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Abstract. During data warehouse design, the designer frequently encounters the 
problem of choosing among different alternatives for the same design construct. 
The behavior of the chosen design in the presence of evolution events is an im-
portant parameter for this choice. This paper proposes metrics to assess the 
quality of the warehouse design from the viewpoint of evolution. We employ a 
graph-based model to uniformly abstract relations and software modules, like 
queries, views, reports, and ETL activities. We annotate the warehouse graph 
with policies for the management of evolution events. The proposed metrics are 
based on graph-theoretic properties of the warehouse graph to assess the sensi-
tivity of the graph to a set of possible events. We evaluate our metrics with ex-
periments over alternative configurations of the same warehouse schema. 

1   Introduction 

How good is the design of a data warehouse? What makes the design of a data ware-
house good or bad? Typically, such questions are answered by a set of empirical rules, 
such as ‘are your dimensions aligned?’, ‘is the warehouse following a typical design 
pattern, such as star or snowflake?’, ‘are the partitions and indexes of the warehouse 
built appropriately?’, and so on. All these recipes are based on practical observations 
of the past, as well as rules of thumb that have been established by expert practitioners 
and although valuable, they simply transfer the lessons learned the hard way in the 
“craft” of data warehouse design.  

At the same time, the scientific community is not in possession of a fundamentally 
established theory for the evaluation of the quality of a data warehouse. So far, the 
researchers have dealt with metrics that evaluate the design quality of the database 
schema with respect to high level goals, such as completeness, understandability, etc. 
both at the conceptual [16] and the logical level [3, 9]. Although structural properties 
of the database or the warehouse (e.g., number of dimensions or foreign keys) are 
considered, the employed approaches restrict themselves to constructs internal to the 
database without taking into account the incorporation of constructs surrounding the 
database into their models, nor the fact that a software construct, and especially an 
information system, evolves over time. Since software maintenance makes up for at 
least 50% of all resources spent in a project, maintainability is an important factor for 
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the determination of the quality of a design. The problem is quite hard, since changes 
in the schema of a database-centric system (and thus, a data warehouse) affect both its 
internals but also, the surrounding deployed applications. Thus, the minimal interde-
pendence of these software modules results in higher tolerance to subsequent changes 
and should be measured with a principled theory. Related work for view redefinition 
[5, 8, 10] and data warehouse evolution [2, 4, 6, 7] has provided rewriting techniques 
and theoretical cost models; yet, a well founded model that captures all the environ-
ment of a warehouse and objectively assess its vulnerability to changes is missing. 

In this paper, we propose a set of metrics with two major characteristics. Firstly, 
they act as predictors for the vulnerability of a software module of a data warehouse 
(either internal, e.g., a dimension table, or external, e.g., an aggregated measure in a 
user’s report) to future changes to the structure of the warehouse. Secondly, they 
facilitate the assessment of the quality of alternative designs of the warehouse with a 
particular viewpoint on the evolution of the data warehouse.   

To achieve the abovementioned goal, we base our approach on two pillars.  
First, we model the whole environment of the warehouse as a graph. We do not re-

strict the modeling to fact and dimension tables along with their interrelationships and 
any available views, but we extend the modeling to incorporate all the elements of an 
information system. To this end, we add queries as integral parts of the configuration 
of a data warehouse. In practice, a typical database is surrounded by forms, reports, 
web pages, stored procedures, and triggers deployed on the database server. Each of 
these software artifacts hides a list of queries via which it communicates with the 
database and exchanges queries and data with it. In addition, a data warehouse com-
prises a set of extract-transform-load (ETL) scripts, necessary for its population and 
refreshment with fresh source data. Queries constitute a convenient abstraction that 
captures the “skeleton” of all these applications w.r.t. their interrelationship to the 
database. We model the whole environment as a graph, with relations, attributes, 
constraints, queries, and query operands being the nodes of the graph, while the part-
of or querying relationships are modeled as the edges connecting these nodes.  

