
Automating the Adaptation of Evolving

Data-Intensive Ecosystems

Petros Manousis1, Panos Vassiliadis1, and George Papastefanatos2

1 Dept. of Computer Science University of Ioannina (Hellas)
{pmanousi,pvassil}@cs.uoi.gr

2 Research Center “Athena” (Hellas)
gpapas@imis.athenainnovation.gr

Abstract. Data-intensive ecosystems are conglomerations of data repos-
itories surrounded by applications that depend on them for their opera-
tion. To support the graceful evolution of the ecosystem’s components we
annotate them with policies for their response to evolutionary events. In
this paper, we provide a method for the adaptation of ecosystems based
on three algorithms that (i) assess the impact of a change, (ii) compute
the need of different variants of an ecosystem’s components, depending
on policy conflicts, and (iii) rewrite the modules to adapt to the change.

Keywords: Evolution, data-intensive ecosystems, adaptation.

1 Introduction

Data-intensive ecosystems are conglomerations of databases surrounded by ap-
plications that depend on them for their operation. Ecosystems differ from the
typical information systems in the sense that the management of the database
profoundly takes its surrounding applications into account. In this paper, we deal
with the problem of facilitating the evolution of an ecosystem without impacting
the smooth operation or the semantic consistency of its components.

Observe the ecosystem of Figure 1. On the left, we depict a small part of a
university database with three relations and two views, one for the information
around courses and another for the information concerning student transcripts.
On the right, we isolate two queries that the developer has embedded in his
applications, one concerning the statistics around the database course and the
other reporting on the average grade of each student. If we were to delete at-
tribute C NAME, the ecosystem would be affected in two ways : (a) syntactically,
as both the view V TR and the query on the database course would crash, and,
(b) semantically, as the latter query would no longer be able to work with the
same selection condition on the course name. Similarly, if an attribute is added
to a relation, we would like to inform dependent modules (views or queries) for
the availability of this new information.

The means to facilitate the graceful evolution of the database without dam-
aging the smooth operation of the ecosystem’s applications is to allow all the
involved stakeholders to register veto’s or preferences: for example, we would

W. Ng, V.C. Storey, and J. Trujillo (Eds.): ER 2013, LNCS 8217, pp. 182–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Automating the Adaptation of Evolving Data-Intensive Ecosystems 183

Fig. 1. Managing the adaptation of a University-DB Ecosystem

like to allow a developer to state that she is really adamant on retaining the
structure and semantics of a certain view. In our method, we can annotate a
module (i.e., relation, view or query) with a policy for each possible event that
it can withstand, in one of two possible modes: (a) block, to veto the event and
demand that the module retains its previous structure and semantics, or, (b)
propagate, to allow the event and adapt the module to a new internal structure.

In this paper, we model ecosystems as graphs annotated with policies for re-
sponding to evolutionary events (Sec. 2) and we address the problem of identi-
fying (a) what parts of the ecosystem are affected whenever we test a potential
change and (b) how will the ecosystem look like once the implications of con-
flicting policies are resolved and the graph is appropriately rewritten (Sec. 3).
Related work in ecosystem adaptation has provided us with techniques for view
adaptation [1], [2], [3] that do not allow the definition of the policies for the adap-
tation of the ecosystem modules. Our previous work [4] has proposed algorithms
for impact assessment with explicit policy annotation; however, to the best of
our knowledge, there is no method that allows both the impact assessment and
the rewriting of the ecosystem’s modules along with correctness guarantees.

We implemented our method in a what-if analysis tool, Hecataeus1 where all
stakeholders can pre-assess the impact of possible modifications before actually
performing them, in a way that is loosely coupled to the ecosystem’s components.
Our experimentation with ecosystems of different policies and sizes (Sec. 4)
indicates that our method offers significant effort gains for the maintenance
team of the ecosystem and, at the same time, scales gracefully.

