
Schema Evolution and Gravitation to Rigidity:
a tale of calmness in the lives of structured data

Panos Vassiliadis

joint work with: Apostolos Zarras, Ioannis Skoulis, Petros Manousis,
Fanis Giahos, Michael Kolozoff, Athanasios Pappas, Maria Zerva

Department of Computer Science and Engineering
University of Ioannina, Hellas

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/index.html

The nature that needs change is vicious;
for it is not simple nor good…

2Nicomachean Ethics, Book VII, Aristotle

SWEBOK Maintenance

• Preventive maintenance: modification of a software product
after delivery to detect and correct latent faults in the
software product before they become operational faults.

• Corrective maintenance: reactive modification (or repairs) of
a software product performed after delivery to correct
discovered problems.

• Perfective maintenance: modification of a software product
after delivery to provide enhancements for users,
improvement of program documentation, and recoding to
improve software performance, maintainability, or other
software attributes.

• Adaptive maintenance: modification of a software product
performed after delivery to keep a software product usable
in a changed or changing environment. 3

Correction Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

Database Evolution: why and what

• All software systems and, thus, both the databases
themselves and applications built around databases are
dynamic environments and can evolve due
– Changes of requirements

– Internal restructuring due to performance reasons

– migration to / integration with another system

– …

• Database evolution further concerns
– changes in the operational environment of the database

– changes in the content (data) of the databases as time passes by

– changes in the internal structure, or schema, of the database

4

Why is (schema) evolution so
important?

• Software and DB maintenance makes up for at least 50%
of all resources spent in a project.

• Dependency magnets
– Databases are rarely stand-alone: typically, an entire ecosystem

of applications is structured around them =>

– Typically, development waits till the “db backbone” is stable and
applications are “safely” build on top of it, as…

– … changes in the schema can impact a large (typically, not
traced) number of surrounding applications, without explicit
identification of the impact & can cause several (parts of)
different applications to crash, slow down, or miss data, causing
the need for emergency repairing

5

Evolving data-intensive ecosystem

6

Evolving data-intensive ecosystem

7

The impact can be syntactical (causing crashes), semantic (causing
info loss or inconsistencies) and related to the performance

Semantically unclear

Syntactically invalid

Remove CS.C_NAME

Add exam year

The impact of evolution

• Syntactic: scripts & reports simply crash

• Semantic: views and applications can
become inconsistent or information losing

• Performance: can vary a lot

8

We would really love to…

• … “design for evolution” and minimize the impact of evolution to the
surrounding applications by introducing appropriate mechanisms in
our DBMS’s, applying design patterns & avoiding anti-patterns in both
the db and the code in a way that insulates applications from
unwanted schema change impacts

• … plan in advance administration and perfective maintenance tasks
and resources, instead of responding to emergencies

• … (btw) detect & assess if there exist fundamental flaws in our
Paradigms (like the relational model or the development of data-
intensive applications)

• … (with your permission) satisfy the scientific curiosity on gaining
more knowledge on how things work

• … but first, …

9

Engineering goals

Scientific goals

WHAT ARE THE
“LAWS” OF
DATABASE SCHEMA
EVOLUTION?

10

… but, first, we must answer this:

Long term research goals

• Are there any “invariant properties” (e.g.,
patterns of repeating behavior) on the way
database schemata change?

• Is there a theory / model to explain them?

• Can we exploit findings to engineer data-
intensive ecosystems that withstand change
gracefully?

11

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

Do we know the mechanics of schema
evolution?

• Historically, nobody from the research community had access
+ the right to publish to version histories of database
schemata

• Open source tools internally hosting databases have changed
this landscape, so…

• … we are now presented with the opportunity to study the
version histories of such “open source databases”

12

Mind the gap!
(15 years)

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09,
ICDEW11

Qiu,Li,Su
FSE13

Un. Ioannina
CAiSE14,

ER15

Cleve+
SCP15

2017

Un. Ioannina
CAiSE17,

ER17
~ … ~

Our take on the problem

• Collected version histories for the schemata of 8 open-source projects
– CMS’s: MediaWiki, TYPO3, Coppermine, phpBB, OpenCart
– Physics: ATLAS Trigger --- Bio: Ensemble, BioSQL

• Preprocessed them to be parsable by our HECATE schema comparison tool
and exported the transitions between each two subsequent versions and
measures for them (size, growth, changes)

• Exploratory search where we statistically studied / mined these measures, to
extract patterns & regularities for the lives of tables

• Web:

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

• Data and code available at:

https://github.com/DAINTINESS-Group

13

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

Scope of our studies

• Scope:
– databases being part of open-source

software (and not proprietary ones)
– long history
– we work only with changes at the

logical schema level (and ignore
physical-level changes like index
creation or change of storage engine)

• We encompass datasets with different
domains ([A]: physics, [B]: biomedical, [C]:
CMS’s), amount of growth (shade: high,
med, low) & schema size

• We should be very careful to not
overgeneralize findings to proprietary
databases or physical schemata!

FoSS Dataset
Versio

ns
Lifetime

Tables

@

Start

Tables

@

End

ATLAS Trigger

[A]
84 2 Y, 7 M, 2 D 56 73

BioSQL [B] 46 10 Y, 6 M, 19 D 21 28

Coppermine

[C]
117 8 Y, 6 M, 2 D 8 22

Ensembl [B] 528 13 Y, 3 M, 15 D 17 75

MediaWiki

[C]
322 8 Y, 10 M, 6 D 17 50

OpenCart [C] 164 4 Y, 4 M, 3 D 46 114

phpBB [C] 133 6 Y, 7 M, 10 D 61 65

TYPO3 [C] 97 8 Y, 11 M, 0 D 10 23
14

How does the schema size evolve?

15

Input: schema histories from
github/sourceforge/…

Output: properties &
patterns on the evolution of
schema size (no. tables)

• Not covered here:
• Growth patterns
• Lehman laws & schema

evolution

Outline
- Schema size evolution
- Foreign Key Evolution
- Table Evolution
- Closing Remarks

For details:
- CAiSE 2014
- Inf. Systems 2015

http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Schema Size (relations)

16

Highlights of Schema Size
Evolution

• Overall increase in size

• Periods of increase, esp. at beginning and
after large drops

• Drops: sudden and steep (in short duration)

• Large periods of stability!

– Unlike traditional S/W, db’s are dependency
magnets…

17

Growth over time
Calmness periods

Increase both slow (mostly) and abrupt
Occasional abrupt drops (maintenance)

Zipfian model in the distribution of
growth frequencies

20

Growth: delta in the schema size
for two subsequent versions

[With exceptions]
Density: focused maintenance effort
Progressive cooling : early –maintenance density >> later stages
Several spikes, many zero-change periods/versions

How do foreign keys evolve?

