Hierarchical Property Set Mergir
for SPARQL Query Optimizatior

0Q

Marios Meimaris, Athena Research Center, Greece Z

ATHENA
George Papastefanatos, Athena Research Center, Greece

Panos Vassiliadis, University of loannina, Greece

Preliminaries

* RDF (Resource Description Framework)
* Abstract Data model for Linked Data
* Based on Triples: Subject-Predicate-Object
 RDF datasets are Directed Labelled Graphs

* Characteristic Set (CS)
 ACSis a set of properties with the same subject as source node
* An RDF dataset can be described as a set of unique CSs
* Each CSis an implicit resource type

Preliminaries

> Use Characteristic Sets (CSs) and their links in order to store and index
triples

> Characteristic Sets (Neumann & Moerkotte, ICDE 2011)

> A Characteristic Set (CS) S, of a node x is defined as the set of properties
emitting from x (i.e., x as subject)

John Doe Alice Doe
" '
\)Q %me_ _:Alice
Z _:John y
- Paris «—origin
London «—origin ” = %@
7 5@ N
ol N N
& S Professor
® Professor 4
4 University 123
Company ABC

Sc(John) = {name, origin, worksAt, type} Sc(Alice) = {name, origin, studiesAt, type}

Background

> Derive a relational
representation of an RDF
dataset

> Use CSs as tables and links
between CSs as relationships

> CS properties =2 relation
attributes

foaf:Person
rdftype rdftype

Alice Claire

worksFor worksFor

supe‘wises l SUpernvises ‘

Joan Company A Rick Company B

ci= {rdf:type, worksFor, supervises}

id rdf:type worksFor supervises
Alice foaf:Person | Company A Joan
Claire foaf:Person | Company B Rick

DOLAP 2020 4

Problem statement

RDF structural looseness = multiple CSs = different representation strategies

N.ﬁg‘,, EN'IL&E‘"
sugﬁ c}:l"? y
¥ T
na:_.‘ahﬁhdﬂ @m‘iﬂ‘ﬁh
\)
" ,:,1‘&57' o N Clﬁ‘st- ° ,"}00
4
isMarriedTo @
¢, = {worksFor, supervises, hasBirthday, isMarriedTo} c; = {worksFor, supervises, hasBirthday, hasNationality}
\ e
e
5\3‘@3‘-\5 »
pady I
o "
ot - wotsFe
tz = {worksFor, supervises, hasBirthday} c; = {worksFor, hasBirthday}

DOLAP 2020 5

Trade-Off for creating a relational schema

"‘\eﬂ\’e’ ’\eﬂ“’é
- ISMEIEGTD h ‘\# ’B\\‘L
: : n . n ’
A relational table for each different CS A "universal" table for all CS’s
id supervises worksFor hasBirthday | isMarriedTo id supervises worksFor | hasBirthday | isMarriedTo |hasNationality
51 51 NULL
id supervises worksFor hasBirthday |hasNationality S5 NULL
S5 S NULL NULL
id supervises worksFor hasBirthday Sa NULL NULL NULL
53 . . was
id worksFor hasBirthday
54

DOLAP 2020 6

Trade-Off for creating a relational schema

A relational table for each different CS

id supervises

worksFor

hasBirthday

isMarriedTo

51

e
o s
¥
hasB\(\hdﬁV
o ofksFO k,,o«*“
o isMarriedTo
supervises, hasBirthday, i

,isMarriedTo) €2 = {worksFor, supervises, hasBirthday,

l HA | | E T e

Space efficient

Large numbers of relational tables with few tuples in

LreComw I hacRirelhdas | laahl ul-:nnal:hq

Too many joins to answer queries

DOLAP 2020

5

A "universal" table for all CS’s

i

id supervises worksFor hasBirthday | isMarriedTo |hasNationality
51 NULL

e Captures all CSs into a single table

[J

Too many NULL values

Space inefficient

T

Trade-Off for answering a complex SPARQL query
with many joins

A relational table for each different CS

SELECT ? x ?y ?z ?w

WHERE { ?x worksFor ?y .

supervises ?z .
hasBirthday
isMarriedTo ?w.
hasNationality

?x
?z
?z
w

id

supervises worksFor

hasBirthday

isMarriedTo

51

'2011-02-24" .