1 http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

http://www.cs.uoi.gr/~pvassil/projects/hecataeus/


184 P. Manousis, P. Vassiliadis, and G. Papastefanatos

2 Formal Background

Our modeling technique, extending [4], uniformly represents all the components
of an ecosystem as a directed graph which we call the Architecture Graph of the
ecosystem. Fig. 2 visually represents the internals of the modules of Fig. 1. To
avoid overcrowding the figure, we omit different parts of the structure in different
modules; the figure is self-explanatory on this.

Fig. 2. A subset of the graph structure for the University-DB Ecosystem

Modules. A module is a semantically high level construct of the ecosystem;
specifically, the modules of the ecosystem are relations, views and queries. Every
module defines a scope recursively: every module has one or more schemata in
its scope (defined by part-of edges), with each schema including components
(e.g., the attributes of a schema or the nodes of a semantics tree) linked to the
schema also via part-of edges. In our model, all modules have a well defined
scope, “fenced” by input and output schemata.

Relations. Each relation includes a node for the relation per se, a node for its
(output) schema and a node for each for its attributes; all connected via the
aforementioned part-of edges.

Queries. The graph representation of a Select - Project - Join - Group By
(SPJG) query involves a new node representing the query, named query node,
linked to the following schemata:



Automating the Adaptation of Evolving Data-Intensive Ecosystems 185

1. a set of input schemata nodes (one for every table appearing in the FROM
clause). Each input schema includes the set of attributes that participate
in the syntax of the query (i.e., SELECT, WHERE and GROUP BY clauses,
etc.). Each input attribute is linked via a provider, map-select edge to the
appropriate attribute of the respective provider module.

2. an output schema node comprising the set of attributes present in the SE-
LECT clause. The output attributes are linked to the appropriate input at-
tributes that populate them through map-select edges, directing from the
output towards the input attributes.

3. a semantics node as the root node for the sub-graph corresponding to the
semantics of the query (specifically, the WHERE and GROUP-BY part).

We accommodateWHERE clauses in conjunctive normal form, where each atomic
formula is expressed as: (i) Ω op constant, or (ii) Ω op Ω’, or (iii) Ω op Q where
Ω, Ω’ are attributes of the underlying relations,Q is a nested query, and operator
op belongs to the set {<, >, =, ≤, ≥, �=, IN , EXISTS, ANY }). The entire
WHERE clause is mapped to a tree, where (i) each atomic formula is mapped to
a subtree with an operator node for op linked with operand edges pointing to the
operand nodes of the formulae and (ii) nodes for the Boolean operators (AND,
OR) connect with each other as well as with the operators of the atomic formulae
via the respective operand edges. The GROUP BY part is mapped in the graph
via (i) a node GB, to capture the set of attributes acting as the aggregators
and (ii) one node per aggregate function labeled with the name of the employed
aggregate function; e.g., COUNT, SUM, MIN. For the aggregators, we use edges
directing from the semantics node towards the GB node that are labeled group-
by. The GB node is linked to the respective input attributes acting as aggregators
with group-by edges, which are additionally tagged according to the order of the
aggregators; we use an identifier i to represent the i-th aggregator. Moreover,
for every aggregated attribute in the query’s output schema, there exists a map-
select edge directing from this attribute towards the aggregate function node as
well as an edge from the function node towards the respective input attribute.

Views. Views are treated as queries; however the output schema of a view can
be used as input by a subsequent view or query module.

Summary. A summary of the architecture graph is a zoomed-out variant of the
graph at the schema level with provider edges only among schemata (instead of
attributes too).

Events. We organize the events that can be tested via our method in the fol-
lowing groups.

– Events at relations. A relation can withstand deletion and renaming of itself
as well as addition, deletion and renaming of its attributes.

– Events at views and queries. A view can withstand the deletion and renaming
of itself, the addition, deletion or renaming of its output attributes and the
update of the view’s semantics (i.e., the modification of the WHERE clause
of the respective SQL query that defines the view).



