

CineCubes: Cubes As Movie Stars with Little Effort

Dimitrios Gkesoulis Panos Vassiliadis
Dept. of Computer Science, Univ. of Ioannina

Ioannina, 45110, Hellas
{dgesouli, pvassil}@cs.uoi.gr

ABSTRACT

In this paper we investigate how we can exploit the existence of a
star schema in order to answer user OLAP queries with CineCube
movies. Our method, implemented in an actual system, includes
the following steps. The user submits a query over an underlying
star schema. Taking this query as input, the system comes up with
a set of queries complementing the information content of the
original query, and executes them. Then, the system visualizes the
query results and accompanies this presentation with a text
commenting on the result highlights. Moreover, via a text-to-
speech conversion the system automatically produces audio for
the constructed text. Each combination of visualization, text and
audio practically constitutes a cube movie, which is wrapped as a
PowerPoint presentation and returned to the user.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query processing

General Terms
Algorithms, Design, Human Factors

Keywords
OLAP, management of query results, query recommendation

1. INTRODUCTION
Can we answer user queries with movies? Why should query
results be treated simply as sets of tuples returned by the DBMS
as if they would be visualized in an orange CRT of the 70’s? So
far, database systems assume their work is done once results are
produced, effectively prohibiting even well-educated end-users to
work with them. Can we do something better?

In this paper, we make a first attempt towards showing that it is
possible to produce query results that are (a) properly visualized,
(b) textually exploitable, i.e., enriched with an automatically
extracted text that comments on the result, (c) vocally enriched,
i.e., enriched with audio that allows the user not only to see, but
also hear. Moreover, we provide an extensible method to
accompany a query result with results of complementary queries
that allow the qualitative assessment of its information content.

Interestingly, a meaningful sequence of related queries that
provide context and depth to the original query, “dressed” with
the appropriate visualization and sound, ends up to be nothing
else but a movie where cubes star.

Assumptions. In this paper we make a realistic assumption that
empowers us with the ability to address the challenge in a clear
setting. We assume the existence of a star schema with clean,
reconciled hierarchies of reference data; we also assume that the
end users are interested in working with OLAP queries over these
data. We exploit the star schema in order to generate
complementary queries automatically.

The movie’s parts and their extension. Much like movies, we
organize our stories in acts, with each act including several
episodes all serving the same purpose. Our method involves two
extensibility mechanisms, (i) one concerning the generation of
complementary queries that contextualize the original result and
give insight and (ii) another concerning the automatic
identification of interesting information within the results of each
query. We further exploit the outcome of the latter mechanism, as
it is the main means via which we accompany results with
automatically generated text (which in turn, is then fed to text-to-
speech conversion in order to generate audio).

Low technical barrier. An important goal of this paper is to
demonstrate that the technical barrier for someone who would be
interested to conduct research on this problem is low. Existing
API’s for the construction of PowerPoint presentations [2] and for
text to speech conversion [9] allow us to produce a pptx
programmatically: each query can have a slide where its result is
neatly visualized; the slide’s notes can contain the text explaining
the result and the slide’s audio can be produced via text-to-speech
conversion.

Contribution & call to arms. The individual parts of the method
are not the core contribution of the paper; however, it is their
principled and extensible bundling in a single, extensible tool that
creates a research opportunity and an actual contribution. Τhe
fundamental message carried from this paper is that it is feasible
(and we have done it) to drastically change the way users interact
with business intelligence tools via simple programmatic APIs.
Moreover, we can systematically expand this research ground by
plugging in more and more techniques both from existing and
foreseeable research results in the areas of text commenting, query
recommendation and data visualization.

Roadmap. In Section 2, we give an overview of the method,
mostly via a reference example and explain the low technical
barrier of the method. In Section 3, we discuss our method’s
internals. In Section 4, we show experimental results. In Section
5, we discuss related work. We conclude with a presentation of
open issues in Section 6.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
DOLAP’13, October 28, 2013, San Francisco, CA, USA.
Copyright © 2013 ACM 978-1-4503-2412-0/13/10…$15.00.