22

Output: properties &
patterns on the evolution of
foreign keys

•Mainly patterns on:
• Size
•When FK Births &

Deaths
• … unexpected results…

http://www.cs.uoi.gr/~pvassil/publications/2017_ER/

To appear
in ER 2017

Input: schema histories from
github/sourceforge/…

Outline
- Schema size evolution
- Foreign Key Evolution
- Table Evolution
- Closing Remarks

Evolution of
Tables & FK’s

23

• Tables grow in all cases
(known from previous
research) with periods
of slow growth,
calmness, spikes of
extension, and
occasional cleanups

• Foreign Keys are
treated with different
mentalities. 3 families:

– Scientific

– Comp. Toolkits

– CMS’s

Evolution of Tables & FK’s:
Scientific projects

24

• Tables and FKS grow in synch, in both cases

• Growth comes with expansion periods, shrinkage actions, and
periods of calmness in terms of both tables and foreign keys.

Evolution of Tables & FK’s:
Computational Resource Toolkits

25

• Tables and FKS grow little and slowly; for Castor, not exactly in
sync

• Castor: observe how scarce FK’s are (too few tables come with
FK’s, see vertical axis)

Evolution of Tables & FK’s:
Content Management Systems (CMS’s)

26

• FK scarcity: really big at Slashcode, moderate at Zabbix

• Slashcode started without foreign keys at all; 1st set of FK’s in v. 74.
Zabbix seems to show a certain degree of syncronized growth

• Yet, … both CMS's end up with no FK’s!! -> see next

What an unpleasant surprise: developers
can resort in full removal of foreign keys!

27

• Slashcode: there is a clear phase of progressive removal

• Zabbix: abrupt removal of almost the entire set of foreign keys in a
single transition. We have no knowledge on why this happened, & it
is unexpected based on how FK’s had been treated till then…

Slashcode: the disappearing FK’s

28

1st massive foreign key
removal (rev 1.120),

22 FK’s deleted.

2nd massive deletion (rev
1.151), 10 FK's deleted

3rd deletion (rev
1.174), 3 FK's deleted

4th deletion (rev
1.189) 1 FK deleted

5th deletion (rev
1.201) 1 FK deleted

"Commented-out foreign keys are ones which currently cannot
be used because they refer to a primary key which is NOT NULL
AUTO INCREMENT and the child's key either has a default value
which would be invalid for an auto increment field, typically
NOT NULL DEFAULT '0'.
Or, in some cases, the primary key is e.g. VARCHAR(20) NOT
NULL and the child's key will be VARCHAR(20). The possibility
of NULLs negates the ability to add a foreign key. <= That's
my current theory, but it doesn't explain why
discussions.topic SMALLINT UNSIGNED NOT NULL DEFAULT '0' is
able to be foreign-keyed to topics.tid SMALLINT UNSIGNED NOT
NULL AUTO INCREMENT"

1st massive foreign key
removal (rev 1.120),

22 FK’s deleted.

"Stories is now InnoDB and these other tables are still
MyISAM, so no foreign keys between them."

2nd massive deletion (rev
1.151), 10 FK's deleted

"This doesn't work, makes createStory die. These
don't work, should check why..."

"This doesn't work, since in the install pollquestions
is populated before users, alphabetically"

3rd deletion (rev 1.174),
3 FK's deleted

4th deletion (rev 1.189)
1 FK deleted

5th deletion (rev 1.201)
1 FK deleted

"This doesn't work, since discussion may be 0."
29

Slashcode: what did the comments say?

• The main problem seems to be the difficulty of developers
with the tuning and handling of both foreign and primary
keys.

• Sometimes difficulties are hard -- e.g., different storage
engines, typically due to performance reasons

• Some difficulties are complicated due to technicalities like
autonumbering

• Sometimes fixes could be found with some effort (e.g.,
changing the order of table population, or using numeric data
types for primary keys, or inserting some “goalkeeper” values
at FK target table)

30

Scarcity of Foreign keys

• A 2013 collection of schema histories, lists 21 data sets,
-- some have more than one target DBMS variants.

• How many data sets contain foreign keys?
• Try this (also backed by manual sampling):

31

$ cd RESEARCH/Github/EvolutionDatasets
$ ls -d * */*
CERN CMS's/Coppermine CMS's/XOOPS Med
CERN/Atlas CMS's/DekiWiki CMS's/Zabbix Med/Ensembl
CERN/CASTOR CMS's/Joomla 1.5 CMS's/e107 Med/biosql
CERN/DQ2 CMS's/NucleusCMS CMS's/opencart README.md
CERN/DRAC CMS's/SlashCode CMS's/phpBB
CERN/EGEE CMS's/TikiWiki CMS's/phpwiki
CMS's CMS's/Typo3 CMS's/wikimedia

grep -rl "FOREIGN" . >> ALL-FKs-by-grep.ascii
awk '{split($0,a,"/"); print a[2],a[3]}' ALL-FKs-by-grep.ascii |
uniq

Scarcity of Foreign keys
- How many data sets, out of the 21, contain foreign keys?

32

CERN Atlas
CERN CASTOR
CERN EGEE
CMS's SlashC
CMS's Zabbix
Med biosql

CERN DQ2
CERN DΙRAC
Med Ensembl

The 6 data sets reported here

DΙRAC (not in the production folder, only at python+mysql).
9 tables at first version, 15 tables at last version
Starts with 10 FK's, ends with 8

DQ2 (only in the mySQL, not in the Oracle
version): FK’s in 19 versions out of the 55.
Starts with 2 FK's and ends with 1.

+

Ensembl: not able to link FK DDL files to
table evolution, yet

- 9 out of the 21 data sets do (including 3 that are
really small for harnessing valuable results, spec.,
Egee, DQ2, DIRAC)

http://www.boldomatic.com/view/post/G_xPI

Foreign Key Evolution comes with
different treatments:
• Sometimes, FK’s are treated as an integral part of the system, and

they are born and evicted along with table birth and eviction.

• Other times, FK’s are treated as a disposable add-on: only a small
subset of the tables involved in FK’s; birth and eviction of FK’s rarely
performed in synch with their tables. If technical difficulties arise, it
is possible to witness the complete removal of FK’s from the
schema.

• Another sign of concern is that in all the CMS’ we collected, FK’s are
too scarce

• More results in the paper: stats, threats to validity, and, the
treatment of the evolving schema as an evolving graph

33http://www.cs.uoi.gr/~pvassil/publications/2017_ER/

To appear
in ER 2017

How do individual tables evolve?

34

Output: properties &
patterns on table properties
(birth, duration, amt of
change, …)

Highlights
4 patterns of evolution,
here we focus on two of them

Input: schema histories from
github/sourceforge/…

Outline
- Schema size evolution
- Foreign Key Evolution
- Table Evolution
- Closing Remarks

Regularities on table change do exist!

35

If you’re wide, you survive

Top-changers typically live long, are early
born, survive …
… and they are not necessarily the widest
ones in terms of schema size

Progressive cooling: most change activity lies
at the beginning of the db history

Void triangle: The few dead tables are
typically quiet, early born, short lived, and
quite often all three of them

For details:
- ER 2015
- Inf. Sys. 2017

http://www.cs.uoi.gr/~pvassil/publications/2015_ER/

Longevity and update
activity correlate !!

