
Meshing Streaming Updates with Persistent
Data in an Active Data Warehouse

Neoklis Polyzotis, Member, IEEE, Spiros Skiadopoulos, Panos Vassiliadis, Member, IEEE,

Alkis Simitsis, and Nils-Erik Frantzell

Abstract—Active Data Warehousing has emerged as an alternative to conventional warehousing practices in order to meet the high

demand of applications for up-to-date information. In a nutshell, an active warehouse is refreshed online and thus achieves a higher

consistency between the stored information and the latest data updates. The need for online warehouse refreshment introduces

several challenges in the implementation of data warehouse transformations, with respect to their execution time and their overhead to

the warehouse processes. In this paper, we focus on a frequently encountered operation in this context, namely, the join of a fast

stream S of source updates with a disk-based relation R, under the constraint of limited memory. This operation lies at the core of

several common transformations such as surrogate key assignment, duplicate detection, or identification of newly inserted tuples. We

propose a specialized join algorithm, termed mesh join (MESHJOIN), which compensates for the difference in the access cost of the two

join inputs by 1) relying entirely on fast sequential scans of R and 2) sharing the I/O cost of accessing R across multiple tuples of S. We

detail the MESHJOIN algorithm and develop a systematic cost model that enables the tuning of MESHJOIN for two objectives:

maximizing throughput under a specific memory budget or minimizing memory consumption for a specific throughput. We present an

experimental study that validates the performance of MESHJOIN on synthetic and real-life data. Our results verify the scalability of

MESHJOIN to fast streams and large relations and demonstrate its numerous advantages over existing join algorithms.

Index Terms—Active data warehouse, join, MESHJOIN, streams, relations.

Ç

1 INTRODUCTION

DATA warehouses are typically refreshed in a batch (or
offline) fashion: The updates from data sources are

buffered during working hours and then loaded through
the Extraction-Transformation-Loading (ETL) process when
the warehouse is quiescent (e.g., overnight). This clean
separation between querying and updating is a funda-
mental assumption of conventional data warehousing
applications and clearly simplifies several aspects of the
implementation. The downside, of course, is that the
warehouse is not continuously up to date with respect to
the latest updates, which in turn implies that queries may
return answers that are essentially stale.

To address this issue, recent works have introduced
the concept of active (or real-time) data warehouses [1], [2],
[3], [4]. In this scenario, all updates to the production
systems are propagated immediately to the warehouse

and incorporated in an online fashion. This paradigm
shift raises several challenges in implementing the ETL
process, since it implies that transformations need to be
performed continuously as update tuples are streamed in
the warehouse.

We illustrate this point with the common transformation
of surrogate key generation, where the source-dependent
key of an update tuple is replaced with a uniform ware-
house key. This operation is typically implemented by
joining the source updates with a look-up table that stores
the correspondence between the two sets of keys. Fig. 1
shows an example, where the keys of two sources (column
id in relations R1 and R2) are replaced with a warehouse-
global key (column skey in the final relation). In a
conventional warehouse, the tuples of R1 and R2 would
be buffered, and the join would be performed with a
blocking algorithm in order to reduce the total execution
time for the ETL process. An active warehouse, on the other
hand, needs to perform this join as the tuples of R1 and R2

are propagated from the operational sources. A major
challenge, of course, is that the inputs of the join have
different access costs and properties: the tuples of R1 and R2

arrive at a fast rate and must be processed in a timely
fashion, while look-up tuples are retrieved from the disk
and are thus more costly to process.

Consider also the case of the identification of newly
inserted tuples. Frequently, the population of either smaller
dimension tables or bigger parts of the data warehouse is
not realized in an incremental fashion. Instead, each time,
complete snapshots of the source records are sent to the
data staging area, where they are used in order to detect the
changes from the previous load. This operation is preferred
in various cases, e.g., when the source system should not be

976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

. N. Polyzotis is with the Computer Science Department, University of
California at Santa Cruz, MS: SOE3, 1156 High Street, Santa Cruz, CA
95064. E-mail: alkis@soe.ucsc.edu.

. S. Skiadopoulos is with the Department of Computer Science and
Technology, University of Peloponnese, Karaiskaki Str., 22100, Tripoli,
Hellas. E-mail: spiros@uop.gr.

. P. Vassiliadis is with the Department of Computer Science, University of
Ioannina, Ioannina, 45110, Hellas. E-mail: pvassil@cs.uoi.gr.

. A. Simitsis is with Advanced Data Services, IBM Almaden Research
Center, 650 Harry Road, San Jose, CA 95120.
E-mail: asimits@us.ibm.com.

. N.-E. Frantzell is with Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052. E-mail: n_frantzell@yahoo.com.

Manuscript received 9 Mar. 2007; revised 19 Oct. 2007; accepted 19 Dec.
2007; published online 18 Jan. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-05-0206.
Digital Object Identifier no. 10.1109/TKDE.2008.27.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

overloaded with the extraction task, in the presence of
legacy source systems, due to short time windows available
for the ETL process, and so forth. In such cases, the
difference between the previous snapshot of the data, R,
and the updated one, S, produces either the newly inserted
records ðS-RÞ or the deleted records ðR-SÞ. (In both cases,
the updates are included in the result.) In terms of
implementation, this operation is a join. For instance,
assume the identification of the newly inserted records.
For each record of S, a record in R should be probed, and
the tuples of S that do not join with R populate the output
of the join. In our setting, in the case of active ETL, we have
a stream S of tuples probing the existing snapshot, a
relation R through a join operator.

The previous examples are the characteristic of several
common transformations that take place in an active ETL
process such as duplicate detection or difference operation.
Essentially, we can identify S fflC R as a core operation,
where S is the relation of source updates, R is a large disk-
resident warehouse relation, and the join condition C
depends on the semantics of the transformation. An active
warehouse requires the evaluation of this expression online,
i.e., as the tuples of S are streamed from the operational
sources, in order to ensure that the updates are propagated
in a timely fashion. The major challenge, of course, is
handling the potentially fast arrival rate of S tuples relative
to the slow I/O access of R. Moreover, the join algorithm
must operate under limited memory since the enclosing
transformation is chained to other transformations that are
also executed concurrently (and in the same pipelined
fashion).

A natural question is whether we can adapt existing join
algorithms to this setting. Consider, for instance, the
Indexed Nested Loops (INL) algorithm, where S is accessed
one tuple a time (outer input), and R is accessed with a
clustered index on the join attribute (inner input). This
setup satisfies our requirements, as S does not need to be
buffered, and the output of the join is generated in a
pipelined fashion. Still, the solution is not particularly
attractive since: 1) it may require the (potentially expensive)
maintenance of an additional index on R, and most
importantly, 2) probing the index with update tuples incurs
expensive random I/Os. The latter affects the ability of the
algorithm to keep up with the fast arrival rate of source
updates and thus limits severely the efficacy of INL as a
solution for active data warehousing. We note that similar
observations can be made for blocking join algorithms such
as sort-merge and hash join. While it is possible to adapt
them to this setting, it would require a considerable amount

of disk buffering for S tuples, which in turn would slow
down the join operation.

Motivated by these observations, we introduce a
specialized join algorithm, termed MESHJOIN, that joins a
fast update stream S with a large disk resident relation R
under the assumption of limited memory. As we stressed
earlier, this is a core problem for active ETL transforma-
tions, and its solution is thus an important step toward
realizing the vision of active data warehouses. MESHJOIN

applies to a broad range of practical configurations: it
makes no assumption of any order in either the stream or
the relation; no indexes are necessarily present; the
algorithm uses limited memory to allow multiple opera-
tions to operate simultaneously; the join condition is
arbitrary (equality, similarity, range, etc.); the join relation-
ship is general (i.e., many-to-many, one-to-many, or many-
to-one); and the result is exact. More concretely, our
technical contributions can be summarized as follows:

. MESHJOIN algorithm. We introduce the MESHJOIN

algorithm for joining a fast stream S of source
updates with a large warehouse relation R. Our
proposed algorithm relies on two basic techniques in
order to increase the efficiency of the necessary disk
accesses: 1) it accesses R solely through fast sequen-
tial scans, and 2) it amortizes the cost of I/O
operations over a large number of stream tuples. As
we show in this article, this enables MESHJOIN to
scale to very high stream rates while maintaining a
controllable memory overhead.

. MESHJOIN performance model. We develop an
analytic model that correlates the performance of
MESHJOIN to two key factors, namely, the arrival
rate of update tuples and the memory that is
available to the operator. In turn, this provides the
foundation for tuning the operating parameters of
MESHJOIN for two commonly encountered objec-
tives: maximizing processing speed for a fixed
amount of memory and minimizing memory con-
sumption for a fixed speed of processing.

. Approximate join processing. We examine the use
of tuple shedding in order to cope with an update
arrival rate that exceeds the service rate of MESH-

JOIN under the allotted memory. We consider
several strategies and the scenarios for which they
are suitable, and we examine in more detail the
family of strategies that attempt to minimize the
absolute number of missed results. In this context,
we introduce the TOPW online strategy, and we
analyze the optimal offline strategy that has a priori
knowledge of the complete update stream.