Figure 1. An excerpt of a CineCube story over the Adult data set

2. METHOD OVERVIEW

2.1 Constructing a CineCube Story
A really useful characteristic of cubes is that dimensions provide a
context for facts [6]. This is especially important if combined with
the fact that dimension values come in hierarchies; therefore,
every single fact can be simultaneously placed in multiple
hierarchically structured contexts, providing thus the ability to
analyze sets of cats from multiple perspectives. At the same time,
hierarchies allow the comparison of their members with (a)
ancestors, (b) descendants and (c) siblings (children of the same
parent). Assume a basic, detailed cube C defined (a) over a set of
dimensions D = {D1,…,Dn} and (b) over a measure M. A query Q
in our context exploits the multidimensionality of the cube space
and can be considered as a quintuple Q=(C,D,Σ,Γ,γ(M))
where:

(a) Σ is a conjunction of dimensional restrictions of the form
Di.Lj = valuei – i.e., constraints that focus the context of
the query to certain dimensional values.

(b) Γ is a set of grouper dimensional level (practically
comprising the GROUP BY attribute set in a SQL query),
over which the information will ultimately be grouped.

(c) γ(M) is an aggregate function applied to the measure of the
cube; again, we restrict ourselves to a single measure.

Given a query Q and its result Q.RS, we can make a short story by
seeking for answers to the following questions:

0. A first assessment of the current state of affairs. Practically, this
requirement refers to the execution of the original query.

1. Put the state in Context. Are the results of γ(M) good? What
does “good” mean in this case? Typically, we would expect to
compare the result of the query Q to the results of similar queries
over siblings of the values that appear in the filter list Σ.

2. Analysis of why things are this way. Given a certain cuboid that
is the result of a query, we would like to provide some more
insight on the presented results; one way to achieve this is to show
the breakdown of the contributions of the detailed values to the
overall, aggregate value. Practically speaking, this involves
drilling-down for each of the involved groupers and presenting the
analysis of the internal breakdown for each of the groupers.

Clearly, this set of complementary queries that a story comprises
is extensible; existing and novel results in query recommendation
(see Section 5) can be progressively plugged in our method in
order to produce more informative CineCube movies.

2.2 Running Example
To demonstrate our approach we use an example from the well
known Adult (a.k.a census income) dataset referring to data from
1994 USA census. There are 7 dimensions (Age, Native Country,
Education, Occupation, Marital status, Work class, and Race) in
the data set and a single measure, Hours per Week. We will use a
uniform terminology to refer to the dimensions’ levels, (L0, L1, ..).
Also, the ragged dimensions are complemented with values
identical to their parent, to make them balanced and fit to the
model of [17].

We start with an original query where the user has fixed
Education to 'Post-Secondary' (at level L3), and Work to 'With-
Pay' (at level L2) and requests the Avg of HrsPerWeek grouped by

Education at level 2, and Work at level 1. We arrange the
presentation of the result in columns (Education) and rows
(Work). In Fig. 1, in the slide with the indication , one can also
see the actual presentation as a 2D matrix, the visualization
interventions (highlighting high and low values with color) and
the text accompanying the visual presentation. The text is (a) part
of the slide’s notes (so that the user can reuse it) and (b) orally
voiced as an audio file accompanying the slide. The slide’s text is
delivered via a set of highlight extraction methods that search the
2D matrix for prominent features (high and low values, rows or
columns dominating some of these indicatory values, etc).

Figure 2. Dimensions Workclass and Education

Once the originally query has been answered, we move on to put
it in context. Act I of the CineCube movie, including slides  and
 (dressed in blue color), performs the following analysis: since
there is a selection condition with two atoms (Education.L3='Post-
Secondary' and Work.L2='With-Pay'), we compare each of the
defining values with its sibling. So, slide  presents a comparison
between the siblings of ‘Post-Secondary’ at level L3 of Education
(specifically, the single value ‘W/O post secondary’). The analysis
shows that in 3 out of 3 cases people with Post-Secondary
education work more (see Fig. 1 at top right for the respective
text). Similarly, in slide , we relax the constraint on Work and
compare the value ‘With-Pay’ with its siblings at level L2 of Work
(again the single value ‘W/O Pay). The results are inconclusive;
for lack of space we omit the respective text from Fig. 1. In both
these cases, we did two things: (a) we took a single atomic
formula from the selection condition of the original query and
replaced it by fixing the defining value to the parent of the
original value, and (b) we put the grouping level to the level of the
replaced value.

