
Schema Evolution for Relational
Databases

Panos Vassiliadis
joint work with: Apostolos Zarras, Ioannis Skoulis, Petros Manousis,

Fanis Giahos, Michael Kolozoff, Athanasios Pappas, Maria Zerva

Department of Computer Science and Engineering
University of Ioannina, Hellas

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/index.html�

The nature that needs change is vicious;
for it is not simple nor good…

2 Nicomachean Ethics, Book VII, Aristotle

SWEBOK Maintenance
• Corrective maintenance: reactive modification (or repairs) of

a software product performed after delivery to correct
discovered problems.

• Adaptive maintenance: modification of a software product
performed after delivery to keep a software product usable
in a changed or changing environment.

• Perfective maintenance: modification of a software product
after delivery to provide enhancements for users,
improvement of program documentation, and recoding to
improve software performance, maintainability, or other
software attributes.

• Preventive maintenance: modification of a software product
after delivery to detect and correct latent faults in the
software product before they become operational faults. 3

Correction Enhancement
Proactive Preventive Perfective
Reactive Corrective Adaptive

Database Evolution: why and what

• All software systems and, thus, both the databases
themselves and applications built around databases are
dynamic environments and can evolve due
– Changes of requirements
– Internal restructuring due to performance reasons
– migration to / integration with another system
– …

• Database evolution further concerns
– changes in the operational environment of the database
– changes in the content (data) of the databases as time passes by
– changes in the internal structure, or schema, of the database

4

What evolves in DBMS...

• Data
 UPDATE EMP

SET SALARY = SALARY *1.10

WHERE...

EMP_ID SALARY

100 1500

EMP_ID SALARY

100 1650

• Metadata – Schemata – Models

ALTER TABLE EMP

ADD COLUMN PHONE VARCHAR ...

EMP_ID SALARY

100 1500

EMP_ID SALARY PHONE

100 1500 210777777

5

Why is (schema) evolution so
important?

• Software and DB maintenance makes up for at least
50% of all resources spent in a project.

• Changes are more frequent than you think
• Databases are rarely stand-alone: typically, an entire

ecosystem of applications is structured around them
=>

• Changes in the schema can impact a large (typically,
not traced) number of surrounding app’s, without
explicit identification of the impact

6

Embedded queries in the past
[Maule+08] …

7

… nowadays, to be complemented
with API-based db access (Drupal)

8

Evolution taxonomy

• Schema evolution, itself, can be addressed at
– the conceptual level (req’s, goals, conc. models, ….

evolve)
– the logical level, where the main constructs of the

database structure evolve
• E.g.,: relations and views in the relational area, classes

in the object-oriented database area, or (XML)
elements in the XML/semi-structured area),

– the physical level, involving data placement and
partitioning, indexing, compression, archiving etc.

9

Evolution taxonomy: areas

• Relational databases
• Object Oriented db’s
• Conceptual models
• XML
• Ontologies
• …

• Special case of relational: data warehouses

10

… To probe further …
• Michael Hartung, James F. Terwilliger, Erhard Rahm:

Recent Advances in Schema and Ontology Evolution. In
Schema Matching and Mapping (Zohra Bellahsene,
Angela Bonifati, Erhard Rahm), 149-190, Springer 2011,
ISBN 978-3-642-16517-7

• Matteo Golfarelli, Stefano Rizzi: A Survey on Temporal
Data Warehousing. IJDWM 5(1): 1-17 (2009)

• Robert Wrembel: A Survey of Managing the Evolution
of Data Warehouses. IJDWM 5(2): 24-56 (2009)

11

Imagine if we could predict how a
schema will evolve over time…

• … we would be able to “design for evolution”
and minimize the impact of evolution to the
surrounding applications
– by applying design patterns
– by avoiding anti-patterns & complexity increase
… in both the db and the code

• … we would be able to plan administration and
perfective maintenance tasks and resources,
instead of responding to emergencies

12

WHAT ARE THE
“LAWS” OF
DATABASE SCHEMA
EVOLUTION?

13

Why aren’t we there yet?
 • Historically, nobody from the research community had access

+ the right to publish to version histories of database
schemata

• Open source tools internally hosting databases have changed
this landscape &

• We are now presented with the opportunity to study the
version histories of such “open source databases”

14 2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Mind the gap!
(15 years)

Our take on the problem
• Collected version histories for the schemata of 8 open-source projects

– CMS’s: MediaWiki, TYPO3, Coppermine, phpBB, OpenCart
– Physics: ATLAS Trigger --- Bio: Ensemble, BioSQL

• Preprocessed them to be parsable by our HECATE schema comparison tool

and exported the transitions between each two subsequent versions and
measures for them (size, growth, changes)

• Exploratory search where we statistically studied / mined these measures, to

extract patterns & regularities for the lives of tables

• Web:
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

• Data available at:
https://github.com/DAINTINESS-Group/EvolutionDatasets

15

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�
https://github.com/DAINTINESS-Group/EvolutionDatasets�
https://github.com/DAINTINESS-Group/EvolutionDatasets�
https://github.com/DAINTINESS-Group/EvolutionDatasets�

Scope of the study
• Scope:

– databases being part of open-source
software (and not proprietary ones)

– long history
– we work only with changes at the

logical schema level (and ignore
physical-level changes like index
creation or change of storage engine)

• We encompass datasets with different

domains ([A]: physics, [B]: biomedical, [C]:
CMS’s), amount of growth (shade: high,
med, low) & schema size

• We should be very careful to not
overgeneralize findings to proprietary
databases or physical schemata!