. Experimental study of MESHJOIN. We verify the
effectiveness of our techniques with an extensive
experimental study on synthetic and real-life data
sets of varying characteristics. Our results demon-
strate the effectiveness of MESHJOIN and its advan-
tages over existing approaches.

The remainder of the paper is structured as follows: In
Section 2, we define the problem more precisely and discuss
the requirements for an effective solution. Section 3
provides a detailed definition of the proposed algorithm,

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 977

Fig. 1. Surrogate key generation.

including its analytical cost model and its tuning for
different objectives. Section 4 examines the problem of
approximate join processing and discusses different shed-
ding strategies. We present our experimental study in
Section 5 and cover related work in Section 6. We conclude
the paper in Section 7.

2 PRELIMINARIES AND PROBLEM DEFINITION

We consider a data warehouse and, in particular, the
transformations that occur during the ETL process. Several
of these transformations (e.g., surrogate key assignment,
duplicate detection, or identification of newly inserted
tuples) can be mapped to the operation S fflC R, where S
is the relation of source updates, R is a large relation stored
in the data staging area, and C depends on the transforma-
tion. To simplify our presentation, we henceforth assume
that C is an equality condition over specific attributes of S
and R and simply write S ffl R to denote the join. As we
discuss later, our techniques are readily extensible to
arbitrary join conditions.

Following common practice, we assume that R remains
fixed during the transformation, or alternatively that it is
updated only when the transformation has completed.
Clearly, there may be cases where R is updated frequently,
and this raises the interesting problem of evaluating S ffl R
in the presence of a concurrent stream of updates. We focus
our work on the case where R is fixed since we consider it a
first step toward the development of a more general
solution. As we see later, this variant of the problem
already poses several interesting and challenging technical
issues. We make no assumptions about the physical
characteristics of R, e.g., the existence of indices or its
clustering properties, except that it is too large to fit in the
main memory. Thus, the solution that we develop is
applicable in a wide range of settings. Of course, it may
be possible to design more effective join operators that take
into account the particular physical characteristics of R. We
consider this to be an interesting venue for future work.

Since our focus is active warehousing, we assume that
the warehouse receives S from the operational data sources
in an online fashion. Thus, we henceforth model S as a
streaming input and use � to denote the (potentially
variable) arrival rate of update tuples. Following common
practice, we are interested in cases where the contents of the
stream are not affected by changes in other streams of
updates coming from other sources; in other words, the
records propagated to the mesh-join module are conflict-
free, and any possible transactional conflicts are resolved by
the appropriate synchronization policies outside the join
module [5].

Given our goal of real-time updates, we wish to compute
the result of S ffl R in a streaming fashion as well, i.e.,
without buffering S first. (Buffering would correspond to
the conventional batch approach.) We assume a restricted
amount of available memory Mmax that can be used for the
processing logic of the join. Combined with the (potentially)
high arrival rate of S, it becomes obvious that the join
algorithm can perform limited buffering of stream tuples in
main memory and thus has stringent time constraints for
examining each stream tuple and computing its join results.

(A similar observation can be made for buffering S tuples
on the disk, given the relatively high cost of disk I/O.) We
also assume that the available memory is a small fraction of
the relation size, and hence, the join algorithm has limited
resources for buffering data from R as well.

We consider two metrics of interest for a specific join
algorithm: the service rate � and the consumed memory M.
The service rate � is simply defined as the highest stream
arrival rate that the algorithm can handle and is equivalent
to the throughput in terms of processed tuples per second.
The amount of memory M, on the other hand, relates the
performance of the algorithm to the resources that it
requires. (We assume that M �Mmax.) Typically, we are
interested in optimizing one of the two metrics given a fixed
value for the other. Hence, we may wish to minimize the
required memory for achieving a specific service rate or to
maximize the service rate for a specific memory allocation.

Summarizing, the problem that we tackle in this paper

involves 1) the introduction of an algorithm that evaluates the

join of a fixed disk-based warehouse relation with a stream of

source updates without other assumptions for the stream or the

relation, and 2) the characterization of the algorithm’s perfor-

mance in terms of the service rate and the required memory

resources.

3 MESH JOIN

In this section, we introduce the MESHJOIN algorithm for
joining a stream S of updates with a large disk-resident
relation R. We describe the mechanics of the algorithm,
develop a cost model for its operation, and finally discuss
how the algorithm can be tuned for two metrics of interest,
namely, the arrival rate of updates and the required
memory.

3.1 Algorithm Definition

Before describing the MESHJOIN algorithm in detail, we
illustrate its key idea using a simplified example. Observe
the example in Fig. 1, where a table Lookup is employed to
assign surrogate keys to incoming factual tuples. Assume a
table Sales recording sales and a stream of newly inserted
source data, which are joined to the tuples of Lookup in
order to trade their production key ðidÞ with a data
warehouse globally unique key ðskeyÞ before being loaded
to relation Sales. In the rest, we will refer to the relation
Lookup as R and to the stream of newly inserted source
sales as S. Assume that R contains two pages (p1 and p2)
and that the join algorithm has enough memory to store a
window of the two most recent tuples of the stream. For this
example, we will assume that the join processing can keep
up with the arrival of new tuples. The operation of the
algorithm at different time instants is shown in Fig. 2 and
can be described as follows:

. At time t ¼ 0, the algorithm reads in the first stream
tuple s1 and the first page p1 and joins them in
memory.

. At time t ¼ 1, the algorithm brings in memory the
second stream tuple s2 and the second page p2. At
this point, page p2 is joined with two stream tuples.

978 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Moreover, stream tuple s1 has been joined with all
the relation and can be discarded from memory.

. At time t ¼ 2, the algorithm accesses again both
inputs in tandem and updates the in-memory tuples
of R and S. More precisely, it resumes the scan of the
relation, brings in page p1, and simultaneously
replaces tuple s1 with the next stream tuple s3. Page
p1 is thus joined with s2 and s3, and tuple s2 is
discarded as it has been joined with all the pages inR.

The previous example demonstrates the crux behind our
proposed MESHJOIN algorithm: The two inputs are ac-
cessed continuously and meshed together in order to
generate the results of the join. More precisely, MESHJOIN

performs a cyclic scan of relation R and joins its tuples with
a sliding window over S. The main idea is that a stream
tuple enters the window when it arrives and is expired from
the window after it has been probed with every tuple in R
(and hence, all of its results have been computed). Fig. 3
shows a schematic diagram of this technique and depicts
the main data structures used in the algorithm. As shown,
MESHJOIN performs the continuous scan of R with an input
buffer of b pages. To simplify our presentation, we assume
that the number of pages in R is equal to NR ¼ k � b for some
integer k, and hence, the scan wraps to the beginning of R
after k read operations. Stream S, on the other hand, is
accessed in batches of w tuples that are inserted in the
contents of the sliding window. (Each insert, of course,
causes the displacement of the “oldest” w tuples in the
window.) To efficiently find the matching stream tuples for
each R-tuple, the algorithm synchronously maintains a hash
table H for the in-memory S-tuples based on their join key.
Finally, queue Q contains pointers to the tuples in H and
essentially records the arrival order of the batches in the
current window. This information is used in order to
remove the oldest w tuples from H when they are expired
from the window.

Fig. 4 shows the pseudocode of the MESHJOIN algorithm.
On each iteration, the algorithm reads w newly arrived
stream tuples and b disk pages of R, joins the R-tuples with
the contents of the sliding window, and appends any
results to the output buffer. The main idea is that the
expensive read of the b disk pages is amortized over all the
wNR=b stream tuples in the current window, thus balancing
the slow access of the relation against the fast arrival rate of
the stream.

The following theorem formalizes the correctness of the
algorithm. The proof appears in Appendix A.1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2008.27.

Theorem 3.1. MESHJOIN correctly computes the exact join
between a stream and a relation.

A natural question is whether MESHJOIN requires a
bounded amount of memory in order to process its
streaming input and generate the correct result. In parti-
cular, this concerns the buffering of new S tuples as the
algorithm is performing the current iteration. Here, we can
make the following intuitive observation. For a given
relation R, the service rate of MESHJOIN (essentially, the
time to perform one iteration) depends on the values of w
and b. (We discuss the computation of � based on w and b
later.) By treating the operator as a queuing system, we can
state that the amount of required memory is bounded
provided that � � �, i.e., the join operator can keep up with the
arrival rate of the stream. We examine this point further in the
subsequent section, where we develop an analytical model
for the performance of MESHJOIN and use it to tune the
service rate � based on the arrival rate �.

3.2 Cost Model

In this section, we develop a cost model for MESHJOIN. Our
cost model provides the necessary analytical tools to
interrelate the following key parameters of the problem:
1) the stream rate �, 2) the service rate � of the join, and
3) the memory M used by the operator. Our goal will be to
link these parameters to the operating parameters of
MESHJOIN, namely, the number of stream tuples w that
update the sliding window, and the number of pages b that
can be stored in the relation buffer. The eventual goal is to
employ this cost model in order to tune the parameters of

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 979

Fig. 2. Operation of MESHJOIN.

Fig. 3. Data structures and architecture of MESHJOIN.