186 P. Manousis, P. Vassiliadis, and G. Papastefanatos

Policies. As already mentioned, the policy of a node for responding to an in-
coming event can be one of the following: (a) PROPAGATE, which means that
the node is willing to adapt in order to be compatible with the new structure
and semantics of the ecosystem, or, (b) BLOCK, which means that the node
wants to retain the previous structure and semantics. We can assign policies to
all the nodes of the ecosystem via a language [5] that provides guarantees for the
complete coverage of all the graph’s nodes along with syntax conciseness and
customizability. The main idea is the usage of rules of the form <receiver node>
: on <event> then <policy>, both at the default level –e.g.,

VIEW.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;

and at the node-specific level (overriding defaults) –e.g.,

V TR OUT.SELF: on ADD ATTRIBUTE then BLOCK;

3 Impact Assessment and Adaption of Ecosystems

The goal of our method is to assess the impact of a hypothetical event over an
architecture graph annotated with policies and to adapt the graph to assume its
new structure after the event has been propagated to all the affected modules.
Before any event is tested, we topologically sort the modules of the architecture
graph (always feasible as the summary graph is acyclic: relations have no cyclic
dependencies and no query or view can have a cycle in their definition). This is
performed once, in advance of any impact assessment. Then, in an on-line mode,
we can perform what-if analysis for the impact of changes in two steps that
involve: (i) the detection of the modules that are actually affected by the change
and the identification of a status that characterizes their reaction to the event,
and, (ii) the rewriting of the graph’s modules to adapt to the applied change.

3.1 Detection of Affected Nodes and Status Determination

The assessment of the impact of an event to the ecosystem is a process that
results in assigning every affected module with a status that characterizes its
policy-driven response to the event. The task is reduced in (a) determining the
affected modules in the correct order, and, (b) making them assume the appro-
priate status. Algorithm Status Determination (Fig. 3) details this process. In
the following, we use the terms node and module interchangeably.

1. Whenever an event is assessed, we start from the module over which it is
assessed and visit the rest of the nodes by following the topological sorting of
the modules to ensure that a module is visited after all of its data providers
have been visited. A visited node assesses the impact of the event internally
(cf., ”intra-module processing”) and obtains a status, which can be one of the
following: (a) BLOCK, meaning that the module is requesting that it remains
structurally and semantically immune to the tested change and blocks the



Automating the Adaptation of Evolving Data-Intensive Ecosystems 187

Input: A topologically sorted architecture graph summary Gs(Vs,Es), a global queue
Q that facilitates the exchange of messages between modules.
Output: A list of modules Affected Modules ⊆ Vs that were affected by the event
and acquire a status other than NO STATUS.

1. Q={original message}, Affected Modules = ∅;
2. For All node ∈ Gs(Vs,Es)
3. node.status = NO STATUS;
4. EndFor
5. While (size(Q) > 0)
6. visit module (node) in head of Q;
7. insert node in Affected Modules list;
8. get all messages, Messages, that refer to node;
9. SetStatus(node, Messages);

10. If (node.status == PROPAGATE) Then
11. insert node.Consumers Messages to the Q;
12. EndWhile
13. Return Affected Modules;

Procedure SetStatus(Module, Messages)
Consumers Messages = ∅;
For All Message ∈ Messages

decide status of Module;
put messages for Module’s consumers in Consumers Messages;

EndFor

Fig. 3. Algorithm Status determination

event (as its immunity obscures the event from its data consumers), (b)
PROPAGATE, meaning that the modules concedes to adapt to the change
and propagate the event to any subsequent data consumers, or, (c) retain a
NO STATUS status, already assigned by the topological sort, meaning that
the module is not affected by the change.

2. If the status of the module is PROPAGATE, the event must be propagated to
the subsequent modules. To this end, the visited module prepares messages
for its data consumers, notifying them about its own changes. These messages
are pushed to a common global message queue (where messages are sorted
by their target module’s topological sorting identifier).