Second, our treatment for the evolution of the warehouse over time is based on 
events such as ‘rename measure’, ‘add dimension attribute’, ‘delete dimension table’, 
and so on. All these events are applied over the corresponding node and propagated 
over the appropriate subset of the graph. This way, given an evolution event, we can 
detect all the affected nodes. Moreover, we can define policies to regulate how a node 
will react to the possible change; e.g., a node can block -veto- an event, state the dele-
tion of a dimension table, and isolate subsequent software modules that depend upon 
it from the effects of the change. We have built a what-if analysis tool that assesses 
potential evolution scenarios based on the above principles. 

Based on these two pillars (detailed in Sections 2 and 3, respectively), in this paper, 
we provide a set of metrics for the assessment of the vulnerability of all the design struc-
tures in a data warehouse environment (Section 4). We exploit the graph and provide 
metrics like the degrees (in, out, and total) of a node, the transitive degrees of a node 
(standing for the extent to which other nodes transitively depend upon it), and the degrees 
of a summarized variant of a module (e.g., a view) that abstract the internal semantics of 
the module and focus on its coupling to the rest of the environment. We also provide an 
information theoretic definition of a module’s entropy that simulates the extent to which 
the vulnerability of a node is surprising. Finally, we extensively experiment with various 
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configurations in the setup of a reference warehouse (Section 5) and assess both the ef-
fectiveness of the proposed metrics (i.e., how well do they actually predict the impact of 
evolution events to a design construct) and how different design alternatives for the same 
schema behave w.r.t. evolution. 

2   Graph Based Modeling for Data Warehouses 

In this section, we summarize our graph modeling technique that uniformly covers 
relational tables, views, ETL activities, database constraints, and SQL queries as first 
class citizens. The proposed modeling technique represents all the aforementioned 
database parts as a directed graph G=(V,E). The nodes represent the entities of our 
model and the edges represent the relationships among these entities. Originally, the 
model was introduced in [12] and here, we provide only a short summary. 

Each relation R(Ω1,Ω2,…,Ωn) in the database schema is represented as a directed 
graph, which comprises: (a) a relation node, R, representing the relation schema; (b) n 
attribute nodes, Ωi∈Ω, i=1..n, one for each of the attributes; and (c) n schema rela-
tionships, ES, directing from the relation node towards the attribute nodes, indicating 
that the attribute belongs to the relation.  

The graph representation of a Select - Project - Join - Group By (SPJG) query in-
volves a new node representing the query, named query node, and attribute nodes 
corresponding to the schema of the query. The query graph is a directed graph con-
necting the query node with all its schema attributes, via schema relationships. In 
order to represent the relationship between the query graph and the underlying rela-
tions, we resolve the query into its essential parts: SELECT, FROM, WHERE, GROUP BY, 
HAVING, and ORDER BY, each of which is eventually mapped to a subgraph. The edges 
connected the involved attribute and operand nodes are annotated as map-select, from, 
and where relationships. Aliases in the FROM clause (mostly needed in self-joins for 
our modeling) are annotated with alias edges. The direction of the edges is from the 
query node to the attribute nodes. WHERE and HAVING clauses are modeled via a left-
deep tree of logical operands to represent the selection formulae; all the involved 
edges are annotated as where and having relationships, respectively. Nested queries 
are part of this modeling, too.  