36

Too many top changers
are born early

Top changers
live long

Deleted tables are
born early & last

short

Birth rate drops
over time

The few top-changers (in
terms of avg trans.
update – ATU)

• are long lived,

• typically come from the
early versions of the
database

• due to the combination
of high ATU and
duration => they have
high total amount of
updates, and,

• frequently survive!

Empty space: high
change rates are

only for early born
& long lived

An empty triangle: no deleted
tables with large or even

modest durations

Deleted tables are
born early & last

short

Deleted tables last
short & do not change

a lot

Empty space: high
change rates are

only for early born
& long lived

Die young
and suddenly

• There is a very large
concentration of the
deleted tables in a
small range of newly
born, quickly
removed, with few or
no updates…

• …. resulting in very
low numbers of
removed tables with
medium or long
durations (empty
triangle).

37

ELECTROLYSIS PATTERN FOR TABLE
ACTIVITIES

38

For details:
- CAiSE 2017

http://www.cs.uoi.gr/~pvassil/publications/2017_CAiSE_Electrolysis

The electrolysis pattern

• Survivors expose the inverse behavior, i.e., mostly located at
medium or high durations.

• The more active survivors are, the stronger they are attracted
towards high durations, with a significant such inclination for the
few active ones that cluster in very high durations.

39

• Dead tables demonstrate much
shorter lifetimes than survivor ones,

• can be located at short or medium
durations, and practically never at
high durations.

• With few exceptions, the less active
dead tables are, the higher the
chance to reach shorter durations.

40

Attn: all
pct’s are
per class

Electrolysis as a heatmap showing the extreme
bias between dead and survivor tables

41

• For each LifeAndDeath value, and for each duration range of 5% of the
database lifetime, we computed the percentage of tables (over the
total of the data set) whose duration falls within this range.

• We removed cells that corresponded to only one data set

The resulting heatmap shows the polarization in colors: brighter color
signifies higher percentage of the population

Gravitation to
Rigidity
• Although the majority of survivor tables are in the quiet

class, we can quite emphatically say that it is the absence
of evolution that dominates!
– Survivors vastly outnumber removed tables.
– Similarly, rigid tables outnumber the active ones, both in the

survival and, in particular, in the dead class.
– Schema size is rarely resized, and only in survivors (not in the

paper).
– Active tables are few and do not seem to be born in other but

early phases of the database lifetime.

• Evidently, not only survival is also stronger than removal,
but rigidity is also stronger a force than variability and the
combination of the two forces further lowers the amount
of change in the life of a database schema.

42

Summarizing…

• Yes, we can indeed find patterns in the lives of tables,
during schema evolution!

• Survivors, mostly long-lived (esp. active ones) and
quietly active are radically different than dead tables,
being mostly short-lived and rigid!

• Gravitation to rigidity rules: we see more absence than
presence of schema evolution!

43

Also studied [not part of the paper]: year of
birth, schema size, schema resizing

http://www.cs.uoi.gr/~pvassil/publications/2017_CAiSE_Electrolysis

CLOSING REMARKS

Where we stand

Open issues

… and discussions …

44

Outline
- Schema size evolution
- Foreign Key Evolution
- Table Evolution
- Closing Remarks

Where we stand

We have a first understanding of …

• gravitation to rigidity, i.e., the mechanics of schema
non-evolution for FoSS ecosystems

• schemata growing, changed in focused periods of
maintenance and progressively “cooling” down

• patterns relating to how tables change, given their
size, update behavior, time of birth, …

• foreign key families of treatment, absence &
removals

45

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

Schema size

Foreign KeysIndividual Tables

Gravitation to rigidity:
- Long calmness, low+focused

growth
- Empty triangle, inverse Gamma,

electrolysis
More absence than presence of evo!

Where to go from here…

• More studies, by more groups, on more data, to
verify / disprove patterns & find new ones

• More tools and techniques to fully automate
processing

• Weather Forecast: given the history and the state
of a database, predict subsequent events

• Engineer for evolution: To absorb change
gracefully we can try to (i) alter db design and
DDL; (ii) encapsulate the database via a “stable”
API; …

How does schema evolution relate to
the surrounding software?

• Which parts of the surrounding data-intensive
software app’s are most sensitive to evolution?
– Metrics for sensitivity to evolution?

– Visualization of the architecture & evolution impact

• Automation of the reaction to changes
– self-monitoring

– impact prediction

– auto-regulation (policy determination)

– self-repairing

48
http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

Everything HAS TO BE online!

We are happy to invite you to
reuse / test / disprove /…
all our code, data and results!

49

https://github.com/DAINTINESS-Group

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

Thank you!
• Yes, we have the data and the tools to find patterns of

schema evolution both for the entire schema and for
individual parts of it!

• Gravitation to rigidity rules: we see more absence than
presence of schema evolution!

• Many opportunities to exploit data, code and results for
research on more studies, design and visualization of systems

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

AUXILIARY SLIDES

51

Embedded queries in the past
[Maule+08] …

52

… nowadays, to be complemented
with API-based db access (Drupal)

53

Abstract coupling example
from my SW Dev course

54

Interface
as a
contract

Client
class

Service
providers

Factory
as a
bridge

Specification

Implementation

Put it all
online!!

My web page

http://www.cs.uoi.gr/~pvassil/

has links to …
DB Schema Evolution

Papers, Data sets, Code, Results
projects/schemaBiographies/

… and to …

Tools for handling Evolution
(Hecataeus)

projects/hecataeus/ 55

https://github.com/DAINTINESS-Group/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

SCOPE OF THE STUDY && VALIDITY
CONSIDERATIONS

56

Datasets

https://github.com/DAINTINESS-Group/EvolutionDatasets

● Content management Systems

● MediaWiki, TYPO3, Coppermine, phpBB, OpenCart

● Medical Databases

● Ensemble, BioSQL

● Scientific

● ATLAS Trigger

57

Data sets

58

Dataset
Versi

ons
Lifetime

Table

s Start

Table

s End

Attribut

es Start

Attribut

es End

Commit

s per

Day

% commits

with

change

Repository URL

ATLAS Trigger 84 2 Y, 7 M, 2 D 56 73 709 858 0,089 82%

http://atdaq-sw.cern.ch/cgi-bin/viewcvs-

atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/com

bined_schema.sql

BioSQL 46 10 Y, 6 M, 19 D 21 28 74 129 0,012 63%
https://github.com/biosql/biosql/blob/master/sql/biosqldb-

mysql.sql

Coppermine 117 8 Y, 6 M, 2 D 8 22 87 169 0,038 50%

http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg

1.5.x/sql/schema.sql

Ensembl 528 13 Y, 3 M, 15 D 17 75 75 486 0,109 60%

http://cvs.sanger.ac.uk/cgi-

bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log

MediaWiki 322 8 Y, 10 M, 6 D 17 50 100 318 0,100 59%

https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/main

tenance/tables.sql?view=log

OpenCart 164 4 Y, 4 M, 3 D 46 114 292 731 0,104 47%
https://github.com/opencart/opencart/blob/master/upload/inst

all/opencart.sql

phpBB 133 6 Y, 7 M, 10 D 61 65 611 565 0,055 82%

https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/

schemas/mysql_41_schema.sql

TYPO3 97 8 Y, 11 M, 0 D 10 23 122 414 0,030 76%

https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-

0:/t3lib/stddb/tables.sql

Scope of the study

• Scope:
– databases being part of open-source

software (and not proprietary ones)
– long history
– we work only with changes at the

logical schema level (and ignore
physical-level changes like index
creation or change of storage engine)

• We encompass datasets with different
domains ([A]: physics, [B]: biomedical, [C]:
CMS’s), amount of growth (shade: high,
med, low) & schema size

• We should be very careful to not
overgeneralize findings to proprietary
databases or physical schemata!