FoSS Dataset
Versio

ns
Lifetime

Tables

@

Start

Tables

@

End

ATLAS Trigger

[A]
84 2 Y, 7 M, 2 D 56 73

BioSQL [B] 46 10 Y, 6 M, 19 D 21 28

Coppermine

[C]
117 8 Y, 6 M, 2 D 8 22

Ensembl [B] 528 13 Y, 3 M, 15 D 17 75

MediaWiki

[C]
322 8 Y, 10 M, 6 D 17 50

OpenCart [C] 164 4 Y, 4 M, 3 D 46 114

phpBB [C] 133 6 Y, 7 M, 10 D 61 65

TYPO3 [C] 97 8 Y, 11 M, 0 D 10 23
16

Hecate: SQL schema diff extractor

17 https://github.com/DAINTINESS-Group/Hecate

https://github.com/DAINTINESS-Group/Hecate�

SCHEMA EVOLUTION FOR O/S DB’S
AT THE “MACRO” LEVEL

.. What do we see if we observe the evolution of the entire schema?

http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

• Skoulis, Vassiliadis, Zarras. Open-Source Databases: Within, Outside, or Beyond

Lehman's Laws of Software Evolution? CAiSE 2014
• Growing up with stability: How open-source relational databases evolve.

Information Systems, Volume 53, October–November 2015

18

Exploratory search of the schema
histories for patterns

19

Input: schema histories from
github/sourceforge/…
Raw material: details and
stats on each table’s life, as
produced by our diff
extractor, for all the 8
datasets

Output: properties &
patterns on schema
properties (size, growth,
changes, …) that occur
frequently in our data sets
Highlights
• Patterns on size and growth
• Compliance to Lehman’s

laws

48

53

58

63

68

73

1 11 21 31 41 51 61 71 81
17
19
21
23
25
27
29

1 5 9 13 17 21 25 29 33 37 41 45

5

10

15

20

1 11

21

31

41

51

61

71

81

91

10
1

11
1

10

30

50

70

1 42

83

12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

40

60

80

100

120

1 17

31

45

59

73

87

10
1

11
5

12
9

14
3

15
7

58

60

62

64

66

1 12

23

34

45

56

67

78

89

10
0

11
1

12
2

13
3

9

14

19

24

1 10 19 28 37 46 55 64 73 82 91

10

20

30

40

50

1 26

51

76

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

Schema Size (relations)

20 http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Schema Size

• Overall increase in size
• Periods of increase, esp. at beginning and

after large drops -> positive feedback
• Drops: sudden and steep (in short duration) ->

negative feedback
• Large periods of stability!

– Unlike traditional S/W, db’s are dependency
magnets…

21

Growth over time
Calmness periods

Increase both slow (mostly) and abrupt
Occasional abrupt drops (maintenance)

-10

-5

0

5

10

-2

0

2

4

6

-3

-2

-1

0

1

2

3

-15

-10

-5

0

5

10

-10

0

10

20

30

-6

-4

-2

0

2

4

6

-4

-2

0

2

4

6

-4

-2

0

2

4

Schema Growth (diff in #tables)

25 http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Schema growth is small!
• Growth is bounded in small values!
• Zipfian distribution of growth values around 0

– Predominantly: occurrences of zero growth; almost all
deltas are bounded between [-2..2] tables

– [0..2] tables slightly more popular => average value of
growth slightly higher than 0

• No periods of continuous change; small spikes instead

• Due to perfective maintenance, we also have negative
values of growth (less than the positive ones).

• Oscillations exist too: positive growth is followed with
immediate negative growth or stability

26 http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Zipfian model in the distribution of
growth frequencies

27

Growth: delta in the schema size
for two subsequent versions

What happens after large changes?

28 http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

[With exceptions]
Density: focused maintenance effort
Progressive cooling : early –maintenance density >> later stages
Several spikes, many zero-change periods/versions

#tables & heartbeat of changes over time

Main results
Schema size (#tables, #attributes) supports the assumption of a feedback mechanism
• Schema size grows over time; not continuously, but with bursts of concentrated

effort
• Drops in schema size signify the existence of perfective maintenance
• Regressive formula for size estimation holds, with a quite short memory

Schema Growth (diff in size between subsequent versions) is small!!
• Growth is small, smaller than in typical software
• The number of changes for each evolution step follows Zipf’s law around zero
• Average growth is close (slightly higher) to zero

Patterns of change: no consistently constant behavior
• Changes reduce in density as databases age
• Change follows three patterns: Stillness, Abrupt change (up or down), Smooth

growth upwards
• Change frequently follows spike patterns
• Complexity does not increase with age

31

Grey for results
requiring further
search

http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

OBSERVING THE EVOLUTION OF O/S DB
SCHEMATA AT THE MICRO LEVEL

.. What do we see if we observe the evolution of individual tables?

http://www.cs.uoi.gr/~pvassil/publications/2015_ER

P. Vassiliadis, A. Zarras, I. Skoulis. How is Life for a Table in an Evolving
Relational Schema? Birth, Death & Everything in Between. ER 2015
Gravitating to rigidity: Patterns of schema evolution – and its absence –
in the lives of tables. Accepted in Information Systems.

32

http://www.cs.uoi.gr/~pvassil/publications/2015_ER�

Exploratory search of the schema
histories for patterns

33

Input: schema histories from
github/sourceforge/…
Raw material: details and
stats on each table’s life, as
produced by our diff
extractor, for all the 8
datasets

Output: properties &
patterns on table properties
(birth, duration, amt of
change, …) that occur
frequently in our data sets
Highlights
4 patterns of evolution

SCHEMA SIZE, CHANGE AND
DURATION

-Statistical properties for schema size, change and duration of tables
- How are these measures interrelated?