For the representation of aggregate queries, we employ two special purpose nodes: 
(a) a new node denoted as GB∈GB, to capture the set of attributes acting as the aggre-
gators; and (b) one node per aggregate function labeled with the name of the em-
ployed aggregate function; e.g., COUNT, SUM, MIN. For the aggregators, we use edges 
directing from the query node towards the GB node that are labeled <group-by>, 
indicating group-by relationships, EG. Then, the GB node is connected with each of 
the aggregators through an edge tagged also as <group-by>, directing from the GB 
node towards the respective attributes. These edges are additionally tagged according 
to the order of the aggregators; we use an identifier i to represent the i-th aggregator. 
Moreover, for every aggregated attribute in the query schema, there exists an edge 
directing from this attribute towards the aggregate function node as well as an edge 
from the function node towards the respective relation attribute.  
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Fig. 1. (a) Graph and (b) abstract representation of an example aggregate query [12] 

Both edges are labeled <map-select> and belong to EM, as these relationships in-
dicate the mapping of the query attribute to the corresponding relation attribute 
through the aggregate function node. The representation of the ORDER BY clause of the 
query is performed similarly. 

Functions used in queries are denoted as a special purpose node Fi∈F having the 
name of the function. Each function has an input parameter list comprising attributes, 
constants, expressions, and nested functions, and one (or more) output parameter(s). 
Views are considered either as queries or relations (materialized views). An ETL 
activity is modeled as a sequence of SQL views. DML statements are denoted as 
queries. Fig. 1 depicts the proposed graph representation for the following query:  

Q: SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours 
   FROM EMP,WORKS WHERE EMP.Emp#=WORKS.Emp# GROUP BY EMP.Emp# 

Modules. A module is a sub-graph of the overall graph in one of the following pat-
terns: (a) a relation with its attributes and all its constraints, (b) a view with its attrib-
utes, functions and operands, and (c) a query with all its attributes, functions and 
operands. Modules are disjoint with each other and connected through edges con-
cerning foreign keys, map-select and so on. Within a module, we distinguish top-level 
and low-level nodes. Top level nodes are used to signify the identity of the module; 
for that purpose, query, relation and view nodes are used as top-level nodes. Low-
level nodes comprise the rest of the module. Edges are classified into provider and 
part-of relationships. Provider edges are intermodule relationships (e.g., EM, EF), 
whereas part-of edges are intramodule relationships (e.g., ES, EW). In Fig. 1, the graph 
comprises 3 modules corresponding to the query and the relations subgraphs. 

Zoom in/out. Abstracting the graph into a modular representation at a coarser level of 
detail (zoom-out) involves the following steps: (a) for each query, view or relation 
module, all low-level nodes and intramodule edges are suppressed and only the re-
spective top-level node is retained, and, (b) all inter-module edges apart from from 
and foreign key edges are dropped. A surviving edge between two modules is anno-
tated with a weight corresponding to the number of the edges that originally con-
nected the two modules. We call this weight the strength of the edge as it assesses 
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how tightly the involved modules are coupled. Fig. 1(b) depicts the abstract modular 
representation of Fig. 1(a). 

3   Evolution in Data Warehouses 

Data warehouse evolution is about changes and means to handle occurring changes.  

Events. In our setting, we assume the following classes of occurring events: 

C1. A dimension is removed, or renamed (DEL, UPD Dimension Table) 
C2. The structure of a dimension table is updated (ADD, DEL, UPD Dimension 

Attribute) 
C3. A fact table is completely decoupled from a dimension (DEL FK), or decoup-

led from one dimension and coupled to another (UPD FK) 
C4. The measures of a fact table change (ADD, DEL, UPD measure) 

An update can signify a change of data types or a renaming of a construct (our 
practical experience [12] indicates that it mostly refers to the latter.) We do not check 
for additions of fact or dimension tables, because such events do not result in a direct 
impact to any other logical warehouse construct per se. Given these changes that can 
occur to a data warehouse, their basic impact is that all software modules that use 
these database structures must be rewritten. The impact can be both syntactic (in the 
sense that all views and queries using a deleted attribute will crash) and semantic (in 
the sense that a new attribute in a relation or a modified condition in a view might 
require a rewriting of all the queries that use it). Assume for example that an attribute 
FullName is split to attributes FirstName and LastName or a view condition ‘Year = 
2007’ is altered to ‘Year > 2006’. The former change has syntactic impacts to all the 
queries using the attribute and the latter has semantic impact, since some of the que-
ries using the view require exactly values of 2007, whereas some others will serve the 
purpose with any value greater than 2006. 

