

Efficient Deployment of Web Service Workflows

Konstantinos Stamkopoulos Evaggelia Pitoura Panos Vassiliadis
Dept. of Computer Science, University of Ioannina, Ioannina, Hellas

{kostamko, pitoura, pvassil}@cs.uoi.gr

Abstract

The appropriate deployment of web service operations

at the service provider site plays a critical role in the
efficient provision of services to clients. In this paper, we
assume that a service provider has several servers over
which web service operations can be deployed. Then,
given a workflow of web services and the topology of the
servers, the most efficient mopping of operations to
servers must be discovered. Efficiency is measured in
terms of two cost functions that concern the execution
time of the workflow and the fairness of the load
distribution among the servers. We study different
topologies for the workflow structure and the server
connectivity and propose a suite of greedy algorithms for
each combination.

1. Introduction

A web service is an interface that describes a
collection of operations provided through the internet and
accessed through standard XML messages [ACKM04].
The appropriate deployment of web service operations at
a service provider site plays a critical role in the efficient
provision of services to clients. To effectively provide
solutions to users’ tasks, web services are composed in
workflows (specified in appropriate languages such as
BPEL or WSFL) that combine intermediate service
results towards achieving a more complex goal.

In the problem we are dealing with in this paper, we
assume that a service provider has several servers over
which web service operations can be deployed. Then,
given a workflow and the topology of the servers, the
most efficient deployment of the operations must be
discovered. Efficiency is measured in terms of two cost
functions that concern the execution time of the workflow
and the fairness of the load distribution among the
servers. The latter means that all servers spend the same
amount of time for processing the workflow. This results
in a double optimization problem with antagonistic
individual measures. We study different topologies for
both the workflow and the network of servers and
propose algorithms for each case. The contribution of this
work lies in (a) the definition of a simple model which
describes the problem, and (b) the proposed algorithms
for its solution. Moreover, we have thoroughly
experimented and assessed all the proposed algorithms.

This paper is organized as follows: In Section 2, we
start with a formal definition of the problem. In Section 3,
we introduce algorithms for the deployment of web
service operations at the appropriate servers. In Section 4,
we present experimental results and in Section 5, we
discuss related work. Finally, in Section 6, we summarize
our findings and discuss issues of future research.

2. Problem formulation

In this section, we start with a motivating example to
show the nature and importance of the appropriate
deployment of web service operations and then move on
to formally define the problem.

2.1. Motivating example

Assume an electronic system that assigns rendezvous

for patients that need to consult doctors. A workflow that
arranges a meeting depending on the availability of a
doctor is depicted in Fig. 1. Once the meeting has been
conducted, the system registers any prescribed medicines
and communicates through operations at social security
agencies to register the assignment of medicines to
patients. For lack of space, we avoid the detailed
description of operations; still it is important to note that
there are operational services that receive requests (in the
form of XML messages) to which they react (by sending
XML messages) and decision activities that regulate
which operations are to be invoked depending on the state
of the workflow.

Figure 1. Exemplary workflow.

The whole workflow is supported by web service

operations, deployed by the ministry of health and social
security. The ministry has 5 servers that can host any of
the 15 operations of the workflow and the problem is to
decide which of the possible 515 configurations of the
deployment of operations to servers (a) provides the
fastest closing of each patient case and (b) loads each
server in a fair way, so that whenever additional

workflows are deployed, or a server fails, a reasonable
load scale-up is still possible.

2.2. Formal definition of the problem

In this subsection, we formally define the problem
under consideration. The objective is to provide
algorithms that take as input a workflow of web service
operations along with a topology of servers and compute
an appropriate mapping of operations to servers.