34

The Gamma Pattern:
"if you 're wide, you survive"
• The Gamma phenomenon:

– tables with small schema sizes can
have arbitrary durations, //small size does
not determine duration

– larger size tables last long

• Observations:
– whenever a table exceeds the critical

value of 10 attributes in its schema, its
chances of surviving are high.

– in most cases, the large tables are
created early on and are not deleted
afterwards.

35

0

20

40

60

80

100

0 10 20 30

du
ra

tio
n

schema size@birth

Atlas: duration/ size

266

0

40

80

120

0 5 10 15 20 25

du
ra

tio
n

schema size@birth

Coppermine:
duration

/ schema size

0

50

100

150

200

250

300

350

0 5 10 15 20
du

ra
tio

n
schema size@birth

mwiki: duration /
schema size

36

Exceptions
- Biosql: nobody exceeds

10 attributes
- Ensembl, mwiki: very few

exceed 10 attributes, 3 of
them died

- typo: has many late born
survivors

The Comet Pattern

“Comet “ for change over schema size with:
• a large, dense, nucleus cluster close to

the beginning of the axes, denoting small
size and small amount of change,

• medium schema size tables typically
demonstrating medium to large change
– The tables with the largest amount of change are

typically tables whose schema is on average one
standard deviation above the mean

• wide tables with large schema sizes
demonstrating small to medium
(typically around the middle of the y-
axis) amount of change.

0
5

10
15
20
25
30
35

0 10 20 30

ch
an

ge
s

schema size@birth

Atlas: changes / schema size

266

0

5

10

15

20

0 5 10 15 20 25

ch
an

ge
s

schema size@birth

Coppermine: changes / schema
size

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20

ch
an

ge
s

schema size@birth

mwiki: changes /
schema size

37

http://visual.merriam-webster.com/astronomy/celestial-bodies/comet.php

38

http://spaceplace.nasa.gov/comet-nucleus/en/

The inverse Gamma
pattern
• The correlation of change and

duration is as follows:
– small durations come necessarily

with small change,
– large durations come with all kinds

of change activity and
– medium sized durations come

mostly with small change activity
(Inverse Gamma).

0
5

10
15
20
25
30
35

0 50 100

ch
an

ge
s

duration

Atlas: changes / duration

0

5

10

15

20

0 40 80 120

ch
an

ge
s

duration

Coppermine: changes
/ duration

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250 300 350

ch
an

ge
s

duration

mwiki:
changes / duration

39

40

BIRTHDAY & SCHEMA SIZE &
MATTERS OF LIFE AND DEATH

Who are the top changers?
Who are removed at some point of time?
How do removals take place?

41

Quiet tables rule, esp. for mature db’s

Non-survivors
• Sudden deaths mostly
• Quiet come ~ close
• Too few active

42

Survivors
• Quiet tables rule
• Rigid and active then
• Active mostly in “new” db’s

Mature DB’s: the pct of active tables drops significantly

Longevity and update
activity correlate !!

43

Too many top changers
are born early

Top changers
live long

Deleted tables are
born early & last

short

Birth rate drops
over time

The few top-changers (in
terms of avg trans.
update – ATU)

• are long lived,
• typically come from the

early versions of the
database

• due to the combination
of high ATU and
duration => they have
high total amount of
updates, and,

• frequently survive!

Empty space: high
change rates are

only for early born
& long lived

An empty triangle: no deleted
tables with large or even

modest durations

Deleted tables are
born early & last

short

Deleted tables last
short & do not change

a lot

Empty space: high
change rates are

only for early born
& long lived

Die young
and suddenly

• There is a very large
concentration of the
deleted tables in a
small range of newly
born, quickly
removed, with few or
no updates…

• …. resulting in very
low numbers of
removed tables with
medium or long
durations (empty
triangle).

44

High durations are
overwhelmingly blue!
Only a couple of
deletions are seen here!

Too rare to see
deletions!

Survive long enough &
you ‘re probably safe
It is quite rare to see
tables being removed at
old age
Typically, the area of
high duration is
overwhelmingly
inhabited by survivors
(although each data set
comes with a few such
cases)!

45

Few short lived tables are
born and die in the mature

life of the db Deleted tables are
born early & last

short

Deleted tables last
short & do not change

a lot

Die young
and suddenly

[Early life of the db] There is
a very large concentration of
the deleted tables in a small
range of newly born, quickly
removed, with few or no
updates, resulting in very
low numbers of removed
tables with medium or long
durations.

[Mature db] After the early
stages of the databases, we
see the birth of tables who
eventually get deleted, but
they mostly come with very
small durations and sudden
deaths.
 46

47

Regularities on table change do exist!

48

If you’re wide, you survive

Top-changers typically live long, are early
born, survive …
… and they are not necessarily the widest
ones in terms of schema size

Progressive cooling: most change activity lies
at the beginning of the db history
Void triangle: The few dead tables are
typically quiet, early born, short lived, and
quite often all three of them

OPEN ISSUES

Where we stand
Open issues
… and discussions …

49

Where we stand

• We have a first glimpse of the mechanics of
schema evolution for FoSS ecosystems

• We have a first understanding of schemata
growing, changed in focused periods of
maintenance and progressively “cooling” down

• We have a first understanding of patterns relating
to how tables change, given their size, update
behavior, time of birth, …

50

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�

Are there “laws” of schema evolution?