3. The process terminates whenever there are no more messages and no more
modules to be visited.

Intra-module Processing. Whenever visited, a module starts by retrieving
from the common queue all the messages (i.e., events) that concern it. It is
possible that more than one message exist in the global queue for a module: e.g.,
with the deletion of an attribute that was used both in the output schema of a
module and in the semantics schema of a module, the module should inform its
consumers that (a) the attribute was deleted and (b) its semantics has changed.
The processing of the messages is performed as follows:



188 P. Manousis, P. Vassiliadis, and G. Papastefanatos

1. First, the module probes its schemata for their reaction to the incoming
event, starting from the input schemata, next to the semantics and finally to
the output schema. Naturally, relations deal only with the output schema.

2. Within each schema, the schema has to probe both itself and its contained
nodes (attributes) for their reaction to the incoming event. At the end of
this process, the schema assumes a status as previously discussed.

3. Once all schemata have assumed status, it is the output schema of the module
that decides the reaction of the overall module; if any of the schemata raises
a veto (BLOCK) the module assumes the BLOCK status too; otherwise, it
assumes the PROPAGATE status.

Theoretical Guarantees. Previous models of Architecture Graphs ([4]) allow
queries and views to directly refer to the nodes representing the attributes of
the involved relations. Due to the framing of modules within input and output
schemata and the topological sorting, in [6] we have proved that the process (a)
terminates and (b) correctly assigns statuses to modules.

3.2 Query and View Rewriting to Accommodate Change

Once the first step of the method, Status Determination, has been completed
and each module has obtained a status, the problem of adaptation would intu-
itively seem simple: each module gets rewritten if the status is PROPAGATE
and remains the same if the status is BLOCK. This would require only the exe-
cution of the Graph Rewrite step – in fact, one could envision cases where Status
Determination and Graph Rewrite could be combined in a single pass. Unfor-
tunately, although the decision on Status Determination can be made locally in
each module, taking into consideration only the events generated by previous
modules and the local policies, the decision on rewriting has to take extra in-
formation into consideration. This information is not local, and even worse, it
pertains to the subsequent, consumer modules of an affected module, making
thus impossible to weave this information in the first step of the method, Status
Determination. The example of Fig. 4 is illustrative of this case.

Fig. 4. Block rewriting example

In the example of Figure 4, we have a relation R and a view V0 defined over
the relation R. Two views (V1 and V2) use V0 in order to get data. V2 is further



Automating the Adaptation of Evolving Data-Intensive Ecosystems 189

used by two queries (Q1 and Q2). The database administrator wants to change
V0, in a way that all modules depending on V0 are going to be affected by that
change (e.g., attribute deletion, for an attribute common to all the modules of
the example). Assume now that all modules except Q2 accept to adapt to the
change, as they have a PROPAGATE policy annotation. Still, the vetoing Q2

must be kept immune to the change; to achieve this we must retain the previous
version of all the nodes in the path from the origin of the evolution (V0) to the
blocking Q2. As one can see in the figure, we now have two variants of V0 and
V2: the new ones (named V n

0 and V n
2 ) that are adapted to the new structure of

V0 – now named V n
0 – and the old ones, that retain their name and are depicted

in the rightmost part of the figure. The latter are immune to the change and
their existence serves the purpose of correctly defining Q2.

Input: An architecture graph summary Gs(Vs,Es), a list of modules
Affected modules, affected by the event, and the Initial Event of the user.
Output: Annotation of the modules of Affected modules on the action needed to
take, and specifically whether we have to make a new version of it, or, implement the
change that the user asked on the current version

1. For All Module ∈ Affected modules
2. If(Module.status == BLOCK) Then
3. CheckModule(Module, Affected modules, Initial Event);
4. mark Module not to change; //Blockers do not change

5. EndFor

Procedure CheckModule(Module, Affected modules, Initial Event)
If(Module has been marked) Then return; //Notified by previous block path

