
Joint Source and Schema Evolution: Insights from a Study of
195 FOSS Projects

Panos Vassiliadis
Univ. Ioannina
Ioannina, Greece
pvassil@cs.uoi.gr

Fation Shehaj∗
NIKI Digital Engineering

Ioannina, Greece
fation.sh94@gmail.com

George Kalampokis†
GWF MessSysteme AG

Salonika, Greece
gtkalampokis@gmail.com

Apostolos V. Zarras
Univ. Ioannina
Ioannina, Greece
zarras@cs.uoi.gr

ABSTRACT
In this paper, we address the problem of the co-evolution of Free
Open Source Software projects with the relational schemata that
they encompass. We exploit a data set of 195 publicly available
schema histories of FOSS projects hosted in Github, for which we
locally cloned their respective project and measured their evo-
lution progress. Our first research question asks which percent-
age of the projects demonstrates a “hand-in-hand” schema and
source code co-evolution? To address this question, we defined
synchronicity by allowing a bounded amount of lag between
the cumulative evolution of the schema and the entire project. A
core finding is that there are all kinds of behaviors with respect
to project and schema co-evolution, resulting in only a small
number of projects where the evolution of schema and project
progress in sync. Moreover, we discovered that after exceeding
a 5-year threshold of project life, schemata gravitate to lower
rates of evolution, which practically means that, with time, the
schemata stop evolving as actively as they originally did. To an-
swer a second question, on whether evolution comes early in the
life of a schema, we measured how often does the cumulative
progress of schema evolution exceed the respective progress of
source change, as well as the respective progress of time. The
results indicate that a large majority of schemata demonstrates
early advance of schema change with respect to code evolution,
and, an even larger majority is also demonstrating an advance of
schema evolution with respect to time, too. Third, we asked at
which time point in their lives do schemata attain a substantial
percentage of their evolution. Although there are exceptions to
the general trend, a large number of projects attracts a large
percentage of their schema evolution disproportionately early
with respect to their project life span. Indicatively, 98 of the 195
projects attained 75% of the evolution in just the first 20% of their
project’s lifetime.

1 INTRODUCTION
The proliferation of the relational model and the DBMSs built
on its premises has dominated the construction of information
systems that are operating on top of relational databases that
both store and provide data for their operation. The essence of

∗Work done with Univ. Ioannina.
†Work done with Univ. Ioannina.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

query answering is based on declarative queries that come with
precise semantics, i.e., with the ability to return as query answers
exactly what the querying user has specified as her query. To
achieve that, queries are authored with respect to the names of
the elements of the database schema, i.e., the internal structure
of a database, which in the relational case is expressed via a set
of relations, their typed attributes, and intra- and inter-relation
constraints.

Schema Evolution refers to the process via which the schema
changes via the addition, deletion, and update of the elements of
a schema and their relationships. Whenever the schema evolves,
the surrounding queries of the system are potentially affected,
both syntactically and semantically. The syntactic impact is due
to the fact that the queries of the surrounding applications are
authored with respect to the schema elements; thus, an update
in the structure might lead a query to be syntactically invalid.
Similarly, even a small addition might add schema structures
that a query would ideally like to take into consideration to
provide a full account of the stored data, leading in semantic
inconsistency. Thus, the immediate impact of schema evolution
is that the surrounding source code of an information system
needs to be maintained in order to be consistent with the new
schema.

Developers are thus required to go to great pains in order to
guarantee this consistency. The source code has to evolve also,
in accordance with the new schema structure, a task that we
call schema and source-code co-evolution. The evidence for this
problem is only anecdotal (and certainly inversely related to the
attention we, as a scientific community, have paid to address it).
To the best of our knowledge, we can refer to only two anecdotal
references on the problem:

• In [30], Stonebraker at al., note: “In a survey of 20 database
administrators (DBAs) at three large companies in the
Boston area, we found that . . . , DBAs try very hard not
to change the schema when business conditions change,
preferring to ”make things work“ without schema changes.
If they must change the schema, they work directly from
the relational tables in place. ”

• In [15] , Limoncelli notes: “When the software is tightly
coupled to the database schema it becomes impossible to
perform software upgrades that require a database schema
change. If you first change the schema,the instances will
all die or at least get confused by the change; . . . Why
not upgrade the instances first? Sadly, as you upgrade
the instances’ software one by one, the newly upgraded
instances fail to start as they detect the wrong schema. You

Series ISSN: 2367-2005 27 10.48786/edbt.2023.03

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.03

will end up with downtime until the schema is changed
to match the software”

Robert Martin, in his seminal discourse of the SOLID prin-
ciples of software architecture [19], introduces rigidity as “the
tendency for software to be difficult to change, even in simple
ways; every change causes a cascade of subsequent changes in
dependent modules” and fragility as “the tendency of the soft-
ware to break in many places every time it is changed”. In our
previous research [36], [35], [34] we have referred to the severe
impact that schema evolution has to the semantic, syntactic and
operational correctness of the software applications built on top
of it as gravitation to rigidity. Gravitation to rigidity is the main
reason that makes developers and designers hesitant to evolve
the schemata of the underlying databases in their information
systems. Thus, there are several related questions that act as
drivers for this paper:

• How extensive is the co-evolution of the schema and
source code of data-intensive information system? Do
schemata and source code evolve hand-in-hand, or do
they evolve with different heartbeats?

• Is the conjecture of gravitation to rigidity actually sup-
ported by evidence that demonstrates the anecdotal reluc-
tance to evolve the schema after the original releases?

Previous research on how the source and schema co-evolution
takes place does exist, albeit scarce [16], [24], [10]. The absence
of publicly available schema histories that predated the existence
of Free Open-Source Software has been the main reason for this
scarcity. However, even after the proliferation of FOSS systems,
there has not been any study of substantial size or impact to
provide insights in the problem. To this end, in this paper, we
have embarked in an attack to the problem.

Our starting point has been the publicly available schema
histories of [33]. These histories refer to 195 schemata of FOSS
systems, mined from Github. In this paper, for all these systems,
we have locally cloned the history of the entire system (not just
the schema, as in [33]) and extracted a summary of the evolution
of its source code. Then, we have studied the extent to which
the source code of the system and the schema co-evolve in a
synchronous way.

As one can observe in Fig. 1, depicting graphically co-evolution
in a joint progress diagram, a synchronous co-evolution is ob-
servable in some cases, but not in others. To what extent, then, is
synchronicity of schema and source code co-evolution present in our
195 histories? We introduce a normalized measure of synchronic-
ity to measure the percentage of time-points in the history of
the project where the source code and the schema demonstrate a
hand-in-hand co-evolution. To define synchronicity realistically,
we allow for a distance threshold which allows the schema and
the source code cumulative progress of evolutionary activity to
be in distance lower or equal to a factor θ (which in our measure-
ments we have set to 10% –i.e., if at a certain timepoint the schema
and source code change progression differ less than 10%, we say
that they are synchronous for this time-point).Our findings reveal
that there is no single dominant behavior for the different projects,
and the extent of co-evolution is uniformly distributed to all kinds
of behaviors. This is not necessarily good news: it means that the
cases where co-evolution is strongly present and schemata evolve
hand-in-hand with the rest of the code are rather few. Moreover,
a collateral finding reveals that after the 5th year of existence, we
can clearly observe a gravitation towards lower, mid-range values

of synchronous co-evolution, which practically means that, with
time, the schema stops evolving as actively as it did.

Based on this finding, wemoved up to investigate this property
more. The next question that occupied us was the quantification
of the progress of schema change contrasted to the progress of the
surrounding code’s change, as well as, how early did schemata
change in terms of time. To this end, we measured how often does
the cumulative progress of schema evolution exceed the respec-
tive progress of source change, as well as the respective progress
of time. The results indicate that a large majority of schemata
demonstrates early advance of schema change with respect to code
evolution, and, an even larger majority is also demonstrating an
advance of schema evolution with respect to time, too.

