
S. Spaccapietra et al. (Eds.): Journal on Data Semantics XIII, LNCS 5530, pp. 146–176, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Policy-Regulated Management of ETL Evolution

George Papastefanatos1, Panos Vassiliadis2, Alkis Simitsis3, and Yannis Vassiliou1

1 National Technical University of Athens, Greece
{gpapas,yv}@dbnet.ece.ntua.gr

2 University of Ioannina, Greece
pvassil@cs.uoi.gr

3 Stanford University, USA
alkis@db.stanford.edu

Abstract. In this paper, we discuss the problem of performing impact predic-
tion for changes that occur in the schema/structure of the data warehouse
sources. We abstract Extract-Transform-Load (ETL) activities as queries and
sequences of views. ETL activities and its sources are uniformly modeled as a
graph that is annotated with policies for the management of evolution events.
Given a change at an element of the graph, our method detects the parts of the
graph that are affected by this change and highlights the way they are tuned to
respond to it. For many cases of ETL source evolution, we present rules so that
both syntactical and semantic correctness of activities are retained. Finally, we
experiment with the evaluation of our approach over real-world ETL workflows
used in the Greek public sector.

Keywords: Data Warehouses, ETL, Evolution, Impact of changes.

1 Introduction

Data warehouses are complicated software environments that are used in large
organizations for decision support based on OLAP-style (On-Line Analytical
Processing) analysis of their operational data. Currently, the data warehouse mar-
ket is of increasing importance; e.g., a recent report from the OLAP Report
(http://www.olapreport.com) mentions that this market grew from $1 Billion in
1996 to $5.7 Billion in 2006 and showed an estimated growth of 16.4 percent in
2006. In a high level description of a data warehouse general architecture, data
stemming from operational sources are extracted, transformed, cleansed, and even-
tually stored in fact or dimension tables in the data warehouse. Once this task has
been successfully completed, further aggregations of the loaded data are also com-
puted and subsequently stored in data marts, reports, spreadsheets, and several
other formats that can simply be thought of as materialized views. The task of
designing and populating a data warehouse can be described as a workflow, also
known as Extract–Transform–Load (ETL) workflow, which comprises a synthesis
of software modules representing extraction, cleansing, transformation, and load-
ing routines. The whole environment is a very complicated architecture, where
each module depends upon its data providers to fulfill its task. This strong flavor
of inter-module dependency makes the problem of evolution very important in data
warehouses, and especially, for their back stage ETL processes.

 Policy-Regulated Management of ETL Evolution 147

Fig. 1. An example ETL workflow

Figure 1 depicts an example ETL workflow. Data are extracted from two sources,
S1 and S2, and they are transferred to the Data Staging Area (DSA), where their con-
tents and structure are modified; example transformations include filters, joins, pro-
jection of attributes, addition of new attributes based on lookup tables and produced
via functions, aggregations, and so on. Finally, the results are stored in the data ware-
house (DW) either in fact or dimension tables and materialized views. During the
lifecycle of the warehouse it is possible that several counterparts of the ETL process
may evolve. For instance, assume that a source relation’s attribute is deleted or re-
named. Such a change affects the entire workflow, possibly, all the way to the ware-
house (tables T1 and T2), along with any reports over the warehouse tables (abstracted
as queries over a view V1.) Similarly, assume that the warehouse designer wishes to
add an attribute to the source relation S2. Should this change be propagated to the
view or the query? Although related research can handle the deletion of attributes due
to the obvious fact that queries become syntactically incorrect, the addition of infor-
mation is deferred to a decision of the designer. Similar considerations arise when the
WHERE clause of a view is modified. Assume that the view definition is modified by
incorporating an extra selection condition. Can we still use the view in order to an-
swer existing queries (e.g., reports) that were already defined over the previous ver-
sion of the view? The answer is not obvious, since it depends on whether the query
uses the view simply as a macro (in order to avoid the extra coding effort) or, on the
other hand, the query is supposed to work on the view, independently of what the
view definition is, [23]. In other words, whenever a query is defined over a view,
there exist two possible ways to interpret its semantics: (a) the query is defined with
respect to the semantics of the view at the time of the query definition; if the view’s
definition changes in the future, the query’s semantics are affected and the view
should probably be re-adjusted, (b) the query’s author uses the view as an API ignor-
ing the semantics of the view; if these semantics change in the future, the query
should not be affected. The problem lies in the fact that there is no semantic differ-
ence in the way one defines the query over the view; i.e., we define the view in the
same manner in both occasions.

Research has extensively dealt with the problem of schema evolution, in object-
oriented databases [1, 18, 25], ER diagrams [11], data warehouses [5, 6, 9, 10] and
materialized views [2, 6, 10, 13]. Although the study of evolution has had a big im-
pact in the above areas, it is only just beginning to be taken seriously in data

148 G. Papastefanatos et al.

warehouse settings. A recent effort has provided a general mechanism for performing
impact prediction for potential changes of data source configurations [15]. In this
paper, we build on [15] (see related work for a comparison) and present an extended
treatment of the management of evolution events for ETL environments.

Our method is fundamentally based on a graph model that uniformly models rela-
tions, queries, views, ETL activities, and their significant properties (e.g., conditions).
This graph representation has several roles, apart from the simple task of capturing
the semantics of a database system, and one of them is the facilitation of impact pre-
diction for a hypothetical change over the system. In this paper, we present in detail
the mechanism for performing impact prediction for the adaptation of workflows to
evolution events occurring at their sources. The ETL graph is annotated with policies
that regulate the impact of evolution events on the system. According to these poli-
cies, rules that dictate the proper actions, when additions, deletions or updates are
performed to relations, attributes and conditions (all treated as first-class citizens of
the model) are provided, enabling the automatic readjustment of the graph. Affected
constructs are assigned with statuses (e.g., to-delete) designating the transformations
that must be performed on the graph. Moreover, we introduce two mechanisms for
resolving contradictory or absent policies defined on the graph, either during the run-
time of the impact analysis algorithm (on-demand), or before the impact analysis
algorithm executes (a-priori). Finally, we present the basic architecture of the pro-
posed framework and we experimentally assess our approach with respect to its effec-
tiveness and efficiency over real-world ETL workflows.

Outline. Section 2 presents a graph-based modelling for ETL processes. Section 3
formulates the problem of evolving ETL processes and proposes an automated way to
respond to potential changes expressed by the Propagate Changes algorithm. Section 4
discusses the tuning of the Propagate Changes algorithm. Section 5 presents the sys-
tem architecture of our prototype. Section 6 discusses our experimental findings and
Section 7 concludes our work.

2 Graph Based Modeling for ETL Processes

In this section, we propose a graph modeling technique that uniformly covers rela-
tional tables, views, ETL activities, database constraints and SQL queries as first class
citizens. The proposed technique provides an overall picture not only for the actual
source database schema but also for the ETL workflow, since queries that represent
the functionality of the ETL activities are incorporated in the model.

The proposed modeling technique represents all the aforementioned database parts
as a directed graph G(V,E). The nodes of the graph represent the entities of our
model, where the edges represent the relationships among these entities. Preliminary
versions of this model appear in [14, 15, 16]. The elements of our graph are listed in
Table 1.

The constructs that we consider are classified as elementary, including relations,
conditions, queries and views and composite, including ETL activities and ETL proc-
esses. Composite elements are combinations of elementary ones.

 Policy-Regulated Management of ETL Evolution 149

Table 1. Elements of our graph model

Nodes Edges
Relations R Schema relationships ES
Attributes A Operand relationships EO
Conditions C Map-select relationships EM
Queries Q From relationships EF
Views V Where relationships EW
Group-By GB Having relationships EH
Order-By OB Group-By relationships EGB
Parameter P Order-By relationships EOB
Function F
ETL activities A
ETL summary S

Relations, R. Each relation R(A1,A2,…,An) in the database schema, either a table or a
file (it can be considered as an external table), is represented as a directed graph,
which comprises: (a) a relation node, R, representing the relation schema; (b) n at-
tribute nodes, Ai∈A, i=1..n, one for each of the attributes; and (c) n schema relation-
ships, ES, directing from the relation node towards the attribute nodes, indicating that
the attribute belongs to the relation.