• Collect more test cases
• Tools for the automation of the process

– Extract changes & verify their correctness (what happened)
– Link changes to expressed user req’s / bugs / … (why it

happened & by whom)
– Extract sub-histories of focused maintenance (how it happened

& when)
– Co-change of schema and code (what is affected in the code)
– Visualization

• Consolidate the fundamental laws that govern evolution

&& forecast it (what will change)

51

Unexplored research territory (risky
but possibly rewarding)

• Weather Forecast: given the history and the state of
a database, predict subsequent events
– Risky: frequently, changes come due to an external,

changing world and have “thematic” affinity.
– Big & small steps in many directions needed (more

data sets, studies with high internal validity to find
causations, more events to capture, …)

• Engineer for evolution: To absorb change gracefully
we can try to (i) alter db design and DDL; (ii)
encapsulate the database via a “stable” API; …

52

Management of ecosystems’ evolution

• Can we find these constructs that are most sensitive
to evolution?
– Metrics for sensitivity to evolution?

• Automation of the reaction to changes

– self-monitoring
– impact prediction
– auto-regulation (policy determination)
– self-repairing

53 http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

Take Away Message

• Evolution is viciously omnipresent; due to its huge
impact, it is leading to non-evolvable (rigid) data &
software structures

• Practically:
– Plan for evolution, well ahead of construction
– So far, our solutions and tools help only so much
– Industry not likely to help

• This is why we can and have to do research
– We can do pure scientific research to find laws
– We can do practical work for tools and methods

that reduce the pain

… and don’t forget to put everything in the git … 54

Thank you!
Q&A

http://www.cs.uoi.gr/~pvassil/

DB Schema Evolution
Papers, Data sets, Code, Results

projects/schemaBiographies/

Architecture Graphs && Hecataeus
projects/hecataeus/

55

https://github.com/DAINTINESS-Group/

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/�
https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�
http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/�

AUXILIARY SLIDES

56

What are the “laws” of database
(schema) evolution?

• How do databases change?
• In particular, how does the schema of a database

evolve over time?

• Long term research goals:
– Are there any “invariant properties” (e.g., patterns of

repeating behavior) on the way database (schemata)
change?

– Is there a theory / model to explain them?
– Can we exploit findings to engineer data-intensive

ecosystems that withstand change gracefully?

57

Why care for the “laws”/patterns of
schema evolution?

• Scientific curiosity!
• Practical Impact: DB’s are dependency

magnets. Applications have to conform to the
structure of the db…
– typically, development waits till the “db

backbone” is stable and applications are build on
top of it

– slight changes to the structure of a db can cause
several (parts of) different applications to crash,
causing the need for emergency repairing

58

… nowadays, to be complemented
with API-based db access (Drupal)

59

Abstract coupling example
from my SW Dev course

60

Interface
as a
contract

Client
class

Service
providers

Factory
as a
bridge

Specification

≠
Implementation

Datasets
https://github.com/DAINTINESS-Group/EvolutionDatasets

● Content management Systems
● MediaWiki, TYPO3, Coppermine, phpBB, OpenCart

● Medical Databases
● Ensemble, BioSQL

● Scientific
● ATLAS Trigger

61

https://github.com/DAINTINESS-Group/EvolutionDatasets�
https://github.com/DAINTINESS-Group/Hecate�

Data sets

62

Dataset
Versi

ons
Lifetime

Table

s Start

Table

s End

Attribut

es Start

Attribut

es End

Commit

s per

Day

% commits

with

change

Repository URL

ATLAS Trigger 84 2 Y, 7 M, 2 D 56 73 709 858 0,089 82%
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-

atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/com

bined_schema.sql

BioSQL 46 10 Y, 6 M, 19 D 21 28 74 129 0,012 63%
https://github.com/biosql/biosql/blob/master/sql/biosqldb-

mysql.sql

Coppermine 117 8 Y, 6 M, 2 D 8 22 87 169 0,038 50%
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg

1.5.x/sql/schema.sql

Ensembl 528 13 Y, 3 M, 15 D 17 75 75 486 0,109 60%
http://cvs.sanger.ac.uk/cgi-

bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log

MediaWiki 322 8 Y, 10 M, 6 D 17 50 100 318 0,100 59%
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/main

tenance/tables.sql?view=log

OpenCart 164 4 Y, 4 M, 3 D 46 114 292 731 0,104 47%
https://github.com/opencart/opencart/blob/master/upload/inst

all/opencart.sql

phpBB 133 6 Y, 7 M, 10 D 61 65 611 565 0,055 82%
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/

schemas/mysql_41_schema.sql

TYPO3 97 8 Y, 11 M, 0 D 10 23 122 414 0,030 76%
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-

0:/t3lib/stddb/tables.sql

http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg1.5.x/sql/schema.sql�
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg1.5.x/sql/schema.sql�
http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log�
http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log�
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/maintenance/tables.sql?view=log�
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/maintenance/tables.sql?view=log�
https://github.com/opencart/opencart/blob/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/blob/master/upload/install/opencart.sql�
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/schemas/mysql_41_schema.sql�
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/schemas/mysql_41_schema.sql�
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-0:/t3lib/stddb/tables.sql�
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-0:/t3lib/stddb/tables.sql�

Hecate: SQL schema diff extractor
● Parses DDL files
● Creates a model for the parsed SQL elements
● Compares two versions of the same schema
● Reports on the diff performed with a variety of

metrics
● Exports the transitions that occurred in XML

format

https://github.com/DAINTINESS-Group/Hecate

63

https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�

64

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pvassil/publications/2015_ER/

http://www.cs.uoi.gr/~pvassil/publications/2015_ER/�

65

SCOPE OF THE STUDY && VALIDITY
CONSIDERATIONS

66

Data sets

67

Dataset
Versi

ons
Lifetime

Table

s Start

Table

s End

Attribut

es Start

Attribut

es End

Commit

s per

Day

% commits

with

change

Repository URL

ATLAS Trigger 84 2 Y, 7 M, 2 D 56 73 709 858 0,089 82%
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-

atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/com

bined_schema.sql

BioSQL 46 10 Y, 6 M, 19 D 21 28 74 129 0,012 63%
https://github.com/biosql/biosql/blob/master/sql/biosqldb-

mysql.sql

Coppermine 117 8 Y, 6 M, 2 D 8 22 87 169 0,038 50%
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg

