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Abstract Data-intensive ecosystems are conglomera-
tions of data repositories surrounded by applications
that depend on them for their operation. In this paper,

we address the problem of performing what-if analysis
for the evolution of the database part of a data-intensive
ecosystem, in order to identify what other parts of an

ecosystem are affected by a potential change in the
database schema, and how will the ecosystem look like
once the change has been performed, while, at the same

time, retaining the ability to regulate the flow of events.
We model the ecosystem as a graph, uniformly covering
relations, views and queries as nodes and their inter-

nal structure and interdependencies as the edges of the
graph. We provide a simple language to annotate the
modules of the graph with policies for their response
to evolutionary events in order to regulate the flow of

events and their impact by (i) vetoing (”blocking”) the
change in parts that the developers want to retain un-
affected and (ii) allowing (”propagating”) the change

in parts that we need to adapt to the new schema. Our
method for the automatic adaptation of ecosystems is
based on three algorithms that automatically (i) assess

the impact of a change, (ii) compute the need of dif-
ferent variants of an ecosystem’s components, depend-
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ing on policy conflicts, and (iii) rewrite the modules to
adapt to the change. We theoretically prove the cover-
age of the language, as well as the termination, consis-

tency and confluence of our algorithms, and experimen-
tally verify our methods effectiveness and efficiency.

Keywords Evolution, data-intensive ecosystems,
adaptation

1 Introduction

A data-intensive ecosystem is a conglomeration of soft-
ware modules that includes (a) at least one central
database (typically, but not obligatorily, relational),

and, (b) a set of software applications that require
access to the central database via queries embedded
in their code. The distinctive feature of data-intensive

ecosystems is the cohesive management of databases
and applications – plainly put, the management of the
database has to profoundly take its surrounding appli-

cations into account (and vice versa). In this paper, we
deal with the problem of facilitating the evolution of an
ecosystem without impacting the smooth operation or

the semantic consistency of its components.
To operate smoothly, an ecosystem must withstand

change gracefully. Software maintenance comprises 60%

of the resources spent on building and operating a soft-
ware system [20] and thus, it is of utmost importance
for a system’s life-cycle. In this context, the manage-

ment of changes in a data-centric ecosystem is an im-
portant problem. In this paper, we extend the state of
the art concerning several research questions in the area

of managing the evolution of data-intensive ecosystems.
What does evolution of data-intensive ecosystems

comprise? We start by example – here are a few ex-

amples of possible changes:
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– A certain attribute of the schema of a view is about

to be deleted, as the administrator wants to simplify
the definition of the view

– A new attribute is added to a relation, because new

content is available
– The WHERE clause of a view is modified with an

extra condition, to account for a new definition of

the view’s contents

Taking the aforementioned examples at a more ab-
stract level, we claim that evolution is of significance

if it affects the syntactic correctness, the semantic va-
lidity, the operational effectiveness, or the administra-
tive overhead of a data-intensive ecosystem. The most

disordering (and also visible) type of impact is syntac-
tic impact : in this case, a change might drive parts of
the ecosystem to be syntactically inconsistent and thus

fail. A deleted attribute might cause applications using
it to crash. In this case, the applications’ developers
have to take care of the change: pinpoint its impact

in their code, assess the necessity for the existence of
this information in the applications and modify their
applications accordingly. If things go wrong, this might

even require negotiations with the DBAs to restore the
deleted attribute. Second, applications can be affected
semantically. If a new attribute is added to a relation it

is possible that it contains important information that
applications should be exploiting (and thus, have to be
synchronized to the new contents of the relation). If

the semantics of a view change, then the data deliv-
ered at the view’s clients are different than the ones
delivered before: in this case, the developers of the af-

fected queries and applications would have to be noti-
fied and decide on whether the queries have to adapt to
the new semantics of the view, or, they would have to

retain the old semantics (again leading to the problem
of compensating the change performed by the DBAs).
A third type of impact (that falls outside the scope of

this paper) involves the effect of a change to the perfor-
mance and administrations of the ecosystem. Dropping
an index may result in a large number of queries run-

ning unacceptably slow or moving a table may result
in making less space for other tables to perform their
insertions.

In all these occasions, we observe that a change per-
formed by the DBA team can have several side-effects
both for the team itself, the developers of applications

of the ecosystem and the end-users. The problem in
all the aforementioned events is that the change is per-
formed before assessing its impact over the ecosystem.

Therefore, addressing the impact assessment problem
in advance of a potential change can be really valuable.

How can we assess the impact of a change in a data

intensive ecosystem? Is it possible to regulate change

in a data-intensive ecosystem? In this paper, we im-

prove the state of the art with concrete results for the
problem of impact assessment. We follow the model of
Architecture Graphs [18,19] that capture all the inter-

dependencies between the constructs of databases and
the application queries via a graph. The graph mod-
els constraints, attributes, relations, views and queries

along with their internal structure as the nodes of the
graph. The edges of the graph denote dependency for
data provision (e.g., between a view and a relation that

populates it with data), part of relationships (e.g., be-
tween a relation and its attributes) and semantic rela-
tionships (e.g., the construction of the WHERE clause

of a query as a tree of expressions). This way, the Ar-
chitecture Graph models all the components of a data-
intensive ecosystem in a uniform way. One of the main

utilities of the Architecture Graph is that it facilitates
impact assessment for potential changes in the ecosys-
tem: whenever a potential change is tested over the Ar-
chitecture Graph, the graph allows us to identify the

area of impact by recursively following edges between
affected nodes. Practically speaking, each node has to
assume a status concerning its reaction to an event that

we test; once a status is assumed, subsequent nodes of
the graph have to be notified too.

At the same time, we are not helpless in manag-
ing potential changes in the core of the ecosystem. If

an application developer is really adamant on retain-
ing the structure and semantics of a database view, is
it possible that this requirement is incorporated in the

Architecture Graph, to prevent possible modifications?
As previous research [16,18] has demonstrated, it is pos-
sible to regulate the flow of events by annotating the

modules of the Architecture Graph with policies, i.e.,
rules for handling events. Specifically, we can annotate
a module (i.e., relation, view or query) with a policy for

each possible event that it can withstand, in one of two
possible modes: (a) block, to veto the event and demand
that the module retains its previous structure and se-

mantics, or, (b) propagate, to allow the event and make
the module adapt with an updated internal structure.
Once the adaptation is complete, the module is also

responsible for igniting the recursive notification of all
the affected software modules in the graph.

To make the discussion a little more concrete, we
present an evolving data-intensive ecosystem in Fig-

ure 1. On the left, we depict a small part of a university
database with three relations and two views, one for the
information around courses and another for the infor-

mation concerning student transcripts. On the right,
we isolate two queries that the developer has embed-
ded in his applications, one concerning the statistics

around the database course and the other reporting on



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 3

Fig. 1 An exemplary University-DB Ecosystem, annotated with policies.

the average grade of each student. If we were to delete
attribute C NAME, the ecosystem would be affected in

two ways : (a) syntactically, as both the view V TR and
the query on the database course would crash, and, (b)
semantically, as the latter query would no longer be

able to work with the same selection condition on the
course name. Similarly, if an attribute is added to a
relation, we would like to inform dependent modules

(views or queries) for the availability of this new infor-
mation. Observe the two policy rules at the bottom of
the figure. The first one dictates that every node of the

graph adapts to any evolutionary event that appears
in the future. The rule uses two shorthands: the term
NODE refers to all the nodes of the graph and the term

∗ refers to any potential event that arrives. The second
rule overrides the first global policy by stating that the
report on the upper right has a veto over the deletion of

one of the attributes exported by the view on student
transcripts (V TR). In Figure 1, we have used a lightly
shaded box to show how these rules are assigned to each

module.

Once the impact of a change has been assessed, is
it possible to see how the ecosystem will look like if the

change is eventually performed? Even with the presence
of policies, it is possible that a potential modification in
the database affects several queries and views that are

willing to accept it and adapt to the new structure or
semantics of the database. The problem becomes more
complicated whenever a change ignites different reac-

tions – e.g., some of the affected queries are willing to
adapt whereas others assume a vetoing status. Then,
the question that has to be answered is “what will the

new structure and semantics of all the affected mod-
ules look like?”. As we will show, the answer to the
question is not straightforward and unfortunately, the

state of the art in ecosystem adaptation is not sufficient
to address it. Specifically, although previous work in
ecosystem adaptation has provided us with techniques

for view adaptation [13], [7], [26], the existing works do
not allow the definition of policies for the adaptation
of the ecosystem modules. At the same time, our own

previous work [18] has proposed algorithms for impact
assessment with explicit policy annotation but without
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the mechanisms to perform the rewriting of the ecosys-

tem. Overall, to the best of our knowledge, there is no
method that allows both the impact assessment and
the rewriting of the ecosystem’s modules along with

correctness guarantees.
To address this shortcoming, the core result of this

paper is the provision of algorithms that identify which

parts of the ecosystem are affected by a potential change
and perform the rewriting of affected modules to adapt
to it, while fulfilling all the constraints imposed by the

-possibly conflicting- policies of all affected modules.
Specifically, our method works in the following three
steps:

1. Impact assessment. Given a potential event, a status
determination algorithm makes sure that the nodes

of the ecosystem are assigned a status concerning
(a) whether they are affected by the event or not
and (b) what their reaction to the event is (block or

propagate).
2. Conflict resolution and calculation of variants. As-

sume a view used by two queries is altered. Assume

also that the first query vetoes the change and re-
quires the structure and semantics of the old view to
remain, whereas the second concedes to the change

and states it will adapt to the new structure and
semantics of the view. The co-existence of blocker
and adapter data consumers of an affected module

signifies the need to retain both the old and the new
version of the module, whenever this is possible. To
this end, we introduce an algorithm that checks the

affected parts of the graph in order to highlight af-
fected nodes with whether they will adapt to a new
version or retain both their old and new variants.

3. Module Rewriting. Once the status and number of
variants has been determined for the modules of the
graph, we need to implement the rewritings. This

is heavily dependent upon the nature of the event
(obviously, a query adapts differently to the removal
of an attribute and differently to the addition of

an attribute, let alone changes in semantics). Our
algorithm visits affected modules sequentially and
performs the appropriate restructuring of nodes and

edges.

Coming back to our motivating example, let’s see
what happens when the DBA of the ecosystem tries
to delete attribute C NAME from the intermediate

view V COURSE. As instructed by its policy, the view
”agrees” to adapt to the event and adopts a Propagate
status. Then, it notifies its consumer V TR which also

agrees and pushes the event to its consumers, specif-
ically, Q pass2courses which vetoes the event and as-
sumes a Block status and Q allStudentGPA which is

actually unaffected by the event after it self-examines

whether it is affected. The rest of the modules of the

graph, and specifically, the source relations, have a
status NO STATUS as the propagation of the event
has never reached them. The depiction of the status

determination part is shown in the left part of Fig-
ure 2. Then, our method detects a conflict, as the
view V TR decides to adapt to the event in contrast

to the veto from the application developer of the query
Q pass2courses. Once this conflict is detected, a cloning
mechanism is initiated to satisfy both requirements.

The result is depicted in the right part of Figure 2.
The query Q pass2courses retains the old definition of
both views (i.e., the entire backwards path till the node

initiating the event), whereas the two views are cloned
and these clones (depicted in darker colors in the fig-
ure) are adapted to satisfy the requirement set by the

DBA.
We have implemented our method in a what-if anal-

ysis tool, Hecataeus1 where all stakeholders can pre-

assess the impact of possible modifications before ac-
tually performing them, in a way that is loosely cou-
pled to the ecosystem’s components. We have assessed
our method (Sec. 5) over ecosystems of increasing size

and complexity and also varied the policy assignments
in order to assess the method’s scale up with size and
the effect of the policy annotation to the method’s use-

fulness. Our first experimental goal involved assessing
the effectiveness of our method, i.e., the benefits intro-
duced by our method concerning the effort performed

by the application developers and administrators of the
ecosystem. The results indicate that in the absence of
our system, the typical developer would have to per-

form at least 21% of routine, useless checks to views
and queries that are not related to the event at all;
on average, the number of useless checks is located in

the area of 90%-97%. A second observation has to do
with the amount of rewriting: in all occasions, there
have been several modules that had to be rewritten. Al-

though the average numbers are not particularly high,
ranging from 2 to 13 modules depending on the exper-
imental setup, the maximum numbers are quite high

and, in any case, the automation of the work, equips
the involved stakeholders with correctness guarantees
that would otherwise be non-existent. Another signifi-

cant observation has to do with the conciseness of the
policy annotation rules. The number of policy rules is
practically equivalent to the number of the exceptions

to the default policies (resulting in just a handful of
rules in our experiments). In terms of efficiency, all the
experiments show a completion of the tested changes

as small fractions of a second. At the same time, the
chosen policy significantly affects the spreading of the

1 http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

http://www.cs.uoi.gr/~pvassil/projects/hecataeus/
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Fig. 2 Impact analysis (left) and ecosystem rewriting (right) for an event on our exemplary ecosystem

impact of a change over the ecosystem: a policy with

early containment of the event (by blocking it inside
the database) can be an order of magnitude faster than
a policy that blocks changes at the queries only. At the

same time, the graph size is linearly related to the time
needed to complete the impact analysis and rewriting
task. Overall, our experimentation with ecosystems of

different policies and sizes indicates that our method
offers significant effort gains for the maintenance team
of the ecosystem and, at the same time, is executed fast

and scales gracefully.
Roadmap. The structure of this paper is as fol-

lows. In Section 2, we give the background modeling

for the architecture graph, policies and events. In Sec-
tion 3, we discuss impact assessment, conflict resolution
and, module rewriting. In Section 4, we prove the the-

oretical guarantees of our approach. In Section 5, we
present the experimental assessment of our method. In
Section 6, we present related work. We conclude in Sec-

tion 7, along with insights for future work.

2 Formal Background

To assess the impact of a potential change over the data

centric ecosystem, we construct a graph of modules (re-
lations, queries and views) where data consuming nodes
are linked with edges to their providers. Whenever an

event is applied over a module, the module has to as-
sess the impact of the event and notify its consumers.
This recursive process allows us to assess the impact of

the event over the entire ecosystem. Naturally, to facil-
itate this process, we need to establish a formal model
for the main constituents of the problem and its solu-

tion. So, before proceeding with the algorithmic parts

of the adaptation process, in this Section, we present

the formal background for the modeling of Architecture
Graphs, along with the space of possible events and pol-
icy annotations. First, we present how relations, views

and queries construct the Architecture Graph of the
ecosystem. Then, we move on to present the space of
possible events that can be applied to the nodes of the

graph, either directly by the user (initiating the entire
process of assessing the impact of an event) or tran-
sitively, as modules affected by the event notify other

modules that depend on them for the change. Moreover,
in order to regulate the propagation of events over the
graph, we present the language for policy annotations,

along with its semantics and the rules for policy over-
riding.

2.1 Architecture graph

Our modeling technique, following [15], represents all
the aforementioned database constructs as a directed

graph G = (V,E), which we call the Architecture
Graph of the ecosystem. For the reader who is not inter-
ested in all the formalities, the following quick summary

along with Figures 2 and 3 should be sufficient to allow
the understanding of our graph modeling.