Handling of events. Given an event posed to one of the warehouse constructs (or, 
equivalently, to one of the nodes of the graph of the warehouse that we have intro-
duced), the impact involves the possible rewriting of the constructs that depend upon 
the affected construct either directly, or transitively. In a non-automated way, the 
administrator has to check all of these constructs and restructure the ones he finds 
appropriate. This process can be semi-automated by using our graph-based modelling 
and annotating the nodes and the edges of the graph appropriately with policies in the 
event of change. Assume for example, that the administrator guarantees to an applica-
tion developer that a view with the sum of sales for the last year will always be given. 
Even if the structure of the view changes, the queries over this view should remain 
unaffected to the extent that its SELECT clause does not change. On the contrary, if a 
query depends upon a view with semantics ‘Year = 2007’ and the view is altered to 
‘Year > 2006’, then the query must be rewritten.  

The main idea in our approach involves annotating the graph constructs (relations, 
attributes, and conditions) sustaining evolution changes (addition, deletion, and modi-
fication) with policies that dictate the way they will regulate the change. Three kinds 
of policies are defined: (a) propagate the change, meaning that the graph must be 
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reshaped to adjust to the new semantics incurred by the event; (b) block the change, 
meaning that we want to retain the old semantics of the graph and the hypothetical 
event must be vetoed or, at least, constrained, through some rewriting that preserves 
the old semantics; and (c) prompt the administrator to interactively decide what will 
eventually happen. In [13] we have proposed a language that greatly alleviates the 
designer from annotating each node separately and allows the specification of default 
behaviors at different levels of granularity with overriding priorities. Assume that a 
default behavior for the deletion of view attributes is specified via the language of 
[13]. This policy can later be overridden with a directive for the behavior of the at-
tributes of view V (again via the same language). Again, this policy can in turn be 
overridden with a specification for the behavior of attribute V.A. 

Given the annotation of the graph, there is also a simple mechanism that (a) deter-
mines the status of a potentially affected node on the basis of its policy, (b) depending 
on the node’s status, the node’s neighbors are appropriately notified for the event. 
Thus, the event is propagated throughout the entire graph and affected nodes are noti-
fied appropriately. The STATUS values characterize whether (a) a node or one of its 
children (for the case of top-level nodes) is going to be deleted or added (e.g., TO-BE-
DELETED, CHILD-TO-BE-ADDED) or (b) the semantics of a view have changed, or (c) 
whether a node blocks the further propagation of the event (e.g., ADDITION-
BLOCKED). 

4   Metric Suite 

Various approaches exist in the area of database metrics. Most of them attempt to 
define a complete set of database metrics and map them to abstract quality factors, 
such as maintainability, good database design, and so on. In this section, we introduce 
a metric set based on the properties of the warehouse graph for measuring and evalu-
ating the design quality of a data warehouse with respect to its ability to sustain 
changes. Metrics are based on properties of the aforementioned graph model.  

4.1   Degree-Related Metrics 

The first family of metrics comprises simple properties of each node in the graph. The 
main idea lies in the understanding that the in-degree, out-degree and total degree of a 
node v demonstrate in absolute numbers the extent to which (a) other nodes depend 
upon v, (b) the dependence of v to other nodes and (c) v is interacting with other nodes 
in the graph, respectively. Specifically, these metrics are: 

 

− In-degree, DI(v), Out-degree, DO(v), Degree, D(v), of a node v, with the simple 
semantics that have already been mentioned. These metrics have been introduced 
in [15] and assess the dependence and the responsibility of each node.  

