
Visual Maps for Data-Intensive
Ecosystems

Efthymia Kontogiannopoulou* Petros Manousis, Panos Vassiliadis

Petroleum Geo-Services Dept. of Computer Science &
Engineering,

Oslo, Norway Univ. Ioannina, Hellas

*work conducted while in
the Univ. Ioannina Univ. of Ioannina

This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program
”Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge
society through the European Social Fund.

How do we make a map for a
data-intensive software ecosystem? *

*Information system with applications
built around a central db and lots of
queries blended in their code, thus having
strong code-db dependencies 2

Why do we need these maps?

3

• Documentation,
• Program comprehension
• impact analysis

“Programmers spend between 60-90% of their
time reading and navigating code and other data
sources ... Programmers form working sets of
one or more fragments corresponding to places
of interest …
Perhaps as a result, programmers may spend on
average 35% of their time in IDEs actively
navigating among working set fragments …, since
they can only easily see one or two fragments at
a time.”

Bragdon et al. Code bubbles: rethinking the user interface
paradigm of integrated development environments. ICSE (1)
2010: 455-464.

Circular placement for Drupal

4
Hecataeus tool:
http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

What happens if I modify table search_index?
Who are the neighbors?

5

Can play with
the file
structure too

Hecataeus tool:
http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

What happens if I modify table search_index?
Who are the neighbors?

6

Tooltips with info on the script & query
+ reporting at the “information area”

Hecataeus tool:
http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

So, … how do we make a map for a
data-intensive software ecosystem?

7

A charting method for data-intensive ecosystems,
with a clear target to reduce visual clutter.

• We exploit a rigorous, graph-based model on code-db
dependencies
– modules (tables and queries embedded in the applications) as nodes

and data provision relationships as edges

• We cluster entities of the ecosystem in groups on the basis of
their strong interrelationship

• We chart the ecosystem via a set of radial methods and
provide solutions for
– … cluster placement …
– … node placement within clusters …
– … tuning of visual representation details (shapes, colors, …) …

 all with the goal of reducing visual clutter 8

Graphical Notation

9

bioSQL

4 bands of circles, within a cluster:
• 1 circle for relations
• As many as needed for views
• 2 circles for queries

The internal structure of a cluster

• One (or more) embedding circle for
cluster placement

• Clusters are internally arranged over
concentric circles, too

• Node colors: acc. to script for queries;
fixed for tables & views,

• Node shape: relation / view / query
• Node size: acc. to degree

Embedding
circle

…

Clusters

“Transparent” edges for less visual clutter

• Edges are the main source of visual clutter!
• So, we reduced the intensity of the edges’

presence of the visual map:
– we picked a light gray color for the edges and
– we made them very thin, in terms of weight (almost

invisible).
• To retain their info: every time a particular node

is selected by the user its neighboring nodes are
highlighted with a blue transparent color so,
instead of emphasizing edges, we emphasize
neighbors.

10

… and (finally) here is the method to
construct the map:
1. Cluster similar nodes in groups (clusters)

– A cluster is a set of relations, views and queries
– Similarity is determined by the edges

2. Estimate the space required for each cluster
– … to avoid cluster overlaps later

3. 3 alternative methods to place clusters on a 2D
canvas

– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric circles,
internally in the cluster

11

Roadmap

1. Cluster similar nodes in groups (clusters)
2. Estimate the space required for each cluster
3. Three alternative methods to place clusters on a

2D canvas
– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric
circles, internally in the cluster

5. Summing up

12

Roadmap

1. Cluster similar nodes in groups (clusters)
2. Estimate the space required for each cluster
3. Three alternative methods to place clusters on a

2D canvas
– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric
circles, internally in the cluster

5. Summing up

13

Step 1: Clustering

• We use agglomerative hierarchical clustering to
group objects with similar semantics in advance
of graph drawing.

• Why? To reduce the amount of visible elements,
visualization methods place them in groups, thus
– reducing visual clutter
– improving user understanding of the graph

• Principle of proximity: similar nodes are placed
next to each other

14

Step 1: Clustering

15

Roadmap

1. Cluster similar nodes in groups (clusters)
2. Estimate the space required for each cluster
3. Three alternative methods to place clusters on a

2D canvas
– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric
circles, internally in the cluster

5. Summing up

16

Step 2: Estimate the
 area of each cluster
• Once the clusters have been

computed, before placing them
on the 2D canvas, the next step
is to estimate the space
required for each cluster

• This step is crucial and
necessary for the subsequent
step of cluster placement, in
order to be able to
– calculate the radius and area

each cluster, and thus,
– arrange the clusters without

overlaps
17

Step 2: Estimate the area of each cluster

18
A cluster’s internal layout
from the Biosql ecosystem

Εach cluster includes 3 bands of concentric circles:
relations (1 circle), views, queries (2 circles)

Step 2: Estimate the area of each cluster
 1. We determine the clusters’ circles and their nodes:

– We topologically sort cluster nodes in strata – each
stratum becomes a circle

2. Then, we compute the radius for each circle:
Ri = 3 * log(nodes) + nodes

The outer circle gives us the radius of this cluster

19

A cluster’s internal layout
from the Biosql ecosystem

Roadmap

1. Cluster similar nodes in groups (clusters)
2. Estimate the space required for each cluster
3. Three alternative methods to place clusters on a

2D canvas
– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric
circles, internally in the cluster

5. Summing up

20

Step 3: Laying out the Clusters
 • Circular placement

– all clusters on a single
embedding circle

• Concentric circles

– trying to reduce the
intermediate empty
space

• Concentric arcs

– a combination of the
previous two methods 21

3 alternative
methods for

placing the
clusters on a

2D area

Circular Layout

22

bioSQL

Drupal

OpenCart

ZenCart

Circular cluster layout

• We use a single embedding circle to place the
clusters.

• One sector of the circle per cluster
– with its angle varying on the cluster’s size (#nodes)
– remember: each cluster is also a circle, approximated

by its outermost constituent circle of nodes
• Steps:

1. Compute R, the radius of the embedding circle
2. Compute φi, the angle of each cluster’s sector
3. Add some extra whitespace
4. Compute the coordinates of all clusters

23

Circular Layout: Embedding
Circle determination

• Given: the radius ri of each cluster i
Compute: R, the radius of the
embedding circle.

• Method:
• approximate the circles periphery

(2πR) by the sum of edges of the
embedded polygon

• divide this sum by 2π to calculate
the radius R of the embedding circle

24

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: calculation of the
angle for each of the segments

• Goal: assign each cluster to a segment of the
circle depending on the cluster’s radius (size).

• Each these segments is defined by an angle φ
over the embedding circle.

• Not as obvious as it seems – we have to consider
two cases:
– The radius ρ of the cluster we want to place is smaller

or equal to the radius of the embedding circle R
– The radius ρ of the cluster we want to place is greater

than the radius of the embedding circle R

25

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: calculation of the
angle for each of the segments

• Typical case,
where ρ ≤ R

• Consider the left
triangle ABO

• Then:

26

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: calculation of the
angle for each of the segments

• A large cluster occurs ρ > R
• Assume the isosceles ABO,

both AO,BO = R
• Then:

• due to

27

Note: cannot avoid to discriminate the two cases

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: avoid
cluster overlap!

• We introduce a white
space factor w that
enlarges the radius R of
the circle

• Each cluster is approx. by
a circle, with
– radius r (known from step

#1)
– center [cx, cy] determined

by φ, R, and w.

28

compute R;
compute φi;
whitespace;
coordinates.

original layout

extra whitespace

Concentric circles

29

bioSQL

Drupal

OpenCart

ZenCart

Concentric Circles Layout

30

• Each circle is split in fragments of
powers of 2
• as the order of the introduced

circle increases, the number of
fragments increases too (S = 2k),

• with the exception of the
outermost circle hosting the
remaining clusters

• This way, we can place
• the small clusters on the inner

circles, and
• bigger clusters (occupying more

space) on outer circles

Concentric Circles Layout

Method:
1. Sort clusters by ascending size in a list LC
2. While there are clusters not placed in circles

1. Add a new circle and divide it in as many segments as S = 2k with k
being the order of the circle (i.e., the first circle has 21 segments, the
second 22 and so on)

2. Assign the next S fragments from the list LC to the current circle
and compute its radius according to this assignment

3. Add the circle to a list L of circles

3. Draw the circles from the most inward (i.e., from the circle
with the least segments) to the outermost by following the
list L.

31

Main
challenge

Concentric Circles: radius calculation
• Instead of having to deal with

just one circle, we need to
compute the radius for each
of the concentric circles, in a
way that clusters do not
overlap

• Overlap can be the result of
two problems:
– clusters of subsequent circles

have radii big enough, so that
they meet, or,

– clusters on the same circle are
big enough to intersect. 32

R(Ki)

R(Ki-1)

Rmax(CKi-1)

Rmax(CKi)

Circle Ki-1
and its

radius Ri-1

Circle Ki
and its

radius Ri

R(Ki) = R(Ki-1) + Rmax(CKi-1)+Rmax(CKi)

Concentric Circles: radius calculation
for each circle

• Finally, to calculate the radius of a circle:
– we take the maximum of the two values of the two aforementioned

solutions and
– we use an additional whitespace factor w to enlarge it slightly

(typically, we use a fixed value of 1.2 for w).

• Clusters of the same circle have equal segments with an
angle:

 where n: the number of clusters on circle Ki

33

Concentric arcs

34

bioSQL

OpenCart

ZenCart

Drupal

Concentric Arcs Layout
 • To attain better space utilization

– small clusters placed in the upper left corner
– less whitespace to guard against cluster

intersection

• Just like concentric circles:
– we deploy the clusters on concentric arcs Ai of

size π/2
– we place 2i clusters on the ith arc
– to avoid cluster overlaps, we use exactly the

same radius optimization technique we used
before.

