
Hierarchical Property Set Merging
for SPARQL Query Optimization

Marios Meimaris, Athena Research Center, Greece

George Papastefanatos, Athena Research Center, Greece

Panos Vassiliadis, University of Ioannina, Greece

Preliminaries

• RDF (Resource Description Framework)
• Abstract Data model for Linked Data

• Based on Triples: Subject-Predicate-Object

• RDF datasets are Directed Labelled Graphs

• Characteristic Set (CS)
• A CS is a set of properties with the same subject as source node

• An RDF dataset can be described as a set of unique CSs

• Each CS is an implicit resource type

DOLAP 2020 2

Preliminaries

› Use Characteristic Sets (CSs) and their links in order to store and index
triples

› Characteristic Sets (Neumann & Moerkotte, ICDE 2011)
› A Characteristic Set (CS) Sc of a node x is defined as the set of properties

emitting from x (i.e., x as subject)

DOLAP 2020

_:John

John Doe

London

Company ABC

Professor

_:Alice

Alice Doe

Paris

University 123

Professor

Sc(John) = {name, origin, worksAt, type} Sc(Alice) = {name, origin, studiesAt, type}

3

Background

› Derive a relational
representation of an RDF
dataset

› Use CSs as tables and links
between CSs as relationships

› CS properties → relation
attributes

DOLAP 2020 4

Problem statement

DOLAP 2020

RDF structural looseness →multiple CSs → different representation strategies

5

Trade-Off for creating a relational schema

A relational table for each different CS A "universal" table for all CS’s

DOLAP 2020 6

Trade-Off for creating a relational schema

A relational table for each different CS A "universal" table for all CS’s

DOLAP 2020

• Space efficient
• Large numbers of relational tables with few tuples in
• Too many joins to answer queries

• Captures all CSs into a single table
• Too many NULL values
• Space inefficient

7

Trade-Off for answering a complex SPARQL query
with many joins

A relational table for each different CS A "universal" table for all CS’s

DOLAP 2020

One self-join for each one of the worksFor , supervises
and isMarriedTo query conditions

Additionally three joins between each CS table and all
other CS tables in the database – i.e., 4 joins per table.

One self-join for each one of the worksFor ,
supervises and isMarriedTo query conditions

SELECT ? x ?y ?z ?w

WHERE { ?x worksFor ?y .

?x supervises ?z .

?z hasBirthday '2011−02−24’.

?z isMarriedTo ?w.

?w hasNationality ‘GR’}

8

Problem to be solved

DOLAP 2020

Context: Mapping heterogeneous RDF datasets to a
relational schema with the aim to facilitate the processing of
complex analytical SPARQL queries

Solution: automating the decision of which tables will be
created for a set of CS, such that there are no overly empty
tables and extremely large numbers of joins.

9

Observations

› Based on previous findings:
› CS number is generally low but exhibits skewed distribution

› E.g., many CSs with very few (<10) subjects

› CS number affects number of joins

› Merging closely related CSs helps storage & querying
› Less CSs means less joins
› Less CSs means less I/O costs in disk-based systems
› Compact schema easier to understand and maintain

› CSs are hierarchical, i.e., their property sets can be super/subsets of each
other

› Challenge: exploit the hierarchical structure in order to merge together
closely related CSs

DOLAP 2020 10

Challenge

› Each CS defines a relational table (s, p1, p2, …, pk)

› Merging of CS tables results in NULL values for non-shared attributes

› Challenge: merge CSs and reduce NULL value effect

e.g.:
c0 = {name, age}
c1 = {name, age, marriedTo}
c2 = {name, age, marriedTo, worksAt}

DOLAP 2020 11

Approach

› Use a dense child table and merge its parents into it
› Why dense? -> # of NULLs is proportional to # of records of table to be merged
› Why child? -> more specialized, thus will contain columns of parents

› Identify dense CSs
› if |ci| > m x |cmax| parameter => ci is dense

› Every resulting (merged) table will contain exactly one dense node (and several non-
dense)

› Find optimal merging of ancestors to dense child CSs

e.g.
c1: {name, age, address}, c2: {name, age}: c1 child of c2

hier_merge(c1, c2) = c12
c12: {name, age, address)

DOLAP 2020 12

CS Graph Example

DOLAP 2020

s1

p4

...

...

...

...
s2

p5

...

...

...

...

s3

...

...

...
s4

...

...

c1 = {p1, p2, p3, p4} c2 = {p1, p2, p3, p5}

c3 = {p1, p2, p3} c4 = {p1, p2}

c1 c2

c3

c4

13

Approach - Example

DOLAP 2020 14

Approach – Loading and Merging

› Finding the optimal solution is equivalent to enumerating all possible
sub-graphs -> exponential

› Greedy approximation
› At each step, merge parent CS and dense child CS that minimize objective cost

function

› Cost function minimizes the number of NULL values introduced by the merge

› Tuning of m parameter

DOLAP 2020 15

Approach – Querying

› Parse incoming SPARQL queries
› Identify query CSs that match merged CSs in the dataset

› Rewrite query as an SQL statement with UNIONs between matched CSs

› In case of SO/OS joins, prune off CSs that are not linked

› Pass final query to relational optimizer

› Build and output results

DOLAP 2020 16

Implementation & Evaluation (Loading)

DOLAP 2020 17

Implementation & Evaluation (Querying)

DOLAP 2020 18

Future Work

› Distributed version of raxonDB
› CS-based partitioning scheme

› Distributed query processing

› Refined cost function

› Different ways of defining density

DOLAP 2020 19

Thank you

{m.meimaris, gpapas}@athenarc.gr, pvassil@cs.uoi.gr

https://github.com/mmeimaris/raxonDB

https://visualfacts.imsi.athenarc.gr/

DOLAP 2020

This research is funded by the project VisualFacts (#1614) - 1st Call of the Hellenic Foundation for
Research and Innovation Research Projects for the support of post-doctoral researchers.

20

https://github.com/mmeimaris/raxonDB
https://visualfacts.imsi.athenarc.gr/
https://visualfacts.imsi.athenarc.gr/

