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ABSTRACT
On-demand integration of multiple data sources is a critical re-
quirement in many Big Data settings. This has been coined as
the data variety challenge, which refers to the complexity of deal-
ing with an heterogeneous set of data sources to enable their
integrated analysis. In Big Data settings, data sources are com-
monly represented by external REST APIs, which provide data
in their original format and continously apply changes in their
structure (i.e., schema). Thus, data analysts face the challenge
to integrate such multiple sources, and then continuosly adapt
their analytical processes to changes in the schema. To address
this challenges, in this paper, we present the Metadata Manage-
ment System, shortly MDM, a tool that supports data stewards
and analysts to manage the integration and analysis of multiple
heterogeneous sources under schema evolution. MDM adopts a
vocabulary-based integration-oriented ontology to conceptualize
the domain of interest and relies on local-as-view mappings to
link it with the sources. MDM provides user-friendly mechanisms
to manage the ontology and mappings. Finally, a query rewriting
algorithm ensures that queries posed to the ontology are correctly
resolved to the sources in the presence of multiple schema ver-
sions, a transparent process to data analysts. On-site, we will
showcase using real-world examples how MDM facilitates the
management of multiple evolving data sources and enables its
integrated analysis.

1 INTRODUCTION
In recent years, a vast number of organizations have adopted data-
driven approaches that align their business strategy with advanced
data analysis. Such organizations leverage Big Data architectures
that support the definition of complex data pipelines in order
to process heterogeneous data, from multiple sources, in their
original format. External data (i.e., neither generated nor under
control of the organization) are commonly ingested from third
party data providers (e.g., social networks) via REST APIs with a
fixed schema. This requires data analysts to tailor their processes
to the imposed schema for each source. A second challenge that
data analysts face is the adaptation of such processes upon schema
changes (i.e., a release of a new version of the API), a cumber-
some task that needs to be manually dealt with. For instance, in
the last year Facebook’s Graph API1 released four major versions

1https://developers.facebook.com/docs/graph-api/changelog
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affecting more than twenty endpoints each, many of them break-
ing changes. The maintenance of such data analysis processes is
critical in scenarios integrating tenths of sources and exploiting
them in hundreds of analytical processes, thus its automation is
badly needed.

The definition of an integrated view over an heterogeneous set
of sources is a challenging task that Semantic Web technologies
are well-suited for to overcome the data variety challenge [3].
Given the simplicity and flexibility of ontologies, they constitute
an ideal tool to define a unified interface (i.e., global vocabulary
or schema) for such heterogeneous environments. This family of
systems, that perform data integration using ontologies, propose to
define a global conceptual schema (i.e., by means of an ontology)
over the sources (i.e., by means of mappings) in order to rewrite
ontology-mediated queries (OMQs) to the sources. The state of the
art approaches for such integration-oriented ontologies are based
on generic reasoning algorithms, that rely on certain families of de-
scription logics (DLs). Such approaches rewrite an OMQ, first to
an expression in first-order logic and then to SQL. This approach,
commonly referred as ontology-based data access (OBDA) [8],
does not consider the management of changes in the sources, and
thus such variability in their schema would cause OMQs either
crash or return partial results. This issue, which is magnified in
Big Data settings, is caused because OBDA approaches represent
schema mappings following the global-as-view (GAV) approach,
where elements of the ontology are characterized in terms of a
query over the source schemata. GAV ensures that the process of
query rewriting is tractable and yields a first-order logic expres-
sion, by just unfolding the queries to the sources, but faulty upon
source schema changes [2]. To overcome this issues a desiderata
is to adopt the local-as-view (LAV) approach. Oppositely to GAV,
LAV characterizes elements of the source schemata in terms of a
query over the ontology, making it inherently more suitable for
dynamic environments [4]. LAV flexibility, however, comes at
the expense of computational complexity in the query answering
process.

To address these challenges, we adopt a vocabulary-based ap-
proach for data integration. These approaches are not necessarily
restricted to the expressiveness of a DL and its generic reasoning
algorithms. Such settings rely on rich metamodels for specific
integration tasks, here focused on schema evolution. Under cer-
tain constraints when instantiating the metamodel, it is possible
to define specific efficient algorithms that resolve LAV mappings
without ambiguity. To this end, we created the Metadata Man-
agement System, or shortly MDM2, an end-to-end solution to
assist data stewards and data analysts during the Big Data inte-
gration lifecycle. Data stewards are provided with mechanisms to

2http://www.essi.upc.edu/~snadal/mdm.html
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semi-automatically integrate new sources and accomodate schema
evolution into a global schema. In turn, data analysts have means
to pose OMQs to such global schema by making transparent the
underlying mechanisms to query the sources with LAV mappings.