− In Transitive, Out Transitive, Transitive degree. The simple degree metrics of a 
node v are good measures for finding the nodes that are directly dependent on v or 
on which v directly depends on, but they cannot detect the transitive dependencies 
between nodes. Thus, if we consider the graph G(V,E), the transitive degrees of a 
node v∈V with respect to all nodes yi∈V are given by the following formulae: 
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− Zoomed-out degree. Assuming the degrees of the detailed graph can be computed, 
one can measure the degrees of the nodes of the zoomed-out graph. As already 
mentioned in section 2, zooming-out annotates edges with strengths, so the fol-
lowing formulae can be defined: 

DIs(v) = ∑
i

iestrength )( , for all edges ei of the form (y,v) 

DOs(v) = ∑
i

iestrength )( , for all edges ei of the form (v,y) 

Ds(v) = DIs(v) + DOs(v) 

− Zoomed-out transitive degree: Similarly to above, we may extend the transitive 
degrees to the zoomed-out graph, so the following formulae can be defined: 
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)( , for ep ∈paths of the form (v,yi) 

TDs(v) = TDIs(v) + TDOs(v) 

There are several other variants of these graph-based measures that we do not ex-
plore here. We can define Category-constrained degrees, which constrain degrees by 
edge categories. For example, we might be interested only in the number of part-of 
outgoing edges of a relation. We can also measure the importance of modules (e.g., 
using the frequency of a query’s execution) and obtain weighted variants of the 
aforementioned metrics. 

4.2   Entropy – Based Metrics 

Entropy is used to evaluate the extent to which a part of a system is less likely to be 
affected by an evolution event than other parts [1].  Given a set of events A=[A1,…, An] 
with probability distribution P={p1,…,pq}, respectively, entropy is defined as the 
average information obtained from a single sample from A: 

( ) ∑
=

−=
n

i
ii ppAH

1
2log  

Assume a node v in our graph G(V,E). We define the probability that v∈V is af-
fected by an arbitrary evolution event e over a node yk∈V as the number of paths from 
v towards yk divided by the total paths from v towards all nodes in the graph, i.e., 
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The above quantity expresses the average information we gain, or equivalently the 
amount of “surprise” conveyed, if node v is affected by an arbitrary evolution event 
on the graph. Observe that high entropy values correspond to nodes with a higher 
dependence with the rest of the graph. For instance, a query defined over only one 
relation has an entropy value of 0, whereas a query defined over a view which in turns 
accesses two relations has an entropy value of log23. 

Moreover, we can apply the exact same technique to the zoomed out-graph 
Gs(Vs,Es), by defining the probability of a node v∈Vs to be affected by an evolution 
event over a node yk∈Vs as: 
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with ep∈Es being the edges of all the paths of the zoomed out graph stemming from v 
towards yk. Similarly, the entropy of node v∈Vs is:  
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5   Evaluation – Experiments 

Goals. There are two major goals in our experiments. First, we have investigated the 
extent to which the proposed metrics good indicators for the prediction of the effect 
evolution events have on the warehouse. A clear desideratum in this context is the 
determination of the most suitable metric for this prediction under different circum-
stances. A second goal involves the comparison of alternative design techniques with 
respect to their tolerance to evolution events. 

Experimental setup for the first goal. To achieve the goal of determining the fittest 
prediction metric, we need to fix the following parameters: (a) a data warehouse 
schema surrounded by a set of queries and possibly views, (b) a set of events that alter 
the above configuration, (c) a set of administrator profiles that simulate the intention 
of the administrating team for the management of evolution events, and (d) a baseline 
method that will stand as an accurate estimate of the actual effort needed to maintain 
the warehouse environment.  
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We have employed the TPC-DS [14] schema as the testbed for our experiments. 
TPC-DS is a benchmark that involves six star schemas (with a large overlap of shared 
dimensions) standing for Sales and Returns of items purchased via a Store, a Catalog 
and the Web. We have used the Web Sales schema that comprises one fact table and 
thirteen dimension tables. The structure of the Web Sales schema is interesting in the 
sense that it is neither a pure star, nor a pure snowflake schema. In fact, the dimen-
sions are denormalized, with a different table for each level; nevertheless, the fact 
table has foreign keys to all the dimension tables of interest (resulting in fast joins 
with the appropriate dimension level whenever necessary). Apart from this “starified” 
schema, we have also employed two other variants in our experiments: the first in-
volves a set of views defined on top of the TPC-DS schema and the second involves 
the merging of all the different tables of the Customer dimension into one. We have 
isolated the queries that involve only this subschema of TPC-DS as the surrounding 
query set of the warehouse. The views for the second variant of the schema were 
determined by picking the most popular atomic formulae at the WHERE clause of the 
surrounding queries. In other words, the aim was to provide the best possible reuse of 
common expressions in the queries. 