– Relations, views and queries (or else modules)
come with a subgraph, that includes (a) a node for
the module itself, (b) a set of input schemata for

views and queries, used for linking these modules
with their data providers, (b) an output schema for
the data exported by the module and (d) a seman-

tics schema for any filtering or restructuring taking
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place inside a view or a query (WHERE, GROUP

BY, etc).
– Input and output schemata include their respective

attributes; semantics schemata include a tree repre-

senting the logical expression of the WHERE clause
and a list of groupers for the GROUP-BY clause, in
case these exist in a query or view.

– Edges of the graph signify dependency on data provi-
sion: at the schema level, input and output schemata
are linked with data dependency edges from data

consumers towards data providers; the respective
holds for attributes of the schemata too. Note that
this mechanism applies both between modules (inter-

module edges) and within the same module (intra-
module edges). Semantic-related edges are also used
for the constructs related to the semantics schema

within views and queries.

The reader who wants to skip the detailed descrip-

tion of the graph can jump to Section 2.2. If this is
not the case, our deliberations proceed with a presen-
tation of the components of the Architecture Graph as

follows. We start with the high level constructs, such
as relations and queries, which we call modules of the
Architecture Graph, and then we move on to discuss

their main properties. Fig. 3 visually represents the in-
ternals of the modules of Fig. 1. To avoid overcrowding
the figure, we omit different parts of the structure in

different modules; the figure is self-explanatory on this.
Modules. A module is a semantically high level

construct of the ecosystem; specifically, the modules of

the ecosystem are relations, views and queries. Every
module defines a scope recursively: every module has
one or more schemata in its scope (defined by part-of

edges), with each schema including components (e.g.,
the attributes of a schema or the nodes of a semantics
tree) linked to the schema also via part-of edges. In our

model, all modules have a well defined scope, “fenced”
by input and output schemata.

Relations. Each relation R (A1, A2,. . . , An) in the

database schema is represented as a directed graph,
which comprises:

1. a node, R, representing the relation;
2. an output schema node, R SCHEMA, representing

the relation’s output schema;
3. n attribute nodes Ai=1...n, one for each of the at-

tributes and,

4. n+1 schema relationships Ei=1...(n+1), directing
from the schema node towards the attribute nodes,
indicating that the attribute belongs to the rela-

tion’s output schema and one directing from the re-
lation node towards the output schema node indi-
cating that the output schema belongs to the rela-

tion.

In our reference examples, we have the following re-

lations, whose graphs are depicted in Fig. 3): rela-
tion Semester(MID, MDescr) standing for informa-
tion on semesters, relation CourseStd(csid, csname,

cspts) standing for information on courses, relation
Course(cid, csid, mid) standing for information on
courses on semesters, relation Student(sid, sname)

standing for information on students,and relation
Transcript(cid, sid, tgrade) standing for information
on the enrolment of students to courses and their

grades.
Queries and Views. The graph representation of

a Select - Project - Join - Group By (SPJG) query

involves:

1. a new node representing the query, named

query node,
2. a set of input schemata nodes (one for every table

appearing in the FROM clause). Each input schema

includes the set of attributes that participate in the
syntax of the query (i.e., SELECT, WHERE clause,
etc.)

3. an output schema node comprising the set of at-
tributes present in the SELECT clause.

4. a semantics node as the root node for the sub-graph

corresponding to the semantics of the query (specif-
ically, the WHERE and GROUP-BY part), and,

5. attribute nodes belonging to the various input and

output schemata of the query.

The query graph is therefore a directed graph con-
necting the query node with the high level schemata
and semantics nodes. The query node contains an edge

towards every schema it possesses. The schema nodes
are connected to their attributes via part-of relation-
ships. In order to explain the internal structure of a

query, we structure our presentation of the query’s
graph in terms of its SQL parts: SELECT, FROM,
WHERE, and GROUP BY, each of which is eventually

mapped to a sub-graph.
Select part. Each query is assumed to own an output

schema that comprises the attributes, either with their

original or with alias names, appearing in the SELECT
clause. In this context, the SELECT part of the query
maps the respective attributes of the input schemata

to the attributes of the query’s output schema through
map-select edges, directing from the output attributes
towards the input schema attributes.

From part. The FROM clause of a query can be re-
garded as the relationship between the query and the
relations (or views) involved in this query. Thus, the re-

lations included in the FROM part are combined with
the input schemata of the query node through from
edges, directing from the nodes of the appropriate in-

put schemata towards the output schema nodes of the
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Fig. 3 A subset of the graph structure for the University-DB Ecosystem.
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relation/view nodes. The input schemata of the query

comprise only the attributes of the respective relations
that participate in any way in the query; the attributes
of the input schemata are connected to the respective

attributes of the provider relations or views via map-
select relationships.

Where part. We assume that the WHERE clause of
a query is in conjunctive normal form. Thus, we intro-

duce a directed edge, called where edge, starting from
the semantics node of a query towards an operator node
corresponding to the conjunction of the highest level.

Then, there is a tree of nodes hanging from this con-
junction involving condition nodes (to be defined right
away). The edges are operand relationships as men-

tioned above among binary comparators, boolean op-
erators, input attributes and constants. In Fig. 4, we
depict the graph of query Q pass2courses, which per-

forms a self-join over view V TR and presents a re-
port of the students that enrolled in both DB I and
DB II courses, and their grades. A tree, starting from

the SMTX node, describes the conditions of the se-
lected tuples. Initially, we take the tuples where the
name of the first course is equal to DB I, then we fil-

ter them and take the ones that have the same SID
for V 1 and V 2. Finally, we filter those results and take
the ones having the name of the second course equal to

DB II.

Fig. 4 The graph of the semantics schema for the
Q pass2courses query

We consider three classes of atomic conditions that
are composed through the appropriate usage of an oper-

ator op belonging to the set of classic binary operators,
op (e.g., <, >, =, ≤, ≥, ̸=, IN , EXISTS, ANY ): (i)
Ω op constant, (ii) Ω op Ω’, and (iii) Ω op Q where

Ω, Ω’ are attributes of the underlying relations and
Q is a query. A condition node is used for the rep-
resentation of the condition. Graphically, the node is

tagged with the respective operator and it is connected

to the operand nodes of the conjunct clause through the

respective operand relationships, O. Composite condi-
tions are easily constructed by tagging the condition
node with a Boolean operator (e.g., AND or OR) and

the respective edges to the conditions composing the
composite condition.2

Group By part. The GROUP BY part is mapped in

the graph via (i) a node GB, to capture the set of at-
tributes acting as the aggregators and (ii) one node per
aggregate function labeled with the name of the em-

ployed aggregate function; e.g., COUNT, SUM, MIN.
For the aggregators, we use edges directing from the
semantics node towards the GB node that are labeled

group-by. The GB node is linked to the respective input
attributes acting as aggregators with group-by edges,
which are additionally tagged according to the order of

the aggregators; we use an identifier i to represent the i-
th aggregator. Moreover, for every aggregated attribute
in the query’s output schema, there exists a map-select

edge directing from this attribute towards the aggre-
gate function node as well as an edge from the function
node towards the respective input attribute. In Fig. 5,
we depict the graph of query Q allStudentGPA. In the

left part, we have the edges that connect the output at-
tributes with their providers in the input schemata. We
have SID and SName that are using as their providers

the SID and SName of Semester relation, whilst the
GPA is the AV ERAGE aggregate function of TGrade
coming from V TR view. In the right part of the figure,

we have the GB node, which is used to describe the
“group by” clause of the query. The numbers on the
edges depict the order of the groupers, meaning that

first we group by SID and then with SName columns.
Additionally, in MSTX node, we have a node that de-
scribes that in the resulting tuples of the query, the

SID that comes from V TR view and the SID that
comes from Semester relation should be equal to each
other.

Views. Views are treated as queries; however the
output schema of a view can be used as input by a
subsequent view or query module.

Summary. A summary of the architecture graph is
a zoomed-out variant of the graph at the schema level
with provider edges only among schemata (instead of

attributes too). Formally, a summary graph is a directed
acyclic graph Gs = (Vs, Es), with Vs comprising the

2 Well-known constraints of database relations – i.e., pri-
mary/foreign key, unique, not null, and check constraints –
can also be captured by this modeling technique. Foreign keys
are subset relations of the source and the target attribute,
check constraints are simple value-based conditions. Primary
keys, which are unique-value constraints, are explicitly repre-
sented through a dedicated node tagged by their names and
a single operand node.
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Fig. 5 The graph of a group-by query. To avoid confusion, we depict the edges in two snapshots of the graph: provider edges
(left) and filtering and grouping edges (right).

graph’s module nodes (relations, views and queries) and
Es including an edge e(v,u) from a consumer module v
to a provider module u if and only if there is an edge

between an input schema of v and the output schema
of u in the Architecture Graph. We can formally define
different levels of zooming via summary graphs (i) at

the schema level with input/output schemata, (ii) the
module level as in Fig. 6.

2.2 Events

In this section we list the set of possible events that our
method handles. We organize our discussion by classi-

fying these events in three classes: (a) events pertaining
to relations, (b) events pertaining to views or queries,
and (c) events that occur as one module notifies another

for the event it just received.

We can classify the impact of an event as structural

whenever the exported schemata and their attributes
are changed in terms of structure or naming. At the
same time, the impact of an event is semantic whenever

the internals of the semantics schema (i.e., the WHERE
or the GROUP-BY clause of the respective SQL query)
change.

Events that pertain to relations. The first class

of events comprise changes on the schema of relations:

– ADD ATTRIBUTE : in this case, a relation should
obtain another column

– DELETE ATTRIBUTE : in this case, a relation

should drop a column
– RENAME ATTRIBUTE : in this case, a relation

should rename a column

– DELETE SELF : in this case, a relation will be
deleted

– RENAME SELF : in this case, a relation will be

called with a new name from now on.

Events that pertain to views and queries. The

second class of events involve changes on the definitions
of Views/Queries:

– ADD ATTRIBUTE : in this case, a query or a view
should have a new attribute (column, aggregate

function or value) in its output
– DELETE ATTRIBUTE : in this case, a query or a

view should have less attributes in its output

– RENAME ATTRIBUTE : in this case, an attribute
is going to be called with a new name from now on

– DELETE SELF : in this case, a view will be deleted

(deleting queries is of no impact to the ecosystem
anyway)

– RENAME SELF : in this case, a view will be called

with a new name from now on
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Fig. 6 The Summary Graph of the University-DB Ecosys-
tem.

– ALTER SEMANTICS : in this case, a View is going
to have another WHERE clause or another GROUP
BY clause.

Events that pertain to the notification of a

change between modules. As we will see in Sec-
tion 3, whenever a module has decided on its reaction
against the incoming events, it assumes a status and

notifies subsequent modules. Thus, besides the afore-
mentioned events, we need to support the following list
of events that accrue from the flow of an event to the

graph.

– ADD ATTRIBUTE PROVIDER: this event is gen-
erated by a module in order to inform its consumers

that the module has added an attribute to its out-
put schema.

– DELETE PROVIDER: this event is generated by a

module in order to inform its consumers that this
module has deleted one or all its attributes.

– RENAME PROVIDER: this event is generated by

a module to inform its consumers that the module
itself or one of the attributes that exist in output
schema of the module want to change their name.

– ALTER SEMANTICS : this event is generated by a
module to inform its consumers that the semantics
(as described previously: change of WHERE or/and

GROUP BY clause) of a module have changed.

2.3 Policies

Our basic tool for the regulation of the propagation of
an event’s impact to the entire ecosystem is the ability

to block further propagation at certain modules which
veto the event. To achieve this, we employ policies that
annotate the ecosystem’s modules with predefined re-

actions to all possible incoming events they can receive.
This way, whenever a node receives an event that con-
cerns either itself or its constituents (e.g., the attributes

of a schema), the node has already been instructed by
the ecosystem’s administrator on its reaction to the in-
coming event. The policy of a node for responding to

an incoming event can be one of the following:

– PROPAGATE, which means that the node accepts
the change and will adapt to the new reconfiguration

of the ecosystem, or,
– BLOCK, which means that the node wants to retain

the previous structure and semantics.

Requirements for policy annotation. We wish

to provide a language that annotates nodes with poli-
cies and addresses the following usability requirements:

– Completeness: how can we be sure that we can de-

fine annotations for all the possible events that can
arrive to a node, for all the nodes of the ecosystem?

– Conciseness: can we achieve this easily and correctly

with respect to the user’s intentions, without having
the user going to great lengths of coding in order to
annotate the ecosystem with policies?

Completeness. To achieve completeness, we need
to be sure that we can provide an annotation for all the
nodes of the graph and for all the events that each node

can receive. To achieve this, we proceed in two steps: (a)
we explicitly define the node-event space, i.e., the space
of all valid combinations of nodes and incoming events,

and (b) for each node-event combination, we define the
respective policy rule that characterizes the reaction of
the node to this event.

To implement the first of the aforementioned steps,
we exhaustively enumerate all combinations of events
and nodes (see Table 1). Observe, that Table 1 provides

a complete characterization of events that can arrive to
a node organized per event type. In Table 1, the rows
(actually corresponding to the <receiver node> part of

the above rule) are explained as follows:

1. [QUERY|VIEW].[OUT|IN].SELF standing for the
node representing the output (input) schema of all

queries (views)
2. [QUERY|VIEW].[OUT|IN].ATTRS standing for the

nodes representing the attributes of the output (in-

put) schema of all queries (views)
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3. [QUERY|VIEW].SMTX.SELF standing for the root

node of the semantics tree of all queries (views)
4. RELATION.OUT.[SELF|ATTRS] standing for the

node representing the output schema of all relations

(or its attributes)

Language for policies. Then, to implement the

translation of the node-event space to policy rules, we
need to provide a language that determines the pol-
icy for each event that appears to each node. The

language that we introduce is used to assign policies
to all the nodes of the ecosystem with guarantees for
the complete coverage of all the graph’s nodes along

with syntax conciseness and customizability. In a nut-
shell, the main idea is the usage of rules of the form
<receiver node [type]> : on <event> then <policy>,

both at the default level –e.g.,

VIEW.OUT.SELF: on ADD ATTRIBUTE then
PROPAGATE;

and at the node-specific level (overriding defaults) –e.g.,

V TR OUT.SELF: on ADD ATTRIBUTE then BLOCK;

Before formally specifying the syntax of the policy
language, we first discuss the issues of language con-
ciseness and rule overriding.

Conciseness. The observant reader might wonder
on the reasoning behind providing rules both at the
node type and the node level. The reason is conciseness:

we want to avoid annotating the graph in a node per
node, event per event basis. To this end, we provide a
language that comes with the simple semantics that un-

less otherwise specified (see the next paragraph), each
node-event pair implements the respective node type -
event type policy. The default, fixed list, comprising 33

rules that can be derived from the entries of Table 1 is
depicted in Fig. 7. In Section 4, we provide a proof for
the language completeness in Theorem 1.

Still, even so, the number of rules needed for com-
pleteness could be considered too large by some users.
To this end, we provide some additional rules that sim-

plify our policy language. These rules come as syntactic
sugar to our language. Specifically, we introduce two
syntactic sugar extensions as follows:

– the * notation for events allows the user to spec-
ify that a specific module type (i.e., all rela-
tions/views/queries of the ecosystem) of a specific

node is annotated with the same policy for all the
events that occur to it. In other words, the * nota-
tion signifies “for any incoming event”

– the NODE notation specifies that all nodes of the
ecosystem, independently of their type, are anno-
tated with the specified policy for the specified event

(if, of course, the event pertains to the node).