FoSS Dataset
Versio

ns
Lifetime

Tables

@

Start

Tables

@

End

ATLAS Trigger

[A]
84 2 Y, 7 M, 2 D 56 73

BioSQL [B] 46 10 Y, 6 M, 19 D 21 28

Coppermine

[C]
117 8 Y, 6 M, 2 D 8 22

Ensembl [B] 528 13 Y, 3 M, 15 D 17 75

MediaWiki

[C]
322 8 Y, 10 M, 6 D 17 50

OpenCart [C] 164 4 Y, 4 M, 3 D 46 114

phpBB [C] 133 6 Y, 7 M, 10 D 61 65

TYPO3 [C] 97 8 Y, 11 M, 0 D 10 23
59

Hecate: SQL schema diff extractor

● Parses DDL files

● Creates a model for the parsed SQL elements

● Compares two versions of the same schema

● Reports on the diff performed with a variety of
metrics

● Exports the transitions that occurred in XML
format

https://github.com/DAINTINESS-Group/Hecate

60

Hecate: SQL schema diff extractor

61https://github.com/DAINTINESS-Group/Hecate

External validity

• We perform an exploratory study to observe frequently occurring
phenomena within the scope of the aforementioned population

• Are our data sets representative enough? Is it possible that the
observed behaviors are caused by sui-generis characteristics of the
studied data sets?
– Yes: we believe we have a good population definition & we abide by it
– Yes: we believe we have a large number of databases, from a variety of

domains with different profiles, that seem to give fairly consistent
answers to our research questions (behavior deviations are mostly
related to the maturity of the database and not to its application
area).

– Yes: we believe we have a good data extraction and measurement
process without interference / selection / … of the input from our part

– Maybe: unclear when the number of studied databases is large
enough to declare the general application of a pattern as “universal”.

Can we generalize out
findings broadly?

62

External validity

• Understanding the represented population

– Precision: all our data sets belong to the specified population

– Definition Completeness: no missing property that we knowledgably omit to report

– FoSS has an inherent way of maintenance and evolution

• Representativeness of selected datasets

– Data sets come from 3 categories of FoSS (CMS / Biomedical / Physics)

– They have different size and growth volumes

– Results are fairly consistent both in our ER’15 and our CAiSE’14 papers

• Treatment of data

– We have tested our “Delta Extractor”, Hecate, to parse the input correctly & adapted it
during its development; the parser is not a full-blown SQL parser, but robust to ignore
parts unknown to it

– A handful of cases where adapted in the Coppermine to avoid overcomplicating the
parser; not a serious threat to validity ; other than that we have not interfered with the
input

– Fully automated counting for the measures via Hecate

Can we generalize out
findings broadly?

63

Internal validity

• Internal validity concerns the accuracy of cause-
effect statements: “change in A => change in B”

• We are very careful to avoid making strong
causation statements!
– In some places, we just hint that we suspect the

causes for a particular phenomenon, in some places in
the text, but we have no data, yet, to verify our gut-
feeling.

– And yes, it is quite possible that our correlations hide
cofounding variables.

• Can we confirm
statements A=>B? No!

• Are there any spurious
relationships? Maybe!

64

Is there a theory?

• Our study should be regarded as a pattern observer, rather
than as a collection of laws, coming with their internal
mechanics and architecture.

• It will take too many studies (to enlarge the
representativeness even more) and more controlled
experiments (in-depth excavation of cause-effect
relationships) to produce a solid theory.

• It would be highly desirable if a clear set of requirements
on the population definition, the breadth of study and the
experimental protocol could be solidified by the scientific
community (like e.g., the TREC benchmarks)

• … and of course, there might be other suggestions on how
to proceed…

65

RELATED WORK

66

Timeline of empirical studies

67

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Timeline of empirical studies

68

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Sjoberg @ IST 93: 18 months study of a health system.
139% increase of #tables ; 274% increase of the #attributes

Changes in the code (on avg):
relation addition: 19 changes ; attribute additions: 2 changes
relation deletion : 59.5 changes; attribute deletions: 3.25 changes

An inflating period during construction where almost all changes were additions,
and a subsequent period where additions and deletions where balanced.

Timeline of empirical studies

69

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Curino+ @ ICEIS08: Mediawiki for 4.5 years
100% increase in the number of tables
142% in the number of attributes.

45% of changes do not affect the information capacity of the schema (but
are rather index adjustments, documentation, etc)

Timeline of empirical studies

70

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

IWPSE09: Mozilla and Monotone (a version control system)
Many ways to be out of synch between code and evolving db schema

ICDEW11: Firefox, Monotone , Biblioteq (catalogue man.) , Vienna (RSS)
Similar pct of changes with previous work
Frequency and timing analysis: db schemata tend to stabilize over time,
as there is more change at the beginning of their history, but seem to
converge to a relatively fixed structure later

Timeline of empirical studies

71

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Qiu,Li,Su@ FSE 2013: 10 (!) database schemata studied.
Change is focused both (a) with respect to time and (b) with respect to the
tables who change.

Timing: 7 out of 10 databases reached 60% of their schema size within 20% of
their early lifetime.
Change is frequent in the early stages of the databases, with inflationary
characteristics; then, the schema evolution process calms down.

Tables that change: 40% of tables do not undergo any change at all, and 60%-
90% of changes pertain to 20% of the tables (in other words, 80% of the tables
live quiet lives). The most frequently modified tables attract 80% of the changes.

Timeline of empirical studies

72

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Qiu,Li,Su@ FSE 2013: Code and db co-evolution, not always in synch.
• Code and db changed in the same revision: 50.67% occasions
• Code change was in a previous/subsequent version than the one where the

database schema change: 16.22% of occasions
• database changes not followed by code adaptation: 21.62% of occasions
• 11.49% of code changes were unrelated to the database evolution.