A third contribution of this paper is the study of maturity
attainment and an answer to the question: at which time point
in their lives do schemata attain a substantial percentage of their
evolution? To address the question, we measured the time point
in the history of the project (as a percentage of the lifetime of the
project) when the projects attained a certain level of progress of
their evolutionary activity. This allows to check for gravitation to
rigidity: for example, if 75% of the total change is attained within
the first 20% of the life of project, this is a clear indication that
after an initial boost, the schema is no longer actively evolving.
Our findings indicate that almost half the projects reach 80% of
their schema evolution within the first 20% of time (which we
treat as a special, schema-evolution-specific case of the Pareto
principle of the vital few). At the same time, by exploiting the
taxonomy of projects proposed in [33], we also observe that the
increase of activity in a taxon decreases the chances of the 80/20
rule to hold; thus, we can confirm that despite a strong tendency
in a large part of the population to gravitate to rigidity for their
schema evolution, there do exist projects that resist this gravitation
and actively evolve the schema throughout their entire life.

In a nutshell, the contribution of this paper is as follows:
• Our measurements replace anecdotal rumor with concrete
numerical evidence for the bias of the development com-
munity towards fixing the schema early, in the general
case, and the possibility of deviating from this rule of
thumb in actively maintained projects.

• The paper contributes methodologically with a collec-
tion and measurement method for objectively assessing
schema evolution with respect to the evolution of the sur-
rounding code.

• The paper concludes with a discussion of the implications
that these findings have for the way databases are accessed
by surrounding applications and possibilities to alleviate
the observed rigidity problems.

Roadmap. This paper is structured as follows. Section 2 presents
the state of the art and summarizes the background, as well as the
data set used, for the paper. Section 3 presents the foundational
nomenclature, the research setup and the introduced metrics for
schema and source co-evolution. Sections 4, 5, 6, and 7 addresses
our fundamental research questions and their answers. Section 8
discusses threats to validity and Section 9 summarizes the con-
tribution of the paper and why this matters, while also offering
possibilities for future work.

2 BACKGROUND AND RELATEDWORK
2.1 Works on schema evolution in general
Studies of how schemata evolve include mostly papers from
the second half of the last decade [28], [5],[16], [37] (partially

28

Figure 1: Examples of schema and source code co-evolution. The horizontal axis demonstrates the progress in time, as
a percentage of a project’s life. The vertical axis depicts the cumulative progress as a percentage of the total amount of
evolution activity, for (a) the schema (dotted line) and (b) the source code (solid line).

confirmed also by [1]), [24], [3], [29], [36], [35], [7], [34], [8]. Later
studies have also moved towards the study of schema evolution
in the realm of JSON, NoSQL databases [14], [26] – see [31]
for an overview. The handling of adaptation to schema changes
includes several works [20], [9], [23], [11], [17] – see [2] for an
overview of query adaptation techniques. The introduction of
algebras of schema evolution operations (SMO’s), in order to
be able to describe sequence of changes (either in forward- or
reverse-engineering) includes works like [4], [13], [27].

2.2 Works on schema and source-code
co-evolution

The first study of schema evolution that we are aware of, is
[28]. The author monitored a single database schema, serving a
hospital application, and along with quantifying the changes in
the schema, he also measured their impact to the code. A table
addition resulted in an average of 19 changes in the surrounding
source code, whereas a table deletion produced 59.5 changes in
the application code. Attribute additions and deletions affected
the source code with two and 3.25 changes, respectively.

In [16], the authors address the issue of the collateral evolution
of applications and databases. The authors use the term collateral
evolution to designate the lack of consistency when database and
application code do not coexist in sync. In studying collateral
evolution, the first contribution of the paper comes with a study
of two open-source projects, Mozilla and Monotone. The findings
were that the database schema and source code does not always
evolve in sync, even in the presence of provisions to address
the problem. To avoid conflicts with database and source code,
Mozilla uses two methods, (a) to ignore the collateral problem
and assume that if a database exists, then the schema version and
the schema version of the app are in sync, and, (b) to determine
the versions of the application and database, perform the schema
migration and then access the database. On the other hand, in

Monotone, the authors encounter the collateral evolution prob-
lem with the use of a centralized routine. As a side study, the
authors investigate the problem of the evolution of data format
in three major database management systems, SQLite, MySQL
and PostgreSQL.

In [37], the authors propose a system to automatically extract
embedded database schemas and source code with the purpose
to automatically compute the schema evolution. The authors
studied the evolution of four popular applications containing
embedded databases, over large time periods. The key findings
of their study are (a) embedded databases are more prone to
restructuring, rather than continuous growth and (b) the early
stages in schemas of embedded databases tend to have a higher
number of changes, while the later versions include few changes
and the schema stabilizes over time.

In [24], an empirical analysis for the co-evolution of schema
and code in database-based applications is made. The authors
used ten popular open-source projects for their study. The au-
thors not only study how the schema evolved on its own, but
placed emphasis on the extent to which the schema and the
surrounding source code were in sync. The authors claim that
database schemas evolve at a high rate during their lifecycle, on
average 90 atomic schema changes per year. Also, change is local
in terms of location and time. In terms of location, change is lo-
cated in few tables: 60%-90% of changes refer to 20% of the tables
and nearly 40% of schema tables did not change. In terms of time,
in 7of the 10 studied projects, their schema size approaches 60%
of their maximum value within the first 20% of their lifetimes.
To study applications and databases co-evolution, the authors
have randomly sampled 10% of the valid database revisions and
manually analyzed co-evolution. A first result showed that only
half of the software changes accompanied the schema change
in the same revision and only 16% of the cases showed an adap-
tation of the code in prior or subsequent versions too. Thus,
the authors confirm the non-synchronicity of the schema and

29

code change reported in previous literature. Second, the authors
found that the impact of a schema change to the source code is
potentially important and depends on the type of change. The
impact is assessed as each atomic change at the schema level is
estimated at 10 - 100 lines of application code been updated per
atomic schema change and 100 - 1000 lines of application code
per database revision.

In [10], the authors study Oscar, an electronic medical records
open-source system from the viewpoint of co-evolution of the
database schema and the source application, as well as from the
viewpoint of studying developer effort. The authors demonstrate
that both the application and the schema grow linearly. The
schema grows at a fairly constant pace; however, the growth
rate is significantly lower than the one of the application, with
the divergence growing steadily over time. Another interesting
finding was that although pure SQL was mainly used for database
access throughout the entire studied period, after a 6-year period
of working with Hibernate, the developers replaced it with JPA
(still, SQL remains around 80% of the database related points in
the code). Developer effort is distributed in both database related
and unrelated files.

In a demo paper [25], the authors approach the problem of co-
evolution with a form of patching for the change that is applied to
the schema that dictates (a) how the schema should be modified,
and, (b) how the queries around the schema should be adapted.
The patching language proposed is tailored in such a way that
the SQL dialects of different DBMS vendors can be gracefully
handled simultaneously for a single change.

Techniques to handle the impact of schema evolution vary. The
topic is outside the scope of the paper, which is to perform a large-
scale study for the extent of co-evolution in FoSS systems. We
refer the interested reader to [17] for a survey of such techniques.

Finally, in [21] the authors explore the differences between
biological and software ecosystems. The chapter starts with a
survey of fundamental concepts in software and natural ecosys-
tems, with examples and an emphasis on sociotechnical aspects.
Then, the authors discuss fundamental concepts and theories
of natural evolution and put biological and software evolution
in counterpoint. Finally, the authors assess whether analogies
between software and natural ecosystems do exist via the case
study of a FOSS project, GNOME. The results indicate that there
is no analogy, but rather different behaviors, mostly attributed to
the inapplicability of the mapping of developers to antagonizing
species (as, in FOSS, antagonism is not really an issue).