• Unlike the concentric circles,
– the partition assigned to each cluster is

proportionate to its size (as in the case of the
single circle), again taking care to avoid overlaps

35

Roadmap

1. Cluster similar nodes in groups (clusters)
2. Estimate the space required for each cluster
3. Three alternative methods to place clusters on a

2D canvas
– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric
circles, internally in the cluster

5. Summing up

36

Step 4: arrangement of nodes within
the circular clusters

37 Remember: 4 bands of circles to place nodes

Step 4: arrangement of nodes within
the circular clusters

• We want to follow a barycenter based method,
which can work successfully for layered
bipartite graphs

• The standard barycenter method works with
linear layers with the principle that once you
have laid out layer i, you can lay out layer i+1
wrt the previous one
– … practically placing nodes in the barycenter of their

neighbors in the previous layer i

• Here, we have two challenges:
– adapt this to our radial, concentric circles
– decide the initial order of the process (here: relations

in the inner circle)
38

Step 4: arrangement of nodes
within the circular clusters

1. Order the relations
1. Count the frequency of each combination of tables as hit by the

queries
2. Place tables in popular combinations sequentially

2. Decide the position of relations and relation-dedicated queries
1. Locate relation dedicated queries, decide the arc they need and

position them sequentially
2. Place relation in the middle of this arc

3. Decide the position of the rest of the queries and the views
1. Stratify views and queries – each stratum has a dedicated circle
2. Place views and queries via a barycenter method on their angle
3. Adjust overlapping nodes (e.g., queries hitting exactly the same

tables)

39

order R;
place R & QR;
place V & Q-QR.

Roadmap

1. Cluster similar nodes in groups (clusters)
2. Estimate the space required for each cluster
3. Three alternative methods to place clusters on a

2D canvas
– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric
circles, internally in the cluster

5. Summing up

40

Not covered in this talk / paper…

• … failures & other tries ….
• Algorithmic details and geometrical issues

– … esp., concerning the intra-cluster placement

• Relationship to aesthetic principles
• Experiments

41

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pmanousi/publications/2014_ER/

http://www.cs.uoi.gr/~pmanousi/publications/2014_ER/�

42

To probe further (code, data, details, presentations, …)
http://www.cs.uoi.gr/~pmanousi/publications/2014_ER/

We can tame code-db interdependence via
rigorous modeling and visual methods

• Visual methods to chart ecosystems
explored on the grounds of:
• … radial deployment
• … grouping, coloring, placement
• … visual clutter reduction
• all aiming to better highlight code-db

relationships

http://www.cs.uoi.gr/~pmanousi/publications/2014_ER/�

AUXILIARY SLIDES

43

Why bother?

• The problem is …
– Important, as its implications relate to

productivity and development effort
– Hard to solve, not solved by SotA, as standard

graph drawing methods do not seem to work well
– Interesting, as it requires a large amount of

technical solutions to visualization problems
• … and, of course, we have not only solved it,

but also, we have incorporated the solution to
an actual system…

44

In a nutshell
Fundamental modeling pillar: Architecture Graph G(V,E) of the data-

intensive ecosystem. The Architecture Graph is a skeleton, in the
form of graph, that traces the dependencies of the application code
from the underlying database.
– modules (relations, views and queries) as nodes and
– edges denoting data provision relationships between them.

Visualization choices:
• Circular layout. Circular layouts give:

– better highlight of node similarity,
– less line intersections, i.e., less clutter

• Clustered graph drawing. We place clusters of objects in the
periphery of an embedding circle or in the periphery of several
concentric circles or arcs. Each cluster will again be displayed in
terms of a set of concentric circles, thus producing a simple, familiar
and repetitive pattern.

45

Graphical Notation

46

bioSQL

4 bands of circles, within a cluster:
• 1 circle for relations
• As many as needed for views
• 2 circles for queries

The internal structure of a cluster

• One (or more) embedding circle for
cluster placement

• Clusters are internally arranged over
concentric circles, too

• Node colors: to which script queries
belong

• Node shape: relation / view / query

Embedding
circle

Clusters

Aesthetics and design choices
• Node shape: different shapes to visually distinguish the

different type of nodes. Relation nodes have circular shape,
view nodes have triangular shape and query nodes are
depicted as hexagons.

• Node size: scaled according to their node degree
– the most used modules are more conspicuous.

• Node color: we distinguish node types with different colors.
– Relations are grey and views are dark green. (db’s are dark)
– Query nodes have different colors, depending on the folder

their embedding script in the applications belongs.
– Thus, the difference in color provides another way of grouping

queries.

47

Visual clutter introduced by edges

• Edges are the main source of visual clutter!
• So, we reduced the intensity of the edges’

presence of the visual map:
– we picked a light gray color for the edges and
– we made them very thin, in terms of weight (almost

invisible).
• To retain their info: every time a particular node

is selected by the user its neighboring nodes are
highlighted with a blue transparent color so,
instead of emphasizing edges, we emphasize
neighbors.