Of course, the combination of the two syntactic short-

hands is also allowed. Thus, we end up with the follow-
ing list of syntactic sugar extensions:

<moduleType>: ON * THEN <policy>;
This rule groups the events that a module type (RE-

LATION, VIEW, QUERY) can receive and sets the
policy for all these events to <policy>.

<namedNode>: ON * THEN <policy>;

This rule finds the node that is specified by name
<namedNode> and sets the policy for all these
events to <policy>.

NODE: ON <event> THEN <policy>; This rule

annotates all the nodes of the graph that can receive
the specified event (named <event>) with the same
policy, namely <policy>.

NODE: ON * THEN <policy>; This rule actually
replaces the group of the 33 rules to one simple rule,
saying that regardless of the event, the policy is uni-

formly set to <policy>.

Theorem 3 in Section 4 describes why these extra rules
correctly cover up the needed events and correctly as-
sign the policies to the nodes.

1. QUERY.OUT.SELF: on ADD ATTRIBUTE then <policy>;
2. QUERY.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
3. QUERY.OUT.SELF: on DELETE SELF then <policy>;
4. QUERY.OUT.SELF: on RENAME SELF then <policy>;
5. QUERY.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
6. QUERY.OUT.ATTRIBUTES: on RENAME SELF then <policy>;
7. QUERY.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
8. QUERY.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
9. QUERY.IN.SELF: on DELETE PROVIDER then <policy>;

10. QUERY.IN.SELF: on RENAME PROVIDER then <policy>;
11. QUERY.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
12. QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>;
13. QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
14. QUERY.SMTX.SELF: on ALTER SEMANTICS then <policy>;
15. VIEW.OUT.SELF: on ADD ATTRIBUTE then <policy>;
16. VIEW.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
17. VIEW.OUT.SELF: on DELETE SELF then <policy>;
18. VIEW.OUT.SELF: on RENAME SELF then <policy>;
19. VIEW.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
20. VIEW.OUT.ATTRIBUTES: on RENAME SELF then <policy>;
21. VIEW.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
22. VIEW.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
23. VIEW.IN.SELF: on DELETE PROVIDER then <policy>;
24. VIEW.IN.SELF: on RENAME PROVIDER then <policy>;
25. VIEW.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
26. VIEW.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>;
27. VIEW.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
28. VIEW.SMTX.SELF: on ALTER SEMANTICS then <policy>;
29. RELATION.OUT.SELF: on ADD ATTRIBUTE then <policy>;
30. RELATION.OUT.SELF: on DELETE SELF then <policy>;
31. RELATION.OUT.SELF: on RENAME SELF then <policy>;
32. RELATION.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
33. RELATION.OUT.ATTRIBUTES: on RENAME SELF then <policy>;

Fig. 7 The 33 combinations of events and node types that
provide complete graph coverage; policy can be either BLOCK
or PROPAGATE

Customizability and Rule Over-
riding. Whereas our small list of generic, default rules

can cover all possible combinations of events and node
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ADD DELETE RENAME ALTER

ATTR

ATTR

PROV SELF PROV SELF PROV SMTX

QUERY

OUT
SELF ✓ ✓ ✓ ✓
ATTRS ✓ ✓ ✓ ✓

IN
SELF ✓ ✓ ✓ ✓
ATTRS ✓ ✓

SMTX SELF ✓

VIEW

OUT
SELF ✓ ✓ ✓ ✓
ATTRS ✓ ✓ ✓ ✓

IN
SELF ✓ ✓ ✓ ✓
ATTRS ✓ ✓

SMTX SELF ✓

RELATION OUT
SELF ✓ ✓ ✓
ATTRS ✓ ✓

Table 1 The space of events that can be received by each node type

types, it is quite possible that we want to define a dif-
ferent reaction to the same event for different modules.

For example, we might wish a certain view to block at-
tribute addition, whereas we would allow another view
to adapt to the same event. To facilitate this possibility

we allow three layers of rules:

1. Layer 0: Rules that are applied to all the nodes of
the Architecture Graph via the <NODE> nota-

tion.
2. Layer 1: General rules at the node type level, about

all modules and their attributes.

3. Layer 2: Rules that apply to all the attributes of a
specific schema.

4. Layer 3: Rules that apply to specific attribute nodes.

In our approach, the semantics of the layers of rules
state that each layer overrides the policy of its previous
layers. This way, if we have a default policy for all re-

lations (layer 1) for a certain event, we can customize
the behavior of a specific relation to be different than
the default by defining a specific rule for it (layer 2).

Theorem 2 in Section 4 proves that our overriding mech-
anism assigns the correct policy to each node. Within
each of the layers, the following ordering is imposed:

1. First, the * notation is transformed to the appropri-
ate list of rules.

2. Second, any more specific rules override the * nota-

tion with their designated policies.

Language Syntax. The language’s syntax com-
prises rules that abide to the following structure:

<receiver> : on <event> then <policy>

where:

1. <receiver> can be any of the ecosystem’s node types
2. <event> can be any of the events that can arrive

to an instance of this node type, either because the

user initiated this as the starting event, or due to
the propagation of the event in the ecosystem

3. <policy> can be either PROPAGATE or BLOCK

The above list of possible rules covers the node type

layer (Layer 0), but not the two others. To this end,
we introduce two extra kinds of potential values for the
<receiver> part of the rules of our language.

1. <NAMED SCHEMA NODE>.ATTRIBUTES stand-
ing for the nodes representing the attributes of the
<named schema node> of the graph.

2. <NAMED NODE> standing for the <named node>
node of the graph.

The first of the two extra rules refers to all the at-
tributes of a specific schema (layer 2), and, the second

one refers to individual nodes of the graph (layer 3).
Reference Example. Returning to our reference

example, the following text represents a set of rules of

how policy rules should be written in order to have all
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nodes of the graph propagating all possible events for

all modules, except for V TR view, in which only the
CID attribute will propagate any of its incoming events.
Fig. 8 covers the first set of completeness-ensuring rules

mentioned previously.

QUERY.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
QUERY.OUT.SELF: on DELETE SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
QUERY.SMTX.SELF: on ALTER SEMANTICS then PROPAGATE;
VIEW.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
VIEW.OUT.SELF: on DELETE SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER SEMANTICS then PROPAGATE;
RELATION.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME SELF then PROPAGATE;

Fig. 8 Application of default rules for our reference example

Assuming now that the user wanted for the view

V TR to have a BLOCK policy for all possible events,
Fig. 9 describes the set or rules needed to be issued
after the general rules of Fig. 8.

Finally, the user decided that there is an exception
to the rules of Fig. 9, and the attribute CID of the
output schema of the V TR module should have again

a different policy than its siblings (switching again to
PROPAGATE instead of BLOCK that was set in the
previous set of rules), for its deletion. This is achieved

by the set of policies depicted in Fig. 10.
Using the additional rules that simplify our policy

language, the same example could be written as Fig. 11

describes.

3 Impact Assessment and Adaptation of
Ecosystems

The goal of our method is to assess the impact of a
hypothetical event over an Architecture Graph anno-
tated with policies and to adapt the graph to assume

its new structure after the event has been propagated to

V TR OUT.SELF: on ADD ATTRIBUTE then BLOCK;
V TR OUT.SELF: on ADD ATTRIBUTE PROVIDER then BLOCK;
V TR OUT.SELF: on DELETE SELF then BLOCK;
V TR OUT.SELF: on RENAME SELF then BLOCK;
V TR OUT.ATTRIBUTES: on DELETE SELF then BLOCK;
V TR OUT.ATTRIBUTES: on RENAME SELF then BLOCK;
V TR OUT.ATTRIBUTES: on DELETE PROVIDER then BLOCK;
V TR OUT.ATTRIBUTES: on RENAME PROVIDER then BLOCK;
V TR IN TRANSCRIPT.SELF: on DELETE PROVIDER then BLOCK;
V TR IN TRANSCRIPT.SELF: on RENAME PROVIDER then BLOCK;
V TR IN TRANSCRIPT.SELF: on ADD ATTRIBUTE PROVIDER then
BLOCK;
V TR IN TRANSCRIPT.ATTRIBUTES: on DELETE PROVIDER then
BLOCK;
V TR IN TRANSCRIPT.ATTRIBUTES: on RENAME PROVIDER then
BLOCK;
V TR IN V COURSE.SELF: on DELETE PROVIDER then BLOCK;
V TR IN V COURSE.SELF: on RENAME PROVIDER then BLOCK;
V TR IN V COURSE.SELF: on ADD ATTRIBUTE PROVIDER then
BLOCK;
V TR IN V COURSE.ATTRIBUTES: on DELETE PROVIDER then BLOCK;
V TR IN V COURSE.ATTRIBUTES: on RENAME PROVIDER then
BLOCK;
V TR SMTX.SELF: on ALTER SEMANTICS then BLOCK;

Fig. 9 Overriding the default rules for a view in our reference
example

V TR OUT.CID: on DELETE SELF then PROPAGATE;
V TR OUT.CID: on DELETE PROVIDER then PROPAGATE;

Fig. 10 Overriding the default rules for an attribute in our
reference example

NODE: on * then PROPAGATE;
V TR: on * then BLOCK;
V TR OUT.CID: on DELETE SELF then PROPAGATE;
V TR OUT.CID: on DELETE PROVIDER then PROPAGATE;

Fig. 11 Simplified policy language example

all the affected modules. Before any event is tested, we
topologically sort the modules of the architecture graph
(always feasible as the summary graph is acyclic: rela-

tions have no cyclic dependencies and no query or view
can have a cycle in their definition). This is performed
once, in advance of any impact assessment. Then, in an

on-line mode, we can perform what-if analysis for the
impact of changes in two steps that involve: (i) the de-
tection of the modules that are actually affected by the

change and the identification of a status that character-
izes their reaction to the event, and, (ii) the rewriting
of the graph’s modules to adapt to the applied change.

3.1 Topological sort

In order to make sure that the messages between mod-
ules are transferred in the right order from providers
to consumers, we perform a topological sorting of the

graph’s modules prior to any other step. As Theorem 4
in Section 4 indicates, this is always feasible as the Ar-
chitecture Graph does not contain cycles.

We follow a traditional approach to our topologi-

cal sorting, which proceeds as follows: first we find the
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modules with zero incoming edges. These modules are

removed from the examination set along with their out-
going edges, after being assigned a unique ID. This
gives as a result a new set of modules with zero in-

coming edges. The algorithm stops when there are no
more modules to visit. Relations have the smallest IDs,
followed by views and queries.

Input: A summary of an architecture graph Gs(Vs,Es) that
comprises the modules of an architecture graph G(V,E).
Output: A topologically sorted architecture graph summary
Gs(Vs,Es), i.e. an annotation of the modules of Gs with a
sequential id’s, via a mapping Y : Vs → N.

1. notY etV isited← Vs;
2. count = |Vs|;
3. While (notY etV isited not empty){
4. ForEach (vi ∈ notY etV isited){
5. If (vi has zero incoming edges){
6. notY etV isited← notY etV isited− vi ;
7. remove edges starting from vi;
8. vi(id)← count;
9. count← count− 1;

10. }
11. }
12. }

Fig. 12 Algorithm Topological sort

Observe that topological sorting of the graph is nec-

essary, as opposed to a simple flooding of messages with
events over the graph, due to the existence of multiple
paths from data providers to their consumers (e.g., ob-

serve in Fig. 3 how the query Q pass2Courses is fed by
view V TR via two paths, as it performs a self-join).
Also, the existence of policies (which we detail in Sec-

tion 3.3) require a strict order for visiting the nodes
of the graph. Apart from the termination of our algo-
rithms, we also want to guarantee the following prop-

erties:

– Confluence: each module in the graph will assume

the same status, independently from the order of
processing the incoming messages.

– Consistency : all the modules will be correctly

rewritten.

In Theorem 6 and Theorem 11 in Section 4, we

demonstrate why we need the principled visit of the
nodes of the graph in a manner obeying the topological
sort; had we not followed the topological sort it would

be impossible to guarantee these correctness properties.
Therefore, in the rest of our deliberations, unless explic-
itly mentioned, the propagation of the impact of events

follows the topological sort.
Once the topological sort has been completed, we

are ready to interactively work with the user towards

highlighting the impact of a change and rewriting the

graph accordingly. These two tasks are explained in the

following two subsections.

3.2 Detection of affected nodes and status
determination

The assessment of the impact of an event to the ecosys-
tem is a process that results in assigning every affected

module with a status that characterizes its policy-
driven response to the event. In contrast to the policy,
which is an annotation of each module with a directive

on how to respond to a potential future event, a status
is the decided reaction to an actual event, after it has
reached the module. The status determination task is

reduced in (a) determining the affected modules in the
correct order, and, (b) making them assume the appro-
priate status. Algorithm Status Determination (Fig. 13)

details this process. In the following, we use the terms
node and module interchangeably.

1. Before assessing the event, all modules are set to

status NO STATUS. At the end of the algorithm’s
execution, the modules that will have retained this
status will be the ones that have not been affected

by the event.
2. Whenever an event is assessed, we start from the

module over which it is assessed and visit the rest

of the nodes by following the topological sorting of
the modules to ensure that a module is visited after
all of its data providers have been visited. A visited

node assesses the impact of the event internally (cf.,
”intra-module processing”) and, if there is reason to
change its NO STATUS status, due to incoming no-

tifications from its providers, it obtains a new sta-
tus, which can be one of the following: (a) BLOCK,
meaning that the module is requesting that it re-

mains structurally and semantically immune to the
tested change and blocks the event (as its immunity
obscures the event from its data consumers), (b)

PROPAGATE, meaning that the module concedes
to adapt and propagate the event to any subsequent
data consumers.

3. If the status of the module is PROPAGATE, the
event must be propagated to the subsequent mod-
ules. To this end, the visited module prepares mes-

sages for its data consumers, notifying them about
its own changes. These messages are pushed to a
common global message queue (where messages are

sorted by their target module’s topological sorting
identifier).

4. The process terminates when there are no more mes-

sages and no more modules to be visited.
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Input: A topologically sorted architecture graph summary
Gs(Vs,Es), a global queue Q that facilitates the exchange of
messages between modules.
Output: A list of modules AffMdls ⊆ Vs that were affected
by the event and acquire a status other than NO STATUS.

1. Q={original message}, AffMdls = ∅;
2. For All (node ∈ Gs(Vs,Es)){
3. node.status = NO STATUS;
4. }
5. While (size(Q) > 0){
6. visit module (node) in head of Q;
7. insert node in AffMdls list;
8. get all messages, Messages, that refer to node;
9. SetStatus(node, Messages);

10. If (node.status == PROPAGATE) {
11. insert node.ConsumersMsgs to the Q;
12. }
13. }
14. Return AffMdls;

Procedure SetStatus(Module, Messages)
ConsumersMsgs = ∅;
For All (Message ∈ Messages){

decide status of Module;
put messages for Module’s consumers in ConsumersMsgs;

}

Fig. 13 Algorithm Status determination

Intra-module processing. A module starts by re-
trieving from the global queue all the messages contain-
ing the events that concern it. For message processing

within each module, a local queue is used. The process-
ing of the messages is performed as follows:

1. First, the module probes its schemata for their reac-
tion to the incoming event, starting from the input
schemata, next to the semantics and finally to the

output schema. Naturally, relations deal only with
the output schema.