If (Initial Event == ADD ATTRIBUTE)
Then mark Module to apply change on current version; //Blockers ignore provider addition

Else mark Module to keep current version as is and apply the change on a clone;
For All Module provider ∈ Affected modules feeding Module

CheckModule(Module provider, Affected modules, Initial Event); //Notify path

EndFor

Fig. 5. Algorithm Path check

The crux of the problem is as follows: if a module has PROPAGATE status
and none of its consumers (including both its immediate and its transitive con-
sumers) raises a BLOCK veto, then both the module and all of these consumers
are rewritten to a new version. However, if any of the immediate consumers,
or any of the transitive consumers of a module raises a veto, then the entire
path towards this vetoing node must hold two versions of each module: (a) the
new version, as the module has accepted to adapt to the change by assuming
a PROPAGATE status, and, (b) the old version in order to serve the correct
definition of the vetoing module.

To correctly serve the above purpose, the adaptation process is split in two
steps. The first of them, Path Check, works from the consumers towards the
providers in order to determine the number of variants (old and new) for each



190 P. Manousis, P. Vassiliadis, and G. Papastefanatos

module. Whenever the algorithm visits a module, if its status is BLOCK, it starts
a reverse traversal of the nodes, starting from the blocker module towards the
module that initialized the flow and marks each module in that path (a) to keep
its present form and (b) prepare for a cloned version (identical copy) where the
rewriting will take place. The only exception to this rewriting is when the module
of the initial message is a relation module and the event is an attribute deletion,
in which case a BLOCK signifies a veto for the adaptation of the relation.

Input: A list of modules Affected modules, knowing the number of versions they
have to retain, initial messages of Affected modules
Output: Architecture graph after the implementation of the change the user asked

1. If(any of Affected modules has status BLOCK) Then
2. If(initial message started from Relation module type AND event ==

DELETE ATTRIBUTE) Then Return;
3. Else
4. For All (Module ∈ Affected modules)
5. If(Module needs only new version) Then
6. proceed with rewriting of Module;
7. connect Module to new providers; //new version goes to new path

8. Else
9. clone Module; //clone module, to keep both versions

10. connect cloned Module to new providers; //clone is the new version

11. proceed with rewriting of cloned Module;
12. EndFor
13. Else
14. For All Module ∈ Affected modules
15. proceed with rewriting of Module //no blocker node

16. EndFor

Fig. 6. Algorithm Graph Rewrite

Finally, all nodes that have to be rewritten are getting their new definition
according to their incoming events. Unfortunately, this step cannot be blended
with Path Check straightforwardly: Path Check operates from the end of the
graph backwards, to highlight cases of multiple variants; rewriting however, has
to work from the beginning towards the end of the graph in order to correctly
propagate information concerning the rewrite (e.g., the names of affected at-
tributes, new semantics, etc.). So, the final part of the method, Graph Rewrite,
visits each module and rewrites the module as follows:

– If the module must retain only the new version, once we have performed the
needed change, we connect it correctly to the providers it should have.

– If the module needs both the old and the new versions, we make a clone of
the module to our graph, perform the needed change over the cloned module
and connect it correctly to the providers it should have.

– If the module retains only the old version, we do not perform any change.



Automating the Adaptation of Evolving Data-Intensive Ecosystems 191

4 Experiments

We assessed our method for its usefulness and scalability with varying graph
configurations and policies; in this section, we report our findings.

Experimental Setup. We have employed TPC-DS, version 1.1.0 [7] as our
experimental testbed. TPC-DS is a benchmark that involves star schemata of
a company that has the ability to Sell and receive Returns of its Items with
the following ways: (a) the Web, or, (b) a Catalog, or, (c) directly at the Store.
Since the Hecataeus’ parser could not support all the advanced SQL constructs
of TPC-DS, we employed several auxiliary views and slight query modifications.