We created two workloads of events to test different contexts for the warehouse 
evolution. The first workload of 52 events simulates the percentage of events ob-
served in a real world case study in an agency of the Greek public sector. The second 
workload simulates a sequence of 68 events that are necessary for the migration of the 
current TPC-DS Web sales schema to a pure star schema. The main idea with both 
workloads is to simulate a set of events over a reasonable amount of time. Neither the 
internal sequence of events per se, nor the exact background for deriving the events is 
important; but rather, the focus is on the events’ generation that statistically capture a 
context under which administration and development is performed (i.e., maintenance 
of the same schema in the first case, and significant restructuring of a schema in the 
latter case). The distribution of events is shown in Table 1. 

We have used an experimental prototype, HECATAEUS [11], for the identification of 
the impact of hypothetical evolution events. We have annotated the graph with poli-
cies, in order to allow the management of evolution events. We have used three anno-
tation “profiles”, specifically: (a) propagate all, meaning that every change will be 
flooded to all the nodes that should be notified about it, (b) block all, meaning that a 
view/query is inherently set to deny any possible changes, and (c) mixture, consisting 
of 80% of the nodes with propagate policies and 20% with blocking. The first policy 
practically refers to a situation without any annotation. The second policy simulates a 
highly regulatory administration team that uses HECATAEUS to capture an evolution 
event as soon as it leaves its source of origin; the tool highlights the node where the 
event was blocked. The third policy simulates a rather liberal environment, where 
most events are allowed to spread over the graph, so that their full impact can be ob-
served; yet, 20% of critical nodes are equipped with blocking policies to simulate the 
case of nodes that should be handled with special care. 

Summarizing, the configuration of an experiment involves fixing a schema, a set of 
policies and a workload. We have experimented with all possible combinations of 
values. The measured metrics in each experiment involve the execution of the work-
load of evolution events in the specified configurations and the measurement of the 
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Table 1. Distribution of events 
 

Operation Distribution  1 Distribution 2  
Rename Measure 29% (15) 0% (0) 
Add  Measure 25% (13) 0% (0) 
Rename Dimension Attribute 21% (11) 0% (0) 
Add  Dimension Attribute 15% (8) 37% (25) 
Delete Measure 6% (3) 0% (0) 
Delete Dimension Attribute 4% (2) 44% (30) 
Delete FKs 0% 13% (9) 
Delete Dimension Table 0% 6% (4) 

 
affected nodes. Specifically, each node of the graph is monitored and we get analytic 
results on how many times each node was affected by an event. This measurement 
constitutes the baseline measurement that simulates what would actually happen in 
practice. This baseline measurement is compared to all the metrics reported in Section 
4, being evolution-agnostic or not. 

Experimental Setup for the second goal. The second goal of our experiments is to 
compare alternative designs of the warehouse with each other – i.e., we want to find 
which design method (pure star, TPC-DS with or without views) is the best for a 
given designer profile (which is expressed by the policies for the management of 
evolution). Thus, the comparison involves the compilation of the baseline measure-
ments, grouped per policy profile and alternative schema. We measure the total num-
ber of times each node was affected and we sum all these events. The intention is to 
come up with a rough estimation of the number of rewritings that need to be done by 
the administrators and the application developers (in this setting, it is possible that a 
query or view is modified in more than one of its clauses). A second measurement 
involves only the query part: we are particularly interested in the effort required by 
the application developers (which are affected by the decisions of the administration 
team), so we narrow our focus to the effect inflicted to the queries only. 