Each atomic change at the schema level is estimated to result in 10 -- 100 lines of
application code been updated;
A valid db revision results in 100 -- 1000 lines of application code being updated

Timeline of empirical studies

73

2015201420132011200920081993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

CAiSE14: DB level
ER’15: Table level

SCHEMA EVOLUTION AND LEHMAN
LAWS

.. What do we see if we observe the evolution of the entire schema?

http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

• Skoulis, Vassiliadis, Zarras. Open-Source Databases: Within, Outside, or
Beyond Lehman's Laws of Software Evolution? CAiSE 2014

• Growing up with stability: How open-source relational databases
evolve. Information Systems, Volume 53, October–November 2015

74

Exploratory search of the schema
histories for patterns

75

Input: schema histories from
github/sourceforge/…
Raw material: details and
stats on each table’s life, as
produced by our diff
extractor, for all the 8
datasets

Output: properties &
patterns on schema
properties (size, growth,
changes, …) that occur
frequently in our data sets
Highlights
• Patterns on size and growth
• Compliance to Lehman’s

laws

Schema Size (relations)

76http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Schema Size

• Overall increase in size

• Periods of increase, esp. at beginning and
after large drops -> positive feedback

• Drops: sudden and steep (in short duration) ->
negative feedback

• Large periods of stability!

– Unlike traditional S/W, db’s are dependency
magnets…

77

Growth over time
Calmness periods

Increase both slow (mostly) and abrupt
Occasional abrupt drops (maintenance)

-10

-5

0

5

10

-2

0

2

4

6

-3

-2

-1

0

1

2

3

-15

-10

-5

0

5

10

-10

0

10

20

30

-6

-4

-2

0

2

4

6

-4

-2

0

2

4

6

-4

-2

0

2

4

Schema Growth (diff in #tables)

81
http://www.cs.uoi.gr/~pvassil/publications/

2014_CAiSE/

Schema growth is small!

• Growth is bounded in small values!
• Zipfian distribution of growth values around 0
– Predominantly: occurrences of zero growth; almost all

deltas are bounded between [-2..2] tables
– [0..2] tables slightly more popular => average value of

growth slightly higher than 0

• No periods of continuous change; small spikes instead

• Due to perfective maintenance, we also have negative
values of growth (less than the positive ones).

• Oscillations exist too: positive growth is followed with
immediate negative growth or stability

82http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Zipfian model in the distribution of
growth frequencies

83

Growth: delta in the schema size
for two subsequent versions

What happens after large changes?

84
http://www.cs.uoi.gr/~pvassil/publications/

2014_CAiSE/

[With exceptions]
Density: focused maintenance effort
Progressive cooling : early –maintenance density >> later stages
Several spikes, many zero-change periods/versions

#tables & heartbeat of changes over time

How do schemata evolve?

Schema size (#tables – also: #attributes) supports the assumption of a
feedback mechanism

• Schema size grows over time; not continuously, but with bursts of
concentrated effort

• Drops in schema size signify the existence of perfective maintenance
• Large periods of stability

Schema Growth (diff in size between subsequent versions) is small!!
• Growth is small, smaller than in typical software
• Average growth is close (slightly higher) to zero

Gravitation to rigidity:
• Large periods of stability
• Change frequency drops with time

87

For details:
- CAiSE 2014
- Inf. Systems 2015

http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

THE FOUR PATTERNS

88

89

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pvassil/publications/2015_ER/

http://www.cs.uoi.gr/~pvassil/publications/2015_ER/

90

Statistical study of durations

• Short and long lived
tables are practically
equally proportioned

• Medium size durations
are fewer than the rest!

• Long lived tables are
surprisingly too many
– in half the data sets they

are the most populated
group

– in all but one data set
they exceed 30%

91

Way too many long-lived tables
live throughout the entire

lifespan (Max Duration) of the
database

Tables are mostly thin

• On average, half of the
tables (approx. 47%) are
thin tables with less than 5
attributes.

• The tables with 5 to 10
attributes are
approximately one third of
the tables' population

• The large tables with more
than 10 attributes are
approximately 17% of the
tables.

92

THE GAMMA PATTERN

Schema size @ birth / duration

If you ‘re wide, you survive
a.k.a (only the thin die young, all the wide ones seem to live forever)

The Gamma Pattern:
"if you 're wide, you survive"
• The Gamma phenomenon:

– tables with small schema sizes can
have arbitrary durations, //small size does
not determine duration

– larger size tables last long

• Observations:
– whenever a table exceeds the critical

value of 10 attributes in its schema, its
chances of surviving are high.

– in most cases, the large tables are
created early on and are not deleted
afterwards.

94

95

Exceptions
- Biosql: nobody exceeds

10 attributes
- Ensembl, mwiki: very few

exceed 10 attributes, 3 of
them died

- typo: has many late born
survivors

Stats on wide tables and their survival

Definitions:
Wide schema: strictly above 10 attributes.
The top band of durations (the upper part of the Gamma shape): the upper 10% of the
values in the y-axis.
Early born table: ts birth version is in the lowest 33% of versions;
Late-comers: born after the 77% of the number of versions.

Whenever a table is wide, its chances
of surviving are high

Apart from mwiki and ensembl, all the rest of the data sets confirm the hypothesis with
a percentage higher than 85%. The two exceptions are as high as 50% for their support
to the hypothesis.

Wide tables are frequently created early on
and are not deleted afterwards

Early born, wide, survivor tables (as a percentage over the set of wide tables).
- in half the data sets the percentage is above 70%
- in two of them the percentage of these tables is one third of the wide tables.

Whenever a table is wide, its duration frequently lies
within the top-band of durations (upper part of Gamma)

What is probability that a wide table belongs to the upper part of the Gamma?

- there is a very strong correlation between the two last columns: the Pearson
correlation is 88% overall; 100% for the datasets with high pct of early born wide tables.
-
- Bipolarity on this pattern: half the cases support the pattern with support higher than
70%, whereas the rest of the cases clearly disprove it, with very low support values.

Long-lived & wide => early born and survivor

In all data sets, if a wide table has a long duration within the upper part of the
Gamma, this deterministically (100% of all data sets) signifies that the table was also
early born and survivor.
If a wide table is in the top of the Gamma line, it is deterministically an early born
survivor.

Subset
relationship

THE COMET PATTERN

Schema size and updates

The Comet Pattern

“Comet “ for change over schema size with:

• a large, dense, nucleus cluster close to
the beginning of the axes, denoting small
size and small amount of change,

• medium schema size tables typically
demonstrating medium to large change
– The tables with the largest amount of change are

typically tables whose schema is on average one
standard deviation above the mean

• wide tables with large schema sizes
demonstrating small to medium
(typically around the middle of the y-
axis) amount of change.

102

http://visual.merriam-webster.com/astronomy/celestial-bodies/comet.php

103

http://spaceplace.nasa.gov/comet-nucleus/en/

Statistics of schema size at birth and
sum of updates

Typically: ~70% of tables inside the box

Typically, around 70% of the tables of a database is found within the 10x10 box of
schemaSize@birth x sumOfUpdates (10 excluded in both axes).

Top changers tend to have medium
schema sizes

For every dataset: we selected the top 5% of tables in terms of this sum of updates
and we averaged the schema size at birth of these top 5% tables.