48

Steps of the method
Our method for visualizing the ecosystem is based on the

principle of clustered graph drawing and uses the following
steps:

1. Cluster the queries, views and relations of the ecosystem,
into clusters of related modules. Formally, this means that
we partition the set of graph nodes V into a set of disjoint
subsets, i.e., its clusters, C1, C2, . . . , Cn.

2. Estimate the necessary area for each cluster.
3. Position the clusters on a two-dimensional canvas in a way

that minimizes visual clutter and highlights relationships
and differences.

4. For each cluster, decide the positions of its nodes and
visualize it.

49

Related Work

50

Gestalt principles
 See for example C. Ware. “Information Visualization: perception for design”, Morgan

Kaufmann, 2nd edn., 2004
• Proximity - objects close to each other tend to be perceived as similar.
• Similarity - objects of the same shape, color, orientation and size are perceived as

similar by individuals.
• Connectedness - to express semantic relationship among visually connected objects.
• Closure - the eye tends to create perceptions of closed space, even if they do not

exist -- best served when the depicted objects tend to create a “border” around
similar objects along with blobs of whitespace.

• Continuity - the eye tends to perceive as related objects that are aligned together
intersections create the perception of single uninterrupted groups.

• Symmetry - as a means to emphasize non-typical behavior or emphasis when
symmetry is broken by an object. In principle asymmetry is used for emphasis while
symmetry is used in cases where we do not want to target on something specific.

• Contrast - creates emphasis in sharp antithesis to the similarity principle. Contrast
can be achieved in terms of chromatic, size or shape choices.

• Proportion - where an object placed in an area of the visualization is scaled according
to its semantic significance, as the difference in proportion creates a visual attraction
to the eye 51

Best practices
 • Clutter avoidance - the avoidance of noise on the diagram via

uninterrupted areas of whitespace that act as separators of
the groups of objects

• Isolation - to promote emphasis for an object in sharp
antithesis to the continuity of the vast majority of the
“regular” objects

• Visual hierarchy - to denote a semantic hierarchy in the
depicted objects

• Focal points to guide visual flow (i.e., objects that intentionally
stand out in the representation and whose sequence guides
the eye in the visual flow of exploring the diagram).

Jenifer Tidwell. “Designing interfaces - patterns for effective

interaction design”, O'Reilly, 2006 52

The eyes have it
 “Visual Information Seeking Mantra”: Overview first, zoom and filter, then details-on-demand

• Overview: Gain an overview of the entire collection. Overview strategies include zoomed out

views of each data type to see the entire collection plus an adjoining detail view.
• Zoom : Zoom in on items of interest. Users typically have an interest in some portion of a

collection, and they need tools to enable them to control the zoom focus and the zoom
factor. Smooth zooming helps users preserve their sense of position and context. Zooming
could be on one dimension at a time by moving the zoom bar controls or in two dimensions.
A very satisfying way to zoom in is by pointing to a location and issuing a zooming command,
usually by clicking on a mouse button for as long as the user wishes or clicking on a node or
edge to view further details.

• Filter: filter out uninteresting items.
• Details-on-demand: Select an item or group and get details when needed. Once a collection

has been trimmed to a few dozen items it should be easy to browse the details about the
group or individual items. The usual approach is to simply click on an item to get a pop-up
window with values of each of the attributes, also helpful to keep a history of user actions
and support other actions the user may need like undo or replay.

Ben Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations”, Proc. of the 1996 IEEE Symposium on Visual Languages, pp 336-343, 1996

53

http://www.informatik.uni-trier.de/~ley/db/conf/vl/vl1996.html�

Code visualization
• Brian Johnson and Ben Shneiderman. Tree-Maps: a space-filling approach to the

visualization of hierarchical information structures. In Proceedings of the 2nd
conference on Visualization '91 (VIS '91), pp. 284-291. 1991. IEEE Computer
Society Press, Los Alamitos, CA, USA.

• S.G. Eick, J. L. Steffen, E. E. Sumner Jr. Seesoft: a tool for visualizing line-oriented
software statistics. IEEE Transactions on Software Engineering 18(11): pp. 957-968,
1992.

• Andrew Bragdon, Robert C. Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,Joseph J. LaViola Jr.
“Code bubbles: a working set-based interface for code understanding and
maintenance”, Proceedings of the 28th International Conference on Human
Factors in Computing Systems (CHI 2010), pp 2503-2512, 2010

• Robert DeLine, Kael Rowan. “Code canvas: zooming towards better development
environments”, Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering (ICSE 2010), pp 207-210, 2010

• Pierre Caserta and Olivier Zendra. Visualization of the Static Aspects of Software:
A Survey. IEEE Transactions on Visualization and Computer Graphics (TVCG),
17(7), July 2011

 54

(Radial) graph drawing
• Ivan Herman, Guy Melancon, and M. Scott Marshall.