In [33] the author reports on his findings from a very large
study of schema evolution histories. The author went on to collect
the histories via Google BigQuery which has the GitHub Activity
data set of 2.8 M projects and ended up with 327 histories out of
which (a) 132 (40%) had just a single commit and never changed
anything in the schema, and (b) 195 histories with at least an extra
commit, which were subsequently analyzed. For each project,
the processing produced (a) the history of the schema (which is
a list of versions of the schema DDL file), (b) the automatically
produced time series of changes (which is called the heartbeat of
the schema) by pairwise comparing subsequent versions, and (c)
detailed and aggregate measures of the schema history in terms
of timing, schema size, numbers of tables and attributes changed,
and several measures of the evolution activity of the schema.

The main contribution of the paper was the introduction of
schema evolution archetypes, called “taxa”, by manually cluster-
ing schemata in groups of similar evolution behavior, which are
called taxa. Specifically, the taxa of schema evolution are:

(1) completely frozen schema histories with zero change at
the logical level;

(2) almost frozen histories of very small change, typically with
few intra-table attribute modifications;

(3) almost frozen histories but with a single spike of change
and almost no other change (Focused Shot and Frozen);

(4) histories ofmoderate evolution, without spectacular changes,
but rather small deltas spread throughout the life of a
project;

(5) projects with evolution similar to the moderate one but
also with a pair of spikes on their activity (Focused Shot
and Low);

(6) histories of active projects, typically with a high volume
of change both as intra-table change and in terms of table
generation and eviction.

Based on the above taxonomy, and the distribution of projects in
its taxa (which is overwhelmingly towards more frozen histories
than active) it is clear that although evolution exists, its absence is
much more widespread: as already mentioned, out of the largest
possible collection of 327 projects that we came up, 40% had no
evolution whatsoever, 10% had different versions but no schema
changes at the logical level and 20% were almost frozen.

2.3 Comparison to related work
Compared to the related work, this paper is the first study to
attempt a massive, large-scale study of schema and source co-
evolution, by at least an order of magnitude to previous studies.
The variability of the data set of [33] that is used, in terms of the
different “ characters” of the schemata studied adds to the validity
and generalizability of the findings. The proposed measures of
co-evolution and the respective visualization methods are also
contributions of the paper.

3 RESEARCH SETUP
In this section, we introduce the necessary nomenclature, as well
as the extraction and computation process for the datasets and
measures we employ in this paper.

3.1 Extraction of Schema and Project
Monthly Heartbeats

The Schema_Evo_20191 data set of [33] was readily available at
the beginning of the effort. In a nutshell, the data set contains
195 schema histories, extracted via a meticulous and principled
method, intentionally aimed towards avoiding any bias in project
selection, and thus providing a representative enough collection
of schema histories. The selection process for the schemata that
ultimately made into the data set includes three phases:

(1) Collection of candidate repositories from Google Cloud Big-
Query. The phase included (a) selecting .sql files and their
metadata from the GitHub Activity Dataset; (b) keeping
only original repositories, with more than 0 stars and more
than 1 contributor from corpus that was also part of the
the Library-io data set.

(2) Elicitation of candidate repositories. The phase included (a)
the retention of single-file schema-DDL projects (either
directly at the query result or after manual processing);
the filtering out of projects with the terms ‘example, demo,
test, migrat’ in their path, and (c) the choice of MySQL

1Available at https://bit.ly/3nMggEx (at Github) i.e., https://github.
com/DAINTINESS-Group/Schema_Evolution_Datasets/tree/master/
SchemaEvolutionDatasets2020

30

or Postgres (in that order) in the case of more than one
supported vendor.

(3) Post-processing. This phase included the filtering out of
projects with 0 or 1 versions or projects with no CREATE
TABLE statements in their .sql files.

For each history of the 195 projects of the data set, several sta-
tistics are computed. Specifically, among other measures, the
data set comes with measurements (in attributes) of: attributes
born with a new table, attributes injected into an existing table,
attributes deleted with a removed table, attributes ejected from
a surviving table, attributes having a changed data type, or a
participation in a changed primary key. In [33], the sum of all
these updates was named Total Activity, or simply Activity and it
will be the central measure that we will use to trace the amount
of evolution the schema undergoes. Given these detailed mea-
surements, and the fact that we know the commit dates for the
DDL file of each project, for the purpose of the current paper, we
were also able to produce the aggregate measurements per month
of the evolution activity of each schema, to which, in this pa-
per, we will refer as Monthly Schema Activity, or simply Schema
Activity (as the time-unit of all measurements is no more the
individual commit, but rather the month). The Schema (Monthly)
Heartbeat is the linear sequence of the Monthly Schema Activ-
ity measurements (with zero activity for the months without
updates).

As the goal of the paper is to contrast the evolution of the
schemata to the evolution of the projects that encompass them,
we had to find a way to assess how much the source code of
the entire project changed, and, at the same time, match it, in
a compatible way, against the schema activity. To this end, we
locally cloned all the involved projects, and, assessed the number
of files updated in each commit (via a “ git log –name-status –no-
merges –date=iso” command) that produces, for each commit, the
names of the changed files, the date, and some extra information
on the authors and their messages. Then, via custom scripts, we
measured the number of updated files per commit, and, knowing
the commit dates, we were able to produce the total number of
updated files per month, which, in this paper, will be referred to
as Monthly Project Activity, or simply Project Activity. The Project
(Monthly) Heartbeat is the linear sequence of the monthly Project
Activity measurements (with zero schema activity for the months
without updates). In all of these tracked changes that concern
the evolution of the project, we have subtracted the changes of
the DDL file, to clearly separate schema and source evolution.

A couple of parenthetical notes is due here:

• Moving from the individual commit to the month as the
time-unit is (a) necessary for establishing a fixed progres-
sion step in the time axis, (b) convenient for comparing
schema and project activity over the same time points,
and, (c) a fair compromise between more detailed gran-
ules of time (like day) and coarser units (like years in the
time axis, or version releases, for which no information is
automatically attainable).

• How representative is the measure we use for the activity
of the project? Certainly, assessing the amount of change
requires a unit of change. We avoid detailed measures
such as lines of code and use a coarser unit, such as the
files changed. We understand that this induces the risk of
equalizing changes like a single-line comment versus the
creation of a new business logic class. However, we also
believe that despite the obvious approximation that our

method uses, the number of changed files as an indicative
measure of the heartbeat of the project activity is fairly
common: for example, this is how GitHub measures code
frequency (the number of commits per month would be
another possible measure, if we follow the same measures
with GitHub).

3.2 Cumulative Measurements Used for the
Analysis

Finally, to be able to compare the schema and project heartbeats,
we normalized them both via their cumulative percentages. As-
sume a specific heartbeat, with the amount of activity per month.
We can compute the total activity that occurred in the entire life-
time of the heartbeat as the sum of all monthly activity measure-
ments. Then, we can compute the heartbeat with the percentage
of total activity per month, instead of the actual measurement,
via a simple division to the total lifetime activity.

Definition. The cumulative fractional activity of a heartbeat
is the running total of the percentage values of a heartbeat and is
a monotone time-series progression of how change accumulated
over time to reach the 100% of total lifetime activity. The formula
for the cumulative percentage is as follows:

cumPcti =
1

TotalActivity

i∑
k=0

activityk =

cumPcti−1 +
activityi

TotalActivity
(1)

with activityk being the activity in the k-th time unit, and
TotalActivity is the total amount of activity measured for the
entire lifetime of a project.