Conditions, C. Conditions refer both to selection conditions, of queries and views
and constraints, of the database schema. We consider two classes of atomic condi-
tions that are composed through the appropriate usage of an operator op belonging to
the set of classic binary operators, Op (e.g., <, >, =, ≤, ≥, !=): (a) A op constant; (b) A
op A’ (A, A’ are attributes of the underlying relations). Also, we consider the classes
of A IN Q, and EXISTS Q, with Q being a subquery.

A condition node is used for the representation of the condition. Graphically, the
node is tagged with the respective operator and it is connected to the operand nodes of
the conjunct clause through the respective operand relationships, EO. These edges are
indexed according to the precedence of each operand (i.e., op1 for the left-side operand
and op2 for the right-side) in the condition clause. Composite conditions are easily con-
structed by tagging the condition node with a Boolean operator (e.g., AND or OR) and
connecting the respective edges to the conditions composing the composite condition.

Well-known constraints of database relations – i.e., primary/foreign key, unique, not
null, and check constraints – are easily captured by this modeling technique with use of
a separate condition node. Foreign key constraints are subset conditions between the
source and the target attributes of the foreign key. Check constraints are simple value-
based conditions. Primary keys, not null and unique constraints, which are unique-
value constraints, are explicitly represented through a dedicated node tagged by their
names connected with operand edges with the respective attribute nodes.

Queries, Q. The graph representation of a Select - Project - Join - Group By (SPJG)
query involves a new node representing the query, named query node, and attribute
nodes corresponding to the schema of the query. The query graph is therefore a directed
graph connecting the query node with all its schema attributes, via schema relation-
ships. In order to represent the relationship between the query graph and the underlying
relations, we resolve the query into its essential parts: select, FROM, WHERE, GROUP
BY, HAVING, and ORDER BY, each of which is eventually mapped to a subgraph.

150 G. Papastefanatos et al.

Select part. Each query is assumed to own a schema that comprises the attributes,
either with their original or alias names, appearing in the SELECT clause. In this
context, the SELECT part of the query maps the respective attributes of the involved
relations to the attributes of the query schema through map-select relationships, EM,
directing from the query attributes towards the relation attributes.

From part. The from clause of a query can be regarded as the relationship between
the query and the relations involved in this query. Thus, the relations included in the
from part are combined with the query node through from relationships, EF, directing
from the query node towards the relation nodes.

Where and Having parts. We assume that the WHERE and/or the HAVING clauses of
a query involve composite conditions. Thus, we introduce two directed edges, namely
where relationships, Ew, and having relationships, EH, both starting from a query node
towards an operator node corresponding to the condition of the highest level.

Nested Queries. Concerning nested queries, we extend the WHERE subgraph of the
outer query by (a) constructing the respective graph for the subquery, (b) employing a
separate operator node for the respective nesting operator (e.g., IN operator), and (c)
employing two operand edges directing from the operator node towards the two oper-
and nodes (the attribute of the outer query and the respective attribute of the inner
query) in the same way that conditions are represented in simple SPJ queries.

Group and Order By part. For the representation of aggregate queries, we employ two
special purpose nodes: (a) a new node denoted as GB∈GB, to capture the set of at-
tributes acting as the aggregators; and (b) one node per aggregate function labeled
with the name of the employed aggregate function; e.g., COUNT, SUM, MIN. For the
aggregators, we use edges directing from the query node towards the GB node that are
labeled <group-by>, indicating group-by relationships, EGB. Then, the GB node is
connected with each of the aggregators through an edge tagged also as <group-by>,
directing from the GB node towards the respective attributes. These edges are addi-
tionally tagged according to the order of the aggregators; we use an identifier i to
represent the i-th aggregator. Moreover, for every aggregated attribute in the query
schema, there exists an edge directing from this attribute towards the aggregate func-
tion node as well as an edge from the function node towards the respective relation
attribute. Both edges are labelled <map-select> and belong to EM, as these relation-
ships indicate the mapping of the query attribute to the corresponding relation attrib-
ute through the aggregate function node.

The representation of the ORDER BY clause of the query is performed similarly.

Self-Join Queries. For capturing the set of self-join queries, we stress that each refer-
ence via an alias to a relation in the FROM clause of the query is semantically equiva-
lent with an inline view projecting all attributes of the referenced relation (i.e.,
SELECT *) and named with the respective alias. Self Join query subgraph is con-
nected with the corresponding views’ subgraphs.

Functions, F. Functions used in queries are integrated in our model through a special
purpose node Fi∈F, denoted with the name of the function. Each function has an input
parameter list comprising attributes, constants, expressions, and nested functions, and
one (or more) output parameter(s). The function node is connected with each input

 Policy-Regulated Management of ETL Evolution 151

parameter graph construct, nodes for attributes and constants or sub-graph for expres-
sions and nested functions, through an operand relationship directing from the func-
tion node towards the parameter graph construct. This edge is additionally tagged
with an appropriate identifier i that represents the position of the parameter in the
input parameter list. An output parameter node is connected with the function node
through a directed edge E∈EO∪EM∪EGB∪EOB from the output parameter towards the
function node. This edge is tagged based on the context, in which the function partici-
pates. For instance, a map-select relationship is used when the function participates in
the SELECT clause, and an operand relationship for the case of the WHERE clause.

Views, V. Views are considered either as queries or relations (materialized views).
Thus, in the rest of the paper, whatever refers to a relation R it refers to a view too
(R/V), and respectively, whatever refers to a query Q, it also refers to a view (Q/V).
Thus, V ⊆ R∪Q.

ETL activities, A. An ETL activity is modeled as a sequence of SQL views. An ETL
activity necessarily comprises: (a) one (or more) input view(s), populating the input of
the activity with data coming from another activity or a relation; (b) an output view,
over which the following activity will be defined; and (c) a sequence of views defined
over the input and/or previous, internal activity views.

ETL summary, S. An ETL summary is a directed acyclic graph Gs=(Vs,Es) which
corresponds to an ETL process of the data warehouse [22]. Vs comprises activities,
relations and views that participate in an ETL process. Es comprises the edges that
connect the providers and consumers. Conversely to the overall graph where edges
denote dependency, edges in the ETL summary denote data provision. The graph of
the ETL summary can be topologically sorted and therefore, execution priorities can
be assigned to activities. ETL summaries act as zoomed-out descriptions of the de-
tailed ETL processes, and comprise only relations and activities without their inter-
nals; this also allows the visualization of the ETL process without overloading the
screen with too many details (see for example, figure 9).

Modules. A module is a sub-graph of the graph in one of the following patterns: (a) a
relation with its attributes and all its constraints, (b) a view with its attributes, func-
tions and operands (c) a query with all its attributes, functions and operands. Modules
are disjoint and they are connected through edges concerning foreign keys, map-
select, where, and so on. Within a module, we distinguish top-level nodes comprising
the query, relation or the view nodes, and low-level nodes comprising the remaining
subgraph nodes. Additionally, edges are classified into provider and part-of relation-
ships. Provider edges are intermodule relationships (e.g., EM, EF), whereas part-of
edges are intramodule relationships (e.g., ES, EW).

Fig. 2 depicts the proposed graph representation for the following aggregate query:

Q: SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours
 FROM EMP, WORKS
 WHERE EMP.Emp# = WORKS.Emp#
 AND EMP.STD_SAL >5000
 GROUP BY EMP.Emp#

152 G. Papastefanatos et al.

map-select

map-select

S

S
group by

map-select

SUM

from

from

=

where

op2

op1

GB
group by

W.EMP#.FK
op

op

S S

S SS

S

EMP.PK

op

Q

WORKS

EMP

STD_SALNameEmp#

Emp# Hours Proj#

T_HOURS

Emp#

WORKS.PK
opop

>

AND

op2

5000

op2

op1

op1

Fig. 2. Graph representation of aggregate query

DML Statements. As far as DML statements are concerned, there is a straightfor-
ward way to incorporate them in the graph, since their behavior with respect to adap-
tation to changes in the database schema can be captured by a graph representation
that follows the one of SELECT queries and captures the intended semantics of the
DML statement. In our discussions, we will use the term graph equivalence to refer to
the fact that evolution changes (e.g., attribute addition) can be handled in the same
way we handle the equivalent SELECT query, either these changes occur in the un-
derlying relation of the INSERT statement or the sources of the provider subquery Q.