Assume a finite set of web service operations O = {Ο1,
Ο2, …, ΟM} and a finite set of servers S = {S1, S2, …, SN}.
The term “operation” refers to WSDL operations (i.e.,
modules that can receive an input XML message and
produce a result in the form of an output XML message).
A transition (op, on) is a message sent by the web service
operation op to the operation on, i.e., the output of op is
used as input to on. A workflow is a directed digraph of
operations W(Ο, E), where E={(op, on) | op,on ∈ O, ∃ a
transition from op to on}. Plainly speaking, a workflow is
a graph, with operations being the nodes of the graph and
XML messages being modelled as the edges of the graph.
In the case of web service operations (as opposed to web
services), we make the reasonable assumption that each
pair of operations can be connected through only one
message. A network of servers is a graph N(S, L), where
L={(si, sj) | si, sj ∈ S, ∃ connection among server si with
server sj}. The deployment of an operation o to a server s
is denoted by o→s.

The operations of O can be distinguished into decision
and operational ones. The latter are the ones performing
specific tasks for the workflow, whereas the former
control the flow of execution. We consider three types of
decision operations/nodes, namely AND, OR, and XOR.
We also assume three complementary types, denoted
/AND, /OR and /XOR respectively, to allow the definition
of well-formed workflows. A workflow is well-formed if
for every decision node a, there exists a complement node
/a, and all paths stemming from a also pass from /a.
Plainly speaking, decision nodes and their compliments
act as parentheses. The reasons for this requirement are
hidden in the semantics of the graph. Assuming a
decision node (like node 5 in Fig. 1), the semantics are as
follows: (a) AND nodes involve the execution of all their
outgoing paths with a rendezvous at /AND, (b) OR nodes
do the same, but it suffices that one of the paths
successfully reaches /OR and (c) XOR nodes involve a
probabilistically weighted pick of a path to be executed.

Assume a cost model Cost(W) that computes the cost
of successfully completing the workflow W. More details
on the alternative costs that can be used are provided in
the sequel. In the broadest possible variant of the
problem, we can also assume a set of user constraints C,
concerning for example an upper bound on the
completion time of a workflow or on the distribution of
load among the servers.

The desideratum is a mapping of the operations O of a
workflow W to a set of servers S, such that the
operational cost is minimized (and the constraints C are
met). Formally, the mapping is modeled as a finite set
Mapping = {r1, r2, …, rΜ | ∀ i=1,2,…,Μ: ri a rule of the
form o→s, o∈O and s∈S} and the goal is to find the
mapping with the minimal Cost(W) that respects C.

3. Proposed Algorithms

In this section, we present our proposed algorithms for

determining an appropriate deployment of web service
operations to servers.

Figure 2. Examined configurations.

We have experimented with different types of

workflow and server topologies. Regarding the topology
of the workflow, we have considered linear and random
graph topologies. The network of servers forms either a
linear topology (mainly for initial experimental reasons)
or a bus topology. In Fig. 2, we depict the combinations
that were eventually considered as valid cases. In all our
deliberations, we assume N servers and M operations. For
lack of space, we provide informal descriptions for the
algorithms that are simple to formalize. The formal
descriptions are found in the Appendix.

3.1 Exhaustive algorithm

The exhaustive algorithm considers all possible
mappings and outputs the one having the minimum cost.
Due to the exponential search space of the exhaustive
algorithm (for Ν servers and Μ operations, we have NM
configurations), we proceed with a set of heuristic
solutions.

Regarding cost, we focus mainly on two cost metrics:
execution time of the workflow and load distribution.
Concerning the execution time of the workflow, the
obvious desideratum is its minimization. Concerning the
fairness of the distribution of load to servers, we want to
guide our algorithms to fair solutions where the amount
of work (i.e., the sum of computational cycles due to the
assigned operations) is proportional to the computational

power of each server. Details on the two metrics are given
in Table 1. Unless otherwise stated, in the sequel, we will
assume an equally weighted sum of the execution time
and load distribution as our cost model. To use the same
units, we assess fairness in the form of a time penalty that
measures the deviation of the load of each server from the
average load (which is the average time needed for a
server to complete its workload). In a fair situation, all
servers dedicate to the workflow the same amount of
time.