Top changers tend to have medium
schema sizes

The average schema size for the top 5% of tables in terms of their update behavior
is close to one standard deviation up from the average value of the schema size at
birth(i.e., very close to mu+$sigma$). //except phpBB

Top changers tend to have medium
schema sizes

- In 5 out of 8 cases, the average schema size of top-changers within 0.4 and 0.5 of
the maximum value (practically the middle of the domain) and never above 0.65 of it.
- Pearson: the maximum value, the standard deviation of the entire data set and the
average of the top changers are very strongly correlated.

Wide tables have a medium number of updates

For each data set, we took the top 5% in terms of schema size at birth (top wide) and
contrasted their update behavior wrt the update behavior of the entire data set.
Typically, the avg. number of updates of the top wide tables is close to the 38% of the
domain of values for the sum of updates (i.e., the middle of the y-axis of the comet figure,
measuring the sum of updates for each table).
This is mainly due to the (very) large standard deviation (twice the mean), rather than the --
typically low -- mean value (due to the large part of the population living quiet lives).

INVERSE GAMMA

The inverse Gamma
pattern

• The correlation of change and
duration is as follows:

– small durations come necessarily
with small change,

– large durations come with all kinds
of change activity and

– medium sized durations come
mostly with small change activity
(Inverse Gamma).

111

112

Skyline & Avg
for Inverse

Gamma

THE EMPTY TRIANGLE PATTERN

114

Quiet tables rule, esp. for mature db’s

Non-survivors

• Sudden deaths mostly

• Quiet come ~ close

• Too few active

115

Survivors

• Quiet tables rule

• Rigid and active then

• Active mostly in “new” db’s

Mature DB’s: the pct of active tables drops significantly

High durations are
overwhelmingly blue!
Only a couple of
deletions are seen here!

Too rare to see
deletions!

Survive long enough &
you ‘re probably safe

It is quite rare to see
tables being removed at
old age
Typically, the area of
high duration is
overwhelmingly
inhabited by survivors
(although each data set
comes with a few such
cases)!

116

Few short lived tables are
born and die in the mature

life of the db
Deleted tables are

born early & last
short

Deleted tables last
short & do not change

a lot

Die young
and suddenly

[Early life of the db] There is
a very large concentration of
the deleted tables in a small
range of newly born, quickly
removed, with few or no
updates, resulting in very
low numbers of removed
tables with medium or long
durations.

[Mature db] After the early
stages of the databases, we
see the birth of tables who
eventually get deleted, but
they mostly come with very
small durations and sudden
deaths.

117

118

Top changers: early born, survivors, often with long
durations, and often all the above

• In all data sets, active tables are born early with percentages that exceed 75%
• With the exceptions of two data sets, they survive with percentage higher than 70%.
• The probability of having a long duration is higher than 50% in 6 out of 8 data sets.
• Interestingly, the two last lines are exactly the same sets of tables in all data sets!

• An active table with long duration has been born early and survived with prob. 100%
• An active, survivor table that has a long duration has been born early with prob. 100%

119

Dead are: quiet, early born, short
lived, and quite often all three of them

120

Most births &deaths
occur early (usually)

Longevity and update
activity correlate !!

122

Too many top changers
are born early

Top changers
live long

Deleted tables are
born early & last

short

Birth rate drops
over time

• Remember: top
changers are defined
as such wrt ATU
(AvgTrxnUpdate), not
wrt sum(changes)

• Still, they dominate
the sum(updates)
too! (see top of
inverse)

• See also upper right
blue part of diagonal:
too many of them
are born early and
survive => live long!

All in one

123

Top changers
are born early

Top changers
live long

An empty triangle: no deleted
tables with large or even

modest durations

Deleted tables are
born early & last

short

Deleted tables last
short & do not change

a lot

Empty space: high
change rates are

only for early born
& long lived

Birth rate drops
over time

• Early stages of the
database life are more
"active" in terms of
births, deaths and
updates, and have
higher chances of
producing deleted
tables.

• After the first major
restructuring, the
database continues to
grow; however, we see
much less removals,
and maintenance
activity becomes more
concentrated and
focused.

SURVIVAL IN SCHEMA EVOLUTION:
PUTTING THE LIVES OF SURVIVOR AND
DEAD TABLES IN COUNTERPOINT

… How do survivor tables differ from the dead ones (esp., wrt activity &
duration)?

http://www.cs.uoi.gr/~pvassil/publications/2017_CAiSE_Electrolysis

Panos Vassiliadis, Apostolos Zarras. 29th International Conference on
Advanced Information Systems Engineering , (CAiSE 2017), 12-16 June
2017, Essen, Germany.

124

http://www.cs.uoi.gr/~pvassil/publications/2015_ER

ELECTROLYSIS PATTERN FOR TABLE
ACTIVITIES

125

Rigid

Quiet

Active

Lo
w

 d
u

r.,
 r

ig
id

it
y

H
ig

h
 d

u
r.

, q
u

ie
t

DEAD

Rigid

Quiet

Active

SURVIVORS

Duration is related to the Life & Death
Class of the tables!

(a) Survival: DEAD vs SURVIVORS
(b) Activity: Rigid (no change) vs Active (change rate > 10%) vs Quiet (all in between)
(c) Life And Death (LAD) class: Survival x Activity

127

Attn: all
pct’s are
per class

The electrolysis pattern

• Survivors expose the inverse behavior, i.e., mostly located at
medium or high durations.

• The more active survivors are, the stronger they are attracted
towards high durations, with a significant such inclination for the
few active ones that cluster in very high durations.

128

• Dead tables demonstrate much
shorter lifetimes than survivor ones,

• can be located at short or medium
durations, and practically never at
high durations.

• With few exceptions, the less active
dead tables are, the higher the
chance to reach shorter durations.

The electrolysis pattern: survivors

• The extreme clustering of active survivors to high durations

• The wider spread of (quite numerous) quiet survivors to a
large span of durations with long trails of points

• The clustering of rigid survivors, albeit not just to one, but
to all kinds of durations (frequently, not as high as quiet and
active survivors)

129

The electrolysis pattern: dead

• The total absence of dead tables from high durations

• The clustering of rigid dead at low durations,

• the spread of quiet dead tables to low or medium durations, and

• the occasional presence of the few active dead, that are found
also at low or medium durations, but in a clustered way

130

Electrolysis as a heatmap showing the extreme
bias between dead and survivor tables

131

• For each LifeAndDeath value, and for each duration range of 5% of the
database lifetime, we computed the percentage of tables (over the
total of the data set) whose duration falls within this range.

• We removed cells that corresponded to only one data set

The resulting heatmap shows the polarization in colors: brighter color
signifies higher percentage of the population

Gravitation to
Rigidity
• Although the majority of survivor tables are in the quiet

class, we can quite emphatically say that it is the absence
of evolution that dominates!
– Survivors vastly outnumber removed tables.
– Similarly, rigid tables outnumber the active ones, both in the

survival and, in particular, in the dead class.
– Schema size is rarely resized, and only in survivors (not in the

paper).
– Active tables are few and do not seem to be born in other but

early phases of the database lifetime.

• Evidently, not only survival is also stronger than removal,
but rigidity is also stronger a force than variability and the
combination of the two forces further lowers the amount
of change in the life of a database schema.