(a)The general syntax of INSERT statements can be expressed as:

INSERT INTO table_name (attribute_set)
[VALUES (value_set)] | [Q]

where Q is the provider subquery for the values to be inserted.
The graph equivalent SELECT query, which corresponds to the INSERT state-

ment, comprises a SELECT and a FROM clause, projecting the same attribute set
with the attribute set of the INSERT statement, and a WHERE clause for correlating
the attribute set with the inserted values - value set or the projected attribute set of the
subquery, i.e.,:

SELECT (attribute_set) FROM table_name
WHERE [(attribute_set) IN (value_set)] | [(attribute_set) IN Q]

(b) Similarly, DELETE statements can be treated as SELECT * queries comprising
a WHERE clause. The general syntax of a DELETE statement can be expressed as:

DELETE FROM table_name
WHERE condition_set

 Policy-Regulated Management of ETL Evolution 153

Again, the equivalent SELECT query, which corresponds to the above DELETE
statement, comprises a SELECT clause, projecting all the attributes (i.e., *) of the
table, as well as a WHERE clause, containing the same set of conditions with that of
the DELETE statement, i.e.,:

SELECT * FROM table_name
WHERE condition_set

(c) Finally, UPDATE statements can be treated as SELECT queries comprising a
WHERE clause. The general syntax of an UPDATE statement can be expressed as:

UPDATE table_name
SET [(attribute_set) = (value_set)] | [(attribute_set) = Q]
WHERE condition_set

The equivalent SELECT query, which corresponds to the above UPDATE state-
ment, comprises a SELECT clause, projecting the attribute set which is included in
the SET clause of the UPDATE statement, as well as a WHERE clause, containing
the same set of conditions with that of the UPDATE statement, i.e.,:

SELECT attribute_set FROM table_name
WHERE condition_set
AND [(attribute_set) IN (value_set)] | [(attribute_set) IN Q]

3 Evolution of ETL Workflows

In this section, we formulate a set of rules, which allow the identification of the im-
pact of evolution changes to an ETL workflow and propose an automated way to
respond to these changes. The impact of the changes affects the software used in an
ETL workflow – mainly queries, stored procedures, triggers, etc. – in two ways: (a)
syntactically, a change may evoke a compilation or execution failure during the exe-
cution of a piece of code; and (b) semantically, a change may have an effect on the
semantics of the software used.

In section 3.1, we detail how the graph representing the ETL workflow is annotated
with actions that should be taken when a change event occurs. The combination of
events and annotations determines the policy to be followed for the handling of a po-
tential change. The annotated graph is stored in a metadata repository and it is accessed
from an impact prediction module. This module notifies the designer or the administra-
tor on the effect of a potential change and the extent to which the modification to the
existing code can be fully automated, in order to adapt to the change. The algorithm
presented in subsection 3.2 explains the internals of this impact prediction module.

3.1 The General Framework for Handling Schema Evolution

The main mechanism towards handling schema evolution is the annotation of the
constructs of the graph (i.e., nodes and edges) with elements that facilitate impact
prediction. Each such construct is enriched with policies that allow the designer to
specify the behavior of the annotated construct whenever events that alter the data-
base graph occur. The combination of an event with a policy determined by the de-
signer/administrator triggers the execution of the appropriate action that either blocks
the event, or reshapes the graph to adapt to the proposed change.

154 G. Papastefanatos et al.

The space of potential events comprises the Cartesian product of two subspaces;
specifically, (a) the space of hypothetical actions (addition/ deletion/modification),
and, (b) the space of the graph constructs sustaining evolution changes (relations,
attributes and conditions).

For each of the above events, the administrator annotates graph constructs affected
by the event with policies that dictate the way they will regulate the change. Three
kinds of policies are defined: (a) propagate the change, meaning that the graph must
be reshaped to adjust to the new semantics incurred by the event; (b) block the
change, meaning that we want to retain the old semantics of the graph and the hypo-
thetical event must be blocked or, at least, constrained, through some rewriting that
preserves the old semantics [13, 22, 7]; and (c) prompt the administrator to interac-
tively decide what will eventually happen. For the case of blocking, the specific
method that can be used is orthogonal to our approach, which can be performed using
any available method [13, 22, 7].

Our framework prescribes the reaction of the parts of the system affected by a hy-
pothetical schema change based on their annotation with policies. The correspondence
between the examined schema changes and the parts of the system affected by each
change is shown in Table 2. We indicate the parts of the system that can be affected
by each kind of event. For instance, for the case of an attribute addition, affected parts
of the system comprise the relation or view on which the new attribute was added as
well as any view or query defined on this relation / view.

Table 2. Parts of the system affected by each event and annotation of graph constructs with
policies for each event

parts of the system affected nodes annotated with policies

event on database
schema R/V

R/V
Attr.

R/V
Cond.

Q/V
Q/V
Attr.

Q/V
Cond.

R A V/Q
C/F/GB/

OB/P

Add
A √ √ √ √
C √ √ √ √ √ √

R/V

Delete
A √ √ √ √ √ √ √ √ √
C √ √ √ √ √ √ √ √

R/V √ √ √ √

Modify/
Rename

A √ √ √ √ √ √ √ √ √ √
C √ √ √ √ √ √ √ √

R/V √ √ √ √
A = Attribute, C = Constraint, R= Relation, V=View, Q=Query, F= Function, GB = GroupBy, OB=OrderBy, P=Parameter

The definition of policies on each part of the system involves the annotation of the
respective construct (i.e., node) in our graph framework. Table 2 presents the allowed
annotations of graph constructs for each kind of event.

Example. Consider the simple example query SELECT * FROM EMP as part of an
ETL activity. Assume that the provider relation EMP is extended with a new attribute
PHONE. There are two possibilities:

 Policy-Regulated Management of ETL Evolution 155

− The * notation signifies the request for any attribute present in the schema of
relation EMP. In this case, the * shortcut can be treated as “return all the attrib-
utes that EMP has, independently of which these attributes are”. Then, the
query must also retrieve the new attribute PHONE.

− The * notation acts as a macro for the particular attributes that the relation
EMP originally had. In this case, the addition to relation EMP should not be
further propagated to the query.

A naïve solution to a modification of the sources; e.g., the addition of an attribute,
would be that an impact prediction system must trace all queries and views that are
potentially affected and ask the designer to decide upon which of them must be modi-
fied to incorporate the extra attribute. We can do better by extending the current mod-
eling. For each element affected by the addition, we annotate its respective graph
construct with the policies mentioned before. According to the policy defined on each
construct the respective action is taken to correct the query.

Fig. 3. Propagating addition of attribute PHONE

Therefore, for the example event of an attribute addition, the policies defined on
the query and the actions taken according to each policy are:

− Propagate attribute addition. When an attribute is added to a relation appear-
ing in the FROM clause of the query, this addition should be reflected to the
SELECT clause of the query.

− Block attribute addition. The query is immune to the change: an addition to the
relation is ignored. In our example, the second case is assumed, i.e., the SE-
LECT * clause must be rewritten to SELECT A1,…,An without the newly
added attribute.

− Prompt. In this case, the designer or the administrator must handle the impact
of the change manually; similarly to the way that currently happens in database
systems.

The graph of the query SELECT * FROM EMP is shown in Figure 3. The annota-
tion of the Q node with propagating addition indicates that the addition of PHONE
node to EMP relation will be propagated to the query and the new attribute is included
in the SELECT clause of the query.

156 G. Papastefanatos et al.

3.2 Adapting ETL Workflows to Evolution of Sources

The mechanism determining the reaction to a change is formally described in Figure 4
by the algorithm Propagate Changes. Given a graph G annotated with policies and an
event e, Propagate Changes assigns a status to each affected node of the graph, dic-
tating the action that must be performed on the node to handle the event.

Specifically, given an event e over a node n0 altering the source database schema,
Propagate Changes determines those nodes that are directly connected to the node
altered and an appropriate message is constructed for each of them, which is added
into the queue. For each processed node nR, its prevailing policy pR for the processed
event e is determined. According to the prevailing policy, the status of each construct
is set (see more on statuses in section 4.2). Subsequently, both the initial changes,
along with the readjustment caused by the respective actions, are recursively propa-
gated as new events to the consumers of the activity graph. In Figure 3, the statuses
assigned to the affected nodes by the addition of an attribute to EMP relation are de-
picted. First, the algorithm sends a message to EMP relation for the addition of attrib-
ute PHONE to its schema, with a default propagate policy. It assigns the status ADD
CHILD to relation EMP and propagates the event sending a new message to the
query. Since an appropriate policy capturing this event exists on the query, the query
is also assigned an ADD CHILD status. In the following sections, we discuss in more
details the main components of the proposed algorithm.