Table 1. Notation and cost formulae.
Symbol Description

C(op) The cycles necessary for operation op to
complete

P(s) Computational power of server s (Hz)
Server(op) The server where operation op is deployed

Tprop(si, sj)
Propagation time of the link between servers si
and sj.

Path(si, sj)
The path followed by a message from si to
server sj.

Ttrans(opi, opj)

Transmittance time needed for the
communication of operations opi and opj.

Ttrans(opi, opj) = ∑
a ba)s ,(sLine_Speed

opj)i,MsgSize(op ,

(sa,sb) ∈ Path(Server(opi), Server(opj))

Tproc(op)
Processing time of a deployed operation op.

Tproc(op)=
(op)) P(Server

C(op)

MsgSize(opi, opj)
Message size sent from operation opi to
operation opj, assuming (opi,opj) ∈ Ε.

Line_Speed(si, sj) Line speed (bps) between servers si and sj.

Load(s)

Total load of server s, as the sum of the
processing time of operations deployed to it.

Load(s) = ∑
j

jproc)(OT

Tcomm(opi, opj)

Assuming (opi, opj) ∈E, the communication
time between operations opi and opj, Tcomm(opi,
opj) =)s ,(sT ba

a

prop∑ + Ttrans(opi, opj), (sa,sb)

∈ Path(Server(opi), Server(opj))

Time_Penalty

A translation of “fairness” to the time that a
server needs to conclude its work, as opposed
to the avg. such time among all servers
Time_Penalty =

∑∑
−

= += −××
−1N

1i

N

1ij

ji

1)(NN(1/2)
|)Load(s)Load(s|

Texecute

Execution time of workflow W.
Texecute =

∑
=

M

1j

jproc)(OT
+ Tcomm

(total)

Clearly, the two metrics are antagonistic to each other.

Take the case of a linear workflow (where each operation
waits its preceding one to complete before it starts) where
all operations are assigned to a single server. Then,

although the completion time is optimized (since no
server communication costs are involved), the fairness of
load distribution is destroyed. Inverse situations can also
be encountered.

We have experimented with the exhaustive algorithm
in small configurations to identify the properties that
characterize the solutions that are close to the optimal
one. These properties can be summarized as follows:
1. Analogy between load and computational power of a

server. This clearly affects the fairness of load
distribution.

2. Minimization of the size of messages exchanged
between servers. To achieve this, it is desirable to
allocate as many neighboring operations as possible
to each server, provided that the server is not
overloaded. By doing so, the fraction of messages
sent over each communication line is expected to be
reduced. Similarly to the above observation,
minimization of the number of messages exchanged
between servers is also desirable.

3.2 Algorithms for a Line – Line configuration

The case where both the workflow and the server

topology are lines is the simplest possible one. Still, it is
briefly mentioned here because of the simple observations
and heuristics that can be applied to it.

O10 O11... O12 O13

S6S5

...

Low capacity LinkLarge XML
message

Critical Bridge

......

Small XML
message

O10 O11... O12 O13

S6S5

...

Low capacity LinkLarge XML
message

Critical Bridge

......

Small XML
message

Figure 3. Critical Bridge.

The Line-Line algorithm receives a workflow of web

service operations W(O, E), and a server configuration
N(S, L) as its input. The algorithm operates in two
discrete phases. In the first phase, the algorithm tries to
produce a load distribution as fair as possible, while
attempting to minimize the number of exchanged
messages. In the second phase, the algorithm tries to
move operations to neighboring servers to avoid sending
large messages over low capacity links. For Ν servers and
Μ operations, the complexity of the first phase is O(M)
and the complexity of the second one is O(N).

First, the algorithm computes the ideal load per server.
Then, it starts assigning the operations of W to the servers
of W starting from the first operation/server on the left.
When a server comes as close as possible to its ideal load,
the algorithm considers the next server. The first phase
ends, when all operations have been allocated. The
second phase of the Line-Line algorithm is based on the
idea of a critical bridge, which is a link between two
servers of the network with (a) a small capacity and a

large message load (in bytes), plus (b) a small-sized
message concerning a contiguous operation. Fig. 3
depicts such a case. Whenever a critical bridge is
detected, the algorithm deploys the receiver of the large
message to the server of the sender of the message (or
vice-versa).