“Graph Visualization and Navigation in Information
Visualization: A Survey”, IEEE Transactions on
Visualization and Computer Graphics 6, pp 124-43.
2000

• Takao Ito, Kazuo Misue, Jiro Tanaka. “Drawing
Clustered Bipartite Graphs in Multi-circular Style”, 14th
International Conference on Information Visualisation
(IV 2010), pp 23-28, 2010

• Kazuo Misue. “Drawing bipartite graphs as anchored
maps”, Asia-Pacific Symposium on Information
Visualisation (APVIS) pp 169-177, 2006

55

Method Internals

56

Bird’s eye view of the Method
1. Cluster similar nodes in groups (clusters)

– A cluster is a set of relations, views and queries
– Similarity is determined by the edges

2. Estimate the space required for each cluster
– … to avoid cluster overlaps later

3. 3 alternative methods to place clusters on a 2D
canvas

– Single circle
– Concentric Circles
– Concentric Arcs

4. Place the nodes of each cluster in concentric circles,
internally in the cluster

57

Step 1: Clustering

• To reduce the amount of visible elements,
visualization methods place them in groups, thus
– reducing visual clutter
– improving user understanding of the graph

• Principle of proximity: similar nodes are placed
next to each other

• Here: we use clustering to group objects with
similar semantics in advance of graph drawing.

58

Step 1: Clustering
• Average-link agglomerative clustering algorithm
• First, we compute the distances for every pair of nodes

in the graph.
• Then, we iteratively perform cluster merging:

– find the minimum distance pair of clusters,
– merge the components of the pair into a new cluster, and,
– calculate the new distances.

• This process starts with each node being a cluster on its

own and stops when the minimum distance of all pairs
of clusters is greater than a user-defined threshold of
cluster distance.

59

60

Algorithm 1. Clustering
Input: G : all the graph objects (relations, queries, views), list with solutions
(initially every object as a cluster) T: the user defined threshold for the distance
of two clusters (below which the user deems that the merge of the clusters is
without meaning)
Variables: mindist: the min distance between clusters
Output: C: a set of clusters
Begin
1. Create a set C = { {t1}, {t2}, …, {tn} } with all the objects of G as clusters
2. Do
3. mindist =
4. For each pair ci , cj, i j
5. Compute pairwise distances between them
6. If a pair has smaller distance than mindist
7. Update mindist with smaller distance
8. Update mindist pair
9. End if
10. End for
11. Merge mindist pair
12. Add pair to C
13. Remove mindist objects from C
14. If mindist >= T return C
15. While number of clusters != 1
16. Return C
End

Step 1: Clustering

61

Step 2: Estimate the
 area of each cluster
• Once the clusters have been

computed, the next step is to
estimate the space required
for each cluster

• This step is crucial and
necessary for the
subsequent step of cluster
placement, in order to be
able to
– calculate the total area of the

overall graph and
– arrange the clusters without

overlaps
62

Step 2: Estimate the area of each
cluster

• Εach cluster includes 3 bands of concentric
circles:
– the innermost (single) circle for the relations,
– an intermediate band of circles for the views, and
– the outermost band of circles for the queries,

organized as
• a circle of relation-dedicated queries (i.e., queries that

hit a single relation) and
• an outer circle for the rest of the queries.

63

Example: a cluster from BioSQL

64

Step 2: Estimate the area of each
cluster

• We need to:
– determine the circles of the drawing and the

nodes that they contain, and
– compute the radius for each of these circles.
– Then, the outer of these circles gives us the area

of this cluster

65

Step 2: Estimate the area of each
cluster

• To obtain the bands we topologically sort the
nodes of the cluster and organize them in strata.
– Relations: the 0-th stratum (no dependencies

whatsoever)
– Views: each stratum Vi defines an equivalence class in

the graph with all the nodes of the graph that depend
only from nodes in strata Vj previous to Vi, j < i.

– Queries: we heuristically split them in two pseudo-
strata: (a) relation-dedicated queries and (b) all the
rest of the queries.

• For each stratum, we add a circle with radius
Ri = 3 * log(nodes) + nodes

66

Step 2: Estimate the area of each
cluster

67

Step 3: Laying out the Clusters
 • Circular placement

– all clusters on a single
circle

• Concentric circles

– trying to reduce the
intermediate empty
space

• Concentric arcs

– a combination of the
previous two methods 68

3 alternative
methods for

placing the
clusters on a

2D area

Circular cluster layout

• We use a single embedding circle to place the
clusters.

• One sector of the circle per cluster
– with its angle varying on the cluster’s size (#nodes)
– remember: each cluster is also a circle, approximated

by its outermost constituent circle of nodes
• Steps:

1. Compute R, the radius of the embedding circle
2. Compute φi, the angle of each cluster’s sector
3. Add some extra whitespace
4. Compute the coordinates of all clusters

69

Circular Layout: Embedding
Circle determination

• Given: the radius ri of each cluster i
Compute: R, the radius of the
embedding circle.

• Method:
• approximate the circles periphery

(2πR) by the sum of edges of the
embedded polygon

• divide this sum by 2π to calculate
the radius R of the embedding circle

70

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: calculation of the
angle for each of the segments

• Goal: assign each cluster to a segment of the
circle depending on the cluster’s radius (size).