Algorithm Propagate Changes

Input: (a) a session id SID
(b) a graph G(V,E)
(c) an event e over a node n0
(d) a set of policies P defined over nodes of G
(e) an optional default policy p0 defined by the user for the event e

Output: a graph G(V,E)with a Status value for each n∈V’⊆V
Parameters: (a) a global queue of messages Emsg
 (b) each message m is of the form m = [SID, nS, nR, e, pS], where

SID : The unique identifier of the session regarding the evolution event e
nS : The node that sends the message
nR : The node that receives the message
e : The event that occurs on nS

 pS : Policy of nS for the event e {Propagate, Block, Prompt}

Begin
 1. Emsg.enqueue([SID,user,n0, e, p0])
 2. while (Emsg != ∅){
 3. m = Emsg.dequeue();
 4. pR = determinePolicy(m);
 5. nR.Status=set_status(m,pR);
 6. decide_next_to_signal(m,Emsg,G);} //enqueue m
End

Fig. 4. Propagate Changes Algorithm

 Policy-Regulated Management of ETL Evolution 157

4 Tuning the Propagation of Changes

In this section, we detail the internals of the algorithm Propagate Changes. Given an
event arriving at a node of the graph, the algorithm involves three cases, specifically,
(a) the determination of the appropriate policy for each node, (b) the determination of
the node's status (on the basis of this policy) and (c) the further propagation of the
event to the rest of the graph. The two first issues are detailed in sections 4.1 and 4.2
respectively. The third issue is straightforward, since the processing order of affected
graph elements is determined by a BFS traversal on the graph. Therefore, after the
status determination at each node, a message is inserted into the queue for all adjacent
nodes connected with incoming edges towards this node.

4.1 Determining the Prevailing Policy

It is possible that the policies defined over the different elements of the graph do not
always align towards the same goal. Two problems might exist: (a) over-specification
refers to the existence of more than one policies that are specified for a node of the
graph for the same event, and, (b) under-specification refers to the absence of any
policy directly assigned to a node.

Consider for example the case of Figure 5, where a simplified subset of the graph
for a certain environment is depicted. A relation R with one attribute A populates a
view V, also with an attribute A. A query Q, again with an attribute A is defined over
V. Here, for reasons of simplicity, we omit all the parts of the graph that are irrelevant
to the discussion of policy determination. As one can see, there are only two policies
defined in this graph, both concerning the deletion of attributes of view V. The first
policy is defined on view V and says: ‘Block all deletions for attributes of view V’,
whereas the second policy is defined specifically for attribute V.A and says ‘If V.A
must be deleted, then allow it’.

Fig. 5. Example of over-specification and under-specification of policies

The first problem one can easily see is the over-specification for the treatment of
the deletion of attribute V.A. In this case, one of the two policies must override the
other. A second problem has to do with the fact that neither R.A, nor Q.A, have a
policy for handling the possibility of a deletion. In the case that the designer initiates
such an event, how will this under-specified graph react? To give you a preview,
under-specification can be either offline prevented by specifying default policies for
all attributes or online compensated by following the policy of surrounding nodes. In
the rest of this section, we will refer to any such problems as policy misspecifications.

158 G. Papastefanatos et al.

We provide two ways for resolving policy misspecifications on a graph construct:
on-demand and a-priori policy misspecification resolution. Whenever a node is not
explicitly annotated with a policy for a certain event, on-demand resolution deter-
mines the prevailing policy during the algorithm execution based on policies defined
on other constructs. A-priori resolution prescribes the prevailing policy for each con-
struct potentially affected by an event with use of default policies. Both a-priori and
on-demand resolution can be equivalently used for determining the prevailing policy
of an affected node. A-priori annotation requires the investment of effort for the de-
termination of policies before hypothetical events are tested over the warehouse. The
policy overriding is tuned in such a way, though, that general annotations for nodes
and edges need to be further specialized only wherever this is necessary. Our experi-
ments, later, demonstrate that a-priori annotation can provide significant earnings in
effort for the warehouse administrator. On the other hand, one can completely avoid
the default policy specification and annotate only specific nodes. This is the basic idea
behind the on-demand policy and this way less effort is required at the expense of
runtime delays whenever a hypothetical event is posed on the system.

4.1.1 On-Demand Resolution
The algorithm for handling policy misspecifications on demand is shown in Figure 6.
Intuitively, the main idea is that if a node has a policy defined specifically for it, it
will know how to respond to an event. If an appropriate policy is not present, the node
looks for a policy (a) at its container top-level node, or (b) at its providers.

Algorithm Determine Policy

Input: a message m of the form m=[SID,nS,nR,e,pS]
Output: a prevailing policy pR

Begin

1. if (edge(ns,nr) isPartOf) // if m came from partof edge
2. return pS; // child node policy prevails
3. else // m came from provider
4. if exists policy(nR,e) // check if nR has policy for this event
5. return policy(nR); // return this policy
6. else if exists policy(nR.parent,e)
7. return policy(nR.parent); // return nR parent’s policy
8. else return ps; // else return providers policy

End

Fig. 6. Determine Policy Algorithm

Algorithm Determine Policy implements the following basic principles for the
management of an incoming even to a node:

− If the policy is over-specified, then the higher and left a module is at the hier-
archy of Figure 7, the stronger its policy is.

− If the policy is under-specified, then the adopted policy is the one coming from
lower and right.

 Policy-Regulated Management of ETL Evolution 159

Fig. 7. On Demand Policy Resolution

The algorithm assumes that a message is sent from a sender node ns to a receiver
node nr. Due to its complexity, we present the actual decisions taken in a different
order than the one of the code:

− Check 1 (lines 6-7): this concerns child nodes: if they do not have a policy of
their own, they inherit their parent’s policy. If they do have a policy, this is
covered by lines 4-5.

− Check 2 (lines 1-5): if the event arrives at a parent node (e.g., a relation), and
it concerns a child node (e.g., an attribute) the algorithm assigns the policy of
the parent (lines 4-5), unless the child has a policy of its own that overrides
the parent’s policy (lines 1-2). A subtle point here is that if the child did not
have a policy, it has already obtained one by its parent in lines 6-7.

− Check 3 (line 7): Similarly, if an event arrives from a provider to a consumer
node via a map-select edge, the receiver will make all the above tests, and if
they all fail, it will simply adopt the provider’s policy. For example, in the ex-
ample of figure 5, Q.A will adopt the policy of V.A if all else fails.

4.1.2 A-Priori Resolution
A-priori resolution of policy misspecifications enables the annotation of all nodes of
the graph with policies before the execution of the algorithm. A-priori resolution
guarantees that every node is annotated with a policy for handling an occurred event
and thus no further resolution effort is required at runtime. That is, the receiver node
of a message will always have a policy handling the event of the message. A-priori
resolution is accomplished by defining default policies at 3 different scopes [18].

System-wide scope. First, we prescribe the default policies for all kinds of constructs,
in a system-wide context. For instance, we impose a default policy on all nodes of the
graph that blocks the deletion of the constructs per se.

Top-level scope. Next, we prescribe defaults policies for top-level nodes, namely
relations, queries and views of the system, with respect to any combination of the
following: the deletion of the construct per se, as well as the addition, deletion or
modification of a construct’s descendants. The descendants can be appropriately
specified by their type, as applicable (i.e., attributes, constraints or conditions).

Low-level scope. Lastly, we annotate specific low granularity constructs, i.e., attrib-
utes, constraints or conditions, with policies for their deletion or modification.

160 G. Papastefanatos et al.

The above arrangement is order dependent and exploits the fact that there is a par-
tial order of policy overriding. The order is straightforward: defaults are overridden
by specific annotations and high level construct annotations concerning their descen-
dants are overridden by any annotation of such descendant:

System-wide Scope ≤ Top-Level Scope ≤ Low-Level Scope

Furthermore, certain nodes or modules that violate the above default behaviors and
must obey to an opposite reaction for a potential event are explicitly annotated. For
example, if a specific attribute of an activity must always block the deletion of itself,
whereas the default activity policy is to propagate the attribute deletions, then this
attribute node is explicitly annotated with block policy, overriding the default behavior.