132

Electrolysis

• Yes, we can indeed find patterns in the lives of tables,
during schema evolution!

• Survivors, mostly long-lived (esp. active ones) and
quietly active are radically different than dead tables,
being mostly short-lived and rigid!

• Gravitation to rigidity rules: we see more absence than
presence of schema evolution!

133

Also studied [not part of the paper]: year of
birth, schema size, schema resizing

SCHEMA EVOLUTION AND FOREIGN
KEYS: BIRTH, EVICTION, CHANGE AND
ABSENCE

… How do foreign keys evolve?

http://www.cs.uoi.gr/~pvassil/publications/2017_ER

Panos Vassiliadis, Michail-Romanos Kolozoff*, Maria Zerva, Apostolos V.
Zarras. 36th International Conference on Conceptual Modeling (ER 2017),
Nov. 6th-9th, 2017, Valencia Spain

134

http://www.cs.uoi.gr/~pvassil/publications/2017_

Research Questions

• How do foreign keys evolve over time?

– Do tables and foreign keys evolve in sync?

– When & How do foreign keys germinate & die?

• … as we will see, these questions led to unexpected
results and more insights on how developers deal
with foreign keys…

135

Evolution of
Tables & FK’s

136

• Tables grow in all cases
(known from previous
research) with periods
of slow growth,
calmness, spikes of
extension, and
occasional cleanups

• Foreign Keys are
treated with different
mentalities. 3 families:

– Scientific

– Comp. Toolkits

– CMS’s

Evolution of Tables & FK’s:
Scientific projects

137

• Tables and FKS grow in synch, in both cases

• Growth comes with expansion periods, shrinkage actions, and
periods of calmness in terms of both tables and foreign keys.

Evolution of Tables & FK’s:
Computational Resource Toolkits

138

• Tables and FKS grow little and slowly; for Castor, not exactly in
sync

• Castor: observe how scarce FK’s are (too few tables come with
FK’s, see vertical axis)

Evolution of Tables & FK’s:
Content Management Systems (CMS’s)

139

• FK scarcity: really big at Slashcode, moderate at Zabbix

• Slashcode started without foreign keys at all; 1st set of FK’s in v. 74.
Zabbix seems to show a certain degree of syncronized growth

• Yet, … both CMS's end up with no FK’s!! -> see next

What an unpleasant surprise: developers
can resort in full removal of foreign keys!

140

• Slashcode: there is a clear phase of progressive removal

• Zabbix: abrupt removal of almost the entire set of foreign keys in a
single transition. We have no knowledge on why this happened, & it
is unexpected based on how FK’s had been treated till then…

How do FK’s germinate and die?

• We classified FK’s births and deaths in 4 categories

• Births
– Born with table: when either the source or the target

table is born along with the foreign key,

– Explicit addition: when a foreign key is added to two
existing tables.

• Deletions
– Died with table: when either the source or the target table

is removed along with the foreign key,

– Explicit deletion: when neither of the source or target
tables gets deleted and only the foreign key is removed.

141

Stats on FK Change

142

Stats on FK Change

143

Atlas, Biosql and
Egee (less) deal
with FK’s as
regular part of
the schema

FK’s are, to a
large extent …
- Born with

tables
- Removed with

tables

Stats on FK Change

144

Castor & Slashcode
(both with a really
small minority of
FK’s) deal with FK’s
as an ad-hoc add
on: FK’s are mostly
explicitly added/
removed

Zabbix has a mixed
style: explicit del.
and add. w. tables
(& a sudden style
change)

Families of developer profiles wrt the
treatment of Foreign Keys

• Integral part of schema: fairly large pct of
tables involved in FKs, grow in sync with
tables, germinate and die with them

• Disposable Add-on: small pct of tables
involved in FK’s, explicit additions and
deletions, easy to remove them (in some
cases, entirely!)

• Mixed: can be with a change of style

145

Heartbeat
of change

146

Birth & deaths are
proportionally spread in
time -- except Atlas.

The volume of change is
typically low: most
changes ~ 1 FK.
Exceptions:
(a) explicit mass add & del,
(b) do-undo actions (Atlas,

Slashcode and Castor), and,
(c) restructuring due to
table renamings (4 in Biosql, 2

in Zabbix).

Percentage of transitions with FK change

147

Common theme in all the data sets: the consistent scarcity of
FK changes
• Scientific data sets: short active period + treatment of FK’s as

an integral part of the schema (births and deaths of tables
and FK’s in sync) => high pct of transitions with FK change

• The rest: FK b&d are rare and explicit (w/o mass removals,
would be even less)

Characteristics of the heartbeat of
schemata wrt Foreign Keys

• Scarcity of FK change: expectedly very few
transitions come with FK change, except for
idiosyncratic cases

• Low volume: typically 1 FK change at a time,
except for mass add/del

• Birth & deaths are proportionally spread in
time

• Occasional do-undo and restructuring due to
table renames

148

Slashcode: the disappearing FK’s

149

1st massive foreign key
removal (rev 1.120),

22 FK’s deleted.

2nd massive deletion (rev
1.151), 10 FK's deleted

3rd deletion (rev
1.174), 3 FK's deleted

4th deletion (rev
1.189) 1 FK deleted

5th deletion (rev
1.201) 1 FK deleted

"Commented-out foreign keys are ones which currently cannot
be used because they refer to a primary key which is NOT NULL
AUTO INCREMENT and the child's key either has a default value
which would be invalid for an auto increment field, typically
NOT NULL DEFAULT '0'.
Or, in some cases, the primary key is e.g. VARCHAR(20) NOT
NULL and the child's key will be VARCHAR(20). The possibility
of NULLs negates the ability to add a foreign key. <= That's
my current theory, but it doesn't explain why
discussions.topic SMALLINT UNSIGNED NOT NULL DEFAULT '0' is
able to be foreign-keyed to topics.tid SMALLINT UNSIGNED NOT
NULL AUTO INCREMENT"

1st massive foreign key
removal (rev 1.120),

22 FK’s deleted.

"Stories is now InnoDB and these other tables are still
MyISAM, so no foreign keys between them."

2nd massive deletion (rev
1.151), 10 FK's deleted

"This doesn't work, makes createStory die. These
don't work, should check why..."

"This doesn't work, since in the install pollquestions
is populated before users, alphabetically"

3rd deletion (rev 1.174),
3 FK's deleted

4th deletion (rev 1.189)
1 FK deleted

5th deletion (rev 1.201)
1 FK deleted

"This doesn't work, since discussion may be 0."
150

Slashcode: what did the comments
say?

• The main problem seems to be the difficulty of developers
with the tuning and handling of both foreign and primary
keys.

• Sometimes difficulties are hard -- e.g., different storage
engines, typically due to performance reasons

• Some difficulties are complicated due to technicalities like
autonumbering

• Sometimes fixes could be found with some effort (e.g.,
changing the order of table population, or using numeric data
types for primary keys, or inserting some “goalkeeper” values
at FK target table)

151

Scarcity of Foreign keys

• A 2013 collection of schema histories, lists 21 data sets,
-- some have more than one target DBMS variants.

