
Service Selection for Happy Users: Making User-Intuitive
Quality Abstractions

Dionysis Athanasopoulos
Dep. of Computer Science -

Univ. of Ioannina Greece
dathanas@cs.uoi.gr

Apostolos V. Zarras
Dep. of Computer Science -

Univ. of Ioannina Greece
zarras@cs.uoi.gr

Panos Vassiliadis
Dep. of Computer Science -

Univ. of Ioannina Greece
pvassil@cs.uoi.gr

ABSTRACT
The state of the art service search engines allow the users to
pick the services they need, based on the quality properties,
offered by these services. To this end, the users should inter-
act with the search engines based on the quality models that
are imposed by the engines. This is a significant restriction
towards making the service-oriented paradigm attractive to
the general public. In this paper, we propose an approach
that allows a user to specify his perception of quality in
terms of a simple, user-defined quality model. The proposed
approach automatically maps the user-defined quality model
to the search engine’s quality model. This mapping forms
the basis for ordering, grouping and, in general manipulat-
ing, the results of the user’s service discovery requests.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures -
Domain-Specific Architectures

Keywords
Service Selection, Quality of Service

1. INTRODUCTION
The SWaN story: 30/6/2012 - It’s a rainy Friday after-

noon in the headquarters of Shiny-Warm-and-Nice (SWaN),
a travel agency specializing in exotic travel. Baldus, the
manager and Dilbertus, the developer from the IT depart-
ment are discussing in Baldus’ office:

B: I have spent all week trying to configure a work-flow
for receiving customers at the airport and helping them
move to their destination easily, but I simply can’t pick
the right services.

D: Pick the right services?

B: Yes, the idea is that we develop a registration process
at our Web site, where the customers book a recep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

tion method, along with their travel and hotel arrange-
ments. So, we need to cooperate with limo & car rental
companies that offer Web services that are cheap, fast,
reliable and come along with high reputation.

D: Well, you need to search a registry for services based
on the functionality that you need. Then, you have to
select the services that you are going to use based on
your quality requirements. I think you should pick up
services with a response time of less than 1 sec, more
than 90% reliable and ...

B: Stop! Stop! Why 90% of ... whatever you said ... and
not 95%? I am having a headache with your numbers
that I forget anyway and I simply don’t want to have
to decide the right ones! It simply has to be cheap,
fast, reliable and reputable! Can you have a nice list
printed on my desk by the end of the day?

D: ... or maybe have a search engine that lets you do the
work on your own (God forbid)...

The challenge: The moral of this short story is that
the discovery of the right services for a particular business
process should be as easy as possible. Achieving this goal is
a key issue towards making the service-oriented paradigm
really attractive to the general public.

Where we stand: Currently, the state of the art in ser-
vice discovery does not allow us to fully achieve this goal.
Service discovery is a process that consists of two main
phases. The first phase, which we call service scoping, is
driven by the users’ functional requirements. Service scop-
ing results in a possibly large set of services that satisfy to
some extent the given requirements. This set of services is
the starting point of the second phase, which we call ser-
vice selection. The goal of service selection is to pick up
the services that are going to be used. The state of the
art service search engines facilitate this task based on qual-
ity descriptions that characterize the services returned from
the scoping phase. Given these quality descriptions the user
can select the services that meet his quality requirements.

Taking a real-world example, Figure 1 shows the scoping
and the selection phases in the case of the WSCE engine
[1]. In the scoping phase, the user’s requirements are ex-
pressed as a set of keywords (Figure 1(a)). Next, WSCE
returns to the user a set of services, characterized by cor-
responding quality descriptions (Figure 1(b)). The quality
descriptions of the services are based on a quality model that
reflects the technical perception of quality that is assumed
by the WSCE engine. In the case of WSCE, the technical

1

quality model consists of 10 quality properties among which
we have response time (RT), availability (AV), throughput
(TH), reliability (RL), etc.

(a) Scoping phase.

(b) Selection phase.

Figure 1: A typical service discovery scenario based
on WSCE [1].

Regarding service scoping, we have very promising user-
intuitive approaches that scope the search space and allow
the users to express their functional requirements in terms
of semantic description languages (see [7] for an interesting
survey), or even in natural language [13].

For service selection, we also have very promising ap-
proaches. The core concept in these approaches is the qual-
ity model that they assume. Quality models come in 3 fla-
vors. The simplest and most popular model is a flat model
[11, 14, 2, 8, 10, 5, 3, 12], where the quality properties are
listed as a flat vector of values characterizing each service.
Second, we have quality models with property structuring [6]
(e.g., generic properties, business properties). Third, we
have semantically rich quality models, specified in terms of
ontologies [4].