5.1   Effectiveness of the Proposed Metrics 

In this experiment, we evaluate the effectiveness of the proposed metrics using the 
first distribution of events. We have constructed the following nine configurations by 
fixing each time a value for the schema and the policy. The schema takes one of the 
values {Web Sales (WS), Web Sales extended with views (WS-views), star variant of 
Web Sales (WS-star)} and the policy takes one of the values {Block-All, Propagate-
All, Mixture}. In the rest, we discuss our findings organized in the following catego-
ries: (a) Fact Tables, (b) Dimension Tables, (c) Views, and (d) Queries.  

Facts. Our experiments involved a single fact table. We observed that the number of 
events that occurred to the fact table does not change with the overall architecture. 
The presence of more or less dimensions or views did not affect the behavior of the 
fact table; on the contrary, it appears that the main reasons for the events that end up 
to the fact table, are its attributes. Therefore, the main predictor for the behavior of the 
evolution of the fact table is its out-degree, which is mostly due to the part-of relation-
ships with its attributes.  
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Dimension Tables. Evolution on dimension tables can also be predicted by observing 
their out-degree, since this property practically involves the relationship of the dimen-
sion with its attributes as well as its relationship via foreign keys with other dimen-
sions. Figure 2 depicts this case for the original web sales schema and its star variant, 
for which all customer-related dimensions have been merged into one dimension. Our 
baseline (depicted as a solid line with triangles) involves the actual number of times a 
node belonging to a dimension table was affected. 

         

Fig. 2. Events affecting dimensions: (a) WS schema, (b) WS-star schema 
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Fig. 3. Events affecting views: (a) WS-star and WS schema, (b) WS-views schema 

Despite the spikes at the heavily correlated date dimension, out-degree is a predictor, 
keeping in mind that it is the actual trend that matters and not the values themselves. 

Views. Views behave practically uniformly for all configurations, independently of 
schema or policy. Observe Fig. 3 where we depict our findings concerning views. It is 
clear that strength of out-degree (strength-out) and total strength are the best predictors 
for the evolution of views with the former being an interestingly accurate predictor in all 
occasions. Figure 3(a) is a representative of all the six configurations for the original web 
sales schema and its star variant. The policy makes no difference and all six experiments 
have resulted in exactly the same behavior. The rest of the metrics miss the overall trend 
and are depicted for completeness. Fig. 3(b) shows a representative graphical representa-
tion of the metrics, showing that the strength of the out-degree is consistently effective, 
whereas the total strength shows some spikes (mainly due to views that are highly  
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connected to the sources, although these sources did not generate too much traffic of 
evolution events after all). The rest of the metrics behave similarly with Fig. 3(a). 

Queries. Queries are typically dependent upon their coupling to the underlying DBMS 
layer. As a general guideline, the most characteristic measure of the vulnerability of 
queries to evolution events is their transitive dependence. A second possible metric 
suitable for a prediction is the entropy; however, it is not too accurate. Other metrics do 
not seem to offer good prediction qualities; the best of them, out-degree, does not ex-
ceed 70%. Recall that the baseline for our experiment is the actual number of events that 
reached a query (depicted as a solid line decorated with triangles in Fig. 4 and 5). Fi-
nally, we stress that the trend makes a metric successful and not the precise values.  
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Fig. 4. Events affecting queries: (a) WS schema, (b) WS-star schema  
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Fig. 5. Total number of events affecting queries: (a) Behavior for the WS-views with propagate 
policy; (b) Behavior for the WS-views schema with mixture policy 