• How many data sets contain foreign keys?
• Try this (also backed by manual sampling):

152

$ cd RESEARCH/Github/EvolutionDatasets
$ ls -d * */*
CERN CMS's/Coppermine CMS's/XOOPS Med
CERN/Atlas CMS's/DekiWiki CMS's/Zabbix Med/Ensembl
CERN/CASTOR CMS's/Joomla 1.5 CMS's/e107 Med/biosql
CERN/DQ2 CMS's/NucleusCMS CMS's/opencart README.md
CERN/DRAC CMS's/SlashCode CMS's/phpBB
CERN/EGEE CMS's/TikiWiki CMS's/phpwiki
CMS's CMS's/Typo3 CMS's/wikimedia

grep -rl "FOREIGN" . >> ALL-FKs-by-grep.ascii
awk '{split($0,a,"/"); print a[2],a[3]}' ALL-FKs-by-grep.ascii |
uniq

Scarcity of Foreign keys
- How many data sets, out of the 21, contain foreign keys?

153

CERN Atlas
CERN CASTOR
CERN EGEE
CMS's SlashC
CMS's Zabbix
Med biosql

CERN DQ2
CERN DΙRAC
Med Ensembl

The 6 data sets reported here

DΙRAC (not in the production folder, only at python+mysql).
9 tables at first version, 15 tables at last version
Starts with 10 FK's, ends with 8

DQ2 (only in the mySQL, not in the Oracle
version): FK’s in 19 versions out of the 55.
Starts with 2 FK's and ends with 1.

+

Ensembl: not able to link FK DDL files to
table evolution, yet

- 9 out of the 21 data sets do (including 3 that are
really small for harnessing valuable results, spec.,
Egee, DQ2, DIRAC)

http://www.boldomatic.com/view/post/G_xPI

Heartbeat
of change

154

Birth & deaths are
proportionally spread in
time -- except Atlas.

The volume of change is
typically low: most
changes ~ 1 FK.
Exceptions:
(a) explicit mass add & del,
(b) do-undo actions (Atlas,

Slashcode and Castor), and,
(c) restructuring due to
table renamings (4 in Biosql, 2

in Zabbix).

Foreign Key Evolution comes with
different treatments:
• Sometimes, FK’s are treated as an integral part of the system, and

they are born and evicted along with table birth and eviction.

• Other times, FK’s are treated as a disposable add-on: only a small
subset of the tables involved in FK’s; birth and eviction of FK’s rarely
performed in synch with their tables. If technical difficulties arise, it
is possible to witness the complete removal of FK’s from the
schema.

• Another sign of concern is that in all the CMS’ we collected, FK’s are
too scarce

• More results in the paper: stats, threats to validity, and, the
treatment of the evolving schema as an evolving graph

155

IMPACT ASSESSMENT
… and data intensive ecosystems…

156

Roadmap
• Evolution of views
• Data warehouse Evolution
• A case study (if time)
• Impact assessment in ecosystems
• Empirical studies concerning database

evolution
• Open Issues and discussions

Data intensive ecosystems

• Ecosystems of applications, built on top of
one or more databases and strongly
dependent upon them

• Like all software systems, they too change…

157

Evolving data-intensive ecosystem

158

Evolving data-intensive ecosystem

159

The impact can be syntactical (causing crashes), semantic (causing
info loss or inconsistencies) and related to the performance

Semantically unclear

Syntactically invalid

Remove CS.C_NAME

Add exam year

The impact of changes & a wish-list

• Syntactic: scripts & reports simply crash

• Semantic: views and applications can become
inconsistent or information losing

• Performance: can vary a lot

We would like: evolution predictability

i.e., control of what will be affected

before changes happen

- Learn what changes & how

- Find ways to quarantine effects

160

The Hecataeus tool & method.
Here: a first map of Drupal

161
http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

What happens if I modify table
search_index? Who are the neighbors?

162

What happens if I modify table
search_index? Who are the neighbors?

163Tooltips with info on the script & query

In the file structure too…

164

How to handle evolution?
• Architecture Graphs: graph with the data flow between modules (i.e.,

relations, views or queries) at the detailed (attribute) level; module
internals are also modeled as subgraphs of the Architecture Graph

• Policies, that annotate a module with a reaction for each possible event
that it can withstand, in one of two possible modes:
– (a) block, to veto the event and demand that the module retains its previous structure

and semantics, or,

– (b) propagate, to allow the event and adapt the module to a new internal structure.

• Given a potential change in the ecosystem
– we identify which parts of the ecosystem are affected via a “change propagation”

algorithm

– we rewrite the ecosystem to reflect the new version in the parts that are affected and
do not veto the change via a rewriting algorithm

• Within this task, we resolve conflicts (different modules dictate conflicting reactions) via a
conflict resolution algorithm

165

Manousis+ @ ER 2013 for the details of impact analysis (summary coming)
ER 2014 for the visualization (not here)

University E/S Architecture Graph

166

Architecture Graph

167

Modules and Module
Encapsulation
Observe the input and
output schemata!!

SELECT V.STUDENT_ID, S.STUDENT_NAME,
AVG(V.TGRADE) AS GPA

FROM V_TR V |><| STUDENT S ON STUDENT_ID
WHERE V.TGRADE > 4 / 10
GROUP BY V.STUDENT_ID, S.STUDENT_NAME

168

Policies to predetermine reactions

Remove CS.C_NAME

Add exam year

Allow addition

Allow deletion

RELATION.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE_SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;

VIEW.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.OUT.SELF: on DELETE_SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;

QUERY.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.OUT.SELF: on DELETE_SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;

Policies to predetermine the modules’
reaction to a hypothetical event?

169

How to handle evolution?

Remove CS.C_NAME

Internals of impact assess. & rewriting
1. Impact assessment. Given a potential event, a status

determination algorithm makes sure that the nodes of the
ecosystem are assigned a status concerning (a) whether they
are affected by the event or not and (b) what their reaction
to the event is (block or propagate).

2. Conflict resolution and calculation of variants. Algorithm
that checks the affected parts of the graph in order to
highlight affected nodes with whether they will adapt to a
new version or retain both their old and new variants.

3. Module Rewriting. Our algorithm visits affected modules
sequentially and performs the appropriate restructuring of
nodes and edges.

170

Impact assessment & rewriting

171

Conflicts: what they are and how to
handle them (more than flooding)

172

R

View0

View1 View2

Query1 Query2

R

View0n

View1n View2n

Query1n

View0

View2

Query2

BEFORE
AFTER

• View0 initiates a change
• View1 and View 2 accept the

change

• Query2 rejects the change
• Query1 accepts the change

• The path to Query2 is left intact, so
that it retains it semantics
• View1 and Query1 are adapted
• View0 and View2 are adapted too,

however, we need two version for
each: one to serve Query2 and
another to serve View1 and Query1

Played an impact analysis scenario:
delete attr. ‘word’ from search_index

173

2. Queries Q215
and Q216 vetoed

1. The table
allowed the
deletion, but…