\GR’ }

A "universal" table for all CS’s

|

id

A E

and isMarriedTo query conditions

Additionally three joins between each CS table and all
other CS tables in the database —i.e., 4 joins per table.

I hacRivtblhdas

One self-join for each one of the worksFor , supervises

ay |
thday

DOLAP 2020

id supervises worksFor hasBirthday | isMarriedTo |hasNationality
51 NULL

S5 NULL

S3 NULL NULL

Sa WIRIN IR LIRIN

.. One self-join for each one of the worksFor ,

supervises and isMarriedTo query conditions

Problem to be solved

Context: Mapping heterogeneous RDF datasets to a
relational schema with the aim to facilitate the processing of
complex analytical SPARQL queries

Solution: automating the decision of which tables will be

created for a set of CS, such that there are no overly empty
tables and extremely large numbers of joins.

DOLAP 2020

Observations

v

Based on previous findings:

> CS number is generally low but exhibits skewed distribution
> E.g., many CSs with very few (<10) subjects
> CS number affects number of joins

Merging closely related CSs helps storage & querying
> Less CSs means less joins
> Less CSs means less /0 costs in disk-based systems
> Compact schema easier to understand and maintain

CSs are hierarchical, i.e., their property sets can be super/subsets of each
other

Challenge: exploit the hierarchical structure in order to merge together
closely related CSs

A\

v

v

Challenge

> Each CS defines a relational table (s, p;, p,, -, Py)
> Merging of CS tables results in NULL values for non-shared attributes

> Challenge: merge CSs and reduce NULL value effect

e'g.: 5 |Pa|Po S | Pa|Po|Pc
C, = {name, age} slorloa| [siloloelo)| 1 |5fBalPe] e | Ps
c, = {name, age, marriedTo} o losos| |5 lonlonlon s1[010
c, = {name, age, marriedTo, worksAt} Co c, _»|s2|03]| 04
s3|0s|0g| O7
5 |Pa|Pe|Pc|Pd sq| 0g| 09| 01
S5 [011]|012| 013|014 B sc |011|012| 015 | 012
56 | 015|015 017|018 Sg |015|015| 017 | O18
%] Cmerged

DOLAP 2020 11

Approach

> Use a dense child table and merge its parents into it
> Why dense? -> # of NULLs is proportional to # of records of table to be merged
> Why child? -> more specialized, thus will contain columns of parents

> ldentify dense CSs
> if |¢;| >mx [c,,, /] parameter => ¢, is dense
> gvery)resulting (merged) table will contain exactly one dense node (and several non-
ense

> Find optimal merging of ancestors to dense child CSs

e.g.
c,: {name, age, address}, c,: {name, age}: c, child of c,

hier_merge(c,, ¢,) = ¢,
Cy,: {name, age, address)

CS Graph Example

Q2 o2
pa/‘ pa/‘
(Ql (9&
s p e ps
i +

c1=1{p1, P2, P3, Pa}

c3 ={p1, P2, P3}

C2 = {P1, P2, P3, Ps} / T \

Cs = {pP1, P2}

DOLAP 2020 13

Approach - Example

°
A Dt
-,
7 -
#
Cs s Cg
C

i -Hm.\

) /. ’ =)
| !
o L= \c/
2 S #/;/,» C

/ \ ————

2

6/\0/

-,

s
| b}
\ |
b !

e

= e

DOLAP 2020

C, C G
Cr Cr Cs
Cr Cs Cs
Cs Cs Cs
Cs Cg Cs
Cg Cr Cs
Cs Cg Cs

14

Approach — Loading and Merging

> Finding the optimal solution is equivalent to enumerating all possible
sub-graphs -> exponential