Then, we detail the results of the original query in Act II of the
CineCube movie. In slides  and  (dressed in red color) we
present the results of drilling-down one level per grouper value.
Observe slide  as an example (slide  is similar): for each of
the values in the rows of the original query (at level L1 of
dimension Work) we drill-down one level (at level L0 that is) and
group-by accordingly. For each aggregated cell of the result we
also show the number of detailed tuples that correspond to it, in
parentheses. The text is constructed similarly with the previous act
and includes a discussion of trends for high and low values along
columns and rows.

Figure 3. A snapshot of the internal structure of the CineCube movie

In the actual presentation that we generate, the set of information-
carrying slides is also enriched with transition slides among the
acts, explaining the intuition behind them as well as with a
summary of the key highlights in the end (see Fig. 3).

One can find information about CineCubes at its web page
(http://www.cs.uoi.gr/~pvassil/projects/cinecubes/) and
test its functionality by posing queries at a demo site
(http://snf-56304.vm.okeanos.grnet.gr/).

2.3 Internal Structure of the CineCube Movie
A typical movie story is structured in approximately 3 acts: the
first providing contextualization for the characters as well as the
incident that sets the story on the move, the second where the
protagonists and the rest of the roles build up their actions and
reactions and the third where the resolution of the film is taking
place. Each act is composed of sequences of scenes: each scene
involves a change in the status of the plot (typically oscillating
this status in order to keep viewers interested) and a sequence
drives a subset of the plot to a major status update [10].

Figure 4. Extensibility mechanism for CineCubes

We follow this traditional structure of a movie in our effort. We
are clearly avoiding the temptation to automate a 90’ movie; on
the contrary, we wish to keep the story short and limited, as we
anticipate users will explore several CineCube stories before
gathering their results and discoveries from exploring the data.
We organize Acts in Episodes: each episode practically
corresponds to a pptx slide (although, we can envision extensions
to other formats -- e.g., it could be a section in a document). This
result-based structure of the CineCube movie is accompanied by
a procedural-based structure, with a set of classes that actually
get the job done. Here, we introduce the two extensibility
mechanisms that allow our method to be extensible to all sorts of
algorithms for extra results and discoveries. There are two
“dimensions” of extensibility: (i) what kind of query results
(episodes) we collect from the database, and, (ii) how we
automatically discover important findings within these results.

The first extensibility mechanism concerns the generation of
queries (and slides) within each Act. The abstract class Task is the
generator of the queries of each Act: therefore, we materialize it
differently for each kind of Act (here we have two such
materializations, for Act I and Act II). The crux of the approach is
that each episode comes with (typically one, but sometimes more)
queries in its background; therefore, each Act generates SubTasks,
with each Subtask carrying and being responsible for the
execution of a query that gathers the data (that are ultimately
visualized in the main part of the slide). An Episode can have
several SubTasks to compute its contents. Since each SubTask
carries its own query depending on the Act/Task, the above
mechanism is extensible by appropriately constructing the method
generateSubTasks() for each materialization of Act.

The second extensibility mechanism concerns the determination
of key findings, or Highlights within each Episode. We
fundamentally consider the presentation of results as a 2D matrix
on the screen1; to this end, we have structured several methods
that scan a 2D matrix and isolate interesting cells (top-k max or
top-k min values, domination of a class of values by a column or
row, etc). Class Highlight is a point of extensibility where

1 Of course, other forms of visualization can accompany the

result; however, it is our conviction that the actual data should
definitely be part of the answer [16].

methods for result extraction can be added to search for more
results within the answer of a query.

There are several other classes that accompany the above core of
the method which are omitted from this discussion for lack of
space. These classes concern the management of cubes and their
relationship with a relational database, the construction of the text,
the derivation of the audio for the constructed text and so on.

2.4 Employed Technologies
One of the major goals of this paper is to highlight how we can
automatically construct a CineCube presentation that includes
result visualization, text and audio. In this subsection, we explain
the main technologies via which our PowerPoint presentations are
programmatically constructed.

Apache POI [2] is a Java API that provides several libraries to
create and modify Microsoft Word, PowerPoint and Excel files.
MS Office files obey the Office Open XML standards (OOXML)
and Microsoft's OLE 2 Compound Document format (OLE2).
More specifically, XSLF is the Java implementation of the
PowerPoint 2007 OOXML (.pptx) file format in POI.