Fig. 4. Algorithm MESHJOIN.

the algorithm based on the characteristics of the input. The

notation used in our discussion is summarized in Table 1.
The total memory M required by MESHJOIN can be

computed by summing up the memory used by the buffers,

the hash table H, and the queue Q. We can easily verify that

1. the buffer of R uses b � vP bytes,
2. the buffer of S uses w � vS bytes,
3. the queue Q uses w � NR

b � sizeofðptrÞ bytes (where
sizeofðptrÞ is the size of a pointer), and

4. the hash table H uses w � f � NR

b � vS bytes (where f is
the fudge factor of the hash table implementation).

Thus, we have

M ¼ b � vP þ w � vS þ w �
NR

b
� sizeofðptrÞ

þ w � f �NR

b
� vS �Mmax:

ð1Þ

The previous equation describes the effect of w and b on

the memory consumed by MESHJOIN. Next, we analyze the

effect of w and b on the processing speed of the operator.

We use cloop to denote the cost of a single iteration of the

MESHJOIN algorithm and express it as the sum of costs for

the individual operations. In turn, the cost of each operation

is expressed in terms of w, b, and an appropriate cost factor

that captures the corresponding CPU or I/O cost. These cost

factors are listed in Table 1 and are straightforward to

measure in an actual implementation of MESHJOIN. In total,

we can express the cost cloop as follows:

cloop ¼ cI=OðbÞþ ðRead b pagesÞ
w � cEþ ðExpire w tuples from Q and HÞ
w � cSþ ðRead w tuples from the stream bufferÞ
w � cAþ ðAdd w tuples to Q and HÞ

b
vP
vR
cHþ ðProbe H with R-tuplesÞ

�b
vP
vR
cO ðConstruct resultsÞ:

ð2Þ

Every cloop seconds, algorithm MESHJOIN handles

w tuples of the stream with b I/Os to the hard disk. Thus,

the service rate � of the join module (i.e., the number of

tuples per second processed by MESHJOIN) is given by the

following formula:

� ¼ w

cloop
: ð3Þ

Moreover, the number of read requests per stream tuple

and per time unit (denoted as IOs and IOt, respectively) are

given by the following formulas:

IOs ¼
b

w
and IOt ¼

b

cloop
: ð4Þ

The expression of IOs demonstrates the amortization of

the I/O cost over multiple stream tuples. Essentially, the

cost of sequential access to b pages is shared among all the

w tuples in the new batch, thus increasing the efficiency of

accessing R. We can contrast this with the expected I/O cost

of an INLs algorithm, where the index probe for each

stream tuple is likely to cause at least one random I/O

operation in practice. This difference is indicative of the

expected benefits of our approach.
Finally, from (3) and the basic observation that � � �, we

can derive the relation between �, cloop, and w:

� � �) �cloop � w: ð5Þ

By substituting the expression for cloop, we arrive at an

inequality that links w and b to the arrival rate of the stream.

Combined with (1) that links w and b to the memory

requirements of the operator, the previous expression forms

our basic tool for tuning the parameters of MESHJOIN

according to different objectives.

3.3 Tuning

We now describe the application of our cost model to the

tuning of the MESHJOIN algorithm. We investigate how we

can perform constrained optimization on two important

objectives: minimizing the amount of required memory

given a desirable service rate � and maximizing the service

rate �, assuming that memory M is fixed. As described

earlier, our goal is to achieve these optimizations by

essentially modifying the parameters w and b of the

algorithm. In the remainder of our discussion, we will

assume that we have knowledge of the first set of

parameters shown in Table 1, i.e., the physical properties

of the stream and the relation, and the basic cost factors of

our algorithm’s operations. The former can be known

exactly from the metadata of the database, while the latter

can be measured with microbenchmarks.
In what follows, we discuss the details of the tuning

methodology. We first examine the offline case, where the

parameters of the algorithm are tuned before the start of

join processing based on the predicted characteristics of the

stream. We then extend our discussion to online tuning,

where the algorithm continuously monitors the character-

istics of the stream and adapts on the fly the parameters of

the join.

980 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

TABLE 1
Notation of the Cost Model

Offline tuning. As mentioned earlier, we consider two
objectives when tuning MESHJOIN: minimizing memory
consumption and maximizing the service rate.

Minimizing M. In this case, we assume that the stream
rate � is known, and we want to achieve a matching service
rate � ¼ � using the least amount of memory M. The
following observations devise a simple methodology for
this purpose:

1. M depends linearly on w (1). Therefore, to minimize
M, we have to minimize w.

2. The minimum value for w is specified by (5) as
follows: w ¼ �cloop. This value corresponds to the
state of the algorithm where the service rate of
MESHJOIN is tuned to be exactly the as with the
stream rate, i.e., � ¼ �.

3. The previous expression allows to solve for w and
substitute the result in (1), thus specifying M as a
function of b. Using standard calculus methodology,
we can find exactly the value of b that minimizes M.
Given (1), this also implies that we can determine a
suitable value for w for the given b value.

A more intuitive view of the relationship between M and
b is presented in Fig. 5a that shows M as a function of b.
(Note that the curve is plotted for sample values of the cost
factors obtained through simplified measurements. The
actual maxima/minima of the curve may shift depending
on the cost factors, but the asymptotic behavior will remain
the same for realistic scenarios.) As shown, in Fig. 5a,
memory consumption can vary drastically and is mini-
mized for a specific value of b. The key intuition is that there
is an inherent trade-off between b and w for maintaining a
desired processing rate. For small values of b, the efficiency
of I/O operations decreases as it is necessary to perform
more reads of b pages in order to cover the whole relation.
As a result, it is necessary to distribute the cost across a
larger sliding window of stream tuples, which increases
memory consumption. A larger value of b, on the other
hand, allows the operator to maintain an affordable I/O
cost with a small w, but the memory consumption is then
dominated by the input buffer of R. We note that even
though there is a single value of b that minimizes M, it is
more realistic to assume that the system picks a range of
b values that guarantee a reasonable behavior for memory
consumption.

Maximizing �. Here, we assume that the available

memory for the algorithm M is fixed, and we are interested

in maximizing the service rate �. Using the expressions for

M, cloop and � ((1), (2), and (3), respectively), we can specify

� as a function of b and subsequently find the value that

maximizes � using standard calculus methodology.

Fig. 5b shows the derived relationship between � and b

based on the previous methodology. (We employ the same

sample cost factors, as in Fig. 5a.) We observe that �

increases with b up to a certain maximum and then sharply

decreases for larger values. This can be explained as

follows: For small values of b, the efficiency of I/O is

decreased, and the constrained memory M does not allow

the effective distribution of I/O cost across many stream

tuples; moreover, the cost of probing the hash table H

becomes more expensive, as it records a larger number of

tuples. As b gets larger, on the other hand, it is necessary to

decrease w in order to stay within the given memory

budget, and thus, the I/O cost per tuple increases (4). It is

necessary therefore to choose the value of b (and in effect of

w) that balances the efficiency of I/O and probe operations.

Online tuning. Up to this point, we have assumed that

parameters w and b remain fixed for the operation of

MESHJOIN and are thus tuned before the operator begins its

processing. We now consider the online version of the

tuning problem, where a self-tuning mechanism continu-

ously monitors the arrival rate of the stream and dynami-

cally adapts w and b in order to achieve an equal service rate

with the least memory consumption. In this direction, we

introduce an extension of the basic algorithm that can

accommodate the midflight change of b. (The original

algorithm can readily handle a midflight change of w

provided that it does not violate the memory constraints of

the problem.) We term the new algorithm AMESHJOIN and

describe its details in what follows.
The pseudocode for AMESHJOIN is shown in Fig. 6.

We use the notation ½a; bÞ%NR to denote the interval ½a; bÞ
if b < NR or the interval ½a;NRÞ [½0; b%NRÞ otherwise. We

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 981

Fig. 5. (a) Minimizing M (� is fixed), and (b) maximizing � (M is fixed).

Fig. 6. Algorithm AMESHJOIN.

also use ða ¼ bÞ%NR to denote equality under modulo

arithmetic. The algorithm employs a modified queue that

records “packets” of stream tuples that may have

different sizes. For each packet, the queue Q records an

integer startPage 2 ½0; NRÞ. When a packet is enqueued,

startPage is set to the current page counter currPage, and

thus, startPage always records the first page of R that is

joined with the corresponding packet. Similar to MESH-

JOIN, AMESHJOIN reads concurrently from R and S in

every iteration. A main difference, of course, is that the

parameters b and w are set at the beginning of each

iteration instead of being fixed. At the beginning of an

iteration, the algorithm reads the pages in the range

½currPage; currPageþ bÞ%NR and joins them with the

current contents of H. After the join of each page

currPageþ i ð0 � i < bÞ, the algorithm checks whether

page currPageþ i corresponds to the last page that needs

to be joined with the first packet in Q. If so, the packet is

dequeued before the algorithm proceeds with the remain-

ing pages.