For example, if the percentage of a project’s progression in 4
successive months is 40%, 25%, 20%, and 15%, respectively, the
cumulative percentage values would be 40%, 65%, 85%, and 100%,
for each month. The above formula obviously applies to all kinds
of activity measurements. Similarly, we can apply this transfor-
mation to time and assign a percentage of time progress to each
month, signifying how much ahead in time the project was with
respect to its life-span.

To compare the two heartbeats, we therefore produced, for
each project, the following time-series: (a) the cumulative frac-
tional schema activity, (b) the cumulative fractional project ac-
tivity, and (c) the respective cumulative fractional time progress.
A joint (cumulative fractional) progress diagram combines these
three elements into a single diagram, like the one of Figure 1.2

3.3 A case study
In this section, we briefly present the case study of one of the 195
projects, specifically the project mapbox/osm-comments-parser.
The mapbox/osm-comments-parser project waswritten in JavaScript
and consists of parsers to read Notes and Changeset XML files
and save them in a Postgres DB. The project started in 2015 and it
was active for 2 years. The owner of the repository is the Mapbox
organization with 55 people and 849 repositories on GitHub.

The Project Update Period was 22 months and the Schema
Update Period was close at 20 months. The project included 119
commits and 259 file updates. Concerning schema evolution,
there were 13 commits for the schema file, out of which 9 were

2Data, code & results can be found at https://github.com/DAINTINESS-Group/
Schema_Evolution_Datasets/tree/master/SchemaEvolutionDatasets2020

31

active, i.e., they included changes to the schema. The co-evolution
of source code and schema for the project is depicted in the right-
hand side of Figure 1. Due to the similar schema and project
update periods, the depiction of cumulative progress with respect
to the actual time is very similar to its depiction with respect to
time progress (as in Fig.1). Observe that the schema starts earlier
with a 48% of change at start-up, then stabilizes until 50% of the
project’s life and then starts to attain more changes along with
the evolution of the source code. There are two flat-line periods
of no change connected by a period of incremental change. The
project has attained 50% of the schema changes at 55% of its life
and 80% of the schema changes at 68% of its life. The cumulative
progress of the schema and the source were close (i.e., with less
than 10% difference) for 43% of the time.

We studied the different commits to the schema and the com-
mits to the source code in a small window of changes before and
after them to get an idea of what happens to the schema and
code when the schema changes. A detailed analysis and presen-
tation of 6 projects can be found at the accompanying website of
the paper. Here, we discuss the mapbox/osm-comments-parser
project only. Concerning what changes too place we observed
the following types of change: (i) table creation and deletion,
accompanied by the respective source updates, (ii) attribute addi-
tion and deletion, again with changes at the code, (iii) multiple
data type changes, (iv) bug fixing related to all these changes, (v)
feature additions, (vi) refactorings of the code and restructuring
of the placement of the files in folders. Concerning who did the
changes, 90% of the studied updates were performed by the same
developer. Concerning when changes happened, observe how
the changes are distributed over time at the beginning and the
second part of the project’s life. Concerning where the changes
happened in the source code, updates took place in a group of
files related to the database.

Figure 2: Monthly heartbeat of the
mapbox/osm-comments-parser project (up, blue) and
schema (down, red)

3.4 Research Questions
Having described how all the data have been computed and
available, we can now proceed with the core of this paper’s
contribution.

We start with the fundamental research questions that drive
our research:

• Research Question 1: What percentage of the projects
demonstrates a “hand-in-hand” co-evolution, where the
schema evolution heartbeat closely follows the heartbeat
of the project?

• Research Question 2: Is it legitimate to say that schema
evolution precedes source code evolution? Do schema
changes come early in time, and/or earlier than source
changes?

• Research Question 3: At which point in the project’s
lifespan do schemata complete a substantial part of their
evolution?

In the following sections, we discuss our approach towards ad-
dressing these questions and present our findings.

4 IS SCHEMA EVOLUTION IN SYNCWITH
SOURCE CODE EVOLUTION?

The first research question aims to measure the extent to which
the schema evolution follows the projects’ evolution.

[RQ1] What percentage of the projects demonstrates a synchro-
nous, “hand-in-hand” schema and source code co-evolution?

To assess the extent of co-evolution, we exploit that time has
been quantized into months, and we provide a measure of how
many times in the lifetime of the project the cumulative progress
of the schema was “ far-away” from the respective cumulative
evolution of the entire project.

Formally, assume two heartbeat sequences P=[p0, . . . ,pn] and
S=[s0, . . . , sn] over a time period of n time-points T=[t0, . . . , tn].
The 0-th elements refer to the initiating commit with the creation
of the respective construct (e.g., DDL file or entire project). We
introduce two measures of synchronicity.

Definition. For a specific timepoint ti , we say that the predi-
cate θ − synchronous(ti) is true if |pi − si | ≤ θ , with θ being an
arbitrarily set threshold.

Definition. Theθ−synchronicity of P and S ,θ−synchronous(P , S),
is the fraction of the time-points that are θ − synchronous over
the total amount of n points.

The intuition of the measure in our case is that we count
how many times in the lifetime of the project the cumulative
advance of activity for the two heartbeats was close enough,
within an arbitrarily set band of θ . In our case, we perform the
comparison of the two heartbeats of (a) cumulative fractional
project activity vs (b) cumulative fractional schema activity and
measure which percentage of time the two heartbeats were in the
respective synchronicity. We also fix the value of θ , which has to
be relatively small, in order to characterize a reasonable difference
for a “ hand-in-hand” co-evolution between the two heartbeats.
Remember that θ is not a measure of lag, but just an acceptance
band for “ hand-in-hand” co-evolution; it is the θ -synchronicity
that will measure the percentage of time where a lag was present.
We have performed the comparisons for two values of θ , 5%
and 10%; we report the results of 10%-synchronicity only (their
Kendall correlation is 0.67).

In Figure 3, we present 6 projects as examples, each from a
different taxon, where the schema and source code co-evolution
are synchronous in a large percentage of the projects’ life for the
first three of them and out of sync for the last 3 ones.

As the figure demonstrates, the behaviors of the different
projects with respect to the synchronicity of the co-evolution are
different. In order to be able to understand a global picture of the

32

(a) (b)

(c) (d)

(e) (f)

Figure 3: Line charts with synchronous co-evolution for the taxa: (a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n
FROZEN; and out-of-sync co-evolution for the taxa (d) MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

33

behavior of the data set overall, we had to resort in grouping the
projects in histograms of their θ -synchronous measure. To this
end, we grouped the projects into five buckets ([0%-20%) - [20%-
40%) - [40%-60%) - [60%-80%) - [80%-100%]), with each bucket
covering a range of the θ -measure value. Then, each project is
allocated to the respective bucket - for example, if a certain project
has a θ -synchronous value of 55% (i.e., for the 55% of the months
in its lifetime, the two cumulative fractional heartbeats had an
absolute difference lower or equal than θ), then this project is
allocated to the 40%-59% bucket. The distribution of projects to
histogram buckets for the entire data set is shown in Figure 4.

Figure 4: Breakdown of projects per value range for the
10%-synchronous co-evolution

Findings. The main message based on what we observe in
the figures is that there are all kinds of behaviors with respect to
project and schema co-evolution, both overall and within in the
different taxa.

Figure 5: Correlation of duration and co-evolution syn-
chronicity per taxon

In Figure 5, we depict the scatter-plot of all projects, separated
by taxon with respect to their duration and 10%-synchronicity of
co-evolution. In the figure, we can observe that there is a box, of
durations up to 60 months where all behaviors are present (i.e.,
synchronicities of up to 100%). However, as usually happens in
this line of research, empty spaces in the chart “ speak” too: see
the empty spaces in the band between 60 and 140 months. After
exceeding this 5-year threshold of 60 months, there is a gravitation

towards lower, mid-range values of synchronous co-evolution, which
practically means that, with time, the schema stops evolving as
actively as it originally did.