The main shortcoming in the aforementioned approaches
is that they rely on the fundamental assumption that the
users should interact with service search engines via the
quality models that are imposed by the engines. From our
point of view, this is a significant restriction, since service-
oriented computing (SOC) does not only target developers
with strong technical knowledge. On the contrary, SOC is
supposed to promote software reuse to everyday users who
may have very diverse backgrounds. From this perspective,
we believe that the quality-driven service selection should
rely on a combination of:

• Technical quality models that reflect the quality prop-
erties of available services.

• Simple, user-defined quality models that reflect the per-
ception of quality of ordinary users.

What we propose: Inline with the aforementioned view,
in this paper we propose a service selection approach that
allows a user to specify his perception of quality in terms of
a simple, user-defined quality model that describes quality
properties in layman’s terms. We call the resulting user-
defined property definitions, quality abstractions to sig-
nify that these definitions overlay the underlying unique,
reference technical definition of the service search engine.
Next, the proposed approach automatically finds a mapping
between the user-defined quality model and the search en-
gine’s technical model, which reflects the quality properties
of available services in concrete technical terms. The derived
mapping forms the basis for translating, ordering, grouping
and, in general manipulating, the results of the users discov-
ery requests.

2. APPROACH
Fundamentals: We start by formally defining the in-

volved concepts. First, we provide a general definition of
the technical quality model that we assume for the service
search engine.

Definition 1. A technical quality model is a set of quality
properties QT = {QT

1 , QT
2 , . . . , QT

N}. Each quality property
QT

i is associated with (a) a name, and, (b) a corresponding
ordered domain of values, dom(QT

i).

In the rest of our deliberations, all domains include the
special value UNKOWN. Domains can be either discrete or dense.
We refer to the space of values constructed by the Cartesian
product of the domains of the quality properties as dom(QT)
= dom(QT

1) × . . . × dom(QT
N).

To alleviate the burden of dealing with the search engine’s
complexities, we provide two simplifications to the users: (a)
they can deal only with a subset of quality properties that in-
terest them, and, (b) they can define their own vocabulary
of values for these quality properties (which we call qual-
ity abstractions) and form a user-defined, abstract quality
model. The crux of our approach is to automate the map-
ping between the user’s quality abstractions and the engine’s
technical quality model.

Definition 2. An abstract quality model QA, is defined as
a set of quality abstractions QA = {qA1 , qA2 , . . . , qAn }. Each
quality abstraction qAi is associated with (a) a name, and,
(b) a corresponding ordered, discrete and finite domain of
values, dom(qAi).

Typically, user-defined domains are of small cardinality.
As with the technical quality model, we assume that UNKNOWN
is part of every domain and that dom(QA) = dom(qA1) ×
. . . × dom(qAn).

Taking the example of the WSCE engine, assume that the
user provides an abstract quality model QA = {RTA, AV A}
which is a subset of the WSCE technical quality model.
Following, the user defines the domain for response-time
abstraction dom(RTA) = {slow, bearable, fast} and the
domain for the availability abstraction dom(AV A) = {low,
medium, high}.

Of course, we need to have quality abstractions that are
mappable to the underlying technical quality model. To

2

facilitate our task, we assume that technical and abstract
models share the same property names. At the same time,
we need to map every value of the abstract model’s domain
to a range of values of the technical model’s domain. This
way, we partition the domain of a quality property in pair-
wise discrete ranges to which abstract values are mapped.
Again, the desideratum is to produce this mapping auto-
matically.

Definition 3. A well-defined abstract quality model QA

= {qA1 , qA2 , . . . , qAn }, defined over a technical model QT =
{QT

1 , QT
2 , . . . , QT

N}, n ≤ N ,guarantees that ∀ qAi ∈ QA, ∃
QT

j ∈ QT , called µq(qAi), such that:

• qAi .name = QT
j .name, and,

• ∀ v ∈ dom(qAi), ∃ vlow,vhigh ∈ dom(QT
j), vlow ≤ vhigh

and a mapping µd(v)=[vlow, vhigh]