Example 3.1. Assume that relation R contains three pages

ðp0; . . . ; p2Þ and that initially w ¼ 1 and b ¼ 1. In what

follows, we describe the operation of AMESHJOIN at

different time instants.
During the first loop ðcurrPage ¼ 0Þ, the algorithm

reads page p0 of R and the first stream tuple s0. Then,
the algorithm places s0 to hash H and ðptrðs0Þ; 0Þ to
queue Q (where ptrðs0Þ is a pointer to s0 in H). Finally,
the algorithm joins p0 and s0 (lines 8-12) and sets
currPage ¼ 1. Summarizing, at the end of the first loop,
we have

At the second loop, AMESHJOIN algorithm reads
pages p1 and the next stream tuple s1. Then, the
algorithm places s1 to hash H and ðptrðs1Þ; 1Þ to
queue Q. Finally, the algorithm joins p1 with s0 and s1

and sets currPage ¼ 2. Summarizing, at the end of the
second loop, we have

Let us assume that b is set to 2 for the third loop of
AMESHJOIN. This change is again initiated by the self-
tuning module that monitors the arrival rate of the
stream. Based on this change, the algorithm reads the
next stream tuple s2 and pages p2 and p0 of R (these
pages correspond to interval ½currPage; currPageþ
bÞ%NR ¼ ½2; 4�%NR ¼ ½2; 3Þ [½0; 1Þ in line 4). Then, the
algorithm places s2 to hash H and ðptrðs2Þ; 2Þ to queue Q
and executes the For loop (lines 8-14) b ¼ 2 times. In the
first iteration, the AMESHJOIN algorithm joins page p2

with s0, s1, and s2. Since s0 is joined with all relation R,
ðs0; 0Þ is dequeued from Q, and the corresponding tuples
are removed from H (lines 9-12). Then, AMESHJOIN

algorithm sets currPage ¼ 0. Thus, we have

In the second iteration ði ¼ 2Þ, the algorithm joins p0 with
s1 and s2. Then, since s1 is joined with all relation R, the
algorithm dequeues ðs1; 1Þ from Q and removes the
corresponding tuples is H (lines 9-12) Finally, AMESH-

JOIN sets currPage ¼ 1. Thus, at the end of the third
loop, we have

The following theorem formalizes the correctness of the
algorithm. (The proof appears in Appendix A.2, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2008.27.)

Theorem 3.2. Let �i be the service rate achieved by AMESHJOIN

in iteration i > 0, based on the corresponding values of b and
w. AMESHJOIN computes correctly S ffl R provided that
�i � �, i > 0.

Using the AMESHJOIN algorithm, we can device a
dynamic tuning mechanism that handles the current arrival
stream rate with the least memory consumption. This
mechanism monitors the arrival stream rate and uses the
cost model of Section 3.2 to identify the minimum memory
M required to sustain the current stream rate and the
respective values for b and w. (These values are used by
AMESHJOIN in its next iteration.) Of course, there are cases
when the system may not be able to satisfy the request for
an increased memory allocation. In this case, AMESHJOIN

can resort to load shedding in order to reduce the effective
stream arrival rate. (We examine this topic in more detail in
Section 4.)

3.4 Extensions

In this section, we discuss possible extensions of the basic
MESHJOIN scheme that we introduced previously.

Ordered join output. The basic algorithm does not
preserve stream order in the output, i.e., the resulting tuples
do not necessarily have the same order as their correspond-
ing input stream tuples. To see this, consider two con-
secutive stream tuples �s and � 0s that have the same join key
and enter the sliding window in the same batch. Assuming
that r1; r2; . . . are the joining R-tuples for �s and � 0s, it is
straightforward to verify that the output stream will have
the form . . . ð�s; r1Þð� 0s; r1Þ . . . ð�s; r2Þð� 0s; r2Þ . . . , whereas an
order-preserving output would group all the results of �s
and � 0s together. For all practical purposes, this situation
does not compromise the correctness of the ETL transfor-
mations that we consider in our work. In those cases, where
the output must observe the input stream order, it is
possible to extend MESHJOIN with a simple buffering
mechanism that attaches the join results to the correspond-
ing entry in H and pushes them to the output when the
tuple is dequeued and expired.

Other join conditions. MESHJOIN can be fine-tuned to
work with other join conditions. The algorithm remains the

982 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

same, as detailed in Fig. 4, and any changes pertain mainly
to the matching of R-tuples to the current contents of the
sliding window (line 10). For an inequality join condition,
for instance, MESHJOIN can simply buffer stream tuples in
Q and process them sequentially for every accessed tuple of
R. It is possible to perform further optimizations to this
baseline approach depending on the semantics of the join
condition. If the latter is a range predicate, for example, then
the buffered stream tuples may be kept ordered to speedup
the matching to R-tuples. Overall, the only requirement is to
maintain the equivalent of queue Q in order to expire tuples
correctly on every iteration.

4 APPROXIMATE JOIN PROCESSING

Up to this point, we have focused on the case where the join
operator is assigned enough memory to withstand the
arrival rate of the stream (Fig. 7a). Due to the typically high
number of data sources, however, it is possible to observe
the converse scenario, that is, a stream arrival rate that
exceeds the maximum service rate of MESHJOIN. One
possible solution in this scenario is approximate query
processing, which essentially trades data completeness with
server resources. As an example, consider a stockbroker
that monitors a report for certain stocks. The report
comprises two parts: 1) the trend of the stock’s price over
the last week and 2) the fluctuation of the stock’s price in
today’s auction with a freshness of 30 minutes. Moreover,
assume that these values are compared to the prices of the
same week in the last three years (i.e., involving a join to a
persistent relation), as well as to overall trends of the stock
market. The report involves a traditional query to the
warehouse for values persistently stored at the appropriate

fact table, along with a continuous query over the updates
sent in the form of a stream by the proper source. Assuming
several data sources and tens to hundreds of end users in
this warehouse, the problem that arises has to do with the
contention for resources between the update procedure and
the end-user reports. In the case that the warehouse server
cannot sustain the overall load, a typical solution is to trade
the 100 percent completeness and consistency of the
incoming streaming data for more resources (I/O, CPU,
memory) that can be shared among the other processes.

Based on these observations, we envision a system
architecture that combines approximate online query
answering with batch offline refreshes. In this architecture,
the ETL process has two variants: a lightweight one, which
is used to provide end users with as fresh data as possible,
perhaps at the cost of answer accuracy, and a regular one
that synchronizes the stored data at the warehouse in order
to guarantee 100 percent completeness and consistency with
respect to the sources. (This can be achieved either offline or
at periods with low user workload and possibly requires
some extra synchronization with the sources as traditionally
happens in ETL processes.)

The lightweight ETL process relies on tuple-shedding,
i.e., dropping a fraction of the incoming stream tuples,1 in
order to match the speed of the join operators to the arrival
rate of the stream. This is shown pictorially in Fig. 7b that
illustrates the relationship among the original arrival rate,
the effective arrival rate (after shedding), and the service
rate. According to the system architecture described earlier,
the data that is shed is stored and propagated to the data
warehouse in a later time through the regular ETL process.

In general, the shedding mechanism has to take into
account the details of the complete workflow in order to
minimize the effect of shedding on the quality of the
approximate results. A variant of this problem has been
explored in the context of streaming data, where the ETL
workflow essentially consists of relational operators. The
problem becomes substantially more complex in our
context due to the generality of ETL operations. Here, we
examine different shedding mechanisms under the assump-
tion that MESHJOIN is the most expensive operation in the
workflow, and the shedder is thus driven by the cost model
of the MESHJOIN operator. The design of shedding
strategies for complex (and active) ETL workflows is an
interesting topic for future work.

4.1 Overview of Problem Space

Formally, let � be the current arrival rate of the stream and
� the current service rate of the algorithm. Based on the cost
model of Section 3.1, this service rate is determined by the
cost cloop of a single iteration and the block size w of stream
tuples that is processed. Hence, a fast stream will deposit
cloop� > w new stream tuples at the end of each iteration,
implying that the join algorithm will fall behind at a rate of
�� w=cloop tuples per second. The goal of the shedding

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 983

1. A dual strategy is to process less R tuples on each iteration of
MESHJOIN, thus reducing the effective size of the disk-based input.
Nevertheless, a third (hybrid) strategy can shed tuples from both inputs.
In this work, we only consider the solution that is based on stream
shedding. Exploring the other strategies and their trade-offs is an
interesting topic for future work.

Fig. 7. (a) Memory-constrained operation. (b) Rate-constrained

operation.

mechanism, therefore, is to keep a fraction w=ð�cloopÞ of the
incoming stream tuples in order to allow MESHJOIN to keep
up. The decision of which tuples to keep depends, of
course, on the specifics of the strategy.

Following previous studies on approximate join proces-
sing [6], [7], we consider two criteria to characterize the loss
of result tuples: MAX-SUBSET and RANDOM-SAMPLE. In
short, MAX-SUBSET attempts to maximize the subset of
generated results or, alternatively, to minimize the number
of lost result tuples. RANDOM-SAMPLE generates a
random sample of the join output. Previous studies have
explored these objectives in the context of window-based
joins for two streaming inputs. Our problem is substantially
different as we deal with one stream, we do not impose a
window constraint, and we do not assume that there is
enough memory to hold the disk-based relation.

In addition to the loss criterion, we introduce a second
parameter related to the join relationship between S and R.
More concretely, we distinguish between a many-to-one join,
where each stream tuple joins with exactly one relation
tuple, and a many-to-many join. This distinction is motivated
by the applications of MESHJOIN in practice, where a
stream is likely to carry a foreign key on the static relation.
As we discuss below, we can devise very efficient shedding
strategies for this common case.