The automatic manipulation of .pptx files is relatively simple for
simple tasks. See the following excerpt for creating a file and a
slide:

XMLSlideShow ss = new XMLSlideShow();
XSLFSlideMaster sm = ss.getSlideMasters()[0];
XSLFSlide sl= ss.createSlide

(sm.getLayout(SlideLayout.TITLE_AND_CONTENT));
XSLFTable t = sl.createTable();
t.addRow().addCell().setText(“added a cell”); …

 As we will discuss later, we automate the construction of text that
characterizes each slide. We add the text for each slide that we
create as a slide’s note. At the same time, the existence of text can
help us create a narrative as audio. We use the API provided by
MARY [9], which is an open-source, multilingual Text-to-Speech
Synthesis (TTS) platform written in Java and allows to generate
one audio file per slide, simply by providing the notes of the slide
as input to a method call.

MaryInterface m = new LocalMaryInterface();
m.setVoice(“cmu-slt-hsmm”);
AudioInputStream audio = m.generateAudio("Hello”);
AudioSystem.write(audio, audioFileFormat.Type.WAVE,

new File(“myWav.wav”)); …

Naturally, there are several nuts and bolts to fine tune. However,
the main lesson learned here is that the packaging of the results of
our method, one by one as slides in a presentation is attainable
with neat programming facilities, already available in the Web.

3. FOUNDATIONS AND METHOD
INTERNALS
In this section, we start with a short description of the model for
cubes and cube queries and then we move on to describe (a) acts,
as the means for collecting data via complementary queries and
(b) highlights as the means for automatically detecting some
important findings within query results and the means for text
construction. We also provide the basic steps of our method for
the creation of CineCube movies.

3.1 Formal Background
We base our approach on an OLAP model that involves (a)
dimensions defined as lattices of dimension levels, (b) ancestor

functions (in the form of anc
L2
L1

) mapping values between related
levels of a dimension, (c) detailed data sets, practically modeling
fact tables at the lowest granule of information for all their
dimensions and (d) cubes, defined as aggregations over detailed
data sets. We follow the logical cube model of [17], accurately
summarized in [7] – for lack of space we refer the interested
reader to these publications for a full description.

The user can submit cube queries to the system. A cube query
specifies (a) the (basic) cube over which it is imposed, (b) the
selection condition that isolates the records that qualify for further
processing, (c) the aggregator levels, that determine the level of
coarseness for the result, and (d) a list of aggregations over the
measures of the underlying cube that accompany the aggregator
levels in the final result. More formally, a primary cube c (over
the schema [L1,…,Ln,M1,…,Mm]), is an expression of the form:

c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M
0
1),…,aggm(M

0
m)]),

where:

• DS0 is a detailed data set over the schema S=[L01,…,L
0
n,M

0
1,

…,M0k],m≤k.

• φ is a detailed selection condition.

• M1,…,Mm are measures.

• L0
i and Li are levels such that L0

iLi, 1≤i≤n.

• aggi∈{sum,min,max,count,avg}, 1≤i≤m.

The semantics of a primary cube in terms of SQL over a star
schema are:

SELECT L1,…,Ln, agg1(M
0
1),…,aggm(M

0
m)

FROM DS0 INNER JOIN D1 … INNER JOIN Dn
WHERE φ
GROUP BY L1,…,Ln

We also make the following assumptions for the query class of the
supported cube queries:

- We work with cube queries that involve a single measure.

- We assume strictly two aggregator levels for the result; this
allows a straightforward tabular representation of the result
in a 2D screen.

- We assume that the selection condition is defined as the
conjunction of a set of atomic formulae, one per dimension,
each of which is of the form L = v, with L being a
dimension level and v being a valid value for this level.

In the rest of our deliberations, we will assume that the users
submit to the system cube queries that we denote as:

q=(DS0,φ1 ∧ … ∧ φk,[Lα,Lβ],agg(M))

The results of a cube query of this form can be visualized in
tabular format with the values of Lα as rows and the values of Lβ
as columns. Expanding the method for more than two dimensions
(via the typical nesting of dimensions in rows and columns) is part
of future work. Also, although, there are several other ways that
we can employ to visualize results, like for example scatter plots
on a 2D space or bar charts with multiple data series, we would
like to stress once again that any such visualization methods are
complementary to the actual data.