• for any two v, v′ ∈ dom(qAi), v 6= v′, µd(v) ∩ µd(v′)=∅

In the rest of our deliberations, we deal only with well-
defined abstract quality models. Assume now a discovery
request (or simply, query) d posed over the service search
engine E. In our example, such a query could be in the form
d := (RTA = fast)∧((AV A = high)∨(AV A = medium)) 1.
Each service si belonging to the result of d, res(d|E) is char-
acterized by a vector vTsi of quality values in the technical do-

main of the engine dom(QT) (e.g., [RTT = 103ms,AV T =
91%]). The service si is further associated with a respective
vector vAsi in the user abstractions dom(QA); this vector is

calculated based on vTsi and the mapping between QA and

QT (e.g., [RTA = fast, AV A = high]). This way, query
results can be translated, ordered, grouped and, in general
manipulated, via the user vocabulary. The only open issue
left, is of course, the construction of the mappings among
abstract and technical domains.
Mapping construction: Let qAi denote a quality ab-

straction in QA and QT
j denote its respective quality prop-

erty in QT , i.e., QT
j = µq(qAi). A naive method for mapping

dom(qAi) to dom(QT
j) comprises the following steps. First,

we calculate the overall range Rin
QT

j
= [vjmin, v

j
max] of the

QT
j values that characterize the services of res(d|E) such

that, vjmin = min(vTsj [QT
j], ∀ sj ∈ res(d|E)) and vjmax =

max(vTsj [QT
j],∀ sj ∈ res(d|E)). Then, we divide Rin

QT
j

in a

set Rout
QT

j
= {rj1, r

j
2, . . . , r

j

|dom(qAi)|} that comprises |dom(qAi)|

equally sized sub-ranges. Finally, we map each value vik ∈
dom(qAi) of the quality abstraction qAi to a corresponding
range rjk ∈ R

out
QT

j
, i.e., µd(vik) = rjk.

In our example, the scatter chart in Figure 2(a) gives the
results of this naive method in the case of 100 services that
we retrieved based on the WSCE engine. The horizontal
axis gives the values of response time for the services, with
respect to the WSCE technical quality model. The vertical
axis gives the availability values, with respect to the WSCE
technical quality model. The mapping between the domain
of the user-defined response time abstraction and the WSCE

1We intentionally avoid delving into the formal definition of
a query. For all practical purposes, in this paper it suffices
to treat it as a predicate over any available properties of the
services of E.

response time values is given on top of the scatter chart.
Moreover, the mapping from the domain of the user-defined
availability abstraction to the WSCE availability values is
given on the left of the scatter chart. Apparently, this naive
method is quite problematic. In several cases (grouped with
the dashed circles in Figure 2(a)), we observe that similar
values in the domain of the WSCE technical quality model
are mapped to different values in the domain of the user-
defined abstract quality model.

(a) Naive approach.

(b) K-means approach.

Figure 2: Mappings construction.

To overcome such problems we turned to more advanced
data mining techniques towards deriving mappings between
abstract and technical domains. In general, we consider
that finding the right technique(s) and adapting them to
our problem is an open issue. However, we currently in-
vestigate the use of partitional clustering and specifically
K-means [9]. Typically, the K-means clustering technique
accepts as input a set of elements and a required number
of clusters k. Then, it divides the given set of elements in
k clusters, based on a similarity metric that is defined for
the elements. Each cluster contains elements that are more
similar to each other than the elements of the other clusters.

We employ K-means to map dom(qAi) to dom(QT
j) as fol-

lows. We give as input to K-means the QT
j values Cin

QT
j

=

3

{vj1, v
j
2, . . . , v

j
|res(d|E)|} that characterize the services of res(d|E).

Then, we use K-means to divide Cin
QT

j
in a set of clusters

Cout
QT

j
= {cj1, c

j
2, . . . , c

j

|dom(qAi)|} that contain similar values.

The required number of clusters is |dom(qAi)|. Finally, we
map each value vik ∈ dom(qAi) of the quality abstraction qAi
to a range rjk = [min(cjk),max(cjk)] that is defined based on

the contents of a corresponding cluster ck, i.e., µd(vik) = rjk.
The scatter chart in Figure 2(b) gives the results of the

K-means mapping method in the case of the 100 services
that we retrieved based on the WSCE engine. The time for
producing the results by executing the method on a typical
Intel 2 Core, 2.20GHz, 3GB, was ' 800ms. We observe
that the issues that we identified in the mappings produced
by the simple method (grouped with the dashed circles in
Figure 2(a)) are now resolved in the mappings produced by
the K-means method.