5 HOW PREMATURE IS SCHEMA
EVOLUTION COMPLETION?

As we already saw in the previous section, the cumulative syn-
chronization numbers reveal that schema evolution is not uni-
formly spread over time; moreover, schema evolution seems to
get out of sync with project evolution after a certain period of
time. A study of the individual joint progress co-evolution dia-
grams clearly verifies this property.

In our previous research [36], we have observed, in various
forms and patterns, a phenomenon which we named gravitation
to rigidity: “in the realm of schema evolution, rigidity is a stronger
force than change, as we see that databases have a tendency to
avoid change and evolution in favor of calm lives, thus making
them rigidity-prone rather than evolution-prone”. Previous re-
search has made claims corroborating the gravitation to rigidity:
[24] reports that in 7 of the 10 studies projects, 60% of the schema
changes are completed in the first 20% of the projects’ life.

All this background gave us the motive to exploit our collected
histories and measurements and investigate completion rates:
to the extent that schema evolution activity is not uniformly
spread in time, is it legitimate to claim that schemata collect their
evolution quickly after birth, and live calmer lives later?

Given the cumulative progression of change in the schema
and the project heartbeat, we measure how often is the schema
progression in advance of (a) the respective project progression,
and (b) time.

At any particular time point (in our case: month), the measure
of “advance” of a heartbeat over another is a higher cumulative
progress of activity. Then, the research question that we ask is
[RQ2] how probable is it that a project will have schema evolution
preceding source evolution, and, in particular, for what percentage
of its life?

Intuitively, if at the end of a certain month, the cumulative
progression of time is 40%, the cumulative progression of the
schema evolution activity is 50% and the cumulative progression
of the source code evolution activity is 55% we can say that, for
this month, the schema is in advance of time, with respect to its
cumulative progress (i.e., it has collected more change than if
change evolved at a steady pace) and (b) the schema is lagging or
late with respect to the source code (i.e., the collective rate of the
source code, so far, exceeds the one of the schema). Of course,
the result of the comparison of schema progress to the other two
measures is different per month – it is only the last month where
all cumulative heartbeats end up in 100%.

5.1 For what percentage of a project’s life is
schema progress in advance of source
progress or time?

To this end, we have counted the number of times that the schema
is not lagging with respect to time and source, and to make the
numbers normalized, we have divided them by the months after
the creation of the project. Practically, we get the percentage of
the project’s life (in months) where the schema is not behind the
time and the source progress.

Definition. We define as the life percentage of schema advance
over time (resp., source) the fraction of (a) the number of months
where the difference of the cumulative fractional activity of the

34

schema minus the cumulative fractional progress of the time
(resp. source) was larger or equal to zero, over, (b) the months of
the project’s life after its creation.

Practically, we measure, (a) for how many months, and, (b)
straightforwardly, for which percentage of the project’s life, has
the schema cumulatively progressed more, in terms of its evolu-
tion, over time or source code. In Figure 6, we depict the break-
down of projects in ranges of life percentage of schema advance
over (a) source, and, (b) time. For each range, we report the num-
ber of projects that pertain to this range, its percentage over the
total population of 195 projects and its cumulative percentage
starting from the higher valued ranges.

Figure 6: Life percentage of schema advance over time and
source code

The main findings revealed by the numbers of Figure 6 are:
• The large majority of projects, demonstrate an advance of
schema evolution progression over the progression of source
code evolution or time. Specifically, 41% of the projects had
at least 90% of the months of their lives with the cumu-
lative schema evolution progress being higher than the
respective source code cumulative evolution. Concerning
time, things are even more impressive: more than half of
the projects had their cumulative schema evolution progress
being higher than time progress for at least 90% of their lives.

• Concerning the cases where schema was mostly in ad-
vance of source code or time, we observe that 71% of the
projects had schema evolution in advance of source code
evolution for at least 50% of the project life, and 78% of the
projects for time, respectively.

We believe this is a clear demonstration that developers prefer
contributing changes to the schema structure early in the project
life and this makes schema change being cumulatively in advance
of time and the rest of the source code. We should also note that
the two measures of advance over (a) time and (b) source code
are very highly correlated, with a Kendall correlation of 0.75.

5.2 For what percentage of projects is schema
progress always in advance of source
progress or time?

The high concentration of values in the 0.9 - 1.0 category hides
the fact that there are several projects with exactly 1.0 for the

values of life percentage of schema advance over time and life
percentage of schema advance over source. Evenmore interesting
is the fact that it is possible that both measures are 1.0, which
means that a project, for all months, demonstrates an advance of
schema evolution over both time and source.

Our measurements indicate that there is a large number of
projects where the progression of schema evolution is in advance
of source evolution, time, or both for the entire life of the project.
Specifically, the numbers suggest that schema is always in ad-
vance of (a) time, for 80 projects (i.e. 41%), (b) source code, for 57
projects (i.e., 29%) and, (c) both of them, for 55 projects (i.e., 28%)
of projects. The numbers are really high, if one considers that we
investigate a total dominance of schema evolution, for all months,
as well as the existence of several projects where the DDL file
appeared later in the life of a project (making them non-eligible
for an “always” precedence of schema evolution). Clearly, case
(c) should be a subset of the two others – however, observe how
close cases (b) and (c) are. This implies that it is very unlikely
that a schema advance over the source is not accompanied from
an advance over time (but not vice versa). In this case, we can
safely guess that both source and schema evolve early.

Even more intriguing was the study of the drill-down of these
numbers with respect to the different taxa. Figure 7 shows how
the different taxa contain projects where schema is in advance
of both time and source. A clear message is that the more frozen a
taxon is, the higher its probability to demonstrate an early advance
of schema over both time and source code. The resulting consequence
for these cases is that we have as clear evidence as possible for the
essence of gravitation to rigidity: perform a few changes to the
schema -if any- early and then stay rigid.

6 HOW EARLY DOES SCHEMA EVOLUTION
ACTIVITY OBTAIN A CRITICAL MASS?

Apart from answering the “how often” precedence question, it is
also interesting to find out how early in time does the activity
of changing the schema reach a substantial fraction of its entire
volume.

6.1 Alpha-attainment fractional timepoints
In an attempt to summarize in a single number the prematureness
of schema evolution over time, we embarked on studying at
which time point in the live of a project’s history do schemata
attain certain levels of completion. To give a specific example,
given a specific schema, the question one might want to ask is
“at which time point in the project’s life did the schema attain
75% of its evolution?”, with 75% being an arbitrarily set level of
evolution completion. Concretely speaking, we need to make the
following definitions of evolution completion.

Definition. Assuming a specific schema, and its cumulative
fractional activity of schema evolution, we define as theα -attainment
timepoint the timepoint at which the cumulative fractional activ-
ity reaches or exceeds an arbitrarily-specified threshold α , with
α signifying a percentage of the total schema evolution activity.

For example, assuming that the cumulative fractional activity
of schema evolution is [20%, 47%, 85%, 95%, 100%, 100%, 100%] for
months M0 (creation of the schema) to month M6 (the last month
of activity of the project), the 45%-attainment timepoint is the
month where the schema evolution activity reaches or exceeds
45%, i.e., month M1.

Definition. We define as the α -attainment fractional timepoint
the percentage of the project’s life covered by the α-attainment

35

Figure 7: Percentage of projects where schema is advance over time or source code for the entire life of the project

timepoint (thus measuring time as a percentage of the project’s
lifetime instead of measuring the actual month).