3.2 Act I: Putting Things in Context – or
“How good is the original cube compared to its
siblings?”
In this subsection, we deal with the first of the acts. The main
purpose of the first act is to provide a context for the original
query. So, we compare the marginal aggregate results of the
original query to the results of “sibling” queries that use “similar”
values in their selection conditions (to be explained right next).

Method. We assume an original query and we want to compare
its results with similar queries. We define a sibling query as a
query with a single difference to the original: instead of an atomic
selection formula Li=vi, the sibling query contains a formula of
the form Li ∈ children(parent(vi)).

Formally, given an original query

q = (DS0,φ1 ∧ … φx ∧ … ∧ φk,[Lα,Lβ],agg(M)),
φi:Li=vi, i=1,...,k

a new query qs is a sibling query if it is of the form

qs = (DS0,φ1 ∧ …φ*x∧ … ∧ φk,[Lα,Lβ],agg(M)), φi:Li=vi,
i=1,...,x-1,x+1,...,k,φ*x:Lx+1=anc

Lx+1
Lx (v)

Naturally, if q originally has k atomic selections, it also has k
sibling queries.

To compare the results of the original query to the ones of its
siblings, one would need to lay out all the k sibling queries on the
same screen and visually inspect their differences. This becomes
too hard to exploit as k increases – in fact, even with a very small
k (e.g., k=2) it can be too hard to be able to visually compare the
results. So we, need to resort to auxiliary comparisons that
provide the context needed. To this end, we introduce two
marginal sibling queries, one for each aggregator. Each time, we
keep one of the two aggregators, and the other becomes Lx. If we
combine this with the fact that the new selection condition φ*x
restricts Lx to the siblings of the original value v, then the
resulting 2D matrix has one of the original aggregators in one of
its two dimensions and the siblings of v on the other. This way,
the marginal values of the original query on one of the two
aggregators are compared to the respective marginal values of the
siblings.

Formally, given an original query

q = (DS0,φ1 ∧ … φx ∧ … ∧ φk,[Lα,Lβ],agg(M)),
φi:Li=vi, i=1,...,k

its two marginal sibling queries are

qSa = (DS0,φ1 ∧ …φ*x∧ … ∧ φk,[Lα,Lx],agg(M)), φi:Li=vi,
i=1,...,x-1,x+1,...,k,φ*x:Lx+1=anc

Lx+1
Lx (v)

qSb = (DS0,φ1 ∧ …φ*x∧ … ∧ φk,[Lx,Lβ],agg(M)), φi:Li=vi,
i=1,...,x-1,x+1,...,k,φ*x:Lx+1=anc

Lx+1
Lx (v)

Example. The original query is expressed as:

q=(DS0,W.L2=’With-Pay’ ∧ E.L3=’Post-Sec’,
[W.L1,E.L2], avg(Hrs)),

In the reference example, slides  and  involve the two
marginal subqueries – see for example the former with the

selection set to parent(’With-Pay’) and the grouping to the
level of ’With-Pay’(i.e., L3):

q2=(DS0,W.L2=’With-Pay’ ∧ E.L4=’ALL’,
[W.L1,E.L3], avg(Hrs))

3.3 Act II: Explaining Variation – or
“Drilling into the breakdown of the original
result”
The purpose of Act II is to help the user understand why the
situation is as observed in the original query. In order to shed
some more light to what is happening, we drill in the details of the
cells of the original result in order to inspect the internals of the
aggregated measures of the original query.

 Assume a cube query

q = (DS0,φ1 ∧ … ∧ φk,[Lα,Lβ],agg(M)), φi:Li=vi,
i=1,...,k

and its result, visualized as a 2D matrix. Then, each cell c of this
result is characterized by the following cube query:

qc = (DS0,φ1 ∧ … ∧ φk ∧ φc,[Lα,Lβ],agg(M)), φi:Li=vi,
i=1,...,k, φC:φ

c
α ∧ φcβ ≡ Lα=v

c
α ∧ Lβ=vcβ

For each of the aggregator dimensions, we can generate a set of
explanatory drill in queries, one per value in the original result:

qα

i

= (DS0, φ1 ∧ … ∧ φk ∧ φα

i

,[Lα-1,Lβ],agg(M)),

qβ

i

 = (DS0, φ1 ∧ … ∧ φk ∧ φβ

i

,[Lα,Lβ-1],agg(M))

with αi and βi being all the values of the original result for the
grouper levels. So, each of the two slides has a set of such queries.