Table 2 summarizes our proposed shedding strategies
for the space of problem parameters:

. Many-to-One/MAX-SUBSET. The optimal shedding
strategy is to simply maintain w stream tuples out of
the �cloop tuples that arrive during one iteration of
MESHJOIN. Given that each dropped stream tuple
corresponds to exactly one result tuple, this strategy
guarantees the minimal loss of �cloop � w result
tuples.

. Many-to-One/RANDOM-SAMPLE. In this case, it
suffices to maintain a random uniform sample of
size w out of the �cloop tuples. The key/foreign-key
constraint guarantees that the result tuples form a
random uniform sample of the join result, with a
sampling rate of w=ð�cloopÞ [8].

. Many-to-Many/MAX-SUBSET. We propose a shed-
ding heuristic, termed TOPW, for dropping tuples of
low frequency. The details of the heuristic are
presented below.

. Many-to-Many/RANDOM-SAMPLE. Following an
earlier study [7] on approximate join processing
over streams, we adopt Cluster Sampling as the
shedding strategy. Briefly, this entails sampling a
stream tuple with probability proportional to its join
frequency, i.e., the number of tuples in R with the
same join value. Even though this does not yield a
random uniform sample of the result, it still permits

the computation of bounds on aggregates computed
over the join [7].

Clearly, the design of the MESHJOIN algorithm enables
very effective and straightforward solutions for the case of
many-to-one joins. For this type of joins, both shedding
strategies have strong guarantees on their properties: Keep w
will return a maximal subset of the join results, while
Sample w will generate a random uniform sample with a
maximal sampling rate. Hence, MESHJOIN can handle
effectively the case of many-to-one joins (essentially, key/
foreign-key joins) that are predominant in real-world
applications.

4.2 Shedding Strategies for
Many-to-Many/MAX-SUBSET

In what follows, we analyze shedding strategies suitable for
the subspace Many-to-Many/MAX-SUBSET. This analysis
is a contribution of our work, since existing strategies do not
extend in this setting. We introduce an online shedding
strategy, termed TOPW, that does not require a priori
knowledge of the stream and is thus applicable in any
scenario. To quantify the performance of TOPW, we analyze
an offline shedding strategy, termed OPTOFFLINESHED,
that has knowledge of the complete stream and achieves an
optimal loss of join results. We note that this strategy is
clearly infeasible in practice, and the intention behind its
introduction is solely to define a benchmark for online
strategies.

Before proceeding with our presentation, we introduce
some necessary notation. We treat the stream as a finite
sequence s0; s1; . . . ; sjSj, where each entry si has a time
stamp ti and an associated stream tuple �i. (The switch to
finite streams is necessary so that an offline strategy
becomes meaningful. Clearly, the online TOPW heuristic
can be applied on infinite streams.) For each stream tuple
�i, we will use fRðiÞ to denote the count of R-tuples that
join with �i. Essentially, fRðiÞ can be derived from the
distribution of values in the join attributes of R. We note
that such statistics are already maintained by the query
optimizer, as they are necessary for query compilation. It
is thus safe to assume that fRðiÞ is readily available
without additional overhead.

Online shedding—Algorithm TOPW. Conceptually,
TOPW operates in parallel with MESHJOIN and maintains
a buffer of w tuples that is transferred to the join module
whenever requested. As the name suggests, the algorithm
maintains the top w tuples of S according to their matching
frequency fR in R. The intuition is to maximize the number
of join results. More formally, let tr be the time stamp of the
last transfer of w tuples between TOPW and MESHJOIN.
TOPW maintains a max heap of size w for the tuples that
arrive in the interval ½tr; trþ cloop� ordered by their
frequency values fRðiÞ. Hence, MESHJOIN receives the w
tuples from the interval ½tr; trþ cloop� that join with the most
tuples in R. The link between our heuristic and MAX-
SUBSET is evident.

Clearly, TOPW is a heuristic algorithm and can thus
miss the optimal shedding strategy. Fig. 8 illustrates this
case with a sample stream of eight elements. Assume that
w ¼ 2 and cloop ¼ 4 time units. For each stream element, the
figure shows the corresponding frequency fR, i.e., how

984 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

TABLE 2
Stream Shedding Strategies

many join tuples will be lost if the stream tuple is dropped.
The arrows indicate the points where a request is made by
MESHJOIN (downward pointing arrow) and when the
tuples are transferred (upward pointing arrow), and the
returned tuples are enclosed in circles. As shown, TOPW
always maintains the top w tuples in the current interval
and returns them as soon as they are requested, achieving
a total loss of 10 tuples. In this example, however, the
optimal strategy is to stall MESHJOIN in order to include
the last stream tuples in the join, achieving a total loss of
4 tuples. As the example shows, the performance of TOPW
is likely to suffer if the stream tuples that generate a high
number of results are clustered in the time dimension. In
practice, we may expect a more random distribution of
losses within the stream, and hence, our TOPW heuristic is
likely to perform well.

Offline optimal shedding. We now present an offline
shedding algorithm, termed OPTOFFLINESHED, that as-
sumes a priori knowledge of the incoming stream tuples
and can thus determine an optimal shedding strategy for
the MAX-SUBSET objective. Clearly, this algorithm cannot
be implemented in practice and only serves as the bench-
mark for our online heuristic.

Similar to TOPW, OPTOFFLINESHED maintains a work-
ing buffer of w tuples that is consumed by MESHJOIN. As
Fig. 8 suggests, however, a key difference is that
OPTOFFLINESHED will have the option of stalling the
join operator. More precisely, we assume that MESHJOIN

places a request for the next packet of w tuples at the end
of its current iteration, and this request is satisfied by
OPTOFFLINESHED at some point in the future (but not
necessarily immediately). For ease of exposition, we
assume that time stamps take integer values (with
t0 ¼ 0) and that cloop is also an integer. Moreover, we
assume that time stamps are consecutive, i.e., ti ¼
ti�1 þ 1 ¼ i (since t0 ¼ 0). This assumption does not
compromise the generality of our analysis, as any stream
can be extended with zero-effect tuples (i.e., fRðiÞ ¼ 0) in
the missing time stamps. Finally, we assume that
OPTOFFLINESHED does not substitute tuples in the
working buffer, i.e., once a tuple is stored in the buffer,
then it will be eventually processed by MESHJOIN. Again,
this does not restrict the applicability of our analysis, as a
tuple substitution is equivalent to a strategy that does not
select the specific tuple in the first place.

Our main observation is that the optimal selection of
tuples from time i onward depends only on the available
buffer space and not on the actual tuples that have been
placed in the buffer. This suggests a dynamic-programming
approach to computing the optimal solution. More formally,

let optlossði; lt; sbÞ denote the optimal loss assuming that
1) the algorithm has to select tuples from si onward,
2) MESHJOIN will make its next request for tuples at time
stamp lt, and 3) the algorithm has already selected sb � w
tuples in the buffer. Hence, optlossð0; 0; 0Þ denotes the
optimal loss for the whole stream. For completeness, we
assume that optlossði; lt; sbÞ ¼ 0 if i > jSj.

We start the analysis with the case sb < w. Obviously, the
algorithm can store si in the buffer and increase the
occupancy to sbþ 1, in which case, the loss is equal to the
loss from that point onward. If it chooses to exclude si, then
the loss is fRðiÞ join results plus the optimal loss from iþ 1
onward under the same buffer occupancy. Clearly, the
optimal choice is the minimum of the two options, and this
leads to the following expression:

optlossði; lt; sbÞ ¼minðoptlossðiþ 1; lt; sbþ 1Þ;
optlossðiþ 1; lt; sbÞ þ fRðiÞÞ:

Next, we consider the case sb ¼ w. If i < lt, then the
algorithm cannot transfer the buffer to MESHJOIN since the
latter has not requested the next batch of stream tuples.
Thus, the only choice is to drop tuple si at a loss of fRðiÞ. If
i � lt, on the other hand, then the buffer is transferred, and
the selection of tuples starts afresh with an empty working
buffer and a next request time of iþ cloop. Formally, we can
describe these two cases as follows:

optlossði; lt; wÞ ¼ optlossðiþ 1; lt; wÞ þ fRðiÞ i < lt;
optlossði; iþ cloop; 0Þ i � lt:

�

The previous equations form the basis behind the

dynamic programming algorithm for computing the optimal

loss for the particular stream. The pseudocode for the

algorithm is shown in Fig. 9. The algorithm iterates over all

values of i and maintains two tables, namely, T ½0::jSj þ
1; 0 . . .w� and T 0½0::jSj þ 1; 0 . . .w�, that store the entries for

optlossði; lt; sbÞ and optlossðiþ 1; lt; sbÞ, respectively, for the

specific i. The entries in T are computed from the entries in T 0

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 985

Fig. 8. TOPW versus optimal strategy.