4.1.3 Completeness
The completeness problem refers to the possibility of a node that is unable to deter-
mine its policy for a given event. It is easy to see that it is sufficient to annotate all the
source relations for the on-demand policy, in order to guarantee that all nodes can
determine an appropriate policy. For the case of a-priori annotation, it is also easy to
see that a top-level, system-wide annotation at the level of nodes is sufficient to pro-
vide a policy for all nodes. In both cases, it is obvious that more annotations with extra
semantics for specific nodes, or classes of nodes, that override the abovementioned
(default) policies, are gracefully incorporated in the policy determination mechanisms.

4.2 Determination of a Node’s Status

In the context of our framework, the action applied on an affected graph construct is
expressed as a status that is assigned on this construct. The status of each graph construct
visited by Propagate Changes algorithm is determined locally by the prevailing policy
defined on this construct and the event transmitted by the adjacent nodes. The status of a
construct with respect to an event designates the way this construct is affected and reacts
to this event, i.e., the kind of evolution action that will be applied to the construct.

A visited node is initially assigned with a null status. If the prevailing policy is block
or prompts then the status of the node is block and prompt respectively, independently
of the occurred event. Recall that blocking the propagation of an event implies that the
affected node is annotated for retaining the old semantics despite of change occurred at
its sources. The same holds for prompt policy with the difference that the user, e.g., the
administrator, the developer, etc. must decide upon the status of the node.

For determining the status of a node when a propagate policy prevails, we take
into account the event action (e.g., attribute addition, relation deletion, etc.) transmit-
ted to the node, the type of node accepting the event and lastly the scope of the event
action. An event raises actions that may affect the node itself, its ancestors within a
module or its adjacent dependent nodes. Thus, we classify the scope of evolution
impacts with respect to an event that arrives at a node as:

− SELF: The impact of the event concerns the node itself, e.g., a ‘delete attribute’
event occurs on an attribute node.

− CHILD: The impact of the event concerns a descending node belonging to the
same module, e.g., a view is notified with a ‘delete attribute’ event for the dele-
tion of one of its attributes.

 Policy-Regulated Management of ETL Evolution 161

− PROVIDER: The impact of the event concerns a node belonging to a provider
module, e.g., a view is notified for the addition of an attribute at the schema of
one of its source relations (and, in return, it must notify any other views or que-
ries that are defined over it).

In that manner, combinations of the event type and the event scope provide a non
finite set of statuses, such as: DELETE SELF, DELETE CHILD, ADD CHILD, RE-
NAME SELF, MODIFY PROVIDER and so on. It is easy to see that that the above
mechanism is extensible both with respect to event types and statuses. Lastly, the
status assignment to nodes induces new events on the graph which are further propa-
gated by Propagate Changes algorithm to all adjacent constructs. In the Appendix of
this paper, the statuses assigned to visited nodes for combinations of events and types
of nodes are shown, when propagate policy prevails on the visited node. For each
status, the new event induced by the assignment of a node with status, which is further
propagated to the graph, is also shown.

5 System Architecture

For the representation of the database graph and its annotation with policies regarding
evolution semantics, we have implemented a tool, namely HECATAEUS [16, 17]. The
system architecture is shown in Figure 8.

DDL files
SQL scripts

DB
Dictionary

Parser

Create
DB

Schema

Evolution Manager

Workload representation

Evolution Semantics

Validate
Workload

Graph Viewer

DB Schema representation

XML,
jpegImport/

Export
ScenariosGraph Visualization

Metric
Manager

Fig. 8. System Architecture of HECATAEUS

HECATAEUS enables the user to transform SQL source code to database graphs,
explicitly define policies and evolution events on the graph and determine affected
and adjusted graph constructs according to the proposed algorithm. As mentioned in

162 G. Papastefanatos et al.

the introduction, the graph modeling of the environment has versatile utilizations:
apart from the impact prediction, we can also assess several graph-theoretic metrics of
the graph that highlight sensible regions of the graph (e.g., a large node degree de-
notes strong coupling with the rest of the graph). This metrics management is not part
of this paper’s investigations; still, we find it worth mentioning.

The tool architecture (see Figure 8) consists of the coordination of HECATAEUS’
five main components: the Parser, the Evolution Manager, the Graph Viewer, the
Metric Manager and the Dictionary.

The Parser is responsible for parsing the input files (i.e., DDL and workload defi-
nitions) and for sending each command to the database Catalog and then to the Evolu-
tion Manager.

The functionality of the Dictionary is to maintain the schema of the relations as
well as to validate the syntax of the workload parsed (i.e., activity definitions, queries,
views), before they are modeled by the Evolution Manager.

The Evolution Manager is the component responsible for representing the underly-
ing database schema and the parsed queries in the proposed graph model. The Evolu-
tion Manager holds all the semantics of nodes and edges of the aforementioned graph
model, assigning nodes and edges to their respective classes. It communicates with
the catalog and the parser and constructs the node and edge objects for each class of
nodes and edges (i.e., relation nodes, query nodes, etc.). It retains all evolution seman-
tics for each graph construct (i.e., events, policies) and methods for performing evolu-
tion scenarios and executing Propagate Changes algorithm. It contains methods for
transforming the database graph from/to an XML format.

The Metric Manager is responsible for the application of graph metrics on the
graph. It measures and provides results regarding several properties of the graph, such
as nodes’ degrees, graph size, etc.

Finally, the Graph Viewer is responsible for the visualization of the graph and the
interaction with the user. It communicates with the Evolution Manager, which holds
all evolution semantics and methods. Graph Viewer offers distinct colorization for
each set of nodes, edges according to their types and the way they are affected by
evolution events, editing of the graph, such as addition, deletion and modification of
nodes, edges and policies. It enables the user to raise evolution events, to detect af-
fected nodes by each event and highlight appropriate transformations of the graph.

6 Experiments

We have evaluated the proposed framework and capabilities of the approach pre-
sented via the reverse engineering of seven real-world ETL scenarios extracted from
an application of the Greek public sector. The data warehouse examined maintains
information regarding farming and agricultural statistics. Our goal was to evaluate the
framework with respect to its effectiveness for adapting ETL workflows to evolution
changes occurring at ETL sources and its efficiency for minimizing the human effort
required for defining and setting the evolution metadata on the system.

The aforementioned ETL scenarios extract information out of a set of 7 source
tables, namely S1 to S7 and 3 lookup tables, namely L1 to L3, and load it to 9
tables, namely T1 to T9, stored in the data warehouse. The 7 scenarios comprise a total

 Policy-Regulated Management of ETL Evolution 163

number of 59 activities. Our approach has been built on top of the Oracle DBMS.
All ETL scenarios were source coded as PL\SQL stored procedures in the data
warehouse.

First, we extracted embedded SQL code (e.g., cursor definitions, DML statements,
SQL queries) from activity stored procedures. Table definitions (i.e., DDL state-
ments) were extracted from the source and data warehouse dictionaries. Each activity
was represented in our graph model as a view defined over the previous activities, and
table definitions were represented as relation graphs. In Figure 9, we depict the graph
representation of the first ETL scenario as modeled by our framework. For simplicity
reasons, only top level nodes are shown. Activities are depicted as triangles; source,
lookup and target relations as dark colored circles.

Fig. 9. Graph representation for the first ETL scenario

Attribute Add;
92

Attribute Drop;
32

Attribute
Modify; 6

Attribute
Rename; 236

Constraint Add;
1

Relation
Rename; 7

Fig. 10. Distribution of occurrence per kind of evolution events

164 G. Papastefanatos et al.

Afterward, we monitored the schema changes occurred at the source tables due to
changes of requirements over a period of 6 months. The set of evolution events oc-
curred in the source schema included renaming of relations and attributes, deletion of
attributes, modification of their domain, and lastly addition of primary key con-
straints. We counted a total number of 374 evolution events and the distribution of
occurrence per kind of event is shown in Figure 10.

In Table 3 we provide the basic properties of each examined ETL scenario and
specifically, its size in terms of number of activities and number of nodes comprising
its respective graph, its evolved source tables and lookup tables and lastly the number
of occurred events on these tables.

Table 3. Characteristics of the ETL scenarios

Scenario # Activ. # Nodes Sources # Events
1 16 1428 S1, S4 ,L1, L2, L3 142
2 6 830 S2, L1 143
3 6 513 S3, L1 83
4 16 939 S4, L1 115
5 5 242 S5 3
6 5 187 S6 1
7 5 173 S7 6

The intent of the experiments is to present the impact of these changes to the ETL

flows and specifically to evaluate our proposed framework with respect to its effec-
tiveness and efficiency.