Example. Observe slide  where we drill-down for values Gov,
Private and Self-emp via the explanatory drill in queries for
dimension Work.

qgov=(DS0,W.L2=’With-Pay’ ∧ W.L1=’Gov’ ∧
E.L3=’Post-Sec’, [W.L0,E.L2], avg(Hrs))

qprv=(DS0,W.L2=’With-Pay’ ∧ W.L1=’Private’∧
E.L3=’Post-Sec’, [W.L0,E.L2], avg(Hrs))

qs-e=(DS0,W.L2=’With-Pay’ ∧ W.L1=’s-e’ ∧
E.L3=’Post-Sec’, [W.L0,E.L2], avg(Hrs))

Observe that due to the fact that this is the special case where
selection conditions involve grouper values at finer levels of
detail, we have completely removed the atomic formula of the
dimension that we drill-down (W.L2=’With-Pay’).

3.4 Highlights and Text
As already mentioned, the extraction of highlights is orthogonal to
the query that creates the results of a slide. Once the results of the
query are computed and organized in a 2D matrix, we utilize a
palette of highlight extraction methods that take a 2D matrix as
input and produce important findings as output. This way, (a) we
can reuse highlight extraction methods to all the query results,
independently of the Act or the query that has been executed, and,
(b) we can gracefully extend the palette of highlight extraction
methods with more results. We have implemented a small number
of highlight extraction methods for the moment that include the
highlighting of the top and bottom quartile of values in a matrix,
the absence of values from a row or column, the domination of a

quartile by a row or a column (i.e., when all the values of a
quartile appear in a certain row or column), the identification of
min and max values, etc. Clearly, there is a vast area of enriching
this palette (trend analysis, correlations, relative relationships of
rows and columns, to name just a few); however, implementing
the full spectrum of such techniques can be done with diligence as
part of future work. We utilize a dedicated Highlight Manager
class to extract Highlights.

Text is constructed by a Text Manager that customizes the text per
Act, by plugging values to a template that comes with each act.
Compare the following excerpt with the text of slide  in Fig. 1.

In this slide, we drill-down one level for all values of dimension
<dim> at level <l>. For each cell we show both the <agg> of
<measure> and the number of tuples that correspond to it…

3.5 Creation of CineCubes
Having explained all the individual steps, we now move on to
discuss the overall process for creating a CineCube movie. In its
current configuration, a CineCube movie includes three kinds of
acts: the Introductory Act (including the introductory slide), three
Operational Acts including the act involving the original query
and the two acts for the management of complementary queries,
and a Summary Act with a summary slide with all the important
highlights of the previous three acts.

Overall the method includes the following steps:

1. Construct Introductory Act

2. For all the Operational Acts, execute the Construct
Operational Act algorithm that calculates the Act’s contents
(result visualization, highlights, text and audio)

3. Construct Summary Act in the end

4. Wrap-up the Acts in a PowerPoint movie

Algorithm Construct Operational Act

Input: the original query over the appropriate database

Output: a set of an Act’s episodes fully computed

1. Create the necessary objects (act, episodes, tasks, subtasks)
appropriately linked to each other

2. Construct the necessary queries for all the subtasks of the
Act, execute them, and organize the result as a set of
aggregated cells (each including its coordinates, its measure
and the number of its generating detailed tuples)

3. For each episode

a. Calculate the visual presentation of cells

b. Calculate the cells’ highlights

c. Produce the text based on the highlights

d. Produce the audio based on the text

Figure 5. Constructing an Operational Act

The computation of the contents and presentation of the
Operational Acts is outlined in the Algorithm of Figure 5. Here,
we would like to stress the extensibility aspect again: depending
on the Act (and more specifically, on its operational Task
counterpart), the queries of the subtasks are specialized per slide.

Moreover, highlights, text and audio are produced via dedicated
manager classes (not shown in Fig. 4 for lack of space).