MDM implements a vocabulary-based integration-oriented on-
tology, represented by means of two RDF graphs, specifically the
global graph and the source graph [5]. The former representing
the domain of interest (also known as domain ontology) and the
latter the schema of the sources. The key concepts are releases,
which represent a new source or changes in existing sources. A
relevant element of releases are wrappers (from the well-known
mediator/wrapper architecture in data integration), the mechanism
enabling access to the sources (e.g., an API request or a database
query). Upon new releases the schemata of wrappers are extracted
and their RDF-based representation stored in the source graph.
Afterwards, the data steward is aided on the process of linking
such new schemata to the global graph (i.e., define the LAV map-
ping). Orthogonally, data analysts pose OMQs to the global graph.
The current de-facto standard to query ontologies is the SPARQL
query language, however to enable non-expert analysts to query
the sources MDM offers an interface where OMQs are graphically
posed as subgraph patterns of the global graph, which are automat-
ically translated to SPARQL. A specific query rewriting algorithm
takes care of how to properly resolve LAV mappings, a process
that consists on the discovery of joins amongst wrappers and their
attributes, regardless of the number of wrappers per source.

Motivational use case. As motivational use case, and for the
sake of understandability, we will analyse information related to
european football teams. This represents the simple use case that
will be demoed on-site amongst others with higher complexity
(i.e., the SUPERSEDE project). Precisely, we aim to ingest data
from four data sources, in the form of REST APIs, respectively
providing information about players, teams, leagues and countries.
The integrated schema of this scenario is conceptualized in the
UML depicted in Figure 1, which we use as a starting point to pro-
vide a high-level representation of the domain of interest, used to
generate the ontological knowledge captured in the global graph.

Figure 1: UML of the motivational use case

Each of the APIs is independent from each other, and thus
they differ in terms of schema and format. Thus, for instance,
the Players API provides data in JSON format while the Teams
API in XML. An excerpt of the content provided by such two
APIs is depicted in Figure 2. Next, the goal is to enable data
analysts to pose OMQ to the ontology-based representation of the
UML diagram (i.e., global graph) by navigating over the classes.
Specifically, we aim the sources to be automatically accessed
under multiple schema versions. An exemplary query would be,

“who are the players that play in a league of their nationality?”.
Outline. In the rest of the paper, we will introduce the demon-

strable features to resolve the motivational and other exploratory

{

"id": 6176,

"name": "Lionel Messi",

"height": 170.18,

"weight": 159,

"rating": 94,

"preferred_foot": "left",

"team_id": 25

}

<team>

<id>25</id>

<name>FC Barcelona</name>

<shortName>FCB</shortName>

</team>

Figure 2: Sample data for Players API and Teams API

queries. We first provide an overview of MDM and then, we
present its core features to be demonstrated. Lastly, we outline
our on-site presentation, involving the motivational use case and a
complex real-world use case.

2 DEMONSTRABLE FEATURES
MDM presents an end-to-end solution to integrate and query
a set of continuously evolving data sources. Figure 4 depicts a
high-level overview of the approach. Its pillar is the Big Data
integration (BDI) ontology [7], the metadata model (i.e., set of de-
sign guidelines) that allow data stewards to semantically annotate
the integration constructs that enable automating the evolution
process and unambiguously resolve query answering.

Figure 4: High-level overview of our approach

We devise four kinds of interaction with the system, which
are in turn the offered functionalities: (a) definition of the global
graph, where data stewards define the domain of interest for ana-
lysts to query; (b) registration of wrappers, either in the presence
of a new source or the evolution of an existing one; (c) defini-
tion of LAV mappings, where LAV mappings between the source
and the global graphs are defined; and (d) querying the global
graph, where data analysts pose OMQs to the global graph which
are automatically rewritten over the wrappers. In the following
subsections, we describe how MDM assists on each of them.