6.1 Effectiveness of Workflow Adaptation to Evolution Changes

For evaluating the extent to which affected activities are effectively adapted to source
events, we imposed policies on them for each separate occurred event. Our first goal
was to examine whether our algorithm determines the correct status of activities in
accordance to the expected transformations, i.e., transformations that the administra-
tors/developers would have manually enforced on the ETL activities to handle schema
changes at the sources, by inspecting and rewriting every activity source code.

Hypothesis H1. Algorithm “Propagate Changes” effectively determines the correct
status of activities for various kinds of evolution events.

Methodology:

1. We first examined each event and its impact on the graph, by finding all af-
fected activities.

2. Since all evolution events and their impact on activities were a-priori known,
each activity was annotated with an appropriate policy for each event. An ap-
propriate policy for an event is the policy (either propagate or block), which
adjusts the activity according to the desired manual transformation, when this
event occurs on the activity source.

3. In that manner, each event at the source schema of the ETL workflows was
separately processed, by imposing a different policy set on the activities. We

 Policy-Regulated Management of ETL Evolution 165

employed both propagate and block policies for all views and queries sub-
graphs comprising ETL activities. Policies were defined both at query and at-
tribute level, i.e., query, view and attribute nodes were annotated.

4. We invoked each event and examined the extent to which the automated read-
justment of the affected activities (i.e., the STATUS assigned to each activity)
adheres to the desired transformation. We, finally, evaluated the effectiveness
of our framework by measuring the number of affected activities by each
event, i.e., these that obtained a STATUS, with respect to the number of suc-
cessfully readjusted activities, (or, in other words, those activities whose
STATUS was consistent with the desired transformation).

In Table 4, we summarize out results for different kinds of events. First, we note
that most of the activities were affected by attribute additions and renaming, since
these kinds of events were the most common in our scenarios. Most important, we can
conclude that our framework can effectively adapt activities to the examined kinds of
events. Exceptions regarding attribute and constraint additions are due to the fact that
specific events induced ad hoc changes in the functionality of the affected activities,
which prompts the user to decide upon the proper readjustments. These exceptions are
mainly owed to events occurred on the lookup tables of the scenarios. Additions of
attributes at these tables incurred (especially when these attributes were involved in
primary key constraints) rewriting of the WHERE clause of the queries contained in
the affected activities.

Finally, whereas the above concern the precision of the method (i.e., the percentage
of correct status determination for affected activities), we should also report on the
recall of our method. Our experimental findings demonstrate that the number of those
activities that were not affected by the event propagation, although they should have
been affected, is zero.

Table 4. Affected and adjusted activities per event kind

 Activities
Event Type with Status with Correct Status
Attribute Add 1094 1090
Attribute Delete 426 426
Attribute Modify 59 59
Attribute Rename 1255 1255
Constraint Add 13 5
Table Rename 8 8
Total 2855 2843

6.2 Effectiveness of Workflow Annotation

Our second goal was to examine the extent to which different annotations of the graph
with policies affect the effectiveness of our framework. This addresses the real case
when the administrator/developer does not know the number and the kind of potential
events that occur on the sources and consequently cannot decide a priori upon a spe-
cific policy set for the graph.

166 G. Papastefanatos et al.

Hypothesis H2. Different annotations affect the effectiveness of the algorithm.

Methodology:

1. We first imposed a policy set on the graph.
2. We then invoked each event in sequence, retaining the same policy set on the

graph.
3. We again examined the extent to which the automated readjustment of the af-

fected activities (i.e., their obtained status) adheres to the desired transformation
and evaluated the effectiveness of our framework for several annotation plans.

We experimented with 3 different policy sets.

− Mixture annotation. A mixture annotation plan for a given set of events com-
prises the set of policies imposed on the graph that maximizes the number of
successfully adjusted activities. For finding the appropriate policy for each ac-
tivity of the ETL scenarios, we examined its most common reaction to each dif-
ferent kind of event. For instance, the appropriate policy of an activity for at-
tribute addition will be propagate if this activity propagates the 70% of the new
attributes added at its source and blocks the rest 30%. In mixture annotation,
propagate policies were applied on most activities for all kinds of events
whereas block policies were applied on some activities regarding only attribute
addition events.

− Worst-Case annotation. As opposed to the mixture annotation plan, the worst
case scenario comprises the set of policies imposed on the graph that minimizes
the number of successfully adjusted activities. The less common reaction to an
event type was used for determining the prevailing policy of each activity.

− Optimistic annotation. Lastly, an optimistic annotation plan implies that all
activities are annotated with a propagate policy for all potential events occurred
at their sources.

Again, we measured the number of affected activities that obtained a specific status
with respect to the number of correctly adapted activities. In Figures 11, 12, 13 we
present the results for the different kinds of events and annotations.

As stated in the hypothesis, different annotations on the graph have a different im-
pact on the overall effectiveness of our framework, as they vary both the number of the
affected activities (i.e., candidates for readjustment) and the number of the adjusted
activities (i.e., successfully readjusted) on the graph. The mixture annotation manages
most effectively to detect these activities that should be affected by an event and adjust
them properly. In mixture annotation, the policies, imposed on the graph, manage to
propagate event messages towards activities that should be readjusted, whereas block
messages from activities that should retain their old functionality. On the contrary, the
worst case annotation, fails to detect all affected activities on the graph as well as to
adjust them properly, as it blocks event messages from the early activities of each ETL
workflow. Since events are blocked in the beginning of the workflow, further activities
cannot be notified for handling these events. Lastly, optimistic annotation provides
both good and bad results. On the good side of things, the optimistic annotation is close
to the mixture annotation in several categories. On the other hand, the optimistic anno-
tation propagates event messages even towards activities, which should retain their old

 Policy-Regulated Management of ETL Evolution 167

semantics. In that manner, optimistic annotations increases the number of affected
activities (i.e., actually all the activities of the workflow are affected) without however
handling properly their status determination.

1094

426

59

1255

13 8

1036

426

59

1255

5 8

Attribute Add Attribute
Drop

Attribute
Modify

Attribute
Rename

Constraint
Add

Table
Rename

Mixture AFFECTED CORRECT STATUS

Fig. 11. Mixture Annotation

169

58

7

263

8 84 0 0 0 0 0

Attribute Add Attribute
Drop

Attribute
Modify

Attribute
Rename

Constraint
Add

Table
Rename

Worst-Case
AFFECTED CORRECT STATUS

Fig. 12. Worst Case Annotation

1448

426

59

1255

13 8

486 426

59

1255

5 8

Attribute Add Attribute
Drop

Attribute
Modify

Attribute
Rename

Constraint
Add

Table
Rename

Optimistic AFFECTED CORRECT STATUS

Fig. 13. Optimistic Annotation

168 G. Papastefanatos et al.

Overall, a reasonable tactic for the administrator would be to either choose a mix-
ture method, in case there is some a-priori knowledge on the desired behavior of con-
structs in an environment, or, progressively refine an originally assigned optimistic
annotation whenever nodes that should remain immune to changes are unnecessarily
affected.

6.3 Efficiently Adapting ETL Workflows to Evolution Changes

For measuring the efficiency of our framework, we examined the cost of manual
adaptation of the ETL activities by the administrator / developer with respect to the
cost of setting the evolution metadata on the graph (i.e., annotation with policies) and
transforming properly the graph with use of our framework.

Developers’ effort comprises the detection, inspection and where necessary the re-
writing of affected activities by an event. For instance, given an attribute addition in a
source relation of an ETL workflow, the developer must detect all activities affected
by the addition, decide how and whether this addition must be propagated or not to
each SQL statement of the activity and lastly rewrite, if necessary, properly the source
code. The effort required for the above operations depends highly on the developers’
experience but on the ETL workflow characteristics as well (e.g., the complexity of
the activity source code, the workflow size, etc.). Therefore, the cost in terms of hu-
man effort for manual handling of source evolution, MC, can be quantified as the sum
of (a) the number of SQL statements per activity, which are affected by an event and
must be manually detected, AS, plus (b) the number of SQL statements, which must
be manually rewritten for adapting to the event, RS. Thus human effort for manual
adaptation of an activity, a, to an event, e, can be expressed as:

)(e
a

e
a

e
a RSASMC += (1)

For a given set of evolution events E, and a set of manually adapted activities A in
an ETL workflow, the overall cost, OMC, is expressed as:

∑∑
∈ ∈

=
Ee Aa

e
aMCOMC (2)

For calculating OMC, we recorded affected and rewritten statements for all activi-
ties and events.