Algorithm Fair Load – Tie Resolver for Cycles
Input: a workflow of web service operations W(O, E),

with Ο = (Ο1, Ο2,…, ΟΜ) and a server configuration
N(S, L), with S = {S1, S2, …, SN} and L all the
combinations of server pairs with the same network
costs (bus)

Output: a mapping M of Ο to S
Begin

Sum_Cycles = ∑
=

M

1i

i)C(O , Sum_Capacity = ∑
=

N

1i

i)P(S

Ideal_Cycles(Si) = Sum_Cycles ×
tySum_Capaci

)P(Si , i = 1, …, N

Servers_List = (s1, s2, …, sN) = (S1, S2, …, SN)

Operations_List = (o1, o2, …, oM) = (O1, O2, …, OM)

Sort Servers_List so that ∀ i = 1, …, N-1 Ideal_Cycles(si) ≥

Ideal_Cycles(si+1)

Sort Operations_List so that ∀ i = 1, …, M-1 C(oi) ≥ C(oi+1)

Initialize M to a random Mapping

while Operations_List is not empty do

 gain1 = Gain_Of_Operation_At_Server(o1, s1, M)

 i=2

 while C(o1) = C(oi) and i ≤ M do{

 gain2= Gain_Of_Operation_At_Server(oi, s1, M)

 if gain2 > gain1 {

 swap(o1, oi)

 gain1 = gain2 }

 i++

 } //end inner while

 Μ = Μ – {o1→Server(o1)}

 M = M ∪ {o1→s1}

 Delete o1 from Operations_List

 Ideal_Cycles(s1) – = C(o1)

 Move s1 in Servers_List so that ∀ i = 1, …, N-1: Ideal_Cycles(i) ≥

Ideal_Cycles(i+1)

 Continue with new Servers_List = (s1, s2,…, sN)

} //end outer while

return M

End

Figure 4. Algorithm Fair Load – Tie Resolver
for Cycles.

The algorithm Line-Line comes with variants. The first
variation simply avoids the second phase of the
algorithm. A second variation considers the assignment of
operations to servers both from left-to-right and from
right-to-left and maintains the better of the two. The
combination of these variants produces four alternatives
for the computation of the best configuration with the
obvious complexities.

3.3 Algorithms for a Line – Bus configuration

In this subsection, we move to a more realistic case,

where all servers are connected to each other through a
network bus. The workflow is still a simple line. We can
produce several greedy variants of a simple algorithm,
which are subsequently listed.

Function Gain_Of _Operation_At_Server
Begin
gain = 0

if Oi ∈ (Ο2, O3, …, OM) and {Oi-1→Sj} ∈ M then

 gain += MsgSize(Oi-1, Oi)

if Oi ∈ (Ο1, O2,…, OM-1) and {Oi+1→Sj} ∈ M then

 gain += MsgSize(Oi, Oi+1)

return gain

End
Figure 5. Function Gain of Operation at Server

Fair Load. The simplest of all the involved variants is

tuned to obtain the best possible load distribution. Fair
Load starts by computing the ideal number of cycles that
should be assigned to a server based on its capacity.
Then, it sorts servers by their capacity and operations by
their execution cost. The algorithm processes the sorted
list of operations, each time, assigning the next heaviest
operation to the most appropriate server. The most
appropriate server is the server that needs the most cycles
to complete its ideal number of cycles, at the time of the
assignment. Fair Load is a variant of the worst-fit
algorithm for the bin packing problem.