Graphs and Events. To test the effect of graph size to our method’s efficiency,
we have created 3 graphs with gradually decreasing number of query modules:
(a) a large ecosystem, WCS, with queries using all the available fact tables, (b)
an ecosystem CS, where the queries to WEB SALES have been removed, and
(c) an ecosystem S, with queries using only the STORE SALES fact table. The
event workload consists of 51 events simulating a real case study of the Greek
public sector. See Fig. 7 for an analysis of the module sizes within each scenario
and the workload (listing the percentage of each event type as pct).

Policies. We have annotated the graphs with policies, in order to allow the
management of evolution events. We have used two “profiles“: (a) MixtureDBA,
consisting of 20% of the relation modules annotated with BLOCK policy and
(b) MixtureAD, consisting of 15% of the query modules annotated with BLOCK
policy. The first profile corresponds to a developer-friendly DBA that agrees
to prevent changes already within the database. The second profile tests an
environment where the application developer is allowed to register veto’s for the
evolution of specific applications (here: specific queries). We have taken care to
pick queries that span several relations of the database.

Fig. 7. Experimental configuration for the TPC-DS ecosystem

Experimental Protocol.We have used the following sequence of actions. First,
we annotate the architecture graph with policies. Next, we sequentially apply
the events over the graph – i.e., each event is applied over the graph that resulted
from the application of the previous event. We have performed our experiments
with hot cache. For each event we measure the elapsed time for each of the three
algorithms, along with the number of affected, cloned and adapted modules. All
the experiments have been performed in a typical PC with an Intel Quad core
CPU at 2.66GHz and 1.9GB main memory.



192 P. Manousis, P. Vassiliadis, and G. Papastefanatos

Effectiveness. How useful is our method for the application developers and
the DBA’s? We can assess the effort gain of a developer using the highlighting
of affected modules of Hecataeus compared to the situation where he would
have to perform all checks by hand as the fraction of Affected Modules of the
ecosystem. This gain, expressed via the %AM metric amounts to the percentage
of useless checks the user would have made. We exclude the object that initiates
the sequence of events from the computation, as it would be counted in both
occasions. Formally, %AM is given by the Equation 1.

%AM = 1− #Affected Modules

#(Queries ∪ V iews)
(1)

Fig. 8. Effectiveness assessment as fraction of affected modules (%AM)

The results depicted in Fig. 8 demonstrate that the effort gains compared to
the absence of our method are significant, as, on average, the effort is around
90% in the case of the AD mixture and 97% in the case of the DBA mixture. As
the graph size increases, the benefits from the highlighting of affected modules
that our method offers, increase too. Observe that in the case of the DBA case,
where the flooding of events is restricted early enough at the database’s relations,
the minimum benefit in all 51 events ranges between 60% - 84%.

Effect of Policy to the Execution Time. In the case of Mixture DBA we
follow an aggressive blocking policy that stops the events early enough, at the
relations, before they start being propagated in the ecosystem. On the other
hand, in the case of Mixture AD, we follow a more conservative annotation
approach, where the developer can assign blocker policies only to some module
parts that he authors. In the latter case, it is clear that the events are propagated
to larger parts of the ecosystem resulting in higher numbers of affected and
rewritten nodes. If one compares the execution time of the three cases of the AD
mixture in Fig. 9 with the execution time of the three cases of the DBA mixture
the difference is in the area of one order of magnitude. It is however interesting
to note the internal differences: the status determination time is scaled up with
a factor of two; the rewriting time, however is scaled up by a factor of 10, 20
and 30 for the small, medium and large graph respectively!