• Each these segments is defined by an angle φ
over the embedding circle.

• Not as obvious as it seems – we have to consider
two cases:
– The radius ρ of the cluster we want to place is smaller

or equal to the radius of the embedding circle R
– The radius ρ of the cluster we want to place is greater

than the radius of the embedding circle R

71

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: calculation of the
angle for each of the segments

• Typical case,
where ρ ≤ R

• Consider the left
triangle ABO

• Then:

72

compute R;
compute φi;
whitespace;
coordinates.

In case you are wondering: is it
possible that ρ > R ??

• R = (1/π) * Σ(ρi)
• Assume ρi ∈ {250, 2, 3, 5} => R = 260 /3.14 =

82.80
• Therefore, there is a cluster with larger radius

than the surrounding circle…

73

Circular layout: calculation of the
angle for each of the segments

• A large cluster occurs ρ > R
• Assume the isosceles ABO,

both AO,BO = R
• Then:

• due to

74

Note: cannot avoid to discriminate the two cases

compute R;
compute φi;
whitespace;
coordinates.

Circular layout: avoid
cluster overlap!

• We introduce a white
space factor w that
enlarges the radius R of
the circle

• Each cluster is approx. by
a circle, with
– radius r (known from step

#1)
– center [cx, cy] determined

by φ, R, and w.

75

compute R;
compute φi;
whitespace;
coordinates.

original layout

extra whitespace

Circular Layout

76

bioSQL

Drupal

OpenCart

ZenCart

Concentric Circles Layout

77

• Each circle is split in fragments of
powers of 2
• as the order of the introduced

circle increases, the number of
fragments increases too (S = 2k),

• with the exception of the
outermost circle hosting the
remaining clusters

• This way, we can place
• the small clusters on the inner

circles, and
• bigger clusters (occupying more

space) on outer circles

Concentric Circles Layout

Method:
1. Sort clusters by ascending size in a list LC
2. While there are clusters not placed in circles

1. Add a new circle and divide it in as many segments as S = 2k with k
being the order of the circle (i.e., the first circle has 21 segments, the
second 22 and so on)

2. Assign the next S fragments from the list LC to the current circle and
compute its radius according to this assignment

3. Add the circle to a list L of circles

3. Draw the circles from the most inward (i.e., from the circle
with the least segments) to the outermost by following the
list L.

78

Concentric Circles Layout

Method:
1. Sort clusters by ascending size in a list LC
2. While there are clusters not placed in circles

1. Add a new circle and divide it in as many segments as S = 2k with k
being the order of the circle (i.e., the first circle has 21 segments, the
second 22 and so on)

2. Assign the next S fragments from the list LC to the current circle
and compute its radius according to this assignment

3. Add the circle to a list L of circles

3. Draw the circles from the most inward (i.e., from the circle
with the least segments) to the outermost by following the
list L.

79

Main
challenge

Concentric Circles: radius calculation

• Instead of having to deal with just one circle,
we need to compute the radius for each of the
concentric circles, in a way that clusters do not
overlap

• Overlap can be the result of two problems:
– clusters of subsequent circles have radii big

enough, so that they meet, or,
– clusters on the same circle are big enough to

intersect.

80

Concentric Circles: radius calculation to avoid
cluster overlap in subsequent circles

81

We need to make
sure that the radius
of a circle Ki is larger
than the sum of
(i) the radius of its

previous circle Ki-1,
(ii) the radius of its

larger cluster
Rmax(Cki-1) on the
previous circle,

(iii)the radius of the
larger cluster of
the current circle
Rmax(Cki).

R(Ki)

R(Ki-1)

Rmax(CKi-1)

Rmax(CKi)

Circle Ki-1
and its

radius Ri-1

Circle Ki
and its

radius Ri

R(Ki) = R(Ki-1) + Rmax(CKi-1)+Rmax(CKi)

Concentric Circles: radius calculation to avoid
cluster overlap in the same circle

• To avoid the overlap of clusters on the same
circle, we compute Ri via the encompassing
circle’s periphery (2πRi) that can be
approximated as the periphery of the
inscribed polygon (sum of twice the radii of
the circle’s clusters)

82

Concentric Circles: radius calculation
for each circle

• Finally, to calculate the radius of a circle:
– we take the maximum of the two values of the two aforementioned

solutions and
– we use an additional whitespace factor w to enlarge it slightly

(typically, we use a fixed value of 1.2 for w).

• Clusters of the same circle have equal segments with an
angle:

 where n: the number of clusters on circle Ki

83

Concentric circles

84

bioSQL

Drupal

OpenCart

ZenCart

Concentric Arcs Layout

• To attain better space
utilization, we can place the
clusters in a set of
concentric arcs, instead of
concentric circles.
– the small clusters are placed

in the upper left corner
– there is less whitespace

devoted to guard against
cluster intersection

85

Concentric Arcs Layout

• Just like concentric circles:
– we deploy the clusters on concentric

arcs Ai of size π/2
– we place 2i clusters on the ith arc
– to avoid cluster overlaps we use

exactly the same radius optimization
technique we used before.