Fair Load – Tie Resolver for Cycles. Fair Load does
not take execution time into consideration. A simple
extension involves resolving any ties that may come up
during the selection process among operations with the
same number of cycles. The algorithm Fair Load – Tie
Resolver for Cycles, (or, FLTR1 for brevity) operates as
Fair Load with respect to its basic principle (Fig. 4). The
difference lies in the fact that whenever we need one
among a number of operations with the same cost, we no
longer pick one at random. Instead, we employ a gain
function, Gain_Of_Operation_At_Server that returns the
communication savings (i.e., how many bytes will not be
put on the bus), if the next operation is deployed to a
certain server (Fig. 5). The best such assignment among

all candidate operations and servers is picked. The
algorithm uses two lists, Servers_List και
Operations_List, with pointers to the respective sets. The
algorithm also needs to initialize the mapping Μ to a
random configuration, or else, the first calls of function
Gain_Of_Operation_At_Server would not return any gain
at all.

Fair Load – Tie Resolver for Cycles and Servers.
The algorithm Fair Load – Tie Resolver for Cycles can be
extended to also handle ties among servers. The algorithm
Fair Load – Tie Resolver for Cycles and Servers, (or,
FLTR2 for brevity) simply customizes appropriately the
previous gain function to also consider the case in which
there is a tie among the servers to be chosen next, with
respect to their distance from their ideal load.

Summarizing, both Tie Resolver algorithms handle
practically the same configurations with Fair Load, with
the only difference that special attention is paid to
situations where ties occur, with the overall goal to
reduce the communication cost. However, it is still
possible to send large messages over the network. The
following extension tries to alleviate this problem.

Fair Load–Merge Messages’ Ends. Algorithm Fair
Load–Merge Messages’ Ends (or, FLMME for brevity)
extends FLTR2 by adding an extra test during the
deployment decision. If the assignment of an operation to
a server results in a large message, the assignment is
cancelled and the operation is assigned to the sender of
the message, thus alleviating the need to send the
message.

Heavy Operations – Large Messages. Algorithm
Heavy Operations–Large Messages operates like Fair
Load, with the fundamental difference that operations are
not treated separately, but as groups. Two operations are
clustered in the same group if they exchange a large
message. A message is considered large whenever the
time needed to transfer it is larger than the execution time
of the costliest group of operations over the server with
the most available cycles at the time the decision is made.
Recall that, in the bus topology, the communication cost
between every pair of servers is considered the same.
Activities that have been grouped together are always
assigned to the same server.

Initially, each operation constitutes a group by itself.
The algorithm employs three lists, one for the available
cycles of each server, one for the size of each message
and one for the cycles of each group. In the beginning of
each step, these lists are sorted. In each step, the
algorithm decides whether (a) to assign the most
expensive group of operations to the server with the most
available cycles, or (b) to avoid the exchange of a large
message over the network. The decision is taken on the
basis of the existence of a large message on the top of the
list of the messages. If such a message exists, then option
(b) is followed. In this case, either (b1) both message

ends are placed at the same server, or (b2) the two groups
are merged. Option (b1) is followed, if one of the two
operations that communicate through the large message is
already placed at a server. Otherwise, the groups to which
the communicating operations belong are merged. Note
that messages must be removed from the list whenever
both their ends are placed at the same server.

The complexities of the algorithms are
Ο(Μ×logM+Ν×logN+ΜN) for Fair Load, and
O(Μ×(Μ×logM+Ν×logN+ΜΝ)) for the rest of the
algorithms. In the algorithm Heavy Operations–Large
Messages, ΜΝ becomes 1.

3.4 Algorithms for a Random Graph – Bus
configuration

In this third family of algorithms, we consider the case

where the servers are still connected through a bus but the
workflow is a random graph. All algorithms are
practically the same with the category Line-Bus, with
simple modifications that take the structure of the
workflow into account. The algorithms must take into
consideration that an operation can receive more than one
message and that decision nodes possibly imply the
execution of a subset of the workflow. Specifically, all
the algorithms of this family (with the exception of
algorithm Fair Load that remains exactly the same)
assign an execution probability to each operation (and
thus, each message) due to the existence of XOR decision
nodes. The determination of this probability is based on
monitoring initial executions of the workflow or simple
prediction mechanisms. Thus, the execution cost is a
practically a weighted cost, amortized for a large number
of workflow executions (as opposed to a single execution
as in the case of linear workflows).