2. Within each schema, the schema probes both it-

self and its contained nodes (attributes) for their
reaction to the incoming event. At the end of this
process, the schema assumes a status as previously

discussed.
3. Once all schemata have assumed status, the output

schema decides the reaction of the overall module;

if any of the schemata raises a veto (BLOCK) the
module assumes the BLOCK status too; otherwise,
it assumes the PROPAGATE status.

4. Finally, in case a PROPAGATE status is assumed,
it prepares and inserts into the global queue appro-
priate messages for all its consumers.

Observe that a module may receive multiple mes-
sages. Typically this is due to the following two reasons:

(a) cases of self-join, where a provider feeds (directly
or indirectly) a consumer via multiple one paths (and
thus, a change in the provider concerns more than one

schemata of the consumer – observe here that it is not

obligatory that these schemata have identical reaction

towards the event) and (b) a deletion of an attribute in
a view might affect both the semantics and the output
schema of the view, producing thus, two messages to

its consumers: one that notifies that output attributes
have changed and another notifying that the semantics
of the view has changed (e.g., a part of the SELECT

clause has been dropped due to the attribute deletion).
Message structure and content. Each message

msg is a quadruple msg(n, s, e, p) with the following

parts:

– n is the recipient module of the message.
– s is the specific schema of n, to which the message

is sent (note that due to this information, we can

also find who the sender of the message was, since
an input schema has exactly one provider)

– e is the event that this message carries.

– p are message parameters containing additional in-
formation needed for some events (e.g., the new
name of an attribute for attribute addition or re-

naming events).

All possible evolution events (as presented in Sec-
tion 2.2) performed on relations, views and queries gen-

erate initial messages that fall into the following types:

– DELETE ATTRIBUTE: the user deletes an at-
tribute from the output schema

– RENAME ATTRIBUTE: the user renames an at-

tribute from the output schema.
– ADD ATTRIBUTE: the user adds another at-

tribute to the output schema of a module.

– DELETE SELF: the user deletes a whole module.
– RENAME SELF: when the user renames a whole

module.

– ALTER SEMANTICS: the user changes the seman-
tics of a module.

Once the module has determined its reaction, it con-

structs messages for its data consumers. The contents
of the messages depend on the type of event. Here, we
list some examples of such cases.

– When a message is processed saying that an at-
tribute is going to be deleted, the input schema of

the consumers that are connected to that attribute
is informed that the attribute will be deleted.

– If the whole module is going to be deleted then the

consumers of this module will receive a message in
their input schema saying that the provider of that
input schema is going to be deleted.

– Likewise, when an attribute is going to be renamed,
the input schema of the consumers that are con-
nected to that attribute is informed that the at-

tribute will have a new name from now on.
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– If the whole module is going to be renamed, then

the consumers of this module will receive a message
in their input schema saying that the provider of
that input schema is going to be renamed.

– When a module processes a message saying that a
new attribute is going to be added to its output
schema, it informs all of its consumers in their in-

put schema that a new attribute was added to their
provider.

– Finally when a module processes a message saying

that its semantics have changes, it informs all its
consumers that it changed its semantics.

Maestros for the local processing. To facilitate

the local, independent nature of message processing
by the modules, each module awakes a maestro that
handles the probing of schemata as well as the deci-

sion making on what status will the schema assume.
A maestro is a simple piece of software (implemented
as an abstract interface, later materialized on a case

by case basis) that is specialized on the combination
type of event × module type. For each type of mod-
ule, there is a specialized maestro that takes care of sta-

tus determination and rewriting for each possible event
that can be received.

In terms of software architecture, the decision for
this structuring of the code was done in order to de-

centralize event processing. It allows the reasonably
smooth extension of the architecture with new types of
events or modules at the price of some code reusability.

In terms of algorithmic principles, we gain the bene-
fits of module independence at the price of a common
queue of messages.

In [9], we present how events are processed inside
modules, organized by the type of the incoming message
that the module is called to handle. For each event,

we explain the structure of the incoming message and
the list of steps that have to take place (organized per
schema, if more than one schemata of the module are
involved).

Assume a message with a provider attribute deletion
event for the attribute named A1.2, that a view module
V1 receives, as depicted in Figure 14 (a).

– Initially, the maestro of the V1 module will find
the attribute with name A1.2 in the input schema
that fetched the message to the module, denoted as

A1.2, too. Then, A1.2 checks its policy for the event
(provider attribute deletion) and acquires a status.
The same status is assumed for the input schema

node of the module V1 as well. If there is any connec-
tion between A1.2 and the semantics schema, then
the semantics schema checks its policy for the al-

ter semantics event, assumes a status, and creates

messages for V1’s consumers, that describe that the

semantics of V1 will change. The newly created mes-
sages are kept in a local message queue of the mae-
stro, as depicted in Figure 14 (b).

– Then, if there are attributes in the output schema of
V1 that are connected with A1.2 (denoted as V1.2),
the maestro checks their policy for the event and

acquires for each one a status. The output schema
node of the module V1 acquires a status as well.
Finally, the maestro, for each of the V1.2 attributes

finds their consumers so as to notify them that their
provider attributes are to be deleted. Those mes-
sages are also kept in the local message queue of the

maestro, as depicted in Figure 14 (c).
– When all the above reach to an end, the V1 module

checks the statuses of the input, semantics, and out-

put nodes. If none of them has acquired a BLOCK
status, then the module acquires status PROPA-
GATE and notifies the consumers of V1 about the

change, by inserting all the messages of the local
message queue in the global message queue, as de-
picted in Figure 14 (d).

Theoretical guarantees. Previous models of Ar-
chitecture Graphs ([18]) allow queries and views to di-
rectly refer to the nodes representing the attributes of

the involved relations. Due to the framing of modules
within input and output schemata and the topological
sorting, in Theorem 4, and Theorem 5 we prove that the

process (a) terminates and (b) correctly assigns statuses
to modules.

3.3 Query and view rewriting to accommodate change

Once the first step of the method, Status Determina-
tion, has been completed and each module has obtained
a status, their rewriting would intuitively seem straight-

forward: each module gets rewritten if the status is
PROPAGATE and remains the same if the status is
BLOCK. This would require only the execution of the

Graph Rewrite step – in fact, one could envision cases
where Status Determination and Graph Rewrite could
be combined in a single pass. Unfortunately, although

the decision on Status Determination can be made lo-
cally in each module, taking into consideration only
the events generated by previous modules and the lo-

cal policies, the decision on rewriting has to take extra
information into consideration. This information is not
local, and even worse, it pertains to the subsequent,

consumer modules of an affected module, making thus
impossible to weave this information in the first step
of the method, Status Determination. The example of

Fig. 15 is illustrative of this case.
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Fig. 14 Status determination example

Figure 15 depicts our reference example, which con-
sists of 5 relations, 2 views and 2 queries. We have

omitted the full names of the nodes, for illustration
purposes. Assume now that the database administra-
tor wants to change V0, which is the V Course view of

our reference example, in a way that all modules de-
pending on V0 are going to be affected by that change
(e.g., attribute addition, or attribute deletion/rename

for an attribute common to all the modules of the ex-
ample). Assume now that all modules except Q2 accept
to adapt to the change, as they have a PROPAGATE

policy annotation. Still, the vetoing Q2 must be kept

immune to the change; to achieve this we must retain
the previous version of all the nodes in the path from

the origin of the evolution (V0) to the blocking Q2. As
one can see in the figure, we now have two variants of
V0 and V1: the new ones (named V c

0 and V c
1 ) that are

adapted to the new structure of V0 (now named V c
0 ),

are depicted in the leftmost part of the right figure,
with lighter color, and the old ones, that retain their

name, are depicted in the rightmost part of the figure.
The latter are immune to the change and their existence
serves the purpose of correctly defining Q2.
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Fig. 15 Block rewriting example

Input: An architecture graph summary Gs(Vs,Es), a list of
modules AffMdls, affected by the event, and the InitialEvt
of the user.
Output: Annotation of the modules of AffMdls on the action
needed to take, and specifically whether we have to make a
new version of it, or, implement the change that the user
asked on the current version

1. For All (Module ∈ AffMdls){
2. If(Module.status == BLOCK){
3. CheckModule(Module, AffMdls, InitialEvt);
4. mark Module not to change; //Blockers do not change

5. }
6. }

Procedure CheckModule(Module, AffMdls, InitialEvt)
If (Module has been marked) {return;} //Already notified

If (InitialEvt == ADD ATTRIBUTE){ //Allow additions

mark Module to apply change on current version;
}
Else{

mark Module to keep current version as is and apply the
change on a clone;
}
For All(ModuleProv ∈ AffMdls feeding Module){ //Notify path

CheckModule(ModuleProv, AffMdls, InitialEvt);
}

Fig. 16 Algorithm Path check

The crux of the problem is as follows: if a module

has PROPAGATE status and none of its consumers
(including both its immediate and its transitive con-
sumers) raises a BLOCK veto, then both the module

and all of these consumers are rewritten to a new ver-
sion. However, if any of the immediate consumers, or
any of the transitive consumers of a view module raises

a veto, then the entire path towards this vetoing node

must hold two versions of each module: (a) the new ver-
sion, as the module has accepted to adapt to the change
by assuming a PROPAGATE status, and, (b) the old

version in order to serve the correct definition of the
vetoing module. Exceptionally, if the event vetoed in-
volves a relation, the veto freezes any other change and

the event is blocked.

To correctly serve the versioning purpose, the adap-

tation process is split in two steps. The first of them,

Path Check, works from the consumers towards the

providers in order to determine the number of variants
(old and new) for each module. Whenever the algorithm
visits a module, if its status is BLOCK, it starts a re-

verse traversal of the nodes, starting from the blocker
module towards the module that initialized the flow
and marks each module in that path (a) to keep its

present form and (b) prepare for a cloned version where
the rewriting will take place. A cloned version is an
identical copy of a module’s subgraph, with the same

providers but with different name. For example, if we
already have a view in SQL as:

CREATE VIEW vn AS SELECT c FROM t;

then its clone would be

CREATE VIEW vn Clone AS SELECT c FROM t;

The only exception to this rewriting is when the
module of the initial message is a relation module and
the event is an attribute deletion, in which case a

BLOCK signifies a veto for the adaptation of the re-
lation.

Input: A list of modules affected modules, AffMdls, knowing
the number of versions they have to retain, initial messages
of AffMdls, and initial evolution message, IMsg

Output: Architecture graph after the implementation of the
change the user asked

1. If(any of AffMdls has status BLOCK){
2. If(IMsg started from Relation module type AND

event == DELETE ATTRIBUTE) {Return};
3. Else
4. {
5. module toConnect←Module;
6. For All (Module ∈ AffMdls){
7. If(Module needs two versions){ //clone module to

8. toConnect← clone of Module; //keep both versions

9. }
10. connect toConnect to new providers;
11. proceed with rewriting of toConnect;
12. }
13. }
14. }
15. Else
16. {
17. For All(Module ∈ AffMdls){ //all nodes PROPAGATE

18. proceed with rewriting of Module //edges fixed internally

19. }
20. }

Fig. 17 Algorithm Graph Rewrite

Finally, all nodes that have to be rewritten are
getting their new definition according to their incom-

ing events. Unfortunately, this step cannot be blended
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with Path Check straightforwardly: Path Check oper-

ates from the end of the graph backwards, to highlight
cases of multiple variants; rewriting however, has to
work from the beginning towards the end of the graph

in order to correctly propagate information concerning
the rewrite (e.g., the names of affected attributes, new
semantics, etc.). So, the final part of the method, Graph

Rewrite, visits each module and rewrites the module as
follows:

– If the module must retain only the new version, once
we have performed the needed change, we connect

it correctly to the providers it should have.
– If the module needs both the old and the new ver-

sions, we make a clone of the module to our graph,
perform the needed change over the cloned module

and connect it correctly to the providers it should
have.

– If the module retains only the old version, we do not

perform any change.

One could possibly argue that we could have used a
principled way to mark the paths of the blocker mod-
ules, starting from the blocker module and visiting all

the affected modules with ID smaller than the blocker’s
ID, marking them to have two versions in the new
schema. Unfortunately, this method would have been

insufficient as it would not be able to guarantee that the
affected modules that are not in the path of a blocker
module will not be marked to obtain two versions too.

For example, in Figure 15, the Q1.ID could be either
8 or 9 after the topological sorting. If Q1.ID is 9, then
the aforementioned ID based traversal could be used.

If Q1.ID is 8, then Q2.ID is 9 and the aforementioned
ID based traversal would mark the Q1 module to obtain
two versions, which is wrong.

How much cloning is required? Each execution of the
Path Check and the Graph Rewrite algorithms involves
one event only. For each such event, a cloning is required

whenever (a) the event involves deletion or semantics
update, (b) a view module initiates the propagation of
an event due to its PROPAGATE policy, and, (c) some

of its (possibly transitive) data consumers raises a veto.
In this case, the entire path till the blocker (blocker
excluded) must be cloned. If there are two blockers

that have the same provider, then there is no extra
duplication. For a given event that fulfils the aforemen-
tioned conditions, assuming n blockers in an event, and

m paths, m ≤ n, involving M nodes (excluding the
blockers), we needM extra cloned modules. If the graph
contains V views and Q queries, the maximum impact

is when all of them are affected by an event. A worst
case scenario can be conceived when there is a root view
and all other views and queries defined over this view

either directly or transitively. Assume now that the root

view is affected in a way that all views and queries are

affected (e.g., change of semantics) and all queries are
blockers, although all views are propagators (because
if another view is a blocker, its queries are protected).

Then, we need to clone V views, which is the maxi-
mum amount of cloning that can happen in an event.
Our reference example is in fact such a worst case (see

Fig. 15). Practically speaking, this possibility is rare
(observe for example Fig. 19 on how a large subset of
the Drupal ecosystem is constructed).

Returning to the rewriting process of modules with
a PROPAGATE status, we can summarize this process
as follows:

– Whenever the attributes of a modules output
schema are deleted, renamed or inserted, the subse-

quent consumer schemata are adopted accordingly;
– Whenever entire modules are deleted or renamed,

the respective schemata are deleted or renamed ac-

cordingly.

In the following paragraphs, we are going to discuss

the way the rewriting process is performed within each
module. Initially, we need to distinguish two categories,
depending on the type of the module that is rewritten:

(a) the rewriting processes that apply to Relation mod-
ules, and, (b) the processes that apply to Query/View
modules. This differentiation is mainly due to the fact

that, in contrast to the Relation modules that contain
only an output schema, the Query/View modules ad-
ditionally contain a semantics schema and a set of in-

put schemata (one per provider). Therefore, queries and
views require a different treatment.

In the following two subsections, we are going to

briefly describe for each event, the steps that are fol-
lowed in the module rewriting mechanism, when the
module is accepting the change (its status is PROPA-
GATE). Naturally, if the status is BLOCK, no rewriting

is required at the internals of the module.