The Summary Act is simply a slide with the text of the highlights
copied to it, organized per act. However, the Wrapping-up Act
introduces a few programmatic tasks worth mentioning here.
Basically, for every episode we create a slide, with its title and
contents (i.e., the 2D tables or the text, depending on the type of
slide). This can be done straightforwardly with the programming
facilities provided by the Apache POI. Unfortunately, though, POI
does not support the management of notes, where we actually
store the text of each slide and audio. To deliver a presentation in
the form that we wish to have it, we proceed as follows: (i) we
unzip the pptx in a temporary folder (remember: each MS Office
file is actually a zipped folder with a rigid structure, within which,
XML and media files are located in a principled fashion); (ii)
create appropriate files for the notes in the ppt/notes/ folder,
along with the necessary links that link them to their slide, (iii) do
the same for audio at the ppt/media folder, and, (iv) zip the folder
again to a .pptx file.

4. EXPERIMENTS
We have experimented with the Adult data set by assessing the
time needed for generating a presentation for different kinds of
original queries. All experiments have taken place in a
conventional PC running Windows 7 over an Intel Core Duo
CPU at 2.50GHz, and with 3GB main memory.

 # atomic selections in WHERE clause

 2 (10 sl.) 3 (12 sl.) 4 (14 sl.) 5 (16 sl.)

Result Generation 1169,00 881,40 2263,91 1963,68

Highlight Gen. &
Visualization

4,41 3,60 3,67 3,74

Text Creation 1,32 1,42 1,80 2,35

Audio Creation 71463,21 104634,27 145004,20 169208,59

Figure 6. Time breakdown (msec) for the method’s parts

We have measured the time needed to perform each part of the
method. We varied the number of atomic selection conditions
within the WHERE clause and measure the time needed per step
of the method (measured in milliseconds). As the number of
selection conditions rises, each time we have two extra slides at
Act I (the number of slides of each try is depicted in parentheses
at the header of Fig. 6). Clearly, the audio generation dominates
the entire process, being several orders of magnitude larger than
anything else and presenting a clear case for improvement. As the
number of slides slowly increases, the number of texts generated
slowly increases too. Concerning every other part of the process,
we see that query generation and execution takes up two orders of
magnitude more than the other two tasks; therefore, being prudent
with the number of slides (and thus, executed queries) is also
necessary – esp., if someone would decide to exclude audio
generation from the process. A very interesting observation is also
that, so far, both text creation and highlight extraction are
extremely fast, and thus, provide the potential for enrichment with
more algorithms that try to find interesting highlights and create
representative textual descriptions for them.

5. RELATED WORK
Strongly related to our work is the area of query recommendation,
where the user submits a query to the system and the system
suggests one or more related queries to the user as a guide for

continuing his search. There is an excellent survey on the topic by
[8] that organizes work in two orthogonal taxonomies. In terms of
the data management environment we can distinguish between
works in the general field of databases [15, 4] and works in the
specific field of OLAP [3,5]. In terms of the means employed for
the recommendation of queries, we can discern methods
exploiting profiles, methods exploiting query logs and hybrid
methods. [1] provides interesting insights for OLAP sessions. A
second area of research involves advanced OLAP searches
(practically in the realm of knowledge extraction). Τhe DIFF
operator [11] returns a concise set of tuples explaining the reasons
for drops or increases observed at an aggregated level. The
operator RELAX [12], is used to verify whether a pattern observed
at the detailed level is also present at a more summarized level.
Finally, [14] produces a textual description of a result, generating
text on tuple-at-a-time basis, in a similar fashion that we do for
highlights and [13] provides a survey and classification of
narrative visualization techniques.

6. DISCUSSION OF OPEN ISSUES
Extensibility. Concerning all the above works, our tool comes
with an extensible architecture that is especially constructed with
a mindset of plugging more and more of them, both at the part
where new queries can be added and in the part where new
analyses can be performed over their results. We firmly believe
that this extensibility can and should be exploited via a synergy
with the research community in order to further enhance the
benefits of this approach. There are plenty of works in query
recommendation (see discussion above), pattern verification [12],
trend analysis, future prediction, to name only a few, that can be
added to the tasks included in a tool.

Efficiency. Scaling with data size and complexity, let along with
user needs, in user time, is also necessary for an effort like this to
succeed. Techniques like multi-query optimization have a good
chance to succeed, esp., since we operate with a known workload
of queries as well as under the divine simplicity of OLAP.