If HECATAEUS had been used, instead of manually adapting all the activities, the
human effort can be quantified as the sum of two factors: (a) the number of annota-
tions (i.e., policy per event) imposed on the graph, AG, and (b) the cost of manually
discovering and adjusting activities AR that escape the automatic status annotation of
the tool, e.g., no annotations have been set on these activities or a prompt policy is
assumed for these activities. The latter cost is expressed as:

∑∑
∈ ∈

=
Ee Aa

e
a

R

MCRMC (3)

Therefore, overall cost for automated adaptation, OAC, is expressed as:

RMCAGOAC += (4)

 Policy-Regulated Management of ETL Evolution 169

Hypothesis H3. The cost of the semi-automatic adaptation, OAC, is equal or less than
the cost of manually handling evolution, OMC.

For calculating OAC, we followed the mixture plan for annotating each attribute
and query node potentially affected by an event occurred at the source schema and
measured the number of explicit annotations, AG. We then applied our algorithm and
measured the cost of manual adaptation for activities which were not properly ad-
justed. Figure 14 compares the OMC with OAC for 7 evolving ETL scenarios.

Figure 14 shows that the cost of manual adaptation is much higher than the cost of
semi automating the evolution process. The divergence becomes higher especially for
large scenarios such as scenario 1 and 4 or scenarios with many events such as sce-
nario 2, in which the administrator must manually detect a large number of affected
activities or handle a large number of events.

Fig. 14. Manual (OMC) and Semi-automatic (OAC) Adaptation Cost per ETL Scenario

Fig. 15. Cost of Adaptation with and without use of Default Policies

Furthermore, to decrease the annotation cost, AG, we applied system wide default
policies on the graph. With use of default policies, the annotation cost, AG, decreases
to the number of explicit annotations of nodes that violates the default behavior. We,
again, measured the number of explicit annotations as well as the remaining RMC. As
shown in figure 15, the cost of adaptation with use of our framework is further

170 G. Papastefanatos et al.

decreased, when default policies are used. With use of default policies, the overall
adaptation cost is dependent neither to the scenario size (e.g., number of nodes) nor to
the number of evolution events, but rather to the number of policies, deviating from
the default behavior, that are imposed on the graph. Scenarios 1 and 4 comprised
more cases for which the administrator should override the default system policies
and thus, the overall cost is relatively high. On the contrary, in scenarios 2 and 3 the
adaptation is achieved better by a default policy annotation, since the majority of the
affected activities react in a uniform way (i.e., default) to evolution events.

7 Related Work

Evolution. A number of research works are related to the problems of database
schema evolution. In [21] a survey on schema versioning and evolution is presented,
whereas a categorization of the overall issues regarding evolution and change in data
management is presented in [20]. The problem of view adaptation after redefinition is
mainly investigated in [2, 8, 12] where changes in views definition are invoked by the
user and rewriting is used to keep the view consistent with the data sources. In [9] the
authors discuss versioning of star schemata, where histories of the schema are re-
tained and queries are chronologically adjusted to ask the correct schema. [2] deals
also with warehouse adaptation, but only for SPJ views. [13] deals with the view
synchronization problem, which considers that views become invalid after schema
changes in their definition. The authors extend SQL, enabling the user to define evo-
lution parameters characterizing the tolerance of a view towards changes and how
these changes will be dealt with during the evolution process. Also, the authors pro-
pose an algorithm for rewriting views based on interrelationships between different
data sources. In this context, our work can be compared with that of [13] in the sense
that policies act as regulators for the propagation of schema evolution on the graph
similarly to the evolution parameters introduced in [13]. We furthermore extend this
approach to incorporate attribute additions and the treatment of conditions. Note that
all algorithms for rewriting views when the schema of their source data change (e.g.,
[2,8]), are orthogonal to our approach. This is due to the fact that our algorithm stops
at status determination and does not perform any rewritings. A designer can apply any
rewriting algorithm, provided that he pays the annotation effort that each of the meth-
ods of the literature requires (e.g., LAV/GAV/GLAV or any other kind of metadata
expressions) For example, such an expression could be stating that two select-project
fragments of two relations are semantically equivalent. Due to this generality, our
approach can be extended in the presence of new results on such algorithms.

A short, first version of this paper appears in [15] where (a) the graph model is pre-
sented and (b) the general framework is informally presented. [15] sketches the basic
concepts of a framework for annotating the database graph with policies concerning the
behaviour of nodes in the presence of hypothetical changes. In this paper, we extend the
above work in the following ways. First, we elaborate an enriched version of the graph
model, by incorporating DML statements. ETL activities utilize DML statements for
storing temporary or filtering out redundant data; thus, the incorporation of such state-
ment complements the representation of ETL workflows. Second, we present the mecha-
nism for impact prediction in much more detail, both in terms of the algorithmic internals
and in terms of system architecture. In this context, we also give a more elaborate version

 Policy-Regulated Management of ETL Evolution 171

of the algorithm for the propagation of changes. Third, the discussions on the manage-
ment of incomplete or overriding policies are novel in this paper. Finally, we present a
detailed experimental study for the above that is not present in [15].

Model mappings. Model management [3, 4], provides a generic framework for man-
aging model relationships, comprising three fundamental operators: match, diff and
merge. Our proposal assigns semantics to the match operator for the case of model
evolution, where the source model of the mapping is the original database graph and
the target model is the resulting database graph, after evolution management has taken
place. Velegrakis at al., have proposed a similar framework, namely ToMas, for the
management of evolution. Still, the model of [24] is more restrictive, in the sense that
it is intended towards retaining the original semantics of the queries by preserving
mappings consistent when changes occur. Our work is a larger framework that allows
the restructuring of the database graph (i.e., model) either towards keeping the origi-
nal semantics or towards its readjustment to the new semantics. Lastly, in [7],
AutoMed, a framework for managing schema evolution in data warehouse environ-
ments is presented. They introduce a schema transformation-based approach to handle
evolution of the source and the warehouse schema. Complex evolution events are
expressed as simple transformations comprising addition, deletion, renaming, expan-
sion and contraction of a schema construct. They also deal with the evolution of
materialized data with use of IQL, a functional query language supporting several
primitive operators for manipulating lists. Both [24] and [7] can be used orthogonally
to our approach for the case that affected constructs must preserve the old semantics
(i.e., block policy in our framework) or for the case that complex evolution events
must be decomposed into a set of elementary transformations, respectively.

8 Conclusions

In this paper, we have dealt with the problem of impact prediction of schema changes in
data warehouse environments. The strong flavor of inter-module dependency in the
back stage of a data warehouse makes the problem of evolution very important under
these settings. We have presented a graph model that suitably models the different con-
structs of an ETL workflow and captures DML statements. We have provided a formal
method for performing impact prediction for the adaptation of workflows to evolution
events occurring at their sources. Appropriate policies allow the automatic readjustment
of the graph in the presence of potential changes. Finally, we have presented our proto-
type based on the proposed framework and we have experimentally assessed our ap-
proach with respect to its effectiveness and efficiency over real-world ETL workflows.

Acknowledgments

We would like to thank the anonymous reviewers for their suggestions on the struc-
ture and presentation of the paper, which have improved the paper a lot.