3.3.1 Relation module rewriting

For each of the events applied to a relation (as presented

in Table 1), we perform the following steps for rewriting
the affected relation module and propagating the event
towards the rest of the graph:

Attribute addition When a new attribute is added
to a relation module, the user is prompted for the

name of the new attribute and the module checks if
it is available or already in use by another attribute.
If all conditions are met then the new attribute is

added to the output schema of the module and a
message with the addition along with the new at-
tribute name is propagated to all dependent mod-

ules.
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Attribute deletion When an attribute is deleted, the

output schema searches for the specific attribute
and deletes it. Similarly, a message for the deletion
is propagated to all dependent modules.

Attribute rename When an attribute is renamed,
the output schema searches for the specific attribute
and renames it with the name provided by the user,

unless there is conflict with any attribute having the
same name in the output schema of the module; in
this case the user is prompted to change it. Again,

a message for the renamed attribute is generated.
Self (module) deletion When a relation module is

deleted, its output schema with all its attributes are

deleted and the module node itself is also deleted.
A message for the deletion is propagated to all de-
pendent modules.

Self (module) rename When a relation module is
renamed, the user is prompted for the new name
of the module. If it is unique, the module and its

output schema are renamed accordingly. Moreover,
a message with the renamed relation is propagated
to all connected query/view modules, in order to
update their input schemata with the new name.

3.3.2 Query/View module rewriting

Query and View modules have the same events, thus

we do not separate their rewriting methods. The steps
for rewriting (a PROPAGATE status is assumed) are
as follows:

Attribute addition The user adds a new attribute
by selecting it out of the list of attributes belonging
in the output schemata of the query/view providers

and sets a unique alias name for this attribute. In
case there is a GROUP BY clause in the semantics
schema, the user is prompted for adding the new

attribute to the groupers or using any aggregate
function. In any case, the new attribute is directly
added to the output schema of the module. If the

attribute was not used before in the query/view, it
is added in the respective input schema and finally
all the needed connections between the output node

and the semantics (if applicable) and input node are
set. Moreover, its name is propagated to the mod-
ules that are connected, in order to let them know

the name of the new attribute.
Attribute provider addition When an attribute is

added in a provider of the module, the input schema

of the module adds a new attribute node with the
specified name. If there is any connection to the se-
mantics schema due to a GROUP BY clause, the

user is again prompted for adding the new attribute

to the groupers or using any aggregate function. Fi-

nally, when all conditions are met, the new attribute
is added to the output schema of the module (check-
ing to see if there are any conflicts with the name of

the new attribute and if so, the user is prompted ac-
cordingly). Moreover, the name of the new attribute
is propagated to the modules that are connected, in

order to update their input schemata accordingly.
Attribute deletion For the case that an output at-

tribute is deleted, it is first removed from the out-

put schema. All connections of the output attribute
with the semantics schema are removed and finally,
if the attribute is not used in the semantics tree, it

is removed from the respective input schema.
Attribute provider deletion When an attribute of

a provider module is deleted, it is initially removed

from the corresponding input schema of the module.
If it is used in a condition in the semantics tree, then
this condition is set to true or false, depending on

the operator which connects this condition with the
semantics tree (true if the condition was connected
to an AND operator and false if it was connected
to an OR operator). Finally, if this attribute is part

of the SELECT clause of the query, it is removed
from the output schema. See Fig. 18 for how the
aforementioned example of Fig. 14 is rewritten.

Attribute rename When an attribute is renamed,
the output schema searches for the specific attribute
and renames it with then name provided by the user,

unless there is conflict with any attribute already
present in the output schema of the module, having
the same name with the one chosen for renaming

(in this case the user is prompted again). Moreover,
its name is propagated to the modules that are con-
nected, in order to let them know the new name of

the attribute in order to update their schemata.
Attribute provider rename When an attribute is

renamed in one of the providers of the module, the

attribute is initially renamed in the corresponding
input schema of the module. If there is a connection
between any attribute of the output schema with

the same name, this attribute is also renamed, un-
less the name is already used by any attribute of the
output schema, in which case, the user is prompted

for a new name. Finally, this new name is further
propagated to the modules that are connected to
this current one.

Module deletion When a query/view module is
deleted, the schemata nodes of the module with all
their attributes are deleted and the module node

itself is also deleted.
Module rename When a query/view module is re-

named, the user is prompted for the new name of
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the module and if it is unique in the graph, then the

module and its output, semantics and input schema
nodes are renamed accordingly. Moreover, the new
name is propagated to the modules that are con-

nected to this query/view, in order to know the
new name of the module and update their input
schemata.

Provider module deletion When a provider module
is deleted, the respective input schema of the mod-
ule that receives this notification is deleted. The

steps applied to the deletion of a provider attribute
are performed for all attributes of the the deleted
provider module.

Provider module rename When a provider module
is renamed, the module that receives this notifica-
tion initially checks if its input schema that corre-

sponds to the renamed provider had the same name
with the old provider name (not always the case,
since there could be an AS rename in the query/view

definition). If this is the case, the input schema of
the module is renamed accordingly (unless the new
name conflicts with an AS rename of any other in-
put schema of the module). If the new name due to

conflicts cannot be set to the input schema, the user
is prompted for a new one.

Alter of semantics When a query/view module

changes it semantics, the user is prompted to al-
ter the where and the group by clause of the mod-
ule and the semantics tree is rewritten from this

input. When an alter of semantics message arrives
from any of the module’s providers, and the mod-
ule has PROPAGATE semantics, then, as we have

already discussed in the previous subsection, there
is no rewriting at all at the module.

Fig. 18 Rewriting for the example of Fig. 14

4 Theoretical Guarantees

In this section, we provide a set of theoretical guaran-

tees regarding the correct annotation of the graph with
events and policies and the termination and confluence
properties of our proposed algorithms.

4.1 Language Properties

Theorem 1 The entries of Table 1 cover completely
the space of node types with the events they can sustain.

Proof 1 The table that contains the events that each
node type can receive was described earlier in Section 2

(Table 1). In Table 2 we have replaced the ✓ symbols of
the table’s cells with the numbers of the default policy
rules, according to the numbering scheme of Figure 7.

Two cells in the ALTER SEMANTICS column are an-
notated with a ✓ and without a reference to a rule; we
explain why in the following text.

The events that are user generated and pertain to
views and queries are:

UQV.1 ADD ATTRIBUTE
UQV.2 DELETE ATTRIBUTE
UQV.3 RENAME ATTRIBUTE
UQV.4 DELETE SELF
UQV.5 RENAME SELF
UQV.6 ALTER SEMANTICS

As mentioned previously in Section 2.2, the events that
are user generated and pertain to relations are:

UR.1 ADD ATTRIBUTE
UR.2 DELETE SELF
UR.3 RENAME SELF
UR.4 DELETE ATTRIBUTE
UR.5 RENAME ATTRIBUTE

Our policy language covers all these events that are re-
lated with the user interaction and are the marks of
Table 1 that are in the lines that contain the OUT and

SMTX keywords on queries, views and relations.

Due to the message propagation mechanism, addi-

tional events occur. These events (also described in Sec-
tion 2.2) are received by the IN nodes of the query and
view modules. These events are:

MP.1 ADD ATTRIBUTE PROVIDER
MP.2 DELETE PROVIDER
MP.3 RENAME PROVIDER
MP.4 ALTER SEMANTICS

For our policy language to cover the three of the four
previous events (MP.1, MP.2, and MP.3) that are re-

lated to the message propagation mechanism, additional
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ADD DELETE RENAME ALTER

ATTR

ATTR

PROV SELF PROV SELF PROV SMTX

QUERY

OUT
SELF 1 2 3 4

ATTRS 5 7 6 8

IN
SELF 11 9 10 ✓
ATTRS 12 13

SMTX SELF 14

VIEW

OUT
SELF 15 16 17 18

ATTRS 19 21 20 22

IN
SELF 25 23 24 ✓
ATTRS 26 27

SMTX SELF 28

RELATION OUT
SELF 29 30 31

ATTRS 32 33

Table 2 The space of events that can be received by each node type according to the line number in the rules of the policy
file

policies are needed. The exception of MP.4 is due to the
fact that the IN schema node who receives such an event
forwards it to the respective SMTX node who is actu-

ally the one responsible for the handling of this event.
Therefore, there is no need to define a policy at the IN
schema node, as the event will be appropriately handled

at the SMTX node.

In Table 2 we have all the above combinations of

events and node types, thus, our default 33 rule have
completely covered the space of node types with their
incoming events.

Precisely, lines 1 to 14 concern queries.

As previously stated at the exception of MP.4, the

14 rule (QUERY.SMTX.SELF: on ALTER SEMANTICS
then <policy>;) covers two events, since the IN node
forwards this message to the SMTX node which is

the only responsible for the policy over the AL-
TER SEMANTICS event.

Likewise, lines 15 to 28 concern views.

The 28 rule (VIEW.SMTX.SELF: on
ALTER SEMANTICS then <policy>;) covers two events
just like 14 rule does, for the exact same reasons.

Finaly, lines 29 to 33 concern relations.

As one may notice the 33 rules cover all the 35

events that may appear in each one of the nodes. The
inequality of the numbers is because of the exception of
MP.4. Therefore, the fact that the 33 rules cover 33

events plus the two events that do not need any rule

1 QUERY.OUT.SELF: on ADD ATTRIBUTE then <policy>; which is for
UQV.1
2 QUERY.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in output schema node
3 QUERY.OUT.SELF: on DELETE SELF then <policy>; which is for
UQV.4
4 QUERY.OUT.SELF: on RENAME SELF then <policy>; which is for
UQV.5
5 QUERY.OUT.ATTRIBUTES: on DELETE SELF then <policy>; which is
for UQV.2
6 QUERY.OUT.ATTRIBUTES: on RENAME SELF then <policy>; which
is for UQV.3
7 QUERY.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
which is for MP.2
8 QUERY.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
9 QUERY.IN.SELF: on DELETE PROVIDER then <policy>; which is for
MP.2
10 QUERY.IN.SELF: on RENAME PROVIDER then <policy>; which is for
MP.3
11 QUERY.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in input schema node
12 QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>;
which is for MP.2
13 QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
14 QUERY.SMTX.SELF: on ALTER SEMANTICS then <policy>; which is
for both UQV.6 and MP.4

Table 3 Query policies with the addressed events

proves that all the events (UR.*, UQV.*, and MP.*)

are covered by our policy rules.

Moreover, if we override the 33 default rules, then,
the most refined policy will be enforced for each node.■

Theorem 2 The policy overriding mechanism is cor-

rect (assigns the correct policy to each node).
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15 VIEW.OUT.SELF: on ADD ATTRIBUTE then <policy>; which is for
UQV.1
16 VIEW.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in output schema node
17 VIEW.OUT.SELF: on DELETE SELF then <policy>; which is for
UQV.4
18 VIEW.OUT.SELF: on RENAME SELF then <policy>; which is for
UQV.5
19 VIEW.OUT.ATTRIBUTES: on DELETE SELF then <policy>; which is
for UQV.2
20 VIEW.OUT.ATTRIBUTES: on RENAME SELF then <policy>; which is
for UQV.3
21 VIEW.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
which is for MP.2
22 VIEW.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
23 VIEW.IN.SELF: on DELETE PROVIDER then <policy>; which is for
MP.2
24 VIEW.IN.SELF: on RENAME PROVIDER then <policy>; which is for
MP.3
25 VIEW.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in input schema node
26 VIEW.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>; which
is for MP.2
27 VIEW.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
28 VIEW.SMTX.SELF: on ALTER SEMANTICS then <policy>; which is
for both UQV.6 and MP.4

Table 4 View policies with the addressed events

29 RELATION.OUT.SELF: on ADD ATTRIBUTE then <policy>; which is
for UR.1
30 RELATION.OUT.SELF: on DELETE SELF then <policy>; which is for
UR.2
31 RELATION.OUT.SELF: on RENAME SELF then <policy>; which is for
UR.3
32 RELATION.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
which is for UR.4
33 RELATION.OUT.ATTRIBUTES: on RENAME SELF then <policy>;
which is for UR.5

Table 5 Relation policies with the addressed events

Proof 2 One node may have more than one policies
for a specific event. This occurs because a policy over
an event may be set in any of the following three rules:

1. Rules about all the nodes of the Architecture
Graph.

2. Rules about all modules and their attributes.

3. Rules that apply to all the attributes of a spe-
cific schema.

4. Rules that apply to specific attribute nodes.

The golden standard of correctness requires that

whenever a node has more than one policies for the
same event, the one that perseveres is the policy defined
at the finest level of detail.

The overriding mechanism is correct because the fol-
lowing sequence of events is guaranteed: initially, it we
apply the most general rules for all the nodes of the

graph, then the rules per module type, then the rules
referring to the attributes of specific schemata, and fi-
nally, the rules that apply to specific attributes.

Observe that this is independent on whether the poli-
cies are assigned a priori, during the construction of the
graph, or, on demand, whenever a specific node needs

to determine its policy.■

Theorem 3 The extra rules

– <moduleType>: ON * THEN <policy>;

– <namedNode>: ON * THEN <policy>;
– NODE: ON <event> THEN <policy>;
– NODE: ON * THEN <policy>;

can correctly cover up the events of the Table 2 and cor-
rectly override each other mechanism (assign the correct
policy to each node).

Proof 3 We need to prove that these rules will cover up
all the events that a node might receive, as well as that

these rules correctly override each other. The more gen-
eral rules are the ones that contain the keyword NODE.
These rules are applied first. Then the rules that ap-

ply to modules and finally the rules that are applied to
specific nodes of the graph. Within each rule, the rules
that contain the keyword * are preceding over the others

rules.
The rule: NODE: ON * THEN <policy>; is trans-

lated to all the 33 rules described in Figure 7 and prove

their correctness in Theorem 1. So all the events are
covered. This rule is also the first one to be applied in
our graph, regardless of its position.

The rule NODE: ON <event> THEN <policy>; is
translated to the rules that apply for the specified event
type. We can follow the columns of the table 2 in order

to see that for:

– ATTRIBUTE ADDITION, the rules of Figure 7
that apply are: rule 1 for the queries, rule 15 for

the views and rule 29 for the relations.
– ATTRIBUTE PROVIDER ADDITION, the rules

of rules of Figure 7 that apply are: rule 2 and 11

for the queries and rule 16 and 25 for the views.
– DELETE SELF, the rules of Figure 7 that apply

are: rule 3 and rule 5 for queries, rule 17 and rule

19 for views, rule 30 and rule 32 for relations.
– DELETE PROVIDER, the rules of Figure 7 that

apply are: rule 7, rule 9 and rule 12 for the queries,

rule 21, rule 23 and rule 26 for the views.
– RENAME SELF, the rules of Figure 7 that apply

are: rule 4 and rule 6 for the queries, rule 18 and
rule 20 for the views, rule 31 and rule 33 for the

relations.
– RENAME PROVIDER, the rules of Figure 7 that

apply are: rule 8, rule 10 and rule 13 for the queries,

rule 22, rule 24 and rule 27 for the views.
– ALTER SEMANTICS, the rules of Figure 7 that

apply are: rule 14 for the queries and rule 28 for

the views.

This rule is the second one that is applied in our graph,
in order to correctly override the more general first rule

(NODE: ON * THEN <policy>;).
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The rule <moduleType>: ON * THEN <policy>;

is translated to the set of rules that apply to the specific
module type. For example,

– for the query module type, these rules are: 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and, 14,

– for the view module type, these rules are: 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and, 28,
– for the relation module type, these rules are: 29, 30,

31, 32, and, 33.