Another interesting finding concerns the internal breakdown of the ex-
ecution time in each case. A common pattern is that path check is executed
very efficiently: in all cases it stays within 2% of the total time (thus practically
invisible in the graphic). In the case of the AD mixture, the analogy between the
status determination and the graph rewriting part starts from a 24% - 74% for



Automating the Adaptation of Evolving Data-Intensive Ecosystems 193

the small graph and ends to a 7% - 93% for the large graph. In other words, as
the events are allowed to flow within the ecosystem, the amount of rewriting in-
creases with the size of the graph; in all cases, it dominates the overall execution
time. This is due to the fact that rewriting involves memory management (mod-
ule cloning, internal node additions, etc) that costs much more than the simple
checks performed by Status Determination. In the case of the DBA mixture,
however, where the events are quickly blocked, the times are not only signifi-
cantly smaller, but also equi-balanced: 57% - 42% for the small graph (Status
Determination costs more in this case) and 49% - 50% for the two other graphs.
Again, this is due to the fact that the rewriting actions are the time consuming
ones and therefore, their reduction significantly reduces the execution time too.

Fig. 9. Efficiency assessment for different policies, graph sizes and phases

Effect of Graph Size to the Execution Time. To assess the impact of graph
size to the execution time one has to compare the three different graphs to one
another within each policy. In the case of the AD mixture, where the rewriting
dominates the execution time, there is a linear increase of both the rewriting
and the execution time with the graph size. On the contrary, the rate of increase
drops in the case of the DBA mixture: when the events are blocked early, the
size of the graph plays less role to the execution time.

Overall, the main lesson learned from these observations is that the annota-
tion of few database relations significantly restricts the rewriting time (and con-
sequently the overall execution time) when compared to the case of annotating
modules external to the database. In case the rewriting is not constrained early
enough, then the execution cost grows linearly with the size of the ecosystem.



194 P. Manousis, P. Vassiliadis, and G. Papastefanatos

5 Related Work

For an overview of the vast amount of work in the area of evolution, we refer the
interested reader to an excellent, recent survey [8]. We also refer the interested
reader to [9] for a survey of efforts towards bidirectional transformations. Here,
we scope our discussion to works that pertain to the adaptation of data-intensive
ecosystems.

Data-Intensive Ecosystems’ Evolution. Research activity around data-
intensive ecosystems has been developed around two tools, Hecataeus and Prism.
Hecataeus [4] models ecosystems as Architecture Graphs and allows the defini-
tion of policies, the impact assessment of potential changes and the computation
of graph-theoretic properties as metrics for the vulnerability of the graph’s nodes
to change. The impact assessment mechanism was first introduced in [4] and sub-
sequently modified in [6]. PRISM++ [10] lets the user define his policies about
imminent changes. The authors use ICMOs (Integrity Constraints Modification
Operators) and SMOs (Schema Modification Operators) in order to rewrite the
queries/views in a way that the results of the query/view are the same as before.

View/Schema Mapping Rewriting. Nica et al., [1] make legal rewritings
of views affected by changes and they primarily deal with the case of relation
deletion by finding valid replacements for the affected (deleted) components via a
meta-knowledge base (MKB) that keeps meta-information about attributes and
their join equivalence attributes on other tables in the form of a hyper-graph.
Gupta et al., [2] redefine a materialized view as a sequence of primitive local
changes in the view definition. On more complex adaptations, those local changes
can be pipelined in order to compute the new view contents incrementally and
avoid their full re-computation. Velegrakis, et al., [3], deal with the maintenance
of a set of mappings in an environment where source and target schemata are
integrated under schema mappings implemented via SPJ queries. Cleve et al.,
[11] introduce mappings among the applications and a conceptual representation
of the database, again mapped to the database logical model; when the database
changes, the mappings allow to highlight impacted areas in the source code.

Comparison to Existing Approaches. As already mentioned, the annotation
of the ecosystem with policies imposes the new problem of maintaining different
replicas of view definitions for different consumers; to the best of our knowledge,
this is the first time that this problem is handled in a systematic way. Interest-
ingly, although the existing approaches make no explicit treatment of policies,
they differ in the implicit assumptions they make. Nica et al., operating mainly
over virtual views [1], actually block the flooding of a deletion event by trying to
compensate the deletion with equivalent expressions. At the same time, they do
not handle additions or renamings. Velegrakis et al. [3] move towards the same
goal but only for SPJ queries. On the other hand, Gupta et al., [2], working
with materialized views, are focused to adapting the contents of the views, in a
propagate-all fashion. A problem coming with a propagate-all policy is that the
events might affect the semantical part of the views/queries (WHERE clause)



Automating the Adaptation of Evolving Data-Intensive Ecosystems 195

without any notification to the involved users (observe that the problem scales
up with multiple layers of views defined over other views).