• Unlike the concentric circles,
– the partition assigned to each cluster

is proportionate to its size (as in the
case of the single circle), again taking
care to avoid overlaps

86

Concentric arcs

87

bioSQL

OpenCart

ZenCart

Drupal

Step 4: arrangement of nodes within
the circular clusters

88 Remember: 4 bands of circles to place nodes

Step 4: arrangement of nodes within
the circular clusters

• We want to follow a barycenter based method, which
can work successfully for layered drawings

• The standard barycenter method works with linear
layers with the principle that once you have laid out
layer i, you can lay out layer i+1 wrt the previous one
– … practically placing nodes in the barycenter of their

neighbors in the previous layer i
• Here, we have two challenges:

– adapt this to our radial, concentric circles
– decide the initial order of the process (here: relations in

the inner circle)

89

Step 4: arrangement of nodes
within the circular clusters

1. Order the relations
1. Count the frequency of each combination of tables as hit by the

queries
2. Place tables in popular combinations sequentially

2. Decide the position of relations and relation-dedicated queries
1. Locate relation dedicated queries, decide the arc they need and

position them sequentially
2. Place relation in the middle of this arc

3. Decide the position of the rest of the queries and the views
1. Stratify views and queries – each stratum has a dedicated circle
2. Place views and queries via a barycenter method on their angle
3. Adjust overlapping nodes (e.g., queries hitting exactly the same

tables)

90

order R;
place R & QR;
place V & Q-QR.

91

Step 4: arrangement of nodes
within the circular clusters

• Greedy arrangement that places sequentially
tables in frequent combinations (as they
appear in the FROM clause of queries)

• Assume L= {{T4, T3}, {T1, T5}, {T1, T2, T3}} in
decreasing order of frequency.

• Then, the final order of the relations will be
{T4, T3, T1, T5, T2}

92

order R;
place R & QR;
place V & Q-QR.

Step 4: arrangement of nodes
within the circular clusters

• Place relation-dedicated
queries (accessing only one
table) sequentially

• The segment for each
relation-dedicated query is
the same, proportional to
the #nodes of the circle
(#relation-dedicated queries)

• The relation is placed in the
middle of the corresponding
segment

93

order R;
place R & QR;
place V & Q-QR.

Step 4: arrangement of nodes
within the circular clusters

• We have stratified views and
the rest of the queries in step
2.

• Visit each circle (stratum) in
turn: each node of circle ki is
defined over nodes in the
previous circles

• Traditional barycenter-based
method: place the node in an
angle = avg. value of the sum
of the angles of the nodes it
accessed

• Rearrange nodes in occupied
positions by a very small value
δ (in our case δ=0.09 radians).

94

order R;
place R & QR;
place V & Q-QR.

Experiments and Results

95

Experimental method
• 4 data sets: well-known open source projects that contain

database queries
• The source code of the last version of each tool was

downloaded. We retrieved the database definition from the
source code.

• We grepped the source code for the occurrences of SELECT
and FROM terms in it, and out of the resulting text, we
isolated lines actually encompassing queries.

• The actual queries were automatically isolated via a
dedicated java application we constructed for this purpose

• Finally, they were post-processed in order to be parsable by
our tool, Hecataeus that ultimately converts the ecosystem
to an architecture graph and visualizes it for the user.

96

Data sets

97

Compliance to aesthetic criteria

98

Compliance to the Visual Information
Seeking Mantra

99

Clustering effectiveness

• Clean separation of clusters in all cases!
• However, this can be due to the nature of the

ecosystems – must not hurry to generalize
• In all cases, 20 – 60 clusters

– We find this reasonable for a 2D screen canvas

100

Data set # clusters # nodes Avg nodes/cluster
BioSql 22 112 5,55
ZenCart 41 255 4,8
Drupal 37 429 11
OpenCart 59 765 12,9

Method independent measures for all
data sets

101

Area occupied by the graph:
no clear winner

102

Area occupied by the produced graph (absolute
and pct over MBR)

103

Time considerations

104

Any other useful slides

105

Future work

• Ongoing:
– Still experimenting with coloring schemes

• Open:

– Alternative visualization methods
– Other types/cases of ecosystems

– Forward engineering
– Incorporate full range of “entities” / “concepts”

(actors, roles, …) to make it really an “ecosystem”…

106

Alternative methods provided by Jung

• A simple Circular Layout that places vertices
randomly on a circle

• The Fruchterman-Reingold algorithm [FrRe91]
• Meyer's "Self-Organizing Map" layout

[Meye98]
• The Kamada-Kawai algorithm [KaKa89]
• A simple force-directed spring-embeder

[dETT99]

107

Alternative methods provided by Jung

108

Random
Circular

Biosql visualized
by Jung’s built –
in’s

Fruchterman-Reingold Meyer

Kamada-Kawai Force-directed springs

TALES OF GLORY
A short story executed over one of the latest v. of Hecataeus

109

Circular placement

110

Labels on/off

111

What happens if I modify table
search_index? Who are the neighbors?