1.5.x/sql/schema.sql

Ensembl 528 13 Y, 3 M, 15 D 17 75 75 486 0,109 60%
http://cvs.sanger.ac.uk/cgi-

bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log

MediaWiki 322 8 Y, 10 M, 6 D 17 50 100 318 0,100 59%
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/main

tenance/tables.sql?view=log

OpenCart 164 4 Y, 4 M, 3 D 46 114 292 731 0,104 47%
https://github.com/opencart/opencart/blob/master/upload/inst

all/opencart.sql

phpBB 133 6 Y, 7 M, 10 D 61 65 611 565 0,055 82%
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/

schemas/mysql_41_schema.sql

TYPO3 97 8 Y, 11 M, 0 D 10 23 122 414 0,030 76%
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-

0:/t3lib/stddb/tables.sql

http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg1.5.x/sql/schema.sql�
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg1.5.x/sql/schema.sql�
http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log�
http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log�
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/maintenance/tables.sql?view=log�
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/maintenance/tables.sql?view=log�
https://github.com/opencart/opencart/blob/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/blob/master/upload/install/opencart.sql�
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/schemas/mysql_41_schema.sql�
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/schemas/mysql_41_schema.sql�
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-0:/t3lib/stddb/tables.sql�
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-0:/t3lib/stddb/tables.sql�

Scope of the study
• Scope:

– databases being part of open-source
software (and not proprietary ones)

– long history
– we work only with changes at the

logical schema level (and ignore
physical-level changes like index
creation or change of storage engine)

• We encompass datasets with different

domains ([A]: physics, [B]: biomedical, [C]:
CMS’s), amount of growth (shade: high,
med, low) & schema size

• We should be very careful to not
overgeneralize findings to proprietary
databases or physical schemata!

FoSS Dataset
Versio

ns
Lifetime

Tables

@

Start

Tables

@

End

ATLAS Trigger

[A]
84 2 Y, 7 M, 2 D 56 73

BioSQL [B] 46 10 Y, 6 M, 19 D 21 28

Coppermine

[C]
117 8 Y, 6 M, 2 D 8 22

Ensembl [B] 528 13 Y, 3 M, 15 D 17 75

MediaWiki

[C]
322 8 Y, 10 M, 6 D 17 50

OpenCart [C] 164 4 Y, 4 M, 3 D 46 114

phpBB [C] 133 6 Y, 7 M, 10 D 61 65

TYPO3 [C] 97 8 Y, 11 M, 0 D 10 23
68

External validity
• We perform an exploratory study to observe frequently occurring

phenomena within the scope of the aforementioned population
• Are our data sets representative enough? Is it possible that the

observed behaviors are caused by sui-generis characteristics of the
studied data sets?
– Yes: we believe we have a good population definition & we abide by it
– Yes: we believe we have a large number of databases, from a variety of

domains with different profiles, that seem to give fairly consistent
answers to our research questions (behavior deviations are mostly
related to the maturity of the database and not to its application
area).

– Yes: we believe we have a good data extraction and measurement
process without interference / selection / … of the input from our part

– Maybe: unclear when the number of studied databases is large
enough to declare the general application of a pattern as “universal”.

Can we generalize out
findings broadly?

69

External validity
• Understanding the represented population

– Precision: all our data sets belong to the specified population
– Definition Completeness: no missing property that we knowledgably omit to report
– FoSS has an inherent way of maintenance and evolution

• Representativeness of selected datasets
– Data sets come from 3 categories of FoSS (CMS / Biomedical / Physics)
– They have different size and growth volumes
– Results are fairly consistent both in our ER’15 and our CAiSE’14 papers

• Treatment of data
– We have tested our “Delta Extractor”, Hecate, to parse the input correctly & adapted it

during its development; the parser is not a full-blown SQL parser, but robust to ignore
parts unknown to it

– A handful of cases where adapted in the Coppermine to avoid overcomplicating the
parser; not a serious threat to validity ; other than that we have not interfered with the
input

– Fully automated counting for the measures via Hecate

Can we generalize out
findings broadly?

70

To probe further (code, data, results, …)
http://www.cs.uoi.gr/~pvassil/publications/2015_ER/

https://github.com/DAINTINESS-Group

Most importantly:
we are happy to invite you to

reuse /test /assess /disprove /…
all our code, data and results!

71

http://www.cs.uoi.gr/~pvassil/publications/2015_ER/�
https://github.com/DAINTINESS-Group�
https://github.com/DAINTINESS-Group�
https://github.com/DAINTINESS-Group�
https://github.com/DAINTINESS-Group�

Internal validity

• Internal validity concerns the accuracy of cause-
effect statements: “change in A => change in B”

• We are very careful to avoid making strong
causation statements!
– In some places, we just hint that we suspect the

causes for a particular phenomenon, in some places in
the text, but we have no data, yet, to verify our gut-
feeling.

– And yes, it is quite possible that our correlations hide
cofounding variables.

• Can we confirm
statements A=>B? No!

• Are there any spurious
relationships? Maybe!

72

Is there a theory?
• Our study should be regarded as a pattern observer, rather

than as a collection of laws, coming with their internal
mechanics and architecture.

• It will take too many studies (to enlarge the
representativeness even more) and more controlled
experiments (in-depth excavation of cause-effect
relationships) to produce a solid theory.