2.1 Definition of the global graph
The global graph, whose elements are prefixed with G, reflects the
main domain concepts, relationships among them and features of
analysis. To this end, we distinguish between two main constructs
concepts and features. Concepts (i.e., instances of G:Concept)
are elements that group features (i.e., G:Feature) and do not
take concrete values from the sources. Only concepts can be re-
lated to each other using any user-defined property, we also allow
to define taxonomies for them (i.e., rdfs:subClassOf). It is
possible to reuse existing vocabularies to semantically annotate
the data at the global graph, and thus follow the principles of
Linked Data. This, enables data to be self-descriptive as well as
it opens the door to publish it on the Web [1]. Furthermore, we
restrict features to belong to only one concept.
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MDM supports the definition of the global graph avoiding
the need to use external ontology modeling tools (e.g., Protégé).
Figure 5 depicts an excerpt of the global graph for the demo use
case, focusing on the concepts Player and Team. Like we said, we
reuse vocabularies as much as possible, hence the concept Team is
reused from http://schema.org/SportsTeam. When no reuse is pos-
sible, we define the example’s custom prefix ex. As data stewards
interact with MDM to define the global graph, the corresponding
RDF triples are being generated automatically.

Figure 5: Global graph for the motivational use case. Blue
and yellow nodes denote concepts and features

2.2 Registration of new data sources
New wrappers are introduced either because we want to con-
sider data from a new data source, or because the schema of an
existing source has evolved. Nevertheless, in both cases the pro-
cedure to incorporate them to the source level, whose elements
are prefixed with S, is the same. To this end, we define the data
source (i.e., S:DataSource) and wrapper (i.e., S:Wrapper)
metaconcepts. Data stewards must provide the definition of the
wrapper, as well as its signature. We work under the assumption
that wrappers provide a flat structure in first normal form, thus the
signature is an expression of the form w(a1, . . . ,an ) where w is
the wrapper name and a1, . . . ,an the set of attributes. With such
information, MDM extracts the RDF-based representation of the
wrapper’s schema (i.e., creates elements of type S:Attribute)
which are incorporated to the existing source level. In the case of
a wrapper for an existing data source, MDM will try to reuse as
many attributes as possible from the previous wrappers for that
data source. However, this is not possible among different data
sources as the semantics of attributes might differ. In the case of
attributes in the source graph, as they are not meant to be shared,
oppositely to features in the global graph, there is no need to reuse
external vocabularies.

Figure 6 depicts an excerpt of the source graph for the sources
related to players and teams, the former with a wrapper’s signa-
ture w1(id,pName,heiдht ,weiдht , score, f oot , teamId) and the
latterw2(id,name, , shortName). Note that, forw1, some attribute
names differ from the data stored in the source (see Figure 2), this
is due to the fact that the query contained in the wrapper might
rename (e.g., f oot) or add new attributes (e.g., teamId). The defi-
nition of a wrapper (e.g., a MongoDB query, a Spark job, etc.) is
out of the scope of MDM and should be carried out by the data
steward.

2.3 Definition of LAV mappings
LAV mappings are encoded as part of the ontology. We represent
them as two components, (a) a subgraph of the global graph, one
per wrapper, and (b) a function linking attributes from the source
graph to features in the global. The former are achieved thanks to
RDF named graphs, which allow to identify subsets of other RDF

Figure 6: Source graph for the motivational use case. Red,
orange and blue denote data sources, wrappers and attributes

graphs identified by an URI. In this case, the URI will be the one
for the wrapper. The latter are achieved via the owl:sameAs
property. Note that, traditionally, the definition of LAV mappings
was a difficult task even for IT people. However, in MDM LAV
mappings can be easily asserted through the interface: each wrap-
per must map to a named graph (i.e., a subset of the global graph),
and a set of owl:sameAs from attributes to features. The task
consists on first selecting a wrapper, and then, with the mouse,
drawing a contour around the set of elements in the global graph
that this wrapper is populating (including concept relations).

Figure 7 depicts the LAV mappings for wrappers w1 and w2,
respectively in red and green. Note the intersection in the con-
cept sc:SportsTeam and its identifier, this will be later used
when querying in order to enable joining such concepts. How-
ever, this joins are only restricted to elements that inherit from
sc:identifier.