112

What happens if I modify table
search_index? Who are the neighbors?

113 Tooltips with info on the script & query

In the file structure too…

114

Played an impact analysis scenario:
delete attr. ‘word’ from search_index

115

2. Queries Q215
and Q216 vetoed

1. The table
allowed the
deletion, but…

See the paper at ER 2013 for the
details of impact analysis

… and the impact at the master
graph…

116

Concentric circles

117

Concentric Arcs

118

Zooming into a cluster

119

	Visual Maps for Data-Intensive Ecosystems�
	How do we make a map for a �data-intensive software ecosystem? *
	Why do we need these maps?�
	Circular placement for Drupal
	What happens if I modify table search_index? Who are the neighbors?
	What happens if I modify table search_index? Who are the neighbors?
	So, … how do we make a map for a �data-intensive software ecosystem?
	A charting method for data-intensive ecosystems, �with a clear target to reduce visual clutter.
	Graphical Notation�
	“Transparent” edges for less visual clutter
	… and (finally) here is the method to construct the map:
	Roadmap
	Roadmap
	Step 1: Clustering
	Step 1: Clustering
	Roadmap
	Step 2: Estimate the� area of each cluster
	Step 2: Estimate the area of each cluster�
	Step 2: Estimate the area of each cluster�
	Roadmap
	Step 3: Laying out the Clusters�
	Circular Layout
	Circular cluster layout
	Circular Layout: Embedding �Circle determination
	Circular layout: calculation of the �angle for each of the segments
	Circular layout: calculation of the �angle for each of the segments
	Circular layout: calculation of the �angle for each of the segments
	Circular layout: avoid �cluster overlap!
	Concentric circles
	Concentric Circles Layout�
	Concentric Circles Layout
	Concentric Circles: radius calculation
	Concentric Circles: radius calculation for each circle
	Concentric arcs
	Concentric Arcs Layout�
	Roadmap
	Step 4: arrangement of nodes within the circular clusters
	Step 4: arrangement of nodes within the circular clusters
	Step 4: arrangement of nodes �within the circular clusters
	Roadmap
	Not covered in this talk / paper…
	We can tame code-db interdependence via rigorous modeling and visual methods
	Auxiliary slides
	Why bother?
	In a nutshell
	Graphical Notation�
	Aesthetics and design choices
	Visual clutter introduced by edges
	Steps of the method
	Slide Number 50
	Gestalt principles�
	Best practices�
	The eyes have it�
	Code visualization
	(Radial) graph drawing
	Slide Number 56
	Bird’s eye view of the Method
	Step 1: Clustering
	Step 1: Clustering
	Slide Number 60
	Step 1: Clustering
	Step 2: Estimate the� area of each cluster
	Step 2: Estimate the area of each cluster
	Example: a cluster from BioSQL
	Step 2: Estimate the area of each cluster
	Step 2: Estimate the area of each cluster
	Step 2: Estimate the area of each cluster
	Step 3: Laying out the Clusters�
	Circular cluster layout
	Circular Layout: Embedding �Circle determination
	Circular layout: calculation of the �angle for each of the segments
	Circular layout: calculation of the �angle for each of the segments
	In case you are wondering: is it possible that > R ??
	Circular layout: calculation of the �angle for each of the segments
	Circular layout: avoid �cluster overlap!
	Circular Layout
	Concentric Circles Layout�
	Concentric Circles Layout
	Concentric Circles Layout
	Concentric Circles: radius calculation
	Concentric Circles: radius calculation to avoid cluster overlap in subsequent circles�
	Concentric Circles: radius calculation to avoid cluster overlap in the same circle
	Concentric Circles: radius calculation for each circle
	Concentric circles
	Concentric Arcs Layout
	Concentric Arcs Layout
	Concentric arcs
	Step 4: arrangement of nodes within the circular clusters
	Step 4: arrangement of nodes within the circular clusters
	Step 4: arrangement of nodes �within the circular clusters
	Slide Number 91
	Step 4: arrangement of nodes �within the circular clusters
	Step 4: arrangement of nodes �within the circular clusters
	Step 4: arrangement of nodes �within the circular clusters
	Slide Number 95
	Experimental method
	Data sets
	Compliance to aesthetic criteria�
	Compliance to the Visual Information Seeking Mantra
	Clustering effectiveness
	Method independent measures for all data sets
	Area occupied by the graph: �no clear winner
	Area occupied by the produced graph (absolute and pct over MBR)
	Time considerations
	Slide Number 105
	Future work
	Alternative methods provided by Jung
	Alternative methods provided by Jung
	Tales of glory
	Circular placement
	Labels on/off
	What happens if I modify table search_index? Who are the neighbors?
	What happens if I modify table search_index? Who are the neighbors?
	In the file structure too…
	Played an impact analysis scenario: delete attr. ‘word’ from search_index
	… and the impact at the master graph…
	Concentric circles
	Concentric Arcs
	Zooming into a cluster