• It would be highly desirable if a clear set of requirements
on the population definition, the breadth of study and the
experimental protocol could be solidified by the scientific
community (like e.g., the TREC benchmarks)

• … and of course, there might be other suggestions on how
to proceed…

73

RELATED WORK

74

Timeline of empirical studies

75

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Timeline of empirical studies

76

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Sjoberg @ IST 93: 18 months study of a health system.
139% increase of #tables ; 274% increase of the #attributes

Changes in the code (on avg):
relation addition: 19 changes ; attribute additions: 2 changes
relation deletion : 59.5 changes; attribute deletions: 3.25 changes

An inflating period during construction where almost all changes were additions,
and a subsequent period where additions and deletions where balanced.

Timeline of empirical studies

77

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Curino+ @ ICEIS08: Mediawiki for 4.5 years
100% increase in the number of tables
142% in the number of attributes.

45% of changes do not affect the information capacity of the schema (but
are rather index adjustments, documentation, etc)

Timeline of empirical studies

78

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

IWPSE09: Mozilla and Monotone (a version control system)
Many ways to be out of synch between code and evolving db schema

ICDEW11: Firefox, Monotone , Biblioteq (catalogue man.) , Vienna (RSS)
Similar pct of changes with previous work
Frequency and timing analysis: db schemata tend to stabilize over time,
as there is more change at the beginning of their history, but seem to
converge to a relatively fixed structure later

Timeline of empirical studies

79

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Qiu,Li,Su@ FSE 2013: 10 (!) database schemata studied.
Change is focused both (a) with respect to time and (b) with respect to the
tables who change.

Timing: 7 out of 10 databases reached 60% of their schema size within 20% of
their early lifetime.
Change is frequent in the early stages of the databases, with inflationary
characteristics; then, the schema evolution process calms down.

Tables that change: 40% of tables do not undergo any change at all, and 60%-
90% of changes pertain to 20% of the tables (in other words, 80% of the tables
live quiet lives). The most frequently modified tables attract 80% of the changes.

Timeline of empirical studies

80

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Qiu,Li,Su@ FSE 2013: Code and db co-evolution, not always in synch.
• Code and db changed in the same revision: 50.67% occasions
• Code change was in a previous/subsequent version than the one where the

database schema change: 16.22% of occasions
• database changes not followed by code adaptation: 21.62% of occasions
• 11.49% of code changes were unrelated to the database evolution.

Each atomic change at the schema level is estimated to result in 10 -- 100 lines of
application code been updated;
A valid db revision results in 100 -- 1000 lines of application code being updated

Timeline of empirical studies

81

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

CAiSE14: DB level
ER’15: Table level

STATS

82

Statistical study of durations

• Short and long lived
tables are practically
equally proportioned

• Medium size durations
are fewer than the rest!

• Long lived tables are
surprisingly too many
– in half the data sets they

are the most populated
group

– in all but one data set
they exceed 30%

83

Way too many long-lived tables
live throughout the entire

lifespan (Max Duration) of the
database

Tables are mostly thin
• On average, half of the

tables (approx. 47%) are
thin tables with less than 5
attributes.

• The tables with 5 to 10
attributes are
approximately one third of
the tables' population

• The large tables with more
than 10 attributes are
approximately 17% of the
tables.

84

THE FOUR PATTERNS

85

THE GAMMA PATTERN

Schema size @ birth / duration

If you ‘re wide, you survive
a.k.a (only the thin die young, all the wide ones seem to live forever)

87

Exceptions
- Biosql: nobody exceeds

10 attributes
- Ensembl, mwiki: very few

exceed 10 attributes, 3 of
them died

- typo: has many late born
survivors

Stats on wide tables and their survival

Definitions:
Wide schema: strictly above 10 attributes.
The top band of durations (the upper part of the Gamma shape): the upper 10% of the
values in the y-axis.
Early born table: ts birth version is in the lowest 33% of versions;
Late-comers: born after the 77% of the number of versions.

Whenever a table is wide, its chances
of surviving are high

Apart from mwiki and ensembl, all the rest of the data sets confirm the hypothesis with
a percentage higher than 85%. The two exceptions are as high as 50% for their support
to the hypothesis.

Wide tables are frequently created early on
and are not deleted afterwards

Early born, wide, survivor tables (as a percentage over the set of wide tables).
- in half the data sets the percentage is above 70%
- in two of them the percentage of these tables is one third of the wide tables.

Whenever a table is wide, its duration frequently lies
within the top-band of durations (upper part of Gamma)

What is probability that a wide table belongs to the upper part of the Gamma?

- there is a very strong correlation between the two last columns: the Pearson
correlation is 88% overall; 100% for the datasets with high pct of early born wide tables.
-
- Bipolarity on this pattern: half the cases support the pattern with support higher than
70%, whereas the rest of the cases clearly disprove it, with very low support values.

Long-lived & wide => early born and survivor

In all data sets, if a wide table has a long duration within the upper part of the
Gamma, this deterministically (100% of all data sets) signifies that the table was also
early born and survivor.
If a wide table is in the top of the Gamma line, it is deterministically an early born
survivor.

Subset
relationship

THE COMET PATTERN

Schema size and updates

http://visual.merriam-webster.com/astronomy/celestial-bodies/comet.php

94

http://spaceplace.nasa.gov/comet-nucleus/en/

Statistics of schema size at birth and
sum of updates

Typically: ~70% of tables inside the box

Typically, around 70% of the tables of a database is found within the 10x10 box of
schemaSize@birth x sumOfUpdates (10 excluded in both axes).