> Greedy approximation

> At each step, merge parent CS and dense child CS that minimize objective cost
function

> Cost function minimizes the number of NULL values introduced by the merge

> Tuning of m parameter

Approach — Querying

> Parse incoming SPARQL queries
> ldentify query CSs that match merged CSs in the dataset
> Rewrite query as an SQL statement with UNIONs between matched CSs
> In case of SO/OS joins, prune off CSs that are not linked

> Pass final query to relational optimizer
> Build and output results

Implementation & Evaluation (Loading)

Dataset Size (MB) Time # Tables (CSs) # of ECSs Dense CS

Coverage
Reactome Simple 781 3min 112 346 100%
Reactome (m=0.05) 675 4min 35 252 97%
Reactome (m=0.25) 865 4min 14 73 7%
(Geonames Simple 4991 69min 851 12136 100%
Geonames (m=0.0025) 4999 70min 82 2455 97%
Geonames (m=0.05) 5093 91min 19 76 87%
Geonames (m=0.1) 5104 92min 6 28 83%
LUBM Simple 591 3min 14 68 100%
LUBM (m=0.25) 610 3min 6 21 90%
LUBM (m=0.5) 620 3min 3 6 58%
WatDiv Simple 4910 9Tmin 5667 802 100%
WatDiv (m=0.01) 5094 THmin 67 99 TT%
WatDiv (m=0.1) 5250 THmin 25 23 63%
WatDiv (m=0.5) 5250 TTmin 16 19 55%

DOLAP 2020

Implementation & Evaluation (Querying)

mm=0.25 mm=05 m=1 & =005 m o0 005 mm=0.00 S =0l Emel Bm=0.05% EBm=01 ®m=025 m=1

W 1 E

T - 1000 & 10

) 2 100 g

a LA]

w 1 :’ 1

g £ =

g 01 §g 2 01

I AN : Il
g3y Gl i D1 bl N

a1 Q2 03 Q4 05 o6 GM Q1 Q2 O3 04 05 056 oM o1 Q2 Q3 04 a5 Oh GM

(a) Execution time (sec- (b) Execution time (sec- (¢) Execution time (sec-
onds) for LUBM onds) for Geonames onds) for Reactome

virtuoso Wrdfix B triplebit virtuoso Wrdf3x W triplebit
virtuose Mrdf-3d W triplebit

% emergent W axcnDB W raxonDB _ = emergent MaxonDié mraxonDE
£ L] emergent @axonDB WragonDB =
51000 = o 1000
2 o § w0] 10
2 2 o z
£ 10 i w £ ol
= 1 = 1 = 0.001
(] =
g 01 % o1 % QD001
g oot ¢ 0M 1 | I £ 0.0000001
& oo # ooal 1 1609
ol @ o L o o 1] al az a3 a4 a5 6 G al a3 Tl 5 i w]

(a) Execution time (seconds) (b) Execution time (sec- (c¢) Execution time (seconds)
for LUBM2000 onds) for Geonames for Reactome

DOLAP 2020

18

Future Work

> Distributed version of raxonDB
> CS-based partitioning scheme
> Distributed query processing

> Refined cost function
> Different ways of defining density

Thank you

{m.meimaris, gpapas}@athenarc.gr, pvassil@cs.uoi.gr
https://github.com/mmeimaris/raxonDB

https://visualfacts.imsi.athenarc.gr/

H F R I This research is funded by the project VisualFacts (#1614) - 1st Call of the Hellenic Foundation for
Helleni.chFou:udation.fo: Research and Innovation Research Projects for the support of post-doctoral researchers.

DOLAP 2020

20

https://github.com/mmeimaris/raxonDB
https://visualfacts.imsi.athenarc.gr/
https://visualfacts.imsi.athenarc.gr/