4. Experiments

In this section, we present experimental results for the

assessment of the proposed algorithms. We mainly focus
on the topologies where the network involves a bus; any
insights from the experiments of a Line-Line
configuration are discussed in the context of the two other
cases.

4.1 Experimental methodology

We have varied several parameters of the

configurations. We use the results of [HGSL+05] and
[NgCG04] to determine appropriate values for our
experiments. In [NgCG04], three types of SOAP
messages are used: simple messages of 873 bytes
(0.00666 Mbits), medium messages of 7581 bytes
(0.057838 Mbits), and complex messages of 21392 bytes

(0.163208 Mbits). We assume 4, 10, and 20 ms as the
time needed for the execution of a web service (this
includes the serialization, network time, deserialization
and server execution time). Assuming a value of 37% for
the parsing of a message, this results in 2.5, 6.3 and 12.7
M cycles for simple, medium and complex messages,
respectively (over a 1.67 MHz CPU). Then, we set simple
web service operations to 5M cycles, medium operations
to 50M cycles and heavy operations to 500 M cycles.

We have grouped our experiments in three classes. In
all experiments, we measure the execution time and the
load distribution of the workflow. In class A, we vary the
link capacity and the size of the messages exchanged. In
class B, we vary the CPU power of the servers and the
workload of the workflow. In class C, we change all the
variables of the problem. Due to lack of space, we only
report our findings for class C experiments. Table 6 lists
the different values employed in this class of experiments.

To assess the quality of our solutions, we have
performed sampling of solutions with configurations with
varying number of servers (3-5) and operations (5-19).
We report worst case numbers of 50 experiments over a
configuration of 5 servers and 19 operations. Each sample
involved 32.000 potential solutions over search spaces
that spanned from 32.000 to 1019 solutions.

4.2 Experiments for a Line – Bus configuration

We have conducted all classes of experiments with all

the proposed algorithms participating for the
configuration of linear workflows executed over a
network bus.

Table 6. Experimental configuration for Class

C experiments.
MsgSize(Oi, Oi+1) 0.006660 Mbits with probability 25%

0.057838 Mbits with probability 50%
0.163208 Mbits with probability 25%

Line_Speed(Si, Si+1) 10 Mbps with probability 25%
100 Mbps with probability 50%
1000 Mbps with probability 25%

C(Oi) 10 M cycles with probability 25%
20 M cycles with probability 50%
30 M cycles with probability 25%

P(Si) 1 GHz with probability 25%
2 GHz with probability 50%
3 GHz with probability 25%

In Fig. 6, we depict our results for the Class C

experiments. The horizontal axis of each diagram depicts
the execution time and the vertical axis the time penalty.
The closer a solution is to point (0, 0), the better it is.
Assuming different weights for the two measures,
different distance measures could also be considered.

Both Tie Resolver algorithms provide some
improvements in both dimensions, whereas the FL-
Merge Message’s Ends improves the execution time to a

certain extent by deteriorating the load balance. The
HeavyOps-LargeMsgs algorithm produces quite
acceptable execution times, esp. for small bus capacities
and practically seems to be the more stable solution
compared to all the others. It is interesting that the
behaviour of the HeavyOps-LargeMsgs algorithm
remains quite stable even when the fraction of operations
to servers (denoted as K) increases. In terms of the
quality of the solution, HeavyOps-LargeMsgs produces
(2.9%, 12%) deviations for execution time/time penalty
for 1Mbps bus, and (29%,0.3%) for 100 Mbps bus.

As an overall result, we can safely argue that FL-Tie
Resolver2 seems to provide quite fair solutions, whereas
the HeavyOps-LargeMsgs algorithm is slightly worse in
this category, but provides consistently good execution
times in all configurations.