Figure 7: LAV mappings for the motivational use case

2.4 Querying the global graph
To overcome the complexity of writing SPARQL queries over the
global graph, MDM adopts a graph pattern matching approach to
enable non-technical data analysts perform their OMQs. Recall
that the WHERE clause of a SPARQL query consists of a graph
pattern. To this end, the analyst can graphically select a set of
nodes of the global graph representing such pattern, we refer to it
as a walk. Then, a specific query rewriting algorithm takes as input
a walk and generates as a result an equivalent union of conjunctive
queries over the wrappers resolving the LAV mappings [7]. Such
process consists of three phases: (a) query expansion, where the
walk is automatically expanded to include concept identifiers that
have not been explicitely stated; (b) intra-concept generation, that
generates partial walks per concept indicating how to query the
wrappers in order to obtain the requested features for the concept
at hand; and (c) inter-concept generation, where all partial walks
are joined to obtain a union of conjunctive queries.
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Using the excerpt of the ontology depicted in Figure 7, we
could graphically pose an OMQ fetching the name of the players
and their teams. Figure 8 shows how such query can be defined
in MDM by drawing a contour (in red) around the concepts and
features of interest in the global graph. On the right hand side, it is
depicted the equivalent SPARQL query, as well as the generated
relational algebra expression over the wrappers. Table 1 depicts a
sample of the output resulting of the execution of the query.

Figure 8: Posing an OMQ in MDM

ex:teamName ex:playerName
FC Barcelona Lionel Messi

Bayern Munich Robert Lewandowski
Manchester United Zlatan Ibrahimovic

Table 1: Sample output for the exemplary query.

2.5 Implementation details
MDM has been developed at UPC BarcelonaTech in the context
of the SUPERSEDE3 project using a service-oriented architecture.
It is the cornerstorne of the Big Data architecture supporting the
project, and a central component of its Semantic Layer [6]. On the
frontend, MDM provides the web-based component to assist the
management of the Big Data evolution lifecycle. This component
is implemented in JavaScript and resides in a Node.JS web server.
The interface makes heavy use of the D3.js library to render graphs
and enables the user to interact with them. Web interfaces are
defined using the Pug template engine, and a number of external
libraries are additionally used. The backend is implemented as a
set of REST APIs defined with Jersey for Java, thus the frontend
interacts with the backend by means of HTTP REST calls. This
enables extensibility of the system and a separation of concerns in
such big system. The backend makes heavy use of Jena to deal
with RDF graphs, as well as its persistence engine Jena TDB.
Additionally, a MongoDB document store is responsible of storing
the system’s metadata. Concerning the execution of queries, the
fragment of data provided by wrappers is loaded into temporal
SQLite tables in order to execute the federated query.

3 DEMONSTRATION OVERVIEW
In the on-site demonstration, we will present the functionality of
MDM relying based on two use cases. First, we will focus on the
paper’s motivational scenario, in order to comprehensively show
the functionalities offered by MDM. Next we will focus on the
SUPERSEDE use case, a real-world scenario of Big Data integra-
tion under schema evolution in order to show the full potential and
benefits of MDM. We will cover the four possible kinds of interac-
tions with MDM, taking the role of both data steward (definition
of the global graph, registration of new wrappers, definition of
LAV mappings) and data analyst (querying the global graph). We

3https://www.supersede.eu

will showcase how MDM aids on each of the processes, consid-
ering as well the input from participants. Precisely, the following
scenarios will be covered:

System setup. In the first scenario we will take the role of a
data steward that has been given a UML diagram (likewise Figure
1), and assigned the task of setting up a global schema to enable
integrated querying of a disparate set of sources. Thus, we will
show how MDM supports the definition of its equivalent global
graph (likewise Figure 5) within the interface. Once finished, we
will introduce the four sources (i.e., the players API, teams API,
etc.) and a wrapper for each. We will show how MDM automati-
cally extracts the schemata of wrappers to automatically generate
the source graph (likewise Figure 6). Finally, we will show how
MDM supports the graphical definition of named graphs, which
are the basis for LAV mappings, and thus properly maps the source
and global graphs (likewise Figure 7).

Ontology-mediated queries. With the global graph set up and a
set of data sources and wrappers in place, now we can act as data
analysts in order to pose OMQs to the system. We will encourage
participants to propose their queries of interest, this is possible
because MDM presents the global graph and allows to graphi-
cally draw a walk around its nodes. This is later automatically
translated to its SPARQL form (likewise Figure 8), and to a rela-
tional algebra expression derived from the query rewriting process.
MDM presents the execution of the query in tabular form.

Governance of evolution. In Big Data ecosystems, changes in
the structure of the data sources will frequently occur. In this sce-
nario, we will release a new version of one of the APIs including
breaking changes that would cause the previously defined queries
to crash. First, we will showcase how MDM easily supports the
inclusion of this new source into the existing global graph and
the definition of its LAV mappings. Next, we will execute again
the queries that were supposed to crash showing how MDM has
adapted the generated relational algebra expressions, where the
two schema versions are now fetched and yield correct results.
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