3. STATUS & EMERGING RESULTS
At this stage, we have implemented a prototype of the

proposed idea as part of an extensible service search engine
that is developed in the context of the CHOReOS project2.
As a first step towards the assessment of the proposed idea,
we performed an informal review based on a small working
group that comprised partners (both service users and ser-
vice providers) from the CHOReOS project. The goal of
the review was to present our prototype and collect feed-
back from the participants. The participants found the
overall idea of letting the users specify their own abstract
quality models and manipulating search results based on
these models interesting. Nevertheless, we also received cer-
tain reasonable criticisms and interesting suggestions. More
specifically, the participants found the flat technical quality
model that we assume quite simple and suggested to extend
the proposed approach to account for more complex mod-
els (e.g., structured [6], semantically rich [4]). The partici-
pants also suggested to provide different alternative means
for mapping abstract quality models to technical quality
models and letting them choose the one(s) that better suit
their preferences, concerning the produced mappings and
the time required for producing the mappings. Another in-
teresting point that was raised was to provide the ability
to refine abstract quality models based on the experience
gained by the usage of the search engine.

4. CONCLUSION
Starting from the overall vision of making service discov-

ery as simple as possible, we proposed an approach that
allows a user to select services, based on his own percep-
tion of quality which is reflected by a simple, user-defined
quality model. Possible research directions include exploring
the possibility of letting the users more free to specify their
abstract quality models as well as verifying the usability of
our approach via a large-scale user study.

5. ACKNOWLEDGEMENTS
This work received funding from the European Commu-

nity’s FP7/2007-2013 under grant agreement number 257178
(project CHOReOS).

2http://www.choreos.eu/bin/view/Main/

6. REFERENCES
[1] E. Al-Masri and Q. H. Mahmooud. Investigating Web

Services on the World Wide Web. In 17th
International Conference on World Wide Web
(WWW), pages 795–804, 2008.

[2] C. Ding, P. Sambamoorthy, and Y. Tan. QoS
Browsing for Web Service Selection. In Proceedings of
the International Conference on Service-Oriented
Computing (ICSOC), pages 285–300. 2009.

[3] R. Karim, C. Ding, and C.-H. Chi. An Enhanced
PROMETHEE Model for QoS-Based Web Service
Selection. In Proceedings of the IEEE International
Conference on Services Computing (SCC), pages
536–543, 2011.

[4] K. Kritikos and D. Plexousakis. Requirements for
QoS-Based Web Service Description and Discovery.
IEEE Transactions on Services Computing,
2(4):320–337, 2009.

[5] M. Li, J. Zhao, L. Wang, S. Cai, and B. Xie. CoWS:
An Internet-Enriched and Quality-Aware Web
Services Search Engine. In Proceedings of the IEEE
International Conference on Web Services (ICWS),
pages 419–427, 2011.

[6] Y. Liu, A. H. Ngu, and L. Zeng. QoS Computation
and Policing in Dynamic Web Service Selection. In
Proceedings of the 13th International World Wide
Web Conference (WWW), pages 66–73, 2004.

[7] M. Rambold, H. Kasinger, F. Lautenbacher, and
B. Bauer. Towards autonomic service discovery: A
survey and comparison. In IEEE International
Conference on Services Computing, (SCC), 2009.

[8] A. Srivastava and P. G. Sorenson. Service Selection
Based on Customer Rating of Quality of Service
Attributes. In Proceedings of the IEEE International
Conference on Web Services (ICWS), pages 1–8, 2010.

[9] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley, 2006.

[10] Y. Xia, P. Chen, L. Bao, M. Wang, and J. Yang. A
QoS-Aware Web Service Selection Algorithm Based on
Clustering. In Proceedings of the IEEE International
Conference on Web Services (ICWS), pages 428–435,
2011.

[11] Z. Xu, P. Martin, W. Powley, and F. Zulkernine.
Reputation-Enhanced QoS-based Web Services
Discovery. In Proceedings of the IEEE International
Conference on Web Services (ICWS), pages 249 –256,
2007.

[12] S. S. Yau and Y. Yin. QoS-Based Service Ranking and
Selection for Service-Based Systems. In Proceedings of
the IEEE International Conference on Services
Computing (SCC), pages 56–63, 2011.

[13] K. Zachos and N. Maiden. Inventing Requirements
from Software: An Empirical Investigation with Web
Services. In Proceedings of the 16th IEEE
International Conference on Requirements
Engineering (RE), pages 145–154, 2008.

[14] G. Zou, Y. Xiang, Y. Gan, D. Wang, and Z. Liu. An
Agent-based Web Service Selection and Ranking
Framework with QoS. In Proceedings of the 2nd IEEE
International Conference on Computer Science and
Information Technology (ICCSIT), pages 37–42, 2009.

4