In the previous example, with a schema reaching 45%-attainment
in month M1, in a duration of 6 months, the α-attainment frac-
tional timepoint is 1/6, i.e., 16.66%.

In a fully linear scenario, if schema evolution was performed
with a constant rate, a certain percentage of the schema evolution
would have been obtained at an equal percentage α of time (i.e.,
45% of the total evolution activity would have taken 45% of time
to occur). All our -so far, mostly anecdotal- evidence was that
this was not the case. The research question that is formed then
is:[RQ3] at which time point in their lives do schemata attain a
substantial percentage of their evolution?

6.2 Attainment of a large part of evolution
activity over time

To address the question, for each project, we measured several
attainment (fractional) timepoints, for different completion rates,
and specifically, 50%, 75%, 80% and 100%. In Figure 8, we can see
the overall breakdown of projects (i.e., independently of taxa)
with respect to when they reached a specific level of completion
schema activity. The bar chart is to be interpreted as follows:

• The horizontal axis refers to the percentage of schema
activity measured, i.e., the α threshold.

• The series refers to the range of project lifetime within
which this activity was obtained (again as a percentage of
a total lifetime).

• The vertical axis counts how many projects refer to this
combination of (a) what percentage of schema activity
was completed within (b) this range of the time.

Take for example the second quadruple of bars in the figure. The
horizontal axis says that we measure when 75% of the projects’
evolution activity was attained. The 4 series tell us that: (a) 98

Figure 8: Breakdown of projects with respect to when (as a
percentage of their lifetime) they reached a specific level
of completion schema activity

projects had attained 75% of evolution activity by the time they
reached the first 20% of their lifetime; (b) 36 projects attained
the 75% of their evolution activity between 20% and 50% of their
lifetime; (c) 34 projects between 50% and 80% of their lifetime,
and (d) 27 projects after passing 80% of their lifetime.

Understandably, the earlier projects reach a substantial attain-
ment level, the more premature their completion is, and, when
the completion is attained very early, the stronger the gravitation
to rigidity is. Thus, seeing that, 98 of the 195 projects (i.e., 50%)
attained 75% of the evolution in just the first 20% of their project’s
lifetime is a very strong indication of gravitation to rigidity. On
the other hand, resistance to rigidity also exists: for 27 projects

36

(14%), the completion was late, as they had to exceed the 80% of
their lifetime to attain a 75% of evolution.

To present the findings, we will discuss the third group of
measurements that pertain to an α threshold of 80% of the evolu-
tionary activity. We chose 80% as it is related to the well-known
80/20 rule [22], also known as the Pareto principle which states
that for many outcomes, roughly 80% of consequences come from
a “ vital few” 20% of causes. 94 of the 195 projects (48%) attained
an 80% completion within the first 20% of their lifetimes. Here,
the 80/20 rule holds for half the projects of the collection. Adding
to these projects the 36 projects of the (20%-50%] interval, we
see that 130 of the 195 projects, i.e., exactly the 2/3 of the data
set, had reached 80% of their evolution in the first half of their
life. Another 36 projects (18%) were required to bring this to a
“linear” equilibrium: 80% of the evolution in 80% of the time. Only
29 (15%) of the projects had a late completion rate, beyond 80%.

The rightmost group of attainment of 100% of evolution, gives
even stronger evidence for gravitation to rigidity:

• 60 out of 195 projects (31%) had reached 100% of their
schema evolution activity in the first 20% of their life

• 93 projects (48%) had reached 100% of schema evolution
in 50% of the time

On the other hand, another 31% of the projects (62) reached their
100% completion after 80% of their project lifetimes. This means
that there is a part of the population that resists rigidity and
demonstrates changes also at late timepoints.

Overall, we can argue that a very large amount of projects,
attract schema changes early in their project life, with 1/3 of the
projects having attained the entire evolution in the first 20% of
their project life and 1/2 of the projects attaining 100% of schema
evolution in the first half of their life. At the same time, there is
also a remarkable part of the projects that resist this gravitation to
rigidity, and, display schema evolution throughout a large part of
their lifetime.

7 STATISTICAL ANALYSIS
Normality tests. All Shapiro-Wilk tests of normal distribution,
for all attributes, produced p-values lower than 0.007 (i.e., there
is no normality in the distribution of any attribute).

Testing synchronicity.We tested taxon over 10% synchronic-
ity via a Kruskal-Wallis test, with 0.05 as alpha level. The p-value
was 0.003, an order of magnitude less. The taxon has a mod-
erate effect. The two focused shot taxa have the highest medi-
ans with respect to 10% synchronicity, with 68% for Focused-
ShotAndFrozen, and 57% for FocusedShotAndLow, respectively:
code evolves closely with schema in “shot-oriented” projects. The
Active taxon has a median of 55%: actively evolving schemata are
parts of projects with source evolution at higher rates. The rest
of the taxa had a median between 0.43 and 0.48.

Testing attainment. We tested taxon over 75% attainment
via a Kruskal-Wallis test, with 0.05 as alpha level. The p-value
was 0.006, an order of magnitude less. The taxon seems to have
a relatively moderate effect to the attainment. The 3 frozen taxa
attain their 75% of schema change activity quite early with a
median value lower than 0.2 (i.e., they attain 75% of change before
the 20% of the Project Update Period). The two moderate-change
taxa, Moderate and FocusedShotAndLow have a median value
between 0.2 and 0.3, and the active taxon has a median value 0.47.

Testing Lag. We also performed statistical tests concerning
whether the different taxa behave differently concerning the case

of (i) time, (ii) source or (iii) both being found always in lag with
respect to the schema evolution. We performed a Chi-square as
well as a two-sided Fisher test for all the three categories depicted
in Fig. 7, assuming an α level of 0.05. Concerning the Time Lag,
both the Chi-square and the Fisher test produce a p-value of
0.07. Concerning both the Source lag and the “both-lag”, the Chi-
square tests give a p-value of 0.02 and the Fisher test a p-value of
0.01. Thus, concerning the issue of whether different taxa have
a different behavior on how the schema evolves in advance of
time, source code or both, the two last categories are statistically
significant.

Other tests. We also tested via Kruskal-Wallis tests the re-
lationship of synchronicity and attainment with other project
characteristics, such as schema and project activity and dura-
tion. There is small impact of these characteristics to the studied
measures; all the material is in the paper’s accompanying website.

8 THREATS TO VALIDITY
To a very large extent, exactly because our data set is the one of
[33], several threats to validity are common in the two papers. For
the self-autonomy of the paper, we discuss the common threats
here too, albeit in a more concise manner, and refer the interested
reader to [33] for extensive argumentation.

Scope. The scope of the paper concerns the co-evolution of (a)
the logical level of relational schemata and (b) the source code of
their hosting project for meaningful Free Open-Source Software
projects, hosted in GitHub. We are not covering or generalizing
to proprietary schemata outside the FoSS domain. We do not
cover conceptual or physical schemata. We are also restricted in
relational schemata and not XML, JSON, or another format.

Internal validity. To the extent that we make no causation
claims (but restrict ourselves to conjectures on such matters), we
believe the paper is safe from this type of threats.

Having said that, there are several confounding factors that
can affect schema evolution. Firstly, the development style of a
team is greatly related to how source code and schema co-evolve.
Although there is no explicit data to support this, a widely ac-
cepted conception is that the schema definition and stabilization
has to be performed before serious development of database-
related code begins, exactly because of the impact schema evo-
lution has. On the other hand, more agile development styles
that pay meticulous care to track where and how code depends
on schema, present more degrees of freedom for schema change.
Second, the effects of schema modification to runtime systems
cannot be understated, as schema change as well as data migra-
tion might require a painful system shutdown for long periods
(see [15]). The role of the usage of Object-Relational Mappings in
the co-evolution of source code and schema is still unclear [6].