Compared to previous editions of Hecataeus [4], this work reports on the first
implementation of a status determination mechanism with correctness guaran-
tees. The management of rewritings via the path checking to handle conflicting
policies and the adaptation to accommodate change are completely novel.

6 Conclusions and Future Work

In this paper we have addressed the problem of adapting a data-intensive ecosys-
tem in the presence of policies that regulate the flow of evolution events. Our
method allows (a) the management of alternative variants of views and queries
and (b) the rewriting of the ecosystem’s affected modules in a way that respects
the policy annotations and the correctness of the rewriting (even in the presence
of policy conflicts). Our experiments confirm that the adaptation is performed
efficiently as the size and complexity of the ecosystem grow. Future work can
address the assessment of complicated events, the visualization of the ecosystem
and the automatic suggestion of policies.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational
Program ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge
society through the European Social Fund.

References

1. Nica, A., Lee, A.J., Rundensteiner, E.A.: The CVS Algorithm for View Synchro-
nization in Evolvable Large-Scale Information Systems. In: Schek, H.-J., Saltor, F.,
Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 359–373. Springer,
Heidelberg (1998)

2. Gupta, A., Mumick, I.S., Rao, J., Ross, K.A.: Adapting materialized views after
redefinitions: techniques and a performance study. Information Systems 26(5), 323–
362 (2001)

3. Velegrakis, Y., Miller, R.J., Popa, L.: Preserving mapping consistency under
schema changes. VLDB Journal 13(3), 274–293 (2004)

4. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Policy-Regulated
Management of ETL Evolution. J. Data Semantics 13, 147–177 (2009)

5. Manousis, P.: Database evolution and maintenance of dependent applications via
query rewriting. MSc. Thesis, Dept. of Computer Science, Univ. Ioannina (2013),
http://www.cs.uoi.gr/~pmanousi/publications.html

6. Papastefanatos, G., Vassiliadis, P., Simitsis, A.: Propagating evolution events in
data-centric software artifacts. In: ICDE Workshops, pp. 162–167 (2011)

7. Transaction Processing Performance Council: The New Decision Support Bench-
mark Standard (2012), http://www.tpc.org/tpcds/default.asp

http://www.cs.uoi.gr/~pmanousi/publications.html
http://www.tpc.org/tpcds/default.asp


196 P. Manousis, P. Vassiliadis, and G. Papastefanatos

8. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent Advances in Schema and Ontol-
ogy Evolution. In: Schema Matching and Mapping, pp. 149–190. Springer (2011)

9. Terwilliger, J.F., Cleve, A., Curino, C.: How clean is your sandbox? - towards a
unified theoretical framework for incremental bidirectional transformations. In: 5th
Intl. Conf. Theory and Practice of Model Transformations (ICMT), Prague, Czech
Rep., pp. 1–23 (2012)

10. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Update Rewriting and Integrity
Constraint Maintenance in a Schema Evolution Support System: PRISM++.
PVLDB 4(2), 117–128 (2010)

11. Cleve, A., Brogneaux, A.-F., Hainaut, J.-L.: A conceptual approach to database
applications evolution. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 132–145. Springer, Heidelberg (2010)


	Automating the Adaptation of Evolving
Data-Intensive Ecosystems
	1 Introduction
	2 Formal Background
	3 Impact Assessment and Adaption of Ecosystems
	3.1 Detection of Affected Nodes and Status Determination
	3.2 Query and View Rewriting to Accommodate Change

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References