Fig. 9. Algorithm OPTOFFLINESHED.

using the previously described recurrence expressions, and

the optimal loss optlossð0; 0; 0Þ can be retrieved from T 0½0; 0�
at the end of the iteration. To optimize the computation, the

algorithm takes into account that the next transfer request

can have a maximum value of iþ cloop relative to the current

iteration and also that the number sb of stored tuples can

never exceed the number of tuples that have been observed

in the stream. We note that the algorithm computes

optlossð0; 0; 0Þ quite efficiently, with a space complexity of

OðjSjwÞ and a time complexity of OðjSj2wÞ.
The following theorem formalizes the optimality of

OPTOFFLINESHED.

Theorem 4.1. Algorithm OPTOFFLINESHED computes the
optimal loss for any online shedding strategy in Many-to-
Many/MAX-SUBSET that maintains a working buffer of
w tuples and achieves an effective arrival rate of w=cloop.

5 EXPERIMENTS

In this section, we present an experimental study that
demonstrates the effectiveness of our techniques. Overall,
our results verify the efficacy of MESHJOIN in computing
S ffl R in the context of active ETL transformations, and
demonstrate its numerous benefits over conventional join
algorithms.

5.1 Methodology

The following paragraphs describe the major components
of our experimental methodology, namely, the techniques
that we consider, the data sets, and the evaluation metrics.

Join processing techniques. We consider two join
processing techniques in our experiments.

MESHJOIN. We have completed a prototype implemen-
tation of the MESHJOIN algorithm that we describe in this
article. We have used our prototype to measure the cost
factors of the analytical cost model (Section 3.1). In turn, we
have used this fitted cost model in order to set b and w
accordingly for each experiment. We stress that the
particular cost factors are inherently tied to the specific
(software and hardware) characteristics of the experimental
platform and are also affected by our measuring methodol-
ogy. Thus, their specific values are of limited importance.
Our goal instead is to demonstrate that it is possible to fit
the abstract cost expressions of Section 3.1 on a specific
platform in order to model the performance of MESHJOIN

with reasonable accuracy.
Index-Nested-Loops. We have implemented a join module

based on the INLs algorithm. We have chosen INL as it is
readily applicable to the particular problem without
requiring any modifications. Our implementation examines
each update tuple in sequence and uses a clustered B+-Tree
index on the join attribute of R in order to locate the
matching tuples. We have used the Berkeley DB library
(version 4.3.29) for creating and probing the disk-based
clustered index. In all experiments, the buffer pool size of
Berkeley DB was set equal to the amount of memory
allocated to MESHJOIN.

In both cases, our implementation reads in memory the
whole stream before the join starts and provides update

tuples to the operator as soon as they are requested. This

allows an accurate measurement of the maximum proces-

sing speed of each algorithm, as new stream tuples are

accessed with essentially negligible overhead.
Data sets. We evaluate the performance of join

algorithms on synthetic and real-life data of varying

characteristics.

. Synthetic data set. Table 3 summarizes the character-
istics of the synthetic data sets that we use in our
experiments. We assume that R joins with S on a
single integer-typed attribute, with join values
following a zipfian distribution in both inputs. We
vary the skew in R and S independently and allow it
to range from 0 (uniform join values) to 1 (skewed
join values). In all cases, we ensure that the memory
parameter Mmax does not exceed 10 percent of the
size of R, thus modeling a realistic ETL scenario,
where R is much larger than the available main
memory. We note that we have performed a limited
set of experiments with a bigger relation of 10 million
tuples, and our results have been qualitatively the
same as for the smaller relation.

. Real-life data set. Our real-life data set is based on
weather sensor data that measure cloud cover over
different parts of the globe [9]. This data set encodes
a sequence of records that evolve over time and is
thus well suited for representing the streams of
updates from the operational sources. As a more
concrete example, we can view the weather sensors
as the operational data sources that push their
updates to a scientific data warehouse, which in
turn performs a mesh join for the assignment of
surrogate keys before the storage of the sensor
observations. We use measurements from two
different months to create a relation and a stream
of update tuples, respectively. The tuple-size is
32 bytes for both R and S, and the underlying value
domain is [0, 36,000]. Each input comprises 10 mil-
lion tuples.

Evaluation metrics. We evaluate the performance of a

join algorithm based on its service rate �, that is, the

maximum number of update tuples per second that are

joined with the disk-based relation. For MESHJOIN, we let

the algorithm perform the first four complete loops over

relation R and then measure the rate for the stream tuples

that correspond to the last loop only. For INL, we process a

prefix of 100,000 stream tuples and measure the service rate

on the last 10,000 tuples.

986 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

TABLE 3
Data Set Characteristics

Experimental platform. We have performed our experi-
ments on a Pentium IV 3-GHz machine with 1 Gbyte of
main memory running Linux. Our disk-based relations are
stored on a local 7200RPM disk, and the machine has been
otherwise unloaded during each experiment. In all experi-
ments, we have ensured that the file system cache is kept to
a minimum in order to eliminate the effect of double-
buffering in our measurements.

5.2 Experimental Results

In this section, we report the major findings from our
experimental study. We present results on the following
experiments: a validation of the cost model for MESHJOIN, a
sensitivity analysis of the performance of MESHJOIN, and
an evaluation of MESHJOIN on real-life data sets.

Cost model validation. In this experiment, we validate
the MESHJOIN cost model that we have presented in
Section 3.1. We use the synthetic data set with a fixed
memory budget of 21 Mbytes (5 percent of the relation size),
and we vary b and w so that the total memory stays within
the budget. For each combination, we measure the service
rate of MESHJOIN, and we compare it against the predicted
rate from the cost model.

Fig. 10a depicts the predicted and measured service rate
of MESHJOIN as a function of b. (Note that each b

corresponds to a unique setting for w according to the
allotted memory of 21 Mbytes.) As the results demonstrate,

our cost model tracks accurately the measured service rate
and can thus be useful in predicting the performance of
MESHJOIN. The measurements also indicate that the service
rate of MESHJOIN remains consistently high for small
values of b and drops rapidly as b is increased. (Our
experiments with different memory budgets have exhibited
a similar trend.) In essence, a large b reduces w (and
effectively, the size of the sliding window over S), which in
turn decreases significantly the effectiveness of amortizing
I/O operations across stream tuples. This leads to an
increased iteration cost cloop and inevitably to a reduced
service rate.

Sensitivity analysis. In this set of experiments, we
examine the performance of MESHJOIN when we vary
two parameters of interest, namely, the available memory
budget M and the skew of the join attribute. We use
synthetic data sets, and we compare the service rate of
MESHJOIN to the baseline INL algorithm.

Varying M. We first evaluate the performance of
MESHJOIN when we vary the available memory budget
M. We assume that the join attribute is a key of the
relation and set zs ¼ 0:5 for generating join values in the
stream. (Our results with different skew values have been
qualitatively the same.) These parameters model the
generation of surrogate keys, a common operation in
data warehousing. In the experiments that we present, we
vary M as a percentage of the size of the disk-based

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 987

Fig. 10. Experimental evaluation of MESHJOIN. (a) MESHJOIN: predicted and measured performance (synthetic data). (b) MESHJOIN and INL:

performance for varying memory (synthetic data). (c) MESHJOIN and INL: performance for varying data skew (synthetic data). (d) MESHJOIN and

INL: performance for varying memory (real-life data).

relation, from 0.1 percent ðM ¼ 200 KBÞ up to 10 percent
ðM ¼ 40 MbytesÞ. All reported measurements are with a
cold cache.

Fig. 10b shows the maximum service rate (tuples/second)
of MESHJOIN and INL as a function of the memory allocation
M. Note that the y-axis (maximum service rate) is in log
scale. The results demonstrate that MESHJOIN is very
effective in joining a fast update stream with a slow disk-
based relation. For a total memory allocation of 4 Mbytes
(1 percent of the total relation size), for instance, MESHJOIN

can process a little more than 6,000 tuples per second, and
scales up to 26,000 tuples/second if more memory is
available. It is interesting to note a trend of diminishing
returns as MESHJOIN is given more memory. Essentially, the
larger memory allocation leads to a larger stream window
that increases the cost factors corresponding to the expira-
tion of tuples and the maintenance of the hash table H.

Compared to INL, MESHJOIN is the clear winner as it
achieves a 10 times improvement for all memory alloca-
tions. For an allotted memory M of 2 Mbytes (0.5 percent of
the total relation size), for instance, INL can sustain
274 tuples/second, while MESHJOIN achieves a service rate
of 3,500 tuples/second. In essence, the buffer pool of INL is
not large enough to “absorb” the large number of random
I/Os that are incurred by index probes, and hence, the
dominant factor becomes the overhead of the “slow” disk.
(This is also evident from the instability of our measure-
ments for small allocation percentages.) MESHJOIN, on the
other hand, performs continuous sequential scans over R
and amortizes the cost of accessing the disk across a large
number of stream tuples. As the results demonstrate, this
approach is very effective in achieving high servicing rates
even for small memory allocations.

Varying skew. The second set of experiments measures
the performance of MESHJOIN for different values of the
relation skew parameter zR. Recall that zR controls the
distribution of values in the join column of R and hence
affects the selectivity of the join. We keep the skew of the
stream fixed at zS ¼ 0:5 and vary zR from 0.1 (almost
uniform) to 1 (highly skewed) for a join domain of
3.5 million values. In all experiments, the join algorithms
are assigned 20 Mbytes of main memory (5 percent of the
size of R). We note that we have also experimented with
different values for zS , and we have found that both
techniques are relatively insensitive to this parameter.