4.2 Experiments for a Random Graph – Bus
configuration

In the case of workflows with random graph

structures, we have discerned three cases: (a) bushy, (b)
lengthy and (c) hybrid graphs. Bushy graphs have a high
percentage of decision nodes (and are therefore shorter in
length, but with a higher fan-out). Lengthy graphs have a
small percentage of decision nodes and involve lengthy
paths. Hybrid graphs are somewhere in the middle.
Specifically, bushy graphs involve a 50%-50% balance of
decision/operational nodes, lengthy graphs involve a
16%-84% balance and hybrid graphs a 35%-65% one.

In Fig. 7, we depict the overall performance of our
algorithms and in Fig. 8 the detailed results organized per
graph structure. As one can see, the results are not very
different from the ones for the previous topology. For
almost all configurations, the HeavyOps-LargeMsgs
algorithm appears to be a clear winner: it is consistently
the best choice in terms of execution time and it also
appears to be the quite close to the best solutions in terms
of fairness. FL-Merge Message’s Ends appears to be quite
close in terms of execution time (in fact, in individual
experiments it has occasionally outperformed HeavyOps-
LargeMsgs), still it is quite unstable with respect to its
fairness.

In terms of the quality of the solution, HeavyOps-
LargeMsgs produces (29%, 1.8%) deviations for
execution time/time penalty for the 1Mbps bus, and (0%,
0%) for the 100 Mbps bus.

5. Related Work

Related work has quite extensively dealt with similar
problems, although we are not aware of any results on the
problem of optimal service deployment so far.

 Bus 1 Mbps Bus 10 Mbps Bus 100 Mbps
 5

 se
rv

er
s (
Κ

=3
,8

)

 1
0

se
rv

er
s (
Κ

=1
,9

)

 1
5

se
rv

er
s (
Κ

=1
,2

6)

Figure 6. Line – Bus algorithms with 19 operations in the workflow.

1Mbps 10Mbps 100Mbps

Figure 7. Random Graph – Bus algorithms.

Bus 10 Mbps Bus 100 Mbps

Bushy workflows

Hybrid workflows

Lengthy workflows

Figure 8. Graph – Bus algorithms organized per
graph structure.

[LeWY93] and [LTZS05] deal with the problem of
object replication and provide interesting insights on the
dimensions of the problem and the gain functions.
[CoBF05] and [SWMM05] assume the continuous
execution of a workflow: the former deals with the
deployment of triggers to allow for the efficient execution
of the workflow, whereas the second deals with the order
of activity execution to achieve the optimal throughput.
[CSMA+04], [GiWW02], [ZBD+03] and [SaZh04]
consider the problem of achieving QoS properties, still
they do not deal with the deployment of service instances
(although [GiWW02] makes service replicas, and
[ZBD+03] assumes communities of similar operation).

6. Conclusions

In this paper, we have dealt with the problem of
discovering the best possible deployment of the
operations of a certain workflow given its structure and a
topology of servers. We have measured efficiency in

terms of two cost functions that concern the execution
time of the workflow and the fairness of the load on the
servers. We have studied different topologies for the
workflow structure and the server connectivity and
proposed greedy algorithms for each combination. Our
experiments indicate that algorithm HeavyOps-
LargeMsgs is a good choice for all the considered
configurations.

Future extensions of this work involve the case of
multiple workflows (instead of just a single one). Other
extensions involve a detailed study of the proposed
algorithms whenever user-defined constraints are given.
For instance, apart from the overall execution time, the
response time of individual operations can also be
considered as part of the cost model.

Acknowledgments. This research was co-funded by
the European Union in the framework of the program
“Pythagoras IΙ” of the “Operational Program for
Education and Initial Vocational Training” of the 3rd
Community Support Framework of the Hellenic Ministry
of Education, funded by 25% from national sources and
by 75% from the European Social Fund (ESF).

References
[ACKM04] G. Alonso, F. Casati, H. Kuno, V. Machiraju.

Web Services Concepts, Architecture and Applications.
Sprinter, 2004.

[CoBF05] I. Constantinescu, W. Binder, B. Faltings.
Optimally Distributing Interactions Between Composed
Semantic Web Services. ESWC 2005: 32-46.