This rule is the third one that is applied in our graph, in

order to correctly override the two more general rules.
Finally, the rule <namedNode>: ON * THEN

<policy>; is translated to the rules that apply to

the module type of the specific <namedNode>. This
means that the rules that are generated have the
<namedNode>’s name. For example, for a relation

named TRANSCRIPT,

1. the rules will start with TRANSCRIPT SCHEMA

– for the ATTRIBUTE ADDITION event, which
is for the rule 29,

– for the DELETE SELF event, which is for the

rule 30,
– for the RENAME SELF event, which is for the

rule 31,

2. and two more rules that are for the attributes of
the TRANSCRIPT relation, starting with TRAN-
SCRIPT SCHEMA.ATTRIBUTES

– for the DELETE SELF event of the attributes,
which is for the rule 32,

– for the RENAME SELF event of the attributes,

which is for the rule 33.

This rule is applied after the rules per module type have
been applied and before rules with specific events for
specific nodes are applied.■

4.2 Theoretical Guarantees for the Status
Determination Algorithm

First, we prove that the mechanism for message prop-
agation works correctly at the inter-module level.

Theorem 4 The message propagation at the inter-

module level terminates.

Proof 4 The summary of the architecture graph is a

directed acyclic cycle. This is due to the fact that (i)
a query depends only on views and relations, and (ii)
relations do not depend on anything (in the context of

this paper, we do not consider cyclic foreign key depen-
dencies).

Since the summary graph is a DAG, we can topolog-

ically sort it and propagate the messages according to

this topological order. Thus, all that it takes for the mes-

sage propagation mechanism to terminate is: (a) each
module emits a message only once for each session to
its consumers that are related with the event/parameter;

(b) the graph is finite. Since both assumptions hold, the
algorithm terminates.■

Theorem 5 Each module in the graph will assume a

status once the message propagation terminates; this
status is the same, independently from the order of pro-
cessing the incoming messages.

Proof 5 Each module gathers from the common mes-
sage queue all the messages that concern it. For each
message, the module and its schemata, assume a sta-

tus. A module’s status can change only in the follow-
ing order: NO STATUS < PROPAGATE < BLOCK,
meaning that if a module has assumed a PROPAGATE
status, it can not change it to NO STATUS but it may

change it to BLOCK. Therefore, if a message that will
ignite a BLOCK policy is found anywhere in the list
of incoming messages, this BLOCK status will eventu-

ally be assumed and not overridden later. Otherwise, a
PROPAGATE status will be assumed. At the end of the
message processing, the module retains the final status

it assumed.■

Theorem 6 Messages are correctly propagated to the
modules of the graph.

Proof 6 For the node that receives the initial event we
need to prove that:

1. the node either acquires BLOCK status, therefore

the message propagation mechanism stops, or,
2. the node acquires PROPAGATE status and notifies

its consumers about the change.

For all the other nodes we need to prove that:

3. that a module will not be affected if none of its
providers was affected by the imminent change,

4. there is no module that receives a message while its
provider has a BLOCK status,

5. there is no module that should have received a mes-

sage when it was its turn to acquire a status but the
message was not in its input message list,

The first two propositions stand because of the

rewrite maestros mechanism. The modules communi-
cate using a global list of messages. The rewrite mae-
stro keeps a local list of all the outgoing messages of

the module to its consumers. When the module fin-
ishes processing all its incoming messages, the maestro
checks the module’s status and if it is BLOCK, then

returns, without adding the outgoing messages to the
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global list, which proves the first proposition. If the sta-

tus of the module is PROPAGATE then the output mes-
sages are added in the global list, so the consumers of
the module are notified, which proves the second propo-

sition.

For the third proposition: One (or more) input

schema node(s) of a consumer module is connected
via directed edges to the output schema node(s) of its
providers. Due to its inherent construction, the modules

which are eventually visited by the message propagation
mechanism, have at least one of their providers affected.
For the same reason, the modules that are not visited

by the mechanism (a) either do not have any provider
affected, or, (b) a block policy terminated the message
propagation in provider modules, earlier.

For the fourth proposition: The messaging mech-
anism dictates that each message is propagated from

the output node of the provider module towards the
input schemata of all consumer modules, unless a
BLOCK policy explicitly halts the propagation. Since

a BLOCK policy terminates the message propagation
from this provider module, we guarantee that there is no
consumer module to receive any message from provider

module.

For the fifth proposition: The messaging mechanism

uses a list to transfer the messages between the mod-
ules. This list is sorted by the ID numbers that the
modules have acquired by the topological sort algorithm

(described in Figure 12). Since the list is topologically
sorted too, we guarantee that there there is no module
that should have received a message when it was its turn

to acquire a status but the message was not in its input
message list.■

Theorem 7 The message propagation at the intra-
module level: (i) terminates, with (ii) each node assum-

ing a unique status according to its policy and the status
precedence constraints.

Proof 7 We visit the schemata of a module in a
fixed order: input schemata, semantics schema, output

schema. For each of these schemata, we may visit its
attributes too. All these constructs are finite and vis-
ited only once. This is a task that the maestros perform

and the very reason for their existence, otherwise we
could have allowed message propagation via the graph’s
edges within the modules too. Therefore, the algorithm

terminates and (i) is proved.

For requirement (ii) we need to prove the following:

1. for all messages, vetoes override adaptation,
2. per message, for all the appropriate nodes (and only

them) the status of the most detailed nodes overrides

the decision of the status of the schema,

3. if any of the schemata of a module has status

BLOCK, the module assumes status BLOCK.

Regarding the first proposition: as already stated at
the proof of Theorem 5, a node’s status can change
only in the following order: NO STATUS < PROP-

AGATE < BLOCK, meaning that if a node has as-
sumed a PROPAGATE status, it can not change it to
NO STATUS but it may change it to BLOCK.

Regarding the second proposition: every time a
schema is probed on an event (a) the appropriate nodes

within a schema are asked about their policy, or/and,
(b) the schema itself is asked about its policy. Ta-
ble 2 describes the relationship between events and nodes

prompted, in the lines that say ATTRS the (a), (b) take
place, while in the lines that say SELF only the (b) takes
place. This is the correct and desired behavior. When an

attribute acquires a status, the schema node is prompted
to acquire the same status. The completeness of the lan-
guage guarantees that all nodes have a policy for any

incoming event that can arrive to them. Therefore, in
all occasions (i) the correct nodes are prompted for a
response, (ii) the policy of the appropriate nodes pre-

vails, (iii) it is impossible that such a policy does not
exist. Therefore, for each message all nodes acquire the
correct status.

Regarding the third proposition: the proposition is
inherently supported.■

4.3 Theoretical Guarantees for the Path Check

Algorithm

We are going to prove that Path Check Algorithm ter-
minates and all modules at the end have the correct
number of versions they need to keep.

Theorem 8 The module traversal terminates and the

visited modules have the correct notification of how
many versions they need.

Proof 8 Algorithm Path Check sequentially passes
from each of the affected modules with BLOCK status
and for each of them executes method CheckModule. If

we can prove that CheckModule terminates, then the
algorithm terminates too.

The algorithm has as input: (i) a finite set of
modules (each module with BLOCK status starts the
CheckModule method once), and (ii) the initial event

placed by the user.
In every step, the CheckModule method marks the

module to keep two versions, and finds the providers of
this module through which the module was marked about
the change. These provider modules are listed in the set

of the affected modules. If there are no more modules
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this means that the method reached the module from

which the change started.

Since this is a recursive procedure, the providers of

the providers of those modules are also marked and so
on. The condition that inspects whether the visited mod-
ule was previously marked, is done by the following line:

If(Module has been marked) Then return;

of the CheckModule method. This condition makes
sure that the recursive traversals of the method termi-
nate as soon as possible –since those modules have al-

ready been marked by a previous traversal– and every
module that is part of the path that goes from a blocker
module to the source of the changes has been marked to
keep two versions.■

4.4 Theoretical Guarantees for the Graph Rewrite

Algorithm

We are going to prove that (a) Graph Rewrite Algo-
rithm terminates, (b) when Graph Rewrite terminates,
all modules have the correct connections at the inter-

module level, and (c) all modules are correctly rewritten
at the intra-module level.

4.4.1 Termination and confluence at inter-module level

First, we prove that the mechanism for graph rewriting

works correctly at the inter-module level.

Theorem 9 The graph rewriting at the inter-module
level terminates.

Proof 9 The Graph Rewriting Algorithm terminates
when all the notified modules that accepted the change
(meaning that those modules acquired a PROPAGATE

status) are rewritten. The algorithm has as input the
list of the affected modules, each one having its status
and the number of versions it needs to keep, and the ini-

tial messages that each affected module received. In the
special case of the DELETE ATTRIBUTE event com-
ing from a Relation module, the algorithm terminates

right away. Otherwise, each one of the affected modules
(which is a finite list of modules) is rewritten once, so
the algorithm terminates.

We need to prove:

1. that each module is rewritten only once for each one

of the messages it received,
2. that there is a finite list of messages, and
3. that there is a finite number of modules that are go-

ing to be rewritten.

For 1 and 2 since the incoming messages of a module

are finite (as proved earlier in theorem 4), and maestros
are only once executed per message we are sure that
each module is rewritten once per message received. For

3 the number of modules that acquired PROPAGATE
status is finite, since the graph is finite. Therefore, since
all assumptions hold, the algorithm terminates.■

Theorem 10 The graph will be in the correct form af-
ter the rewrite.

Proof 10 We need to prove that:

1. All the modules that have no status will not be
rewritten.

2. All the modules with BLOCK status will not be
rewritten.

3. If there is no vetoer in the graph, then all the mod-

ules with PROPAGATE status will be rewritten.
4. If there is any vetoer, then the modules with PROP-

AGATE status will be rewritten (i) themselves –

since there is only one version needed– if they are
not part of a blocker path, or, (ii) as clones –since
there are two versions needed– as parts of a blocker

path. In both cases the modules will be connected to
the appropriate path.

A module is part of a blocker path when the module
has PROPAGATE status but at least one of its descen-

dants acquired status BLOCK.
We need two paths, the “new providers” in which all

the nodes accepted the change, and the “old providers”

in which we keep the old definitions of all the affected
modules because a module declined the change. If a mod-
ule needs to keep only one version then the path with the

“new providers” is the one that this module belongs to.
If a module needs to keep two versions then the path
with the “old providers” that did not want to accept the

change is the one that this module belongs to, while its
clone belongs to the path with the “new providers” that
accepted the change, thus providing right essence to the

modules that need to keep only one version. The num-
ber of versions a module has to keep is given by the
algorithm depicted in Figure 16.

If none of the modules vetoed, then the Graph
Rewrite Algorithm does a traversal visiting the affected
nodes, in order to apply the change the user asked. The

algorithm works only with the modules that have PROP-
AGATE status, thus 1, 2 and 3 are proved. For 4:

1. If the module needs to keep two versions we clone
the module, we connect the cloned module to its new

providers (if it is the module that started the event
then we connect it to the providers that the original
has), and we proceed with the rewrite of the cloned

module. This way, the cloned modules are all in one
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path, and the modules that vetoed are all in the other

path.
2. If the module belongs to a path without blocker mod-

ules, then it needs to keep only the new version we

connect it to the path of the new providers and we
proceed with the internal rewriting of the module.

■

4.4.2 Termination and confluence at intra-module level

Theorem 11 The rewriting of modules at the intra-
module level terminates and each module is rewritten
correctly.

Proof 11 Sections 3.3.1 and 3.3.2 describe the intra
module rewriting process, where we begin our module

rewriting from the input schema, continue to the se-
mantics schema and terminate to the output schema.
There is only one exception at the aforementioned rule

and that is on the attribute addition of query/view
modules, where we start from the output schema of
the module and move towards the semantics and input

schemata.

In both cases, we start rewriting from the one bor-

der of the module (input or output) and terminate to
the other border of the module (output or input, respec-
tively). Because of the previous statement, we guarantee

that our method terminates because: (a) we perform a
single visit per affected node, and (b) we work with a
finite number of nodes. As for the validity of the intra-

module rewriting, each event is rewritten as described
in sections 3.3.1 and 3.3.2 and whenever information
is needed, either the modules passes that information

from the provider module to the consumer module, or
prompt the user to provide the needed information.■

5 Experiments

We assessed our method for its usefulness and scalabil-

ity with varying graph configurations and policies; in
this section, we report our findings. As already men-
tioned, all the material for this work, including input

ecosystems, links to the source code (publicly available
at git) and results can be found in the paper’s web
page3. We have employed a real-world case, based on 7

major revisions of Drupal in the period 2003 - 2007 as
the testbed for our experimentation. To further stress-
test our method with more complicated scenarios, we

have also performed a controlled experiment, based on

3 http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/

index.html

a widely used benchmark, TPC-DS, to allow the evalu-

ation of the effect of different problem parameters (like
policy annotation and graph size) to the effectiveness,
efficiency and required user effort of our method. Before

proceeding, we describe the fundamental metrics that
we employ for the assessment of our experiments.

5.1 Effectiveness and Effort Metrics

In this subsection, we discuss the metrics used to as-
sess the efficiency, the effort spent for the annotation of
the graph and the effectiveness metrics that we employ

in our experiments. Evaluating efficiency is straightfor-
ward, as we assess the breakdown of the time spent for
each of the 3 steps of our method. For the rest of the

metrics, we provide a more detailed discussion, right
away. We conclude this subsection with a note on the
experimental configuration of each experiment.

5.1.1 Effectiveness: do we gain from annotating the
graph with policies and testing what-if scenarios this
way?

How can we assess the effort gain of a developer us-
ing the highlighting of affected modules of Hecataeus?

This gain should be contrasted to the effort spent in
the case where he would have to perform all checks by
hand. We employ the %AM metric, measuring the frac-

tion of Affected Modules of the ecosystem as the gain
that amounts to the percentage of useless checks the
user would have made. We exclude the object that ini-

tiates the sequence of events from the computation, as
it would be counted in both occasions. Formally, %AM
is given by the Equation 1.

%AM = 1− #Affected Modules

#(Queries ∪ V iews)
(1)

Moreover, to assess the extent of rewritings that are
automated by our method, for each event we measure

the number of Rewritten Modules as the sum of the
number of modules that were cloned (new versions of
affected modules) with the number of existing adapted

modules. We denote this measurement with the RM
metric, given by the Equation 2.

RM = #Adapted Modules + #Cloned Modules (2)

http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
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5.1.2 Policy annotation effort: how much time does it

take to setup the policy rules in order to work with our
what-if analysis tool?

How hard is it to annotate the graph with policies? How
much time does the user have to spend for authoring
the rules?

Our method comes with the possibility of using syn-

tactic sugar rules that make life easy and fast. For the
rare occasion when the user does not want to use these
syntactic shortcuts, for every specific module that gets

into the user’s focus, the user has to provide as many
rules as necessary to override the default policies. In
the worst case, this requires 9 + 5 × |input schemata|
rules for a full re-specification of a query/view module.
When the syntactic sugar is used, one rule is sufficient
to fully invert the policy of a module. Of course, rules

for more detailed subsets of the module can also over-
ride this default. In any case, in order to write these
rules, the user has to locate the module in the graph

and invoke the graphical policy editor; however, locat-
ing the module is actually the difficult part of the an-
notation. To address this task, Hecataeus comes with a

layout containing the filesystem of the project that the
user investigates. Initially, the user has to find the file
that contains the query he wants to change its policy.