Fig. 4 shows two characteristic plots for the original web sales schema and its star 
variant. Each plot is a representative of the other plots concerning the same schema, 
with the trends following quite similar behavior. In all cases, transitive dependence 
gives a quite successful prediction, with around 80% accuracy. It is noteworthy that in 
the case of the 20% of failures, though, the metric identifies a query as highly vulner-
able and in practice, the query escapes with few events. Fortunately, the opposite does 
not happen, so a query is never underestimated with respect to its vulnerability. En-
tropy is the second best metric and due to its smoothness, although it follows transi-
tive dependence’s behavior, it misses the large errors of transitive dependence,  
although it also misses the scaling of events, for the same reason.  
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Fig. 6. Comparison of WS, WS-views, WS-star design configurations for distribution 1: (a) only 
affected queries and (b) all affected nodes 
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Fig. 7. Comparison of WS, WS-views design configurations for distribution 2: (a) only affected 
queries; (b) all affected nodes 

Queries are quite dependent on the policy and schema: views seem to block the 
propagation of events to the queries. Fig. 5(b) shows a significant drop for the values 
of affected queries when the policy is a mixture of propagation and blocking policies. 
The propagate-all policy depicted in Fig. 5(a) presents the flooding of the events, 
which involves more than double the number of occurrences as compared to the num-
bers of Fig. 5(b) for 80% of the cases. A block-all policy involved only 3 of the 10 
queries and it is not depicted for lack of space). Interestingly, the transitive degree has 
a success ratio of 80%, as opposed to the rather unsuccessful out-degree.  

5.2   Comparison of Alternative Design Configurations 

We compared the three alternative design configurations of our system in order to 
come up with an estimation of the number of rewritings that need to be done by the 
administrators and the application developers, and to assess the effect that a different 
schema configuration has on the system. Thus, we measured the number of affected 
nodes and specifically, the number of affected query nodes for the nine different con-
figurations of policy sets and schemata. The first distribution of events was applied to 
all schemas, whereas the second was applied only to WS and WS-views. 

Fig. 6 describes the effect that a design alternative has on how affected system con-
structs are in the case of evolution. A star schema has less maintenance effort than the 
other variants due to its reduced size. Clearly, the presence of views augments the 



 Design Metrics for Data Warehouse Evolution 453 

effort needed by the administration team to maintain them (shown in the increased 
number of affected nodes of Fig. 6b), which is because nodes belonging to views are 
extensively affected. Still, the interference of views between the warehouse and the 
queries serves as a “shield” for absorbing schema changes and not propagating them 
to queries. The drop in query maintenance due to the presence of views is impressive: 
whatever we pay in administration effort, we gain in development effort, since the cost 
of rewritings in terms of human effort mainly burdens application developers, who are 
obliged to adapt affected queries to occurred schema changes. The case of schema 
migration strengthens this observation (Fig. 7). As for the different policy sets, we 
observe that blocking of events decreases the number of affected nodes in all configu-
rations and saves significant human effort. It is, however, too conservative, con-
straining even the necessary readjustments that must be actually made on queries and 
views. On the other hand, propagate and mixture policy sets have an additional over-
head, which is balanced by the automatic readjustments that are held on the system.  

6   Conclusions 

In this paper, we have proposed a set of metrics for the evaluation of the vulnerability 
warehouse modules to future changes and for the assessment of the quality of alterna-
tive designs of the warehouse. We have learned that out-degrees help as predictors for 
the fact and the dimension tables of the warehouse; the strength of out-degree 
(strength-out) and total strength are very good predictors for the evolution of views; 
the transitive dependence and entropy are good predictors for the vulnerability of 
queries. As far as warehouse design is concerned, we have an elegant theory to char-
acterize the trade-offs between administration and development costs that result from 
the choice of adding views or “starifying” the schema of a warehouse. 

Further experimentation and novel metrics along with theoretical validation of the 
proposed ones are clear topics for future work. 
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