Can I be the director? Interactively maybe? Personalization
and interactivity are two clear paths for extending the approach
mentioned here. The enrichment of the architecture with extra
knowledge –e.g., user profiles or crowd-wisdom (via user logs)-
and the possibility of intervening and semi-automatically guiding
the query generation are topics with clear potential.

Be compendious; if not, at least be concise! The single most
important challenge that the research problem of answer-with-a-
movie faces is the identification of what to exclude. The problem
is not to add more and more recommendations or findings (at the
price of time expenses): this can be done both effectively (too
many algorithms to consider) and efficiently (or, at least, tolerably
in terms of user time). The main problem is that it is very hard to
keep the story both interesting and informative and, at the same
time, automate the discovery of highlights and findings. To
address this task, a clearly important topic of research involves the
automatic ranking and pruning of highlights.

7. ACKNOWLEDGMENTS
This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through
the Operational Program "Education and Lifelong Learning" of
the National Strategic Reference Framework (NSRF) - Research
Funding Program: Thales. Investing in knowledge society through
the European Social Fund.

8. REFERENCES
[1] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia.

Similarity Measures for OLAP Sessions. Accepted in
Knowledge And Information Systems (KAIS).
Available at http://www.julien.aligon.fr/wp-
content/uploads/2012/09/kais.pdf

[2] The Apache POI Project. See https://poi.apache.org/

[3] V. Cariou, J. Cubillé, C. Derquenne, S. Goutier, F.Guisnel,
H. Klajnmic, 2008. Built-In Indicators to Discover
Interesting Drill Paths in a Cube. DaWaK (Turin, Italy,
2008), pp. 33-44

[4] G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, N.
Polyzotis, J. Varman, 2011. The QueRIE system for
Personalized Query Recommendations. IEEE Data Eng.
Bull. 34,2 (2011), pp. 55-60

[5] A. Giacometti, P. Marcel, E. Negre, A. Soulet, 2011.
Query Recommendations for OLAP Discovery-Driven
Analysis. IJDWM 7,2 (2011), 1-25

[6] C. S. Jensen, T. B. Pedersen, C. Thomsen, 2010.
Multidimensional Databases and Data Warehousing.
Synthesis Lectures on Data Management, Morgan &
Claypool Publishers

[7] A. Maniatis, P. Vassiliadis, S. Skiadopoulos, Y. Vassiliou,
G. Mavrogonatos, I. Michalarias, 2005. A presentation
model and non-traditional visualization for OLAP.
IJDWM, 1,1 (2005), 1-36.

[8] P. Marcel, E. Negre, 2011. A survey of query
recommendation techniques for data warehouse
exploration. EDA (Clermont-Ferrand, France, 2011), pp.
119-134

[9] DFKI. The MARY Text-to-Speech System. See
http://mary.dfki.de/

[10] R. McKee, Story: substance, structure, style and the
principles of screenwriting. HarperKollins pubs. 1997.

[11] S. Sarawagi, 1999. Explaining Differences in
Multidimensional Aggregates. VLDB (Edinburgh,
Scotland, 1999), pp. 42-53

[12] G. Sathe, S. Sarawagi, 2001. Intelligent Rollups in
Multidimensional OLAP Data. VLDB (Roma, Italy 2001),
pp.531-540

[13] E. Segel, J. Heer. Narrative Visualization: Telling Stories
with Data. IEEE Trans. Visualization & Comp. Graphics,
16,6 (2010), 1139-1148.

[14] A. Simitsis, G. Koutrika, Y. Alexandrakis, Y.E. Ioannidis,
2008. Synthesizing structured text from logical database
subsets. EDBT (Nantes, France, 2008) pp. 428-439.

[15] K. Stefanidis, M. Drosou, E. Pitoura, 2009. "You May
Also Like" Results in Relational Databases. PersDB
(Lyon, France, 2009).

[16] E.R. Tufte, 1997. Visual Explanations. Graphics Press

[17] P. Vassiliadis, S. Skiadopoulos, 2000. Modelling and
Optimization Issues for Multidimensional Databases.
CAiSE (Stokholm, Sweden, 2000), pp. 482-497