When the user selects a file, the queries that are in this
file, are highlighted in the visual representation of the
Architecture Graph in our tool, providing a smaller set

of modules that need to be searched. Finally, when the
user finds the module he wants to differentiate from the
global policy, he adds only one line of text to the pol-

icy file that says that this query has a specified policy.
We repeatedly monitored the annotation time, using a
wristwatch, and this task takes at most 1 minute for

each query that the user wants to set a specific policy.

In each experiment, we also discuss the number of
rules required for the execution of the experiment. We

believe the annotation effort is practically negligible.

5.1.3 Experimental configuration

In all our experiments, we need to fix the following pa-

rameters for our experimental setup: (a) an ecosystem
comprising a database schema surrounded by a set of
queries and possibly a set of views, (b) a workload of

events that are sequentially applied to the above config-
uration, and, (c) a palette of “profiles” that determine
the way the ecosystem’s architecture graph is annotated

with policies towards the management of hypothetical
events; hence, these profiles simulate the intention of
the administrating team for the management of the

ecosystem.

5.2 Replaying the Evolution of Drupal

Ecosystem. In this experiment, we have employed
Drupal, versions 4.1.0 to 4.7.11 [30] as our experimen-
tal testbed. Drupal is a Content Management System

(CMS) that is written in PHP language, which contains
SQL queries in its php script files. We used some of the
major versions of this project that took place between

2003 and 2007. As one may observe in Table 6, there
are no views in this project; that is why we decided to
split the experiment in two setups, described in Sections

5.2.1 and 5.2.2 respectively.

5.2.1 Original evolution scenario

In this setup, we replay the original evolution of the
Drupal project, raising each one of the events that really
occurred, having no blocker modules.

Events. We have used the actual events that

evolved the database schema of Drupal between the
major versions we describe in Table 6. For example,
in order to get to version 4.2.0 we had to perform 6

attribute additions and 2 attribute deletions.

Policies. The default reaction for the original sce-
nario was to accept all changes between two subsequent

versions. Thus, the policy for all modules was to prop-
agate all events that occur on the system; this is ex-
pressed by having only one rule in the policy file (NODE:
on * THEN PROPAGATE;).

5.2.2 Modified scenario with view cloning

In the second setup, we replay an alternative evolution
case of the Drupal project, in order to examine the effect
of cloning of views on the overall system. Specifically,

we added a view named “UNV iew”, that is used to
join the USERS and NODE relations. Then, we rewrote all
queries joining the two tables to use the view instead.

Moreover, we added one extra query that asks for all the
attributes of UNview which would act as a blocker to
all events that ultimately reach it. This setting allows us

to see how view cloning operates ”in the microscope”.

Events. We have also used the actual events as in
the previous setup. The only difference to the previous
approach is that, when there was an attribute deletion

in USERS or NODE relations, we performed the deletion
to the UNview module, instead of the USERS or NODE
relation modules.

Policies. The policy again was to propagate all the

changes in all modules except for the additional query;
this is expressed by the following two rules:

– NODE: on * then PROPAGATE; and

– Qadditional: on * then BLOCK;
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Drupal
Version

Published at Relations Queries
Attribute
Addition

Attribute
Deletion

Table
Addition

Table
Deletion

4.1.0 2003-02-01 38 234 6 2 0 0
4.2.0 2003-08-01 38 239 1 5 3 1
4.3.1 2003-12-01 40 251 8 4 1 1
4.4.3 2005-06-01 40 254 16 5 16 4
4.5.8 2006-03-14 52 277 12 11 4 1
4.6.11 2007-01-05 55 327 14 11 7 5

Table 6 Drupal dataset from ver. 4.1.0 to ver. 4.7.11

Fig. 19 Drupal 4.1.0 cluster with queries asking same tables
as arcs.

Experimental Protocol. We have used the follow-
ing sequence of actions. First, we annotate the architec-

ture graph with policies. Next, we sequentially apply
the events over the graph – i.e., each event is applied
over the graph that resulted from the application of the

previous event. For each event we measure the elapsed
time for each of the three algorithms, along with the
number of affected, cloned and adapted modules. The

experiment was performed in a typical PC with an Intel
i5 CPU at 2.90GHz and 32GB main memory and only
one core being used.

5.2.3 Annotation effort

The “real world” experiment was conducted using the

syntactic sugar policy annotation rules. When we used
the setup that is described in Section 5.2.1 we did not
have to write any rules (the default one is generated by

our tool). When we used the setup that is described in
Section 5.2.2, we had to write only one rule, in order to
block the propagation of events to the extra query we

deliberately inserted in the ecosystem.

5.2.4 Effort gains

In both variants of our experiments, we can see that

the effectiveness is way too high for all events. This
is because the average number of affected modules is
small compared to the size of the graph. More precise

results about this experimental setup you may see in
Table 7, where we notice that the minimum benefit for
the developers is 71% while the average benefit ranges

between 91% - 98.5%!

Metric
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

%
A
M

min 97.1 88.2 94.2 71 93.1 79.7
avg 98.2 97.3 96.8 91 98.5 97.3
max 99.2 98.8 99.6 99.6 100 99.7

R
M

min 2 4 2 2 1 2
avg 5.4 7.8 9.3 24.7 5 10
max 8 30 16 77 20 68

Table 7 Results of the original evolution scenario of Drupal

In the experimental setup that is described in Sec-
tion 5.2.2, we can see that the metrics have not changed
significantly. Also due to the blocker query and the

UNview modules, we now have clones! This way, the
query that was marked to block all the changes remains
intact, while the rest of the ecosystem evolves.

The minimum number of clones per event is 0. Also,
since the height of our tree is only one level, the max-

imum number of clones per event can not be greater
than 1. Those metrics are displayed in Table 8.

Metric
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

%
A
M

min 97.1 88.5 94.3 70.7 93.2 79.5
avg 98.2 96.8 96.9 91 98.5 97.2
max 99.2 98.8 99.6 99.6 100 99.7

R
M

min 3 4 2 2 1 2
avg 5.4 8.4 9.2 24.7 5 10
max 8 30 16 79 20 70∑

Cloned 0 4 1 3 3 5

Table 8 Results of the modified evolution scenario of Drupal
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Step
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

1
min 110 171 65 56 37 76
avg 1311 1732 1135 913 678 728
max 8048 8913 9035 8498 10426 11888

2
min 2 2 2 1 1 1
avg 4 4 7 7 5 8
max 11 15 25 28 24 64

3
min 105 154 76 48 29 59
avg 362 506 560 659 251 364
max 1282 1947 1773 2830 1812 1328

Table 9 Drupal project times (in microseconds) for “origi-
nal” setup

Step
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

1
min 120 323 81 46 40 124
avg 1357 2227 1241 929 632 686
max 8124 10782 9707 8957 87896 9706

2
min 3 3 3 1 1 1
avg 4 19 18 14 10 13
max 13 51 149 68 123 99

3
min 114 801 82 72 25 88
avg 395 8128 1443 2051 1316 2193
max 1364 15244 11917 13103 9177 11713

Table 10 Drupal project times (in microseconds) for “mod-
ified” setup

5.2.5 Efficiency assessment

The time needed to perform the adaptation of the
ecosystem is practically negligible. Table 9 displays the

time needed for the original Drupal experimental setup,
described in Section 5.2.1. Table 10 displays the time
needed for the modified Drupal experimental setup, de-

scribed in Section 5.2.2. The experiments of the Drupal
project were conducted with cold cache (it is interesting
to note that in all occasions, the processing of the first

event took an order of magnitude higher than the rest
of the events; here we report the min, max and average
of all events for each step).

5.3 Controlled experiment with TPC-DS

To better control and assess the behavior of our al-

gorithms, we need a more complex environment than
Drupal. In fact, our experience with several CMS’s re-
veals that the internal structure of the database is in-

tentionally kept as simple as possible, obviously in an
attempt to maximize performance. Thus, we have em-
ployed a decision support benchmark, TPC-DS, as the

testbed for our controlled experiment. We start with a
description of the experimental setup.

5.3.1 Experimental setup for TPC-DS

Ecosystem. We have employed TPC-DS, version 1.1.0
[25] as our experimental testbed. TPC-DS is a bench-

mark that involves star schemata of a company that has

the ability to Sell and receive Returns of its Items with

the following ways: (a) theWeb, or, (b) a Catalog, or, (c)
directly at the Store. Moreover the company keeps data
of Customers, regarding their Income band, or their

Demographics data and additionally keep data about
the Promotion of their Items. To handle advanced SQL
constructs in the queries of TPC-DS, we had to add

views for the handling of WITH clauses and to make
modifications to queries containing keywords as LIMIT,
HAVING in order to remove parser-offending parts that

Hecataeus’ parser cannot handle. To test the effect of
graph size to our method’s efficiency, we have created
3 graphs with gradually decreasing number of query

modules: (a) a large ecosystem, WCS, with queries us-
ing all the available fact tables, (b) an ecosystem CS,
where the queries to WEB SALES have been removed,

and (c) an ecosystem S, with queries using only the
STORE SALES fact table.

Events. The event workload consists of 51 events

simulating a real case study of the Greek public sector.
See Fig. 20, left, for an analysis of the module sizes
within each scenario. In Fig. 20, right, we present the
breakdown of the workload (listing the percentage of

each event type as pct).
Policies. We have annotated the graphs with poli-

cies, in order to allow the management of evolution

events. We have used two “profiles”: (a) MixtureDBA,
consisting of 20% of the relation modules annotated
with BLOCK policy, and, (b) MixtureAD, consisting of

15% of the query modules annotated with BLOCK pol-
icy. The first profile corresponds to a developer-friendly
DBA that agrees to prevent changes already within

the database. The second profile tests an environment
where the application developer is allowed to register
veto’s for the evolution of specific applications (here:

specific queries). We have taken care to pick queries
that span several relations of the database.

Fig. 20 Experimental configuration for the TPC-DS ecosys-
tem

Experimental Protocol. We have used the follow-
ing sequence of actions. First, we annotate the architec-

ture graph with policies. Next, we sequentially apply
the events over the graph – i.e., each event is applied
over the graph that resulted from the application of the

previous event. The experiment was performed with hot
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cache in order to measure the time. For each event we

measure the elapsed time for each of the three algo-
rithms, along with the number of affected, cloned and
adapted modules. The experiment was performed in a

typical PC with an Intel Quad core CPU at 2.66GHz
and 1.9GB main memory with only one core was being
used.

5.3.2 Effectiveness assessment: How useful is our
method for the application developers and the DBA’s?

In this subsection, we discuss the evaluation of the effort

gain metrics for our controlled experiment. We eval-
uated the %AM metric for each of the 51 events of
the workload, performed over all three ecosystems (S,
CS, WCS) and for both the policy annotation profiles

(MixtureDBA and MixtureAD). In the upper part of
Fig. 21 we demonstrate the minimum, average and max-
imum value of the %AM metric for all these 51 runs,

organized annotation policy and ecosystem. The results
demonstrate that the effort gains compared to the ab-
sence of our method are significant, as, on average, the

effort is around 90% in the case of the AD mixture and
97% in the case of the DBA mixture. As the graph size
increases, the benefits from the highlighting of affected

modules that our method offers, increase too. Observe
that in the case of the DBA case, where the flooding
of events is restricted early enough at the database’s

relations, the minimum benefit in all 51 events ranges
between 60% - 84%.

Fig. 21 Effectiveness assessment as fraction of affected mod-
ules (%AM) and number of rewritten modules (RM) of the
“controlled” experiment

Likewise, we evaluated the RM metric for each of
the 51 events of the workload. The results demonstrate
that the minimum number of modules needing a rewrite

is 0 for almost all combinations of mixture and graph
size for the event workload. This happened in both the
MixtureDBA and the MixtureAD cases for different

reasons – still both related to a veto. In the case of

MixtureDBA, if a relation vetoes a possible change to

it, then the event is immediately blocked and no rewrit-
ing or cloning takes place. Similarly, if a query vetoes a
change in a relation (eg. attribute deletion), again, the

event is frozen no rewriting or cloning takes place. At
the same time, observe that the average and maximum
number of modules needing a rewrite increases as the

size of the graph increases. This is expected, as the in-
crease in the graph size signifies that the new queries
can possibly use some of the tables/views of the smaller

graph (remember that the graphs are constructed by
adding views and queries each time). Then, every event
affects more modules as the graph increases. Another

worth-mentioning fact is that when the MixtureDBA
policy is used, the number of the modules needing
rewrite drops, since the flooding of events is restricted

early enough, inside the database.

5.3.3 Policy annotation effort: how many rules does
one have to write in order to work with our what-if

analysis tool?

In this subsection, we discuss the effort of the user
for the annotation of the Architecture Graph ecosys-
tem with policies, over the conducted controlled exper-

iments. We have worked with both policy mixtures and
observed the effort needed as the number of blockers
increases. Remember that in the MixtureDBA policy

of the “controlled” experiment we block events at re-
lations; we have set 20% of our relation modules to
block the events that they receive and kept the size

of the relation modules is the same in all three exper-
iments (S, CS, and WCS ). In the MixtureAD policy
–in the same experimental setup– we set about 15% of

the query modules as blockers. Here, the number of the
blockers depends on the numbers of the query modules,
which is different for each one of the S, CS, and WCS

experiments.

Table 11 displays our results. We have one row for

the MixtureDBA and one row per size (S, CS, WCS )
for the MixtureAD policy. The first columns explain the
annotation policy, the nature and number of interest-

ing modules (relations in the first case and queries in
the latter) and the number of blockers within each con-
figuration. The next three columns explain the effort

spent to annotate the ecosystem without the syntac-
tic sugar: we list the number of default rules that have
to be defined for completeness reasons, the extra rules

that pertain to the individual blocker modules and the
sum of these two measures. Finally, the last group of
columns, refers to the case where the syntactic sugar

was available, in a manner similar to the previous.
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Without syntactic

sugar

With syntactic

sugar

Mixture Size Modules of interest Modules Blockers Default Extra Total Default Extra Total

DBA all Relations 25 5 33 25 58 1 5 6

AD S Queries 27 4 33 36 69 1 4 5

AD CS Queries 68 10 33 90 123 1 10 11

AD WCS Queries 89 12 33 118 151 1 12 13

Table 11 Modules and rules for policy annotation effort.

For the case where the syntactic sugar was not used,
we have to mention the following observations and clar-

ifications. At first, the number of default rules (33)
seems quite high. However, we should also mention that
Hecataeus supports the user gracefully by offering the

template list ready to the user. At the same time, the
number of extra rules per blocking module is about 9
rules per module. Although the numbers for the en-

tire ecosystem reach to a high level, in the regular case
where the annotation is performed in an incremental
fashion, the ratio of 9 rules per module seems quite tol-

erable.
For the case where we have exploited the syntactic

sugar, the set of rules needed decreases dramatically.
This is due to the dramatic decrease in both the de-

fault rules (1 rule only) and the necessary rules per
module (again one rule only). Specifically, observe that
we can annotate with PROPAGATE policies the entire

graph using only one rule (NODE: ON * THEN PROP-
AGATE;), and for each one of the blocker modules, we
need to use, again, only one rule (<namedNode>: ON

* THEN BLOCK;). Overall, the savings in effort and
the speedup are too high both in batch and incremental
ways of using our method.