References

1. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of schema
evolution in object-oriented databases. In: Proc. ACM Special Interest Group on Manage-
ment of Data, pp. 311–322 (1987)

172 G. Papastefanatos et al.

2. Bellahsene, Z.: Schema evolution in data warehouses. Knowledge and Information Sys-
tems 4(3), 283–304 (2002)

3. Bernstein, P., Levy, A., Pottinger, R.: A Vision for Management of Complex Models. SIG-
MOD Record 29(4), 55–63 (2000)

4. Bernstein, P., Rahm, E.: Data warehouse scenarios for model management. In: Laender,
A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 1–15. Springer,
Heidelberg (2000)

5. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional Data-
bases. In: Proc. First International Conference on Data Warehousing and Knowledge Dis-
covery (DAWAK 1999), pp. 153–164 (1999)

6. Bouzeghoub, M., Kedad, Z.: A logical model for data warehouse design and evolution. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp.
178–188. Springer, Heidelberg (2000)

7. Fan, H., Poulovassilis, A.: Schema Evolution in Data Warehousing Environments – A
Schema Transformation-Based Approach. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling,
T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 639–653. Springer, Heidelberg (2004)

8. Gupta, A., Mumick, I.S., Rao, J., Ross, K.A.: Adapting materialized views after redefini-
tions: Techniques and a performance study. Information Systems J. 26(5), 323–362 (2001)

9. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema Versioning in Data Ware-
houses. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS,
vol. 3288, pp. 415–428. Springer, Heidelberg (2004)

10. Kaas, C., Pedersen, T.B., Rasmussen, B.: Schema Evolution for Stars and Snowflakes. In:
Sixth Int’l. Conference on Enterprise Information Systems (ICEIS 2004), pp. 425–433 (2004)

11. Liu, C.T., Chrysanthis, P.K., Chang, S.K.: Database schema evolution through the specifi-
cation and maintenance of changes on entities and relationships. In: Loucopoulos, P. (ed.)
ER 1994. LNCS, vol. 881, pp. 132–151. Springer, Heidelberg (1994)

12. Mohania, M., Dong, D.: Algorithms for adapting materialized views in data warehouses.
In: Proc. International Symposium on Cooperative Database Systems for Advanced Appli-
cations (CODAS 1996), pp. 309–316 (1996)

13. Nica, A., Lee, A.J., Rundensteiner, E.A.: The CSV algorithm for view synchronization in
evolvable large-scale information systems. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso,
G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 359–373. Springer, Heidelberg (1998)

14. Papastefanatos, G., Vassiliadis, P., Vassiliou, Y.: Adaptive Query Formulation to Handle
Database Evolution. In: Proc. Forum of the Eighteenth Conference on Advanced Informa-
tion Systems Engineering (CAISE 2006) (2006)

15. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: What-if analysis for data
warehouse evolution. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654, pp. 23–33. Springer, Heidelberg (2007)

16. Papastefanatos, G., Kyzirakos, K., Vassiliadis, P., Vassiliou, Y.: Hecataeus: A Framework
for Representing SQL Constructs as Graphs. In: Proc. Tenth International Workshop on
Exploring Modeling Methods in Systems Analysis and Design (held with CAISE) (2005)

17. Papastefanatos, G., Anagnostou, F., Vassiliadis, P., Vassiliou, Y.: Hecataeus: A What-If
Analysis Tool for Database Schema Evolution. In: Proc. Twelfth European Conference on
Software Maintenance and Reengineering (CSMR 2008) (2008)

18. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Aggistalis, K., Pechlivani, F., Vassiliou,
Y.: Language Extensions for the Automation of Database Schema Evolution. In: 10th In-
ternational Conference on Enterprise Information Systems (ICEIS 2008) (2008)

 Policy-Regulated Management of ETL Evolution 173

19. Ra, Y.G., Rundensteiner, E.A.: A transparent object-oriented schema change approach us-
ing view evolution. In: Proc. Eleventh International Conference on Data Engineering
(ICDE 1995), pp. 165–172 (1995)

20. Roddick, J.F., et al.: Evolution and Change in Data Management - Issues and Directions.
SIGMOD Record 29(1), 21–25 (2000)

21. Roddick, J.F.: A survey of schema versioning Issues for database systems. Information
Software Technology J. 37(7) (1995)

22. Simitsis, A., Vassiliadis, P., Terrovitis, M., Skiadopoulos, S.: Graph-based modeling of
ETL activities with multi-level transformations and updates. In: Tjoa, A.M., Trujillo, J.
(eds.) DaWaK 2005. LNCS, vol. 3589, pp. 43–52. Springer, Heidelberg (2005)

23. Tsichritzis, D., Klug, A.C.: The ANSI/X3/SPARC DBMS Framework Report of the Study
Group on Database Management Systems. Information Systems 3(3), 173–191 (1978)

24. Velegrakis, Y., Miller, R.J., Popa, L.: Preserving mapping consistency under schema
changes. VLDB J. 13(3), 274–293 (2004)

25. Zicari, R.: A framework for schema update in an object-oriented database system. In: Proc.
Seventh International Conference on Data Engineering (ICDE 1991), pp. 2–13 (1991)

Appendix

In Table A.1, the statuses, i.e., the actions dictated at the detailed level of nodes, as-
signed to visited nodes by Propagate Changes Algorithm for combinations of events
and types of nodes are shown, when propagate policy prevails on the visited node.
For each status the new event induced by the assignment of a node with status, which
is further propagated to the graph, is also shown.

Table A.1. Statuses assigned to nodes when propagate policy prevails

Event on the
graph

On node Scope1 Status Raised Event

R/V/Q
None

affected
N/A N/A N/A

R S Add Child Add Attribute

V S Add Child Add Attribute A

Q S Add Child Add Attribute

R C Add Child Add Condition

V S, P
Add Child,

Modify Provider
Add Condition, Modify

Condition

Q S, P
Add Child,

Modify Provider
Add Condition, Modify

Condition

C

A S Add Child Add Condition

V S, P
Add Child,

Modify Provider
Add GB, Modify GB

GB
Q S, P

Add Child,
Modify Provider

Add GB, Modify GB

V S, P
Add Child,

Modify Provider
Add OB, Modify OB

Add

OB
Q S, P

Add Child,
Modify Provider

Add OB, Modify OB

174 G. Papastefanatos et al.

R R S Delete Self Delete Relation2

V V S Delete Self Delete View2

Q Q S Delete Self Delete Query2

R C Delete Child None

V C Delete Child None

Q C Delete Child None

A S Delete Self Delete Attribute

C P Delete Self Delete Condition

F P Delete Self Delete Function

GB P
Delete Self,
Modify Self3

Delete GB, Modify GB

A

OB P
Delete Self,
Modify Self3

Delete OB, Modify OB

R C Delete Child Delete Condition

V C, P
Delete Child,

Modify Provider
Delete Condition, Modify

Condition

Q C, P
Delete Child,

Modify Provider
Delete Condition, Modify

Condition

A C Delete Child Delete Condition

C

C S, C
Delete Self,
Delete Child

Delete Condition, Modify
Condition

A C Delete Self Delete Attribute

C C Delete Self Delete Condition

F C Delete Self Delete Function

GB C
Delete Self,
Modify Self3

Delete GB, Modify GB

F

OB C
Delete Self,
Modify Self3

Delete OB, Modify GB

V C, P
Delete Child,

Modify Provider
Delete GB, Modify GB

Q C, P
Delete Child,

Modify Provider
Delete GB, Modify GB GB

GB S Delete Self Delete GB

V C, P
Delete Child,

Modify Provider
Delete OB, Modify OB

Q C, P
Delete Child,

Modify Provider
Delete OB, Modify OB

Delete

OB

OB S Delete Self Delete OB

 Policy-Regulated Management of ETL Evolution 175

R S Rename Self Rename Relation

V P Rename Provider None R

Q P Rename Provider None

V S Rename Self Rename View
V

Q P Rename Provider None

R C Rename Child None

V C Rename Child None

Q C Rename Child None

A S Rename Self Rename Attribute

C P Rename Provider None

F P Rename Provider None

GB P Rename Provider None

Rename

A

OB P Rename Provider None

R C Modify Child None

V C Modify Child None

Q C Modify Child None

A S Modify Self Modify Attribute

C P Modify Provider Modify Condition

F P Modify Provider Modify Function

GB P Modify Provider Modify GB

Modify
Domain

A

OB P Modify Provider Modify OB

176 G. Papastefanatos et al.

R C Modify Child Modify Condition

V C, D
Modify Child,

Modify Provider
Modify Condition

Q C, D
Modify Child,

Modify Provider
Modify Condition

A C Modify Child Modify Condition

C

C S, C
Modify Self,
Modify Child

Modify Condition

A C Modify Self Modify Attribute

C C Modify Self Modify Condition

GB C Modify Self Modify GB
F

OB C Modify Self Modify OB

V C, D
Modify Child,

Modify Provider
Modify GB

GB
Q C, D

Modify Child,
Modify Provider

Modify GB

V C, D
Modify Child,

Modify Provider
Modify OB

OB
Q C, D

Modify Child,
Modify Provider

Modify OB

P S Modify Self Modify Parameter

Modify

P
C C Modify Self Modify Condition

1Scope: S (SELF), C(CHILD), P(PROVIDER)
2All attributes in the schema are first deleted before Delete Relation, Delete View and Delete Query
events occur.
3The value for the status depends on whether GB / OB node have other children. If no other children
exist then Delete GB/OB is assigned, Modify GB/OB otherwise.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