Fig. 10c depicts the maximum service rate for MESHJOIN

and INL as a function of the relation skew zR. (Again, the
y-axis is in log scale.) Overall, our results indicate a
decreasing trend in the maximum service rate for both
algorithms as the skew becomes higher. In the case of
MESHJOIN, the overhead stems from the uneven probing of
the hash table, as more R-tuples probe the buckets that
contain the majority of stream tuples. (Recall that the stream
is also skewed with zS ¼ 0:5.) For INL, the overhead comes
mainly from the additional I/O of accessing long overflow
chains in the leaves of the B+-Tree when zR increases.
Despite this trend, our proposed MESHJOIN algorithm
maintains a consistently high service rate for all skew
values, offering a significant performance improvement
compared to INL.

Performance of MESHJOIN on real-life data sets. As a
final experiment for the case of exact join processing, we
present an evaluation of MESHJOIN on our real-life data set.
We vary the memory budget M as a percentage of the
relation size, from 1 percent (4 Mbytes) to 10 percent
(40 Mbytes). Again, we compare MESHJOIN to INL using
the service rate as the evaluation metric.

Fig. 10d depicts the service rate of MESHJOIN and INL on
the real-life data set as a function of the memory budget.
Similar to our experiments on synthetic data, MESHJOIN

achieves high service rates and outperforms INL by a large
margin. Moreover, this consistently good performance
comes for low memory allocations that represent a small
fraction of the total size of the relation.

Approximate join processing. In this set of experi-
ments, we focus on the case of approximate join
processing, i.e., when the memory budget M is not
sufficient for the arrival rate of the stream. Among our
shedding strategies (Section 4), we note that Keep w and
Sample w have strong guarantees that are trivial to
validate experimentally, while the trade-offs of Cluster
Sampling have already been evaluated in a previous
study [7]. Hence, we consider only TOPW in the
following experiments.

We compare the performance of TOPW against the
optimal offline algorithm OPTOFFLINESHED for a many-to-
many join. Since we focus on the MAX-SUBSET criterion,
we use the fraction of generated result tuples as the
evaluation metric. We keep the memory M used by
MESHJOIN fixed and vary the ratio � ¼ �=� of the steam
rate � and the service rate � of the algorithm. In our
experiments, we report results for 1:1 � � � 2, with � ¼ 2,
indicating a stream that is twice as fast as the service rate of
the join. For a specific � and shedding algorithm, we
measure the average fraction of join results over 10 different
streams, each containing � � 20;000 tuples with skew
zS ¼ 0:5. For the disk-based data, we consider three
different relations of skew zR 0.1 (almost uniform), 0.5,
and 1.0 (skewed), respectively.

As a final detail, we note that our implementation of
TOPW employs accurate information on the distribution of
join values in R, i.e., the information that enables TOPW to
compute fRðiÞ for each stream tuple �i. We opt for this
experimental design as it isolates the logic of the shedding
strategy from the error of inaccurate data statistics. Thus, it
becomes easier to evaluate the potential of the core idea
behind the TOPW heuristic.

Fig. 11 depicts the fraction of generated join results for
TOPW as a function of the speed ratio �, for the three
relations of different skew values. (We omit the results of
OPTOFFLINESHED from the plot as the two curves were
essentially identical.) As shown, TOPW is effective in
generating a sizeable fraction of the join results for fast
incoming streams. For a relation of moderate skew zR ¼ 0:5,
for instance, TOPW generates more than 80 percent of the
complete join results even when the stream is two times
faster than the maximum service rate. The performance of
TOPW generally increases with the skew in the disk-based
relation, as it always manages to select the few stream
tuples that generate the most join results; a decreased skew,

988 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

on the other hand, implies equal contributions from all
stream tuples and hence bigger losses. The important
observation, however, is that the performance of TOPW,
with respect to the MAX-SUBSET metric, is comparable to
the optimal offline shedding algorithm.

6 RELATED WORK

In this section, we broadly discuss research efforts regard-
ing join algorithms and active or real-time data ware-
housing.

Join algorithms. Join algorithms have been studied
extensively since the early days of database development,
and earlier works have introduced a host of efficient
techniques for the case of finite disk-based relations. (A
review can be found in [10].) In recent years, the case of
continuous data streams has gained in popularity, and
researchers have examined techniques and issues for join
processing over streaming relations [11], [12], [13], [14]. In
this setting, which is more relevant to our work, we
distinguish two cases for our discussion: unbounded streams,
where a stream is modeled as an infinite relation, and finite
streams, where a bounded relation is essentially streamed
from a remote data source.

Join processing over unbounded streams. Earlier
studies [15], [16], [17], [18] have introduced generalizations
of Symmetric Hash-Join to a multiway join operator in
order to efficiently handle join queries over multiple
unbounded streams. These works, assume the application
of window operators (time or tuple based) over the
streaming inputs, thus reducing each stream to a finite
evolving tuple-set that fits entirely in main memory. This
important assumption does not apply to our problem,
where the working memory is assumed to be much smaller
than the large disk-based relation, and there is no window
restriction on the streaming input.

To cope with fast streams that exceed the processing
capacity of the join algorithm, earlier studies have con-
sidered techniques for approximate join processing. A com-
monly used approximation method is load shedding [19],
[20], [21], where the join algorithm selectively drops input
tuples in order to reduce the effective stream arrival rate.
Two recent studies [6], [7] have introduced formal models
for load shedding and have proposed the MAX-SUBSET

and RANDOM-SAMPLE criteria. Earlier works have also
considered the use of single-pass synopses in order to
approximate fast streams and essentially generate an
approximate join result. Examples in this category include
randomized sketching techniques [22], [23], histogram
synopses [24], as well as sampling-based approaches [25],
[26]. Our proposed approximation strategy is related to the
load-shedding models proposed in [6], [7], as we consider
the same high-level strategies (MAX-SUBSET and RAN-
DOM SAMPLE). The constraints of our solution are
different, however, since we assume a different join-
processing model.

Join processing over finite streams. The works in this
category consider the join of finite relations that are
streamed over an unstable network with temporary fail-
ures. Representative techniques are the Symmetric Hash-
Join [27] and its XJoin variant [28], the Progressive Merge
Join (PMJ) [29], and the more recent Rate-based Progressive
Join (RPJ) [30]. At an abstract level, the proposed techniques
use the following processing model: the join algorithm
accesses the streaming inputs continuously and maintains
the received tuples in memory in order to generate results
as early as possible; when the received input exceeds the
capacity of the main memory, the algorithm flushes a subset
of the data to disk and processes it later when (CPU or
memory) resources allow it. This model, however, is not
well suited for our setting, where the stream input is
possibly infinite, the access to the relation is predictable,
and the requirement for online result generation favors the
use of approximate join processing, rather than disk
buffering, when the stream arrival rate exceeds the capacity
of the join operator. The aforementioned join operators can
be used of course to realize the regular ETL process and can
thus complement the approximate join processing of
MESHJOIN.

Novelty of our approach with respect to existing join
algorithms. As noted earlier, previous studies on stream
query processing have focused on the case of two finite
inputs (relations) or two infinite inputs (streams) with a
window predicate. Our work, on the other hand, focuses on
the mixed case of joining a finite relation with an infinite
stream. Even though previous studies [25], [31] have
recognized this problem as an important issue in streaming
database systems, to the best of our knowledge, there has
been no proposal of a specialized join algorithm.

Compared to the existing INLs approach, MESHJOIN is
more efficient as it relies solely on fast sequential scans in
order to access disk-resident data. As our experimental
study has demonstrated, this approach results in increased
I/O efficiency and essentially enables MESHJOIN to scale to
very fast streams under limited memory resources.

Active DW’s. Active or real-time data warehousing has
recently appeared in the industrial literature [1], [3], [4].
Research in ETL has provided algorithms for specific tasks,
including the detection of duplicates, the resumption from
failure, and the incremental loading of the warehouse [32],
[33], [34]. Contrary to our setting, these algorithms are
designed to operate in a batch offline fashion. Work in
materialized views refreshment [35], [36], [37], [38] is also
relevant but orthogonal to our setting. The crucial decision

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 989

Fig. 11. Performance of load shedding.

concerns whether a view can be updated given a delta set of
updates. An interesting, but still orthogonal to our case,
situation involves the case of concurrency conflicts during
data warehouse maintenance. As we have already dis-
cussed (see Section 2), we consider that the stream is not
affected by changes in other streams of updates coming
from other sources. Any transactional conflict can be
resolved by well-known synchronization policies outside
the join module [5], [39].

7 CONCLUSIONS

In this work, we have considered an operation that is
commonly encountered in the context of active data ware-
housing: the join between a fast stream of source updates S
and a disk-based relation R under the constraint of limited
memory. We have proposed the mesh join (MESHJOIN), a
novel join operator that operates under minimum assump-
tions for the stream and the relation. We have developed a
systematic cost model and tuning methodology that accu-
rately associates memory consumption with the incoming
stream rate. Finally, we have validated our proposal through
an experimental study that has demonstrated its scalability
to fast streams and large relations under a limited main
memory.