External Validity. The external validity refers to the possi-
bility of generalizing the findings of a study to a broader context.
Much as in [33], we claim that our elicited repositories and their
extracted history give a fairly representative view of schema
evolution in FoSS projects. exactly due the criteria used for con-
structing the data set corpus. Overall, (a) the thorough collection
and pre-processing of the chosen projects, in a way that iso-
lates meaningful projects, by excluding toy, demo, test, or similar
schemata, as well as (b) the variety of application domains for
the collected histories (which include e.g., Content Management
Systems, IoT Management on the cloud, Messaging Platforms,
Web on-line stores, On-line Charging Systems (OCS) and others)
assert that the projects used are (i) indicative enough and (ii)

37

representative of how FoSS projects with relational databases
evolve their schemata.

Experimental Reliability. We tested our extraction scripts
and, although nobody can ever exclude the possibility of bugs,
we believe in their validity.

Construct validity. We have to highlight that the most po-
tential threat to validity of this paper is construct validity: to
which extent do the metrics employed are actually representing
evolution activity accurately? Our unit of change is the file and
the existence of changes to a file in a certain commit. Our unit
of time is the month. For the latter, we are pretty confident: we
measure projects of several years’ length, and thus, a month as
time unit for both the schema and the project is a reasonable,
common chronon. For the former, we can understand that the
measure is an approximation of the total change; however, it is a
quite reliable, and, importantly, accurately measured (as it is au-
tomatically extracted from git), measure. We list the construction
of algorithms for a fully automated, and thus applicable at large
scale, source code change detection, as well as the definition of a
more precise unit of change, as opportunities for future work.

9 DISCUSSION
The question on whether schema and source code evolve hand-
in-hand is important in the sense that it establishes how flexible
and maintainable the database, as a component of the architec-
ture of the information system, is. The anecdotal impression
around the issue has traditionally been that the schema is the
first element of the architecture to stabilize, before embarking
in serious development of data-related parts of the source code.
However, this anecdotal impression has never been established
concretely. In this study, we give concrete evidence that there is
only a 20% of the projects where evolution of schema and source
go hand-in-hand and, this percentage also includes the small
subset of the projects that are practically frozen too. Overall, we
now have much more solid knowledge that the “build-n-freeze”
mode of handling the schema of a software project –which we
have also called “gravitation to rigidity” – is indeed happening.
At the same time, the study also gives evidence for exceptions to
this pattern: there do exist projects where the schema is actively
maintained throughout the entire life of the project.

A second question concerns the comparison of the cumulative
progress of schema evolution to the evolution of the surrounding
source code, as well as to time progression. We have found that a
very large number of schemata comewith an early stabilization of
their structure. When compared to source evolution, the schema
also precedes the source progress – albeit to a less extent than
time. Overall: schema evolution typically happens comparatively
early, and earlier than source evolution.

Finally, having established that the schema is quite often a
rather inflexible structure, we asked “how soon does the schema
get fixed?” The statistics collected indicate a clear sign of grav-
itation to rigidity: for many projects, after a certain time point
soon after initiation, the schema pretty much stops to evolve.

Implications. Given all the above, what are the implications
of our findings? In the sequel, we present a set of implications
in the form of open problems that concern (a) the research com-
munity, (b) the vendors of data-driven application development
environments, and, (c) the vendors of DBMSs.

• The research community and the vendors of data-driven
application environments should invest more time and ef-
fort towards the provisioning of automated tool support

that enables the identification of (a) the parts of the code
affected by a schema change, and, (b) the parts of the
schema that require maintenance once the application
code evolves, with high precision and recall. This task is
extremely difficult due to the heterogeneity of the applica-
tion architectures and programming languages, as well as
due to the dynamic nature of queries [18, 20, 25].

• The research community and the vendors of data-driven
application environments should consider providing auto-
mated tool support for refactoring, testing and migrating
application code, database schemata and data. This task
is also a big challenge, considering the aforementioned
heterogeneity and dynamic aspects of the problem.

• The research community and the vendors of DBMSs should
explore the possibility for DBMS architectures to maintain
multiple versions of the schema, such that applications
can bind to the version that guarantees their correctness.
So far, some pioneering efforts have been made (see [12],
Oracle Edition-Based Redefinition3). However, the issue is
open for further research, while the practical implications
for having “a git for schema and data” are still largely
unexplored.

• Isolating the application code from from accessing the
logical schema of the database, and instead, be insulated
by its changes, can be done -as usual- by introducing an
intermediate layer that give to each application a dedicated
“adaptor” schema. This is not a new idea: such layerings
have been assumed since the very beginning of relational
systems [32]. However, the price to pay for this approach is
the effort formaintaining themapping integrity among the
different layers. The research community and the vendors
of DBMS’s should provide automated facilities that reduce
this effort and make the lives of the application developers
and the DBAs easier.

• A departure from the relational model is progressively
taking place [31]. Replacing the assumptions of our cur-
rent state of practice with new ones, dictated by the very
nature of self-describing data and solving all of the afore-
mentioned issues into this new context is also an inter-
esting challenge for the research community, the vendors
of the vendors of data-driven application development
environments, and the vendors of DBMSs.

Consequences and Future work. We believe that gravita-
tion to rigidity is established after this paper. Typically, schemata
evolve earlier than the code, and now we have evidence for this
phenomenon, which was so far simply rumor-based. To explain
the gravitation to rigidity, we have made a conjecture that the
developers’ reluctance to actively maintain the schema is due to
the effect that schema evolution has to the surrounding code (i.e.,
crashes and semantic inconsistencies) and the resulting effort
that is required to maintain the application code that works on
top of the evolving schema. Deep verification of this aspect is still
open. The construction of more precise detection methods for
measuring change, that can be automated at a very large scale, is
another possible path for future research.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for helping improve the
paper’s clarity (case study, scope and influencing factors).

3docs.oracle.com/database/121/ADFNS/adfns_editions.htm

38

REFERENCES
[1] Dimitri Braininger, Wolfgang Mauerer, and Stefanie Scherzinger. 2020. Repli-

cability and Reproducibility of a Schema Evolution Study in Embedded
Databases. In Advances in Conceptual Modeling - ER 2020 Workshops CMAI,
CMLS, CMOMM4FAIR, CoMoNoS, EmpER, Vienna, Austria, November 3-6, 2020,
Proceedings (Lecture Notes in Computer Science), Georg Grossmann and Sudha
Ram (Eds.), Vol. 12584. Springer, 210–219.

[2] Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. 2016. Synchro-
nization of Queries and Views Upon Schema Evolutions: A Survey. ACM
Trans. Database Syst. 41, 2 (2016), 9:1–9:41.

[3] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens H.
Weber. 2015. Understanding database schema evolution: A case study. Sci.
Comput. Program. 97 (2015), 113–121.

[4] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Au-
tomating the database schema evolution process. VLDB J. 22, 1 (2013), 73–98.

[5] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo. 2008. Schema Evolution in
Wikipedia: toward a Web Information System Benchmark. In Proceedings of
ICEIS 2008.

[6] Alexandre Decan, Mathieu Goeminne, and TomMens. 2017. On the Interaction
of Relational Database Access Technologies in Open Source Java Projects.
CoRR abs/1701.00416 (2017). http://arxiv.org/abs/1701.00416

[7] Julien Delplanque, Anne Etien, Nicolas Anquetil, and Olivier Auverlot. 2018.
Relational Database Schema Evolution: An Industrial Case Study. In 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 635–644.

