w/o interrupting the systems (horizontal scaling)
 - Exactly-once semantics, in-memory, distributed processing

- **Cloud ETL**
 - elastic scalability
 - massively parallel processing jobs
 - ability of routinely start/stop jobs fast
 - horizontal/vertical autoscaling
 - run serverless pipelines
 - dynamic work rebalancing
 - flexible resource scheduling

Simitsis, Skiadopoulos, Vassiliadis - The History, Present, and Future of ETL Technology – March 2023
Trends in ETL processing

- **Reverse ETL**
 - Operational stores have isolated views of the domain
 - DW has a global view
 - Treat DW as an operational store that pushes insights back into the data sources

- **Challenges**
 - schema validation,
 - efficient sync, low overhead at the sources, optimized pipeline
 - accuracy, consistency, privacy
Trends in ETL infrastructure

Traditional ETL

- BI, analytics
- DW
- ETL
- sources

Two-tier DW – Data Lake

- BI, analytics
- ML, data science
- DW
- ETL
- Data Lake
- sources

Lakehouse architecture

- BI, analytics
- ML, data science
- Lakehouse
- DW
- Data Lake
- ETL
- sources
Alternatives to ETL

- **Hybrid OLTP – OLAP or HTAP**
 - Running transactional processing and scalable analytics on the same database
 - Accommodate very different workloads
 - operational (many small trnx, many updates)
 - analytical (complex, long running, resource demanding queries)
 - Hybrid column and row store setups, multi-version concurrency control

- **In-situ processing**
 - Avoid ETL, while still offering the features set of databases
 - Raw data files as a first-class citizen fully integrated with the query engine
 - Flexible caching and adaptive indexing to keep positional information and provide efficient access to raw files
ETL – the future
Next gen ETL – challenges (take #2)

• **New ETL pipelines**
 • Modern business intelligence, multimodal data processing, AI/ML ETL pipelines

• **UDF-fueled in-engine ETL**
 • Impedance mismatch between UDF and SQL is no more

• **Learning ETL**
 • Exploit learning techniques toward self-managed ETL

• **Privacy preserving ETL**
 • So far, focus on data protection and security (CCPA, HIPAA, GDPR, etc.)
 • Next: anonymization, differential privacy, homomorphic encryption, secure multi-party computation

• **Personal ETL**
 • Self-service data preparation

• **ML pipelines as ETL**
 • Data exploration, data discovery, feature engineering, observability, ML model auditing
Conclusions
Conclusions

• **ETL technology**
 • The cornerstone of business intelligence, decision making, and data analytics for over 25 years
 • Initial focus on design and optimization
 • Evolved to other forms: ELT, streaming, cloud, reverse
 • Evolving infrastructure: DW, Data lakes, Lakehouses, Multi-engine environments

• **Our take**
 • The ETL technology will remain relevant as long as it adapts to the modern business needs and data technology advancements

• **Big THANKS to**
 • The Test-of-Time award committee
 • The large and strong DOLAP community
 • Our many colleagues in this 20-year journey in the ETL-land and beyond
Big **Thanks** to our colleagues in this **20-year journey** in the ETL-land and beyond

- A. Abelló
- E. Baikousi
- M. Castellanos
- J. Darmont
- U. Dayal
- A. Deligiannakis
- P. Georgantas
- N. Giatrakos
- M. Golfarelli
- A. Gounaris
- C. Gupta
- M. Hsu
- P. Jovanovic
- A. Karagiannis
- A. Karakasidis
- N. Karayannidis
- G. Kougka
- S. Lujan-Mora
- P. Manousis
- S. Nadal
- G. Papastefanatos
- T.B. Pedersen
- E. Pitoura
- N. Polyzotis
- O. Romero
- T. Sellis
- D. Skoutas
- M. Terrovitis
- D. Theodoratos
- J. Trujillo
- A. Tsois
- V. Tziovara
- Z. Vagena
- Y. Vassiliou
- K. Wilkinson
- A. Zarras