Top changers tend to have medium
schema sizes

For every dataset: we selected the top 5% of tables in terms of this sum of updates
and we averaged the schema size at birth of these top 5% tables.

Top changers tend to have medium
schema sizes

The average schema size for the top 5% of tables in terms of their update behavior
is close to one standard deviation up from the average value of the schema size at
birth(i.e., very close to mu+$sigma$). //except phpBB

Top changers tend to have medium
schema sizes

- In 5 out of 8 cases, the average schema size of top-changers within 0.4 and 0.5 of
the maximum value (practically the middle of the domain) and never above 0.65 of it.
- Pearson: the maximum value, the standard deviation of the entire data set and the
average of the top changers are very strongly correlated.

Wide tables have a medium number of updates

For each data set, we took the top 5% in terms of schema size at birth (top wide) and
contrasted their update behavior wrt the update behavior of the entire data set.
Typically, the avg. number of updates of the top wide tables is close to the 50% of the
domain of values for the sum of updates (i.e., the middle of the y-axis of the comet figure,
measuring the sum of updates for each table).
This is mainly due to the (very) large standard deviation (twice the mean), rather than the
--typically low -- mean value (due to the large part of the population living quiet lives).

INVERSE GAMMA

102

Skyline & Avg
 for Inverse

Gamma

THE EMPTY TRIANGLE PATTERN

104

105

Top changers: early born, survivors, often with long
durations, and often all the above

• In all data sets, active tables are born early with percentages that exceed 75%
• With the exceptions of two data sets, they survive with percentage higher than 70%.
• The probability of having a long duration is higher than 50% in 6 out of 8 data sets.
• Interestingly, the two last lines are exactly the same sets of tables in all data sets!

• An active table with long duration has been born early and survived with prob. 100%
• An active, survivor table that has a long duration has been born early with prob. 100%

106

Dead are: quiet, early born, short
lived, and quite often all three of them

107

Most births &deaths
occur early (usually)

Longevity and update
activity correlate !!

109

Too many top changers
are born early

Top changers
live long

Deleted tables are
born early & last

short

Birth rate drops
over time

• Remember: top
changers are defined
as such wrt ATU
(AvgTrxnUpdate), not
wrt sum(changes)

• Still, they dominate
the sum(updates)
too! (see top of
inverse Γ)

• See also upper right
blue part of diagonal:
too many of them
are born early and
survive => live long!

All in one

110

Top changers
are born early

Top changers
live long

An empty triangle: no deleted
tables with large or even

modest durations

Deleted tables are
born early & last

short

Deleted tables last
short & do not change

a lot

Empty space: high
change rates are

only for early born
& long lived

Birth rate drops
over time

• Early stages of the
database life are more
"active" in terms of
births, deaths and
updates, and have
higher chances of
producing deleted
tables.

• After the first major
restructuring, the
database continues to
grow; however, we see
much less removals,
and maintenance
activity becomes more
concentrated and
focused.

IMPACT ASSESSMENT
… and data intensive ecosystems…

111

Roadmap
• Evolution of views
• Data warehouse Evolution
• A case study (if time)
• Impact assessment in ecosystems
• Empirical studies concerning database

evolution
• Open Issues and discussions

Data intensive ecosystems

• Ecosystems of applications, built on top of
one or more databases and strongly
dependent upon them

• Like all software systems, they too change…

112

Evolving data-intensive ecosystem

113

Evolving data-intensive ecosystem

114
The impact can be syntactical (causing crashes), semantic (causing
info loss or inconsistencies) and related to the performance

Semantically unclear

Syntactically invalid

Remove CS.C_NAME

Add exam year

The impact of changes & a wish-list
• Syntactic: scripts & reports simply crash
• Semantic: views and applications can become

inconsistent or information losing
• Performance: can vary a lot

We would like: evolution predictability
i.e., control of what will be affected
before changes happen
- Learn what changes & how
- Find ways to quarantine effects

115

The Hecataeus tool & method.
Here: a first map of Drupal

116 http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

What happens if I modify table
search_index? Who are the neighbors?

117

What happens if I modify table
search_index? Who are the neighbors?

118 Tooltips with info on the script & query

In the file structure too…

119

How to handle evolution?
• Architecture Graphs: graph with the data flow between modules (i.e.,

relations, views or queries) at the detailed (attribute) level; module
internals are also modeled as subgraphs of the Architecture Graph

• Policies, that annotate a module with a reaction for each possible event
that it can withstand, in one of two possible modes:

– (a) block, to veto the event and demand that the module retains its previous structure
and semantics, or,

– (b) propagate, to allow the event and adapt the module to a new internal structure.

• Given a potential change in the ecosystem
– we identify which parts of the ecosystem are affected via a “change propagation”

algorithm
– we rewrite the ecosystem to reflect the new version in the parts that are affected and

do not veto the change via a rewriting algorithm
• Within this task, we resolve conflicts (different modules dictate conflicting reactions) via a

conflict resolution algorithm

120
Manousis+ @ ER 2013 for the details of impact analysis (summary coming)
ER 2014 for the visualization (not here)

University E/S Architecture Graph

121

Architecture Graph

122

Modules and Module
Encapsulation
Observe the input and
output schemata!!

SELECT V.STUDENT_ID, S.STUDENT_NAME,
 AVG(V.TGRADE) AS GPA
FROM V_TR V |><| STUDENT S ON STUDENT_ID
WHERE V.TGRADE > 4 / 10
GROUP BY V.STUDENT_ID, S.STUDENT_NAME

123

Policies to predetermine reactions
Remove CS.C_NAME

Add exam year
Allow addition

Allow deletion

RELATION.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE_SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;

VIEW.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.OUT.SELF: on DELETE_SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;

QUERY.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.OUT.SELF: on DELETE_SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;

Policies to predetermine the modules’
reaction to a hypothetical event?