REFERENCES

[1] D. Burleson, New Developments in Oracle Data Warehousing.
Burleson Consulting, Apr. 2004.

[2] A. Karakasidis, P. Vassiliadis, and E. Pitoura, “ETL Queues for
Active Data Warehousing,” Proc. Second Int’l Workshop Information
Quality in Information Systems (IQIS), 2005.

[3] “On-Time Data Warehousing with Oracle10g—Information at the
Speed of Your Business,” white paper, Oracle Corp., Aug. 2003.

[4] C. White, “Intelligent Business Strategies: Real-Time Data Ware-
housing Heats Up,” DM Rev., 2002.

[5] S. Chen, J. Chen, X. Zhang, and E.A. Rundensteiner, “Detection
and Correction of Conflicting Source Updates for View Main-
tenance,” Proc. IEEE Int’l Conf. Data Eng. (ICDE ’04), pp. 436-448,
2004.

[6] A. Das, J. Gehrke, and M. Riedewald, “Approximate Join
Processing over Data Streams,” Proc. ACM SIGMOD, 2003.

[7] U. Srivastava and J. Widom, “Memory-Limited Execution of
Windowed Stream Joins,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2004.

[8] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy, “Join
Synopses for Approximate Query Answering,” Proc. ACM
SIGMOD, 1999.

[9] C.J. Hahn, S.G. Warren, and J. London, “Edited Synoptic Cloud
Reports from Ships and Land Stations over the Globe, 1982-1991,”
http://cdiac.ornl.gov/epubs/ndp/ndp026b/ndp026b.htm, 2007.

[10] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys, vol. 25, no. 2, 1993.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and Issues in Data Stream Systems,” Proc. ACM Symp.
Principles of Database Systems (PODS), 2002.

[12] S. Babu and J. Widom, “Continuous Queries over Data Streams,”
SIGMOD Record, vol. 30, no. 3, 2001.

[13] L. Golab and M. Tamer Özsu, “Issues in Data Stream Manage-
ment,” SIGMOD Record, vol. 32, no. 2, 2003.

[14] D. Terry, D. Goldberg, D. Nichols, and B. Oki, “Continuous
Queries over Append-Only Databases,” Proc. ACM SIGMOD,
1992.

[15] S. Chandrasekaran and M.J. Franklin, “PSoup: A System for
Streaming Queries over Streaming Data,” Very Large Data Bases J.,
vol. 12, no. 2, 2003.

[16] L. Golab and M. Tamer Özsu, “Processing Sliding Window Multi-
Joins in Continuous Queries over Data Streams,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2003.

[17] M. Hammad, M.J. Franklin, W. Aref, and A. Elmagarmid,
“Scheduling for Shared Window Joins over Data Streams,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2003.

[18] S. Viglas, J.F. Naughton, and J. Burger, “Maximizing the Output
Rate of Multi-Way Join Queries over Streaming Information
Sources,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2003.

[19] B. Babcock, M. Datar, and R. Motwani, “Load-Shedding for
Aggregation Queries over Data Stream,” Proc. IEEE Int’l Conf. Data
Eng. (ICDE), 2004.

[20] J. Kang, J. Naughton, and S. Viglas, “Evaluating Window Joins
over Unbounded Streams,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
2003.

[21] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M.
Stonebraker, “Load-Shedding in a Data Stream Manager,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2003.

[22] N. Alon, Y. Matias, and M. Szegedy, “The Space Complexity of
Approximating the Frequency Moments,” Proc. Ann. ACM Symp.
Theory of Computing (STOC), 1996.

[23] S. Guha, N. Koudas, and K. Shim, “Data-Streams and Histo-
grams,” Proc. Symp. Theory of Computing, 2001.

[24] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Processing
Complex Aggregate Queries over Data Streams,” Proc. ACM
SIGMOD, 2002.

[25] S. Chandrasekaran and M.J. Franklin, “Remembrance of Streams
Past: Overload-Sensitive Management of Archived Streams,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2004.

[26] S. Chaudhuri, R. Motwani, and V. Narasayya, “On Random
Sampling over Joins,” Proc. ACM SIGMOD, 1999.

[27] W. Hong and M. Stonebraker, “Optimization of Parallel Query
Execution Plans in XPRS,” Distributed and Parallel Databases, vol. 1,
no. 1, 1993.

[28] T. Urhan and M. Franklin, “XJOIN: A Reactively-Scheduled
Pipelined Join Operator,” IEEE Data Eng. Bull., vol. 23, no. 2, 2000.

[29] J.-P. Dittrich, B. Seeger, D. Taylor, and P. Widmayer, “Progressive
Merge Join: A Generic and Non-Blocking Sort-Based Join
Algorithm,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2002.

[30] Y. Tao, M.L. Yiu, D. Papadias, M. Hadjieleftheriou, and N.
Mamoulis, “RPJ: Producing Fast Join Results on Streams through
Rate-Based Optimization,” Proc. ACM SIGMOD, 2005.

[31] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande,
M.J. Franklin, J.M. Hellerstein, W. Hong, S. Madden, F. Reiss, and
M.A. Shah, “TelegraphCQ: An Architectural Status Report,” IEEE
Data Eng. Bull., vol. 26, no. 1, 2003.

[32] W. Labio and H. Garcia-Molina, “Efficient Snapshot Differential
Algorithms for Data Warehousing,” Proc. Int’l Conf. Very Large
Data Bases (VLDB), 1996.

[33] L. Wilburt, J. Wiener, H. Garcia-Molina, and V. Gorelik, “Efficient
Resumption of Interrupted Warehouse Loads,” Proc. ACM
SIGMOD, 2000.

[34] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom,
“Performance Issues in Incremental Warehouse Maintenance,”
Proc. Int’l Conf. Very Large Data Bases (VLDB), 2000.

[35] A. Gupta and I.S. Mumick, “Maintenance of Materialized Views:
Problems, Techniques, and Applications,” IEEE Data Eng. Bull.,
vol. 18, no. 2, 1995.

[36] H. Gupta and I. Mumick, “Incremental Maintenance of Aggregate
and Outerjoin Expressions,” to be published in Information
Systems.

[37] X. Zhang and E.A. Rundensteiner, “Integrating the Maintenance
and Synchronization of Data Warehouses Using a Cooperative
Framework,” Information Systems, vol. 27, no. 4, 2002.

[38] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, “View
Maintenance in a Warehousing Environment,” Proc. ACM
SIGMOD, 1995.

[39] S. Chen, B. Liu, and E.A. Rundensteiner, “Multiversion-Based
View Maintenance over Distributed Data Sources,” ACM Trans.
Database Systems, vol. 29, no. 4, pp. 675-709, 2004.

990 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Neoklis Polyzotis received the PhD degree
from the University of Wisconsin, Madison, in
2003. He is currently an assistant professor at
the University of California, Santa Cruz. His
research focuses on database systems and, in
particular, on approximate query answering,
online database tuning, and P2P databases.
He is a recipient of a US National Science
Foundation Faculty Early Career Development
(CAREER) Award in 2004 and of an IBM Faculty

Award in 2005 and 2006. He is a member of the IEEE.

Spiros Skiadopoulos received the diploma and
the PhD degree from the National Technical
University of Athens and the MPhil degree from
UMIST. He is currently an assistant professor at
the Department of Computer Science and
Technology, University of Peloponnese. His
research focuses on constraint databases and
reasoning, query evaluation and optimization,
and data warehouses. More information is
available at www.uop.gr/~spiros.

Panos Vassiliadis received the PhD degree
from the National Technical University of
Athens in 2000. Since 2002, he has been with
the Department of Computer Science, Univer-
sity of Ioannina, Greece, where he is also a
member of the Distributed Management of
Data (DMOD) Laboratory (http://www.dmod.
cs.uoi.gr). He has published more than 50 pa-
pers in refereed journals and international
conference proceedings on data warehousing,

Web services, and database evolution, as well as a book on the
fundamentals of data warehouses. He is a member of the ACM, the
IEEE, and the IEEE Computer Society. More information is available at
http://www.cs.uoi.gr/~pvassil.

Alkis Simitsis received the diploma and the
PhD degree from the School of Electrical and
Computer Engineering, National Technical Uni-
versity of Athens (NTUA) in 2000 and 2004,
respectively. He is currently with the Computer
Science Group, IBM’s Almaden Research Cen-
ter. Following that, he worked as a researcher in
the Knowledge and Database Systems Lab,
NTUA and as a visiting lecturer at the University
of Peloponnese, Greece. His research interests

include extraction-transformation-loading (ETL) processes in data
warehouses, modeling and designing of data warehouses, query
processing/optimization, keyword search, and data cleaning. He has
published more than 30 papers in refereed journals and international
conference proceedings in the above areas. More information is
available at http://www.dblab.ntua.gr/~asimi.

Nils-Erik Frantzell is a computer science
graduate from the University of California, Santa
Cruz. He is currently working as a software
design engineer in test at Microsoft. His interests
include database management and next-gen-
eration file systems, psychology, and electronic
music.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

POLYZOTIS ET AL.: MESHING STREAMING UPDATES WITH PERSISTENT DATA IN AN ACTIVE DATA WAREHOUSE 991

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