5.3.4 Efficiency: how fast can we interact with our

what-if analysis tool?

In this subsection, we evaluate the time needed to com-

plete the process of what-if analysis with our tool. Effi-
ciency plays an important role in the design and admin-
istration process of an ecosystem, if we wish to allow the

involved stakeholders to interactively test alternative
configurations and scenarios for policy annotations or
restructuring of the ecosystem’s architecture to accom-

modate forthcoming changes gracefully. To this end, we
investigate the effect of policy annotation and graph
size to the completion time and its breakdown in the

three phases of our method.
Effect of policy to the execution time. In the

case of Mixture DBA we follow an aggressive blocking

policy that stops the events early enough, at the rela-

tions, before they start being propagated in the ecosys-
tem. On the other hand, in the case of Mixture AD, we

follow a more conservative annotation approach, where
the developer can assign blocker policies only to some
module parts that he authors. In the latter case, it is

clear that the events are propagated to larger parts of
the ecosystem resulting in higher numbers of affected
and rewritten nodes. If one compares the execution time

of the three cases of the AD mixture in Fig. 22 with the
execution time of the three cases of the DBA mixture,
the difference is in the area of one order of magnitude.

It is however interesting to note the internal differences:
the status determination time is scaled up with a fac-
tor of two; the rewriting time, however is scaled up by a
factor of 10, 20 and 30 for the small, medium and large

graph respectively!

Another interesting finding concerns the internal
breakdown of the execution time in each case. A

common pattern is that path check is executed very effi-
ciently : in all cases it stays within 2% of the total time
(thus practically invisible in the graphic). In the case

of the AD mixture, the analogy between the status de-
termination and the graph rewriting part starts from
a 24% - 74% for the small graph and ends to a 7% -

93% for the large graph. In other words, as the events
are allowed to flow within the ecosystem, the amount
of rewriting increases with the size of the graph; in all

cases, it dominates the overall execution time. This is
due to the fact that rewriting involves memory man-
agement (module cloning, internal node additions, etc)

that costs much more than the simple checks performed
by Status Determination. In the case of the DBA mix-
ture, however, where the events are quickly blocked,

the times are not only significantly smaller, but also
equi-balanced: 57% - 42% for the small graph (Status
Determination costs more in this case) and 49% - 50%

for the two other graphs. Again, this is due to the fact
that the rewriting actions are the time consuming ones
and therefore, their reduction significantly reduces the

execution time too.
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Fig. 22 Efficiency assessment for different policies, graph
sizes and phases

Effect of graph size to the execution time. To
assess the impact of graph size to the execution time one
has to compare the three different graphs to one another
within each policy. In the case of the AD mixture, where

the rewriting dominates the execution time, there is a
linear increase of both the rewriting and the execution
time with the graph size. On the contrary, the rate of

increase drops in the case of the DBA mixture: when
the events are blocked early, the size of the graph plays
less role to the execution time.

Overall, the main lesson learned from these obser-
vations is that the annotation of few database relations

significantly restricts the rewriting time (and conse-
quently the overall execution time) when compared to
the case of annotating modules external to the database.

In case the rewriting is not constrained early enough,
then the execution cost grows linearly with the size of
the ecosystem.

6 Related work

Schema evolution is a long-studied problem in database
and software research [21], [22]. For an overview of the

related work, we refer the interested reader to a re-
cent survey [8] and an up-to-date list of related publica-
tions4. In this section, we focus our discussion to works

related to the adaptation of data-intensive ecosystems
to schema evolution operations. We first highlight the
main approaches that deal with evolution in relational

data-intensive systems, mappings and view rewritings,
bidirectional transformations and data warehouse evo-
lution. Then, we present and discuss the differences and

contributions of our current work with them.

4 http://dbs.uni-leipzig.de/en/publications

Evolution of Data-intensive ecosystems. Re-

search activity related to ecosystems built on top of re-
lational databases has been recently developed around
two tools, Hecataeus and Prism.

Hecataeus is based on the notion of Architecture
Graphs, as we have already seen. The first version of

Architecture Graphs was introduced in [14] and com-
prehensively described in [18], along with the first ver-
sion of an algorithm for the propagation of the changes

of one entity to other related entities (see the end of
this section for the improvements to the model and the
algorithms that we introduce here). The annotation of

tables, views and queries with policies came with an
extension of SQL presented in [16]. In a different line
of research, in [17], the authors proposed a set of graph

metrics that assess the vulnerability and the mainte-
nance effort of adapting a database ecosystem to evo-
lution events. The assessment of these works has taken

place over the evolution of real-world ETL scenarios.

Prism [2], [3] introduces a method for rewriting

queries whenever their underlying database schema
changes, with the aim of retaining the original query
semantics. The authors introduce a set of Schema Mod-

ification Operators (SMOs) for categorizing schema
changes. SMOs can be simple schema operations on ta-
bles, such as CREATE TABLE, DROP TABLE, ADD COLUMN

or more complex operations between tables, such as
MERGE TABLES and JOIN TABLES. Besides the SMOs,
Prism considers changes on constraints and proposes

a set of integrity constraints modification operators
(ICMO) such as ADD PRIMARY KEY and ADD FOREIGN

KEY. Policies (CHECK, ENFORCE, IGNORE) are also used

in Prism, for enforcing data consistency in tables that
evolve, rather than regulating the rewriting of queries
and views. For example, when ENFORCE policy accom-

panies an ADD PRIMARY KEY change, then all violating
tuples must be removed in order to help DBA carry out
consistency validations. Regarding the rewriting pro-

cess, the authors propose the Chase & Backchase algo-
rithm which uses as input the SMOs and the query to
be rewritten and applies the invert operation on its syn-

tax such that the query retains its results unchanged.
Finally, in [3], the authors extend their techniques to
DML statements, as well.

Two noteworthy approaches from the areas of
software engineering pertain to this area. First, an

approach based on software slicing is presented in
[11] where the authors propose techniques for the
identification of the impact of relational database

schema changes upon object-oriented applications. At
first, the authors identify the database queries within
the software and perform data-flow analysis for es-

timating the possible runtime values of the query.

http://dbs.uni-leipzig.de/en/publications
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Then, they use dynamic slicing [5] for extracting the

lines of code of the program related to the query. Sec-
ond, [29] presents a method for analyzing the evolution
of object-oriented software systems from the point of

view of their logical design. The authors’ method stud-
ies the lifetime of UML class models and performs sev-
eral steps of analysis to determine phases, patterns, and

similarities in the lifetime of the classes.

View/schema mappings rewriting and Bidi-
rectional transformations. Another area relevant to
our problem involves the works related to the adapta-

tion and rewriting of views and schema mappings as
well as the works on bidirectional transformations. Re-
garding view rewriting, in [13], the authors propose le-
gal rewritings of views affected by changes, focusing

on the case of relation deletion by finding valid replace-
ments for the affected (deleted) components via a meta-
knowledge base (MKB) that keeps meta-information

about attributes and their join equivalence attributes
on other tables in the form of a hyper-graph. [7] rede-
fines amaterialized view as a sequence of primitive local

changes in the view definition. On more complex adap-
tations, those local changes can be pipelined in order to
compute the new view contents incrementally and avoid

their full re-computation. In [26], the authors deal with
the maintenance of a set of mappings in an environ-
ment where source and target schemata are integrated

under schema mappings implemented via SPJ queries.
Finally, [1] introduces mappings among the applica-
tions and a conceptual representation of the database,

again mapped to the database logical model; when the
database changes, the mappings allow to highlight im-
pacted areas in the source code.

Regarding bidirectional transformations, [23] pro-

vides a survey on the techniques and tools related to
the use of bidirectional transformations. The basic idea
behind Bidirectional Transformations is that ”there

are two models or schemata S and T and a mapping
between them M that serves as a bridge to allow op-
erations and data to flow between the two models. M

must conform to the bidirectional properties that gov-
ern the quality of synchronization between S and T”
[23]. The authors examine 5 different approaches of

bidirectional transformations, namely: Lenses [4] which
is a mathematical abstraction centered around a pair
of functions called get and put, working on models S,

which describes the source, and T , which is the tar-
get; Schema Modification Operators [2] as previously
described; Channels [24], which is a discreet bidirec-

tional transformation from S to T , described by a 4-
tuple of functions (S,I,Q,U), that operate on Schema,
data Instances, Queries and Updateds respectively;

DB − MAIN [1] which is a transformation toolkit,

where the evolution transformations consist of a target

schema T that derives from a source schema S, when
a construct C (entities, relationships, attributes, con-
straints, etc.) is replaced by a new one, called C ′; and

finally, the Both − As − V iew (BAV ) approach [12],
where the schemata of several databases are integrated
to form a virtual database, with a global schema with a

combination of LAV and GAV assertions. Bidirectional
transformations come in a declarative way (as opposed
to our graph-based representation), with the require-

ment of reversible transformations (so that both direc-
tions of the mapping work) and aim to support (with
different degrees of effectiveness) the traditional data

integration tasks (data migration, query rewriting and
dispatching), cross-version transformations and inter-
model mappings.

Data warehouse evolution. Evolution in data
warehouses is quite related to our problem as it in-

volves the handling of interdependencies in a complex
data ecosystem comprising data sources, ETL flows,
warehouse tables and data marts. In this context, in

[28] the authors deal with inconsistencies arising by
schema changes on the external data sources of a data
warehouse, and propose a method that uses wrappers

connected to a monitor for detecting predefined events
on the external sources and generating actions for the
DBA. In [6], the authors employ a graph representa-

tion for data warehouse schemata and define an alge-
bra for graph modifications that can be used to create
new schema versions. The authors deal with multiple

versions of the underlying database and discuss how
cross-version queries can be answered with the help of
augmented data warehouse schemata. Finally, [27] pro-

poses a layered architecture for data warehouses, in or-
der to achieve a much clearer, dedicated assignment of
data transformation to each layer, providing –according

to the authors– flexibility, consistency, re-usability and
scalability of data.

Comparison to existing approaches. A first fea-
ture of our approach is that it enables the process-

ing of multiple messages arriving at a module. The
reader may wonder why simply flooding the Architec-
ture Graph with messages on an event is not sufficient

to solve the problem of impact analysis. Simply flooding
compromises the confluence of the method as the same
node might receive more than one messages (possibly

contradicting in the presence of policies) for the same
event. Our algorithm achieves confluence by properly
processing all messages within a module before prop-

agating its impact to next dependent consumers. An-
other distinctive feature is the presence of policies, ex-
actly placed to avoid the “blind” flooding of messages

and regulate the flow. As already mentioned, the anno-
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tation of the ecosystem with policies imposes the new

problem of maintaining different replicas of view defini-
tions for different consumers; to the best of our knowl-
edge, this is the first time that this problem is handled

in a systematic way. Interestingly, although the exist-
ing approaches make no explicit treatment of policies
for the blocking or the propagation of evolution, they

differ in the implicit assumptions they make. Nica et
al., operating mainly over virtual views [13], actually
block the flooding of a deletion event by trying to com-

pensate the deletion with equivalent expressions. Vele-
grakis et al. [26] move towards the same goal but only
for SPJ queries. On the other hand, Gupta et al., [7],

working with materialized views, are focused to adapt-
ing the contents of the views, in a propagate-all fash-
ion. A problem coming with a propagate-all policy is

that the events might affect the semantical part of the
views/queries (WHERE clause) without any notifica-
tion to the involved users (observe that the problem

scales up with multiple layers of views defined over
other views). Bidirectional transformations, although
very promising as a set of techniques, require the con-
struction of assertions in a declarative language (which

is not a straightforward task to automate) and they
are typically tailored for different tasks than the ones
addressed here (i.e., policy-based impact analysis and

rewriting for data-intensive ecosystems): DB-MAIN for
mappings among conceptual-logical-and physical mod-
els, Channels for logical-physical mappings among ap-

plications and data, BAV and lenses for data integra-
tion. Curino et al. [2] are not trying to adapt the queries
to a new schema, but they are trying to rewrite queries

in order to revert the schema modifications. Addition-
ally, the proposed methods restrain rewritings only to
changes in a relation; this way, Prism does not follow

view redefinitions, which would cause problems in query
defined over those views. Moreover, if a relation changes
causing redefinitions on views used by queries then the

queries are not automatically rewritten, causing again
problems on the queries definitions. Emmerich et al. [11]
on the other hand, stop their approach at the impact

analysis step, without performing any rewritings of the
entities that are affected by a change. Finally, Xing and
Stroulia [29] provide a comprehensive method for class

profiling that presents interesting opportunities for fu-
ture work, if applied in the context of data-intensive
ecosystems.

Concerning our previous works, as already men-
tioned, in [18] and [19], we have presented our method

for the background modeling, a first version of the
mechanism of impact assessment in the presence of poli-
cies and the system architecture for our tool Hecataeus.

In [10], we have extended the aforementioned works

(a) by exploiting the scoping offered by the new graph

model for the ecosystem’s modules to provide a status
determination mechanism with correctness guarantees,
(b) by introducing path checking and multiple versions

to resolve the adaptation of conflicting policies, and,
(c) by presenting the management of rewritings to ac-
commodate change. In this paper, we significantly ex-

tend [10] in several ways. First, we present the full-
blown architecture graph model, along with the space
of events. Second, we introduce a policy determination

language to reduce programmer’s effort in annotating
the graph. Third, we discuss the message structure and
an extensible software architecture for the propagation

of the change. Fourth, we formally prove the correctness
guarantees of our method. Finally, we complement the
experimental findings with extra metrics that concern

the extent of rewriting as well as the effort needed for
annotating the graph with policies. Thus, we provide
a thorough, rigorous and comprehensive record of our

technique and software for managing the evolution of
data-intensive ecosystems.

7 Conclusions and Future Work

In this paper we have addressed the problem of adapt-

ing a data-intensive ecosystem in the presence of poli-
cies that regulate the flow of evolution events. Our
method allows (a) the management of alternative vari-

ants of views and queries, and, (b) the rewriting of
the ecosystem’s affected modules in a way that re-
spects the policy annotations and the correctness of

the rewriting (even in the presence of policy conflicts).
Our experiments confirm that the adaptation is per-
formed efficiently as the size and complexity of the

ecosystem grow. All the material for this work, includ-
ing input ecosystems, links to the source code (publicly
available at git) and results can be found in the pa-

per’s web page: http://www.cs.uoi.gr/~pmanousi/

publications/2013_ER/index.html.
Future work can continue in several directions. In

this paper, we have performed what-if analysis where
each time, only a single event is assessed. Future work
can address the assessment of complicated events, in-

volving a set of possible changes simultaneously applied
over either the same or different modules. This would
also involve some extra ”garbage collection” of views

that are redundant or useless. The possibility of adding
more semantics to the Architecture Graph is also a pos-
sible path for future research. For example, constraints

that are not necessarily extracted from the reverse en-
gineering of the database, like functional or conditional
functional dependencies, or logical constraints within

the source code (e.g., pre- and post-conditions over the

http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
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correctness of a stored procedure) can also become part

of the graph. Adding more kinds of sources, like for ex-
ample, web-services, or XML stores to the graph is also
a possibility. Providing hints to the DBA’s or the de-

velopers for policies in a semi-automatic way can also
help with the annotation of the graph. Finally, algo-
rithms for the visualization of the ecosystem can be an

ongoing topic of research for long.
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