124

How to handle evolution?
Remove CS.C_NAME

Internals of impact assess. & rewriting
1. Impact assessment. Given a potential event, a status

determination algorithm makes sure that the nodes of the
ecosystem are assigned a status concerning (a) whether they
are affected by the event or not and (b) what their reaction
to the event is (block or propagate).

2. Conflict resolution and calculation of variants. Algorithm
that checks the affected parts of the graph in order to
highlight affected nodes with whether they will adapt to a
new version or retain both their old and new variants.

3. Module Rewriting. Our algorithm visits affected modules
sequentially and performs the appropriate restructuring of
nodes and edges.

125

Impact assessment & rewriting

126

Conflicts: what they are and how to
handle them (more than flooding)

127

R

View0

View1 View2

Query1 Query2

R

View0 n

View1 n View2 n

Query1 n

View0

View2

Query2

BEFORE
AFTER

• View0 initiates a change
• View1 and View 2 accept the

change

• Query2 rejects the change
• Query1 accepts the change

• The path to Query2 is left intact, so
that it retains it semantics

• View1 and Query1 are adapted
• View0 and View2 are adapted too,

however, we need two version for
each: one to serve Query2 and
another to serve View1 and Query1

Played an impact analysis scenario:
delete attr. ‘word’ from search_index

128

2. Queries Q215
and Q216 vetoed

1. The table
allowed the
deletion, but…

	Schema Evolution for Relational Databases
	The nature that needs change is vicious; for it is not simple nor good…
	SWEBOK Maintenance
	Database Evolution: why and what
	What evolves in DBMS...
	Why is (schema) evolution so important?
	Embedded queries in the past [Maule+08] …
	… nowadays, to be complemented with API-based db access (Drupal)
	Evolution taxonomy
	Evolution taxonomy: areas
	… To probe further …
	Imagine if we could predict how a schema will evolve over time…
	What are the “laws” of database schema evolution?
	Why aren’t we there yet?�
	Our take on the problem
	Scope of the study
	Hecate: SQL schema diff extractor
	Schema evolution for o/s db’s at the “macro” Level
	Exploratory search of the schema histories for patterns
	Schema Size (relations)�
	Schema Size
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Schema Growth (diff in #tables)
	Schema growth is small!
	Zipfian model in the distribution of growth frequencies
	What happens after large changes?
	Slide Number 29
	Slide Number 30
	Main results
	Observing the evolution of o/s db schemata at the micro level
	Exploratory search of the schema histories for patterns
	Schema size, change and duration
	The Gamma Pattern: �"if you 're wide, you survive"
	Slide Number 36
	The Comet Pattern
	Slide Number 38
	The inverse Gamma �pattern
	Slide Number 40
	Birthday & schema size & matters of life and death
	Quiet tables rule, esp. for mature db’s�
	Longevity and update �activity correlate !!�
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Regularities on table change do exist!
	Open issues
	Where we stand
	Are there “laws” of schema evolution?
	Unexplored research territory (risky but possibly rewarding)
	Management of ecosystems’ evolution
	Take Away Message
	Thank you! �Q&A
	Auxiliary slides
	What are the “laws” of database (schema) evolution?
	Why care for the “laws”/patterns of schema evolution?
	… nowadays, to be complemented with API-based db access (Drupal)
	Abstract coupling example �from my SW Dev course
	Datasets
	Data sets
	Hecate: SQL schema diff extractor
	Slide Number 64
	Slide Number 65
	Scope of the study && Validity considerations
	Data sets
	Scope of the study
	External validity
	External validity
	Most importantly:�we are happy to invite you to reuse /test /assess /disprove /… all our code, data and results!
	Internal validity
	Is there a theory?
	Related work
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	stats
	Statistical study of durations
	Tables are mostly thin
	The four patterns
	The Gamma Pattern
	Slide Number 87
	Stats on wide tables and their survival
	Whenever a table is wide, its chances of surviving are high
	Wide tables are frequently created early on and are not deleted afterwards
	Whenever a table is wide, its duration frequently lies within the top-band of durations (upper part of Gamma)
	Long-lived & wide => early born and survivor
	The Comet Pattern
	Slide Number 94
	Statistics of schema size at birth and sum of updates
	Typically: ~70% of tables inside the box
	Top changers tend to have medium schema sizes
	Top changers tend to have medium schema sizes
	Top changers tend to have medium schema sizes
	Wide tables have a medium number of updates�
	Inverse Gamma
	Slide Number 102
	Skyline & Avg� for Inverse �Gamma
	The empty triangle pattern
	Slide Number 105
	Top changers: early born, survivors, often with long durations, and often all the above
	Dead are: quiet, early born, short lived, and quite often all three of them
	Most births &deaths �occur early (usually)
	Longevity and update �activity correlate !!�
	All in one
	Impact assessment
	Data intensive ecosystems
	Evolving data-intensive ecosystem
	Evolving data-intensive ecosystem
	The impact of changes & a wish-list
	The Hecataeus tool & method.�Here: a first map of Drupal
	What happens if I modify table search_index? Who are the neighbors?
	What happens if I modify table search_index? Who are the neighbors?
	In the file structure too…
	How to handle evolution?
	Slide Number 121
	Architecture Graph
	Policies to predetermine reactions
	How to handle evolution?
	Internals of impact assess. & rewriting
	Impact assessment & rewriting
	Conflicts: what they are and how to handle them (more than flooding)
	Played an impact analysis scenario: delete attr. ‘word’ from search_index