[8] Konstantinos Dimolikas, Apostolos V. Zarras, and Panos Vassiliadis. 2020. A
Study on the Effect of a Table’s Involvement in Foreign Keys to its Schema
Evolution. In Conceptual Modeling - 39th International Conference, ER 2020,
Vienna, Austria, November 3-6, 2020, Proceedings (Lecture Notes in Computer
Science), Gillian Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle, and
Heinrich C. Mayr (Eds.), Vol. 12400. Springer, 456–470.

[9] Spyridon K. Gardikiotis and Nicos Malevris. 2009. A two-folded impact analy-
sis of schema changes on database applications. Int. J. Autom. Comput. 6, 2
(2009), 109–123.

[10] Mathieu Goeminne, Alexandre Decan, and TomMens. 2014. Co-evolving code-
related and database-related changes in a data-intensive software system. In
2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, CSMR-WCRE 2014, Antwerp, Belgium,
February 3-6, 2014. IEEE Computer Society, 353–357.

[11] Michael Hartung, James F. Terwilliger, and Erhard Rahm. 2011. Recent Ad-
vances in Schema and Ontology Evolution. In Schema Matching and Mapping,
Zohra Bellahsene, Angela Bonifati, and Erhard Rahm (Eds.). Springer, 149–190.

[12] Kai Herrmann, Hannes Voigt, Torben Bach Pedersen, and Wolfgang Lehner.
2018. Multi-schema-version data management: data independence in the
twenty-first century. VLDB J. 27, 4 (2018), 547–571. https://doi.org/10.1007/
s00778-018-0508-7

[13] Kai Herrmann, Hannes Voigt, Jonas Rausch, Andreas Behrend, and Wolfgang
Lehner. 2018. Robust and simple database evolution. Inf. Syst. Frontiers 20, 1
(2018), 45–61.

[14] Meike Klettke, Hannes Awolin, Uta Störl, Daniel Müller, and Stefanie
Scherzinger. 2017. Uncovering the evolution history of data lakes. In IEEE
International Conference on Big Data, BigData 2017, Boston,A, USA, December
11-14, 2017. IEEE Computer Society, 2462–2471.

[15] Thomas A. Limoncelli. 2019. SQL is no excuse to avoid DevOps. Commun.
ACM 62, 1 (2019), 46–49. https://doi.org/10.1145/3287299

[16] Dien-Yen Lin and Iulian Neamtiu. 2009. Collateral Evolution of Applications
and Databases. In Joint Intl. Annual ERCIMWorkshops on Principles of Software
Evolution (IWPSE) and Software Evolution (Evol). 31–40.

[17] Petros Manousis, Panos Vassiliadis, Apostolos V. Zarras, and George Papaste-
fanatos. 2015. Schema Evolution for Databases and Data Warehouses. In 5th
European Summer School on Business Intelligence , eBISS 2015 (Lecture Notes in
Business Information Processing), Vol. 253. Springer, 1–31.

[18] Petros Manousis, Apostolos V. Zarras, Panos Vassiliadis, and George Papaste-
fanatos. 2017. Extraction of Embedded Queries via Static Analysis of Host
Code. In 29th International Conference on Advanced Information Systems Engi-
neering (CAiSE 2017), Essen, Germany, June 12-16, 2017, Proceedings. 511–526.

[19] Robert Martin. 2002. Agile Software Development, Principles, Patterns, and
Practices. Pearson.

[20] Andy Maule, Wolfgang Emmerich, and David S. Rosenblum. 2008. Impact
analysis of database schema changes. In 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Wilhelm
Schäfer, Matthew B. Dwyer, and Volker Gruhn (Eds.). ACM, 451–460.

[21] Tom Mens, Maëlick Claes, Philippe Grosjean, and Alexander Serebrenik. 2014.
Studying Evolving Software Ecosystems based on Ecological Models. In
Evolving Software Systems, Tom Mens, Alexander Serebrenik, and Anthony
Cleve (Eds.). Springer, 297–326.

[22] MEJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics 46, 5 (2005), 323–351. https://doi.org/10.1080/
00107510500052444

[23] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
2010. HECATAEUS: Regulating schema evolution. In ICDE. 1181–1184.

[24] Dong Qiu, Bixin Li, and Zhendong Su. 2013. An Empirical Analysis of the
Co-evolution of Schema and Code in Database Applications. In 2013 9th Joint
Meeting on Foundations of Software Engineering ((ESEC/FSE)). 125–135.

[25] Stefanie Scherzinger, Wolfgang Mauerer, and Haridimos Kondylakis. 2021.
DeBinelle: Semantic Patches for Coupled Database-Application Evolution. In
37th IEEE International Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021. IEEE, 2697–2700.

[26] Stefanie Scherzinger and Sebastian Sidortschuck. 2020. An Empirical Study on
the Design and Evolution of NoSQLDatabase Schemas. In Conceptual Modeling
- 39th International Conference, ER 2020, Vienna, Austria, November 3-6, 2020,
Proceedings (Lecture Notes in Computer Science), Gillian Dobbie, Ulrich Frank,
Gerti Kappel, Stephen W. Liddle, and Heinrich C. Mayr (Eds.), Vol. 12400.
Springer, 441–455.

[27] Robert E. Schuler and Carl Kesselman. 2019. A High-level User-oriented
Framework for Database Evolution. In 31st International Conference on Scien-
tific and Statistical Database Management, SSDBM 2019, Santa Cruz, CA, USA,
July 23-25, 2019. ACM, 157–168.

[28] D. Sjøberg. 1993. Quantifying schema evolution. Information and Software
Technology 35, 1 (1993), 35–44.

[29] Ioannis Skoulis, Panos Vassiliadis, and Apostolos V. Zarras. 2015. Growing
up with stability: How open-source relational databases evolve. Information
Systems 53 (2015), 363–385.

[30] Michael Stonebraker, Raul Castro Fernandez, Dong Deng, and Michael L.
Brodie. 2017. Database Decay and What To Do About It. Commun. ACM 60, 1
(2017), 11. https://doi.org/10.1145/3014349

[31] Uta Störl, Meike Klettke, and Stefanie Scherzinger. 2020. NoSQL Schema
Evolution and Data Migration: State-of-the-Art and Opportunities. In Proceed-
ings of the 23rd International Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, Angela Bonifati,
Yongluan Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan Olteanu,
George H. L. Fletcher, Arijit Khan, and Bin Yang (Eds.). OpenProceedings.org,
655–658.

[32] Dennis Tsichritzis and Anthony C. Klug. 1978. The ANSI/X3/SPARC DBMS
Framework Report of the Study Group on Dabatase Management Systems.
Inf. Syst. 3, 3 (1978), 173–191. https://doi.org/10.1016/0306-4379(78)90001-7

[33] Panos Vassiliadis. 2021. Profiles of Schema Evolution in Free Open Source
Software Projects. In 37th IEEE International Conference on Data Engineering,
ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 1–12.

[34] Panos Vassiliadis, Michail-Romanos Kolozoff, Maria Zerva, and Apostolos V.
Zarras. 2019. Schema evolution and foreign keys: a study on usage, heartbeat
of change and relationship of foreign keys to table activity. Computing 101,
10 (2019), 1431–1456.

[35] Panos Vassiliadis and Apostolos V. Zarras. 2017. Schema Evolution Survival
Guide for Tables: Avoid Rigid Childhood and You’re En Route to a Quiet Life.
Journal of Data Semantics 6, 4 (2017), 221–241.

[36] Panos Vassiliadis, Apostolos V. Zarras, and Ioannis Skoulis. 2017. Gravitating
to rigidity: Patterns of schema evolution - and its absence - in the lives of
tables. Information Systems 63 (2017), 24–46.

[37] Shengfeng Wu and Iulian Neamtiu. 2011. Schema Evolution Analysis for
Embedded Databases. In 2011 IEEE 27th International Conference on Data
Engineering Workshops (ICDEW ’11). 151–156.

39