[HGSL+05] M. Head, M. Govindaraju, A. Slominski, P.
Liu, N. Abu-Ghazaleh, R. van Engelen, K. Chiu, M.
Lewis. A Benchmark Suite for SOAP-based
Communication in Grid Web Services. SC|05, Seatle
WA. November 2005.

[LeWY93] A. Leff, J.L. Wolf, P.S. Yu. Replication
algorithms in a remote caching architecture. IEEE
Transactions on Parallel and Distributed Systems, 4(11),
1185-1204, Nov. 1993.

[LTZS05] N. Laoutaris, O. Telelis, V. Zissimopoulos, I.
Stavrakakis. Distributed Selfish Replication. IEEE
Transactions on Parallel and Distributed Systems, 2005.

[NgCG04] A. Ng, S. Chen, P. Greenfield. An Evaluation
of Contemporary Commercial SOAP Implementations.
AWSA2004. Melbourne, Australia, 2004.

[SWMM05] U. Srivastava, J. Widom, K. Munagala, R.
Motwani. Query Optimization over Web Services.
October 2005. Available at:
http://dbpubs.stanford.edu:8090/pub/2005-30.

APPENDIX: Description of Algorithms

Exhaustive Algorithm
Input: A set of operations O = {O1, O2, …, OM} and a set of servers S = {S1, S2, …, SN}.
Output: A mapping M = { Mj {{O} → {S}} | j = 1, …, ΝΜ }.
Begin
1 M = ∅, M’ = ∅
2 o = O1
3 for each s∈S do
4 M’ = M’ ∪ {o→s}
5 for j = 2 to M do
6 for each m∈M’ do
7 for each s∈S do
8 M = M ∪ {m ∪ {Oj→s}}
9 end for
10 end for
11 M’ = M
12 if j<Μ M = ∅
13 end for
14 return M
End

Algorithm Line – Line
Input: A workflow W(O, E) (in line topology), where Ο = (Ο1, Ο2, …, ΟΜ) a set of operations, Ε = {(Οi, Οi+1) | ∀ i =
1,…, M-1} the set of transitions among operations and N(S, L) a server network (in line topology), where S = {S1, S2,
…, SN} a set of servers and L = {(Si, Si+1) | ∀ i = 1, …, N-1} the network connections among servers (Μ>Ν).
Output: A mapping M of Ο to S.
Begin
1 Operations_List = (Ο1, Ο2, …, ΟΜ)
2 Servers_List = (S1, S2, …, SΝ)

3 Sum_Cycles = ∑
=

M

1i

i)C(O

4 Sum_Capacity = ∑
=

N

1j

j)P(S

5 M = ∅
6 s = Servers_List.pop

Ideal_Cycles = Sum_Cycles × P(s) / Sum_Capacity
7 Current_Cycles = 0
8 while Operations_List is not empty do
9 o = Operation_List.pop
10 if SizeOf(Operation_List) ≥ SizeOf(Servers_List) then
11 if Current_Cycles + C(o) < Ideal_Cycles + 0,2×Ideal_Cycles or
12 Current_Cycles = 0 or s is SΝ then
13 Current_Cycles = Current_Cycles + C(o)
14 else
15 s = Servers_List.pop
16 Ideal_Cycles = Sum_Cycles × P(s) / Sum_Capacity
17 Current_Cycles = C(o)
18 end if
19 M = M ∪ {o→s}
20 else
21 s = Servers_List.pop
22 M = M ∪ {o→s}
23 while Operation_List is not empty do
24 o = Operation_List.pop
25 s = Servers_List.pop
26 M = M ∪ {o→s}
27 end while
28 end if
29 end while
30 Fix_Bad_Bridges (W, N, M);
31 return M
End

Function Fix Bad Bridges
Input: The workflow W, the network N of algorithm Line-Line, and a starting mapping M.
Output: A possibly updated mapping Μ.
Begin
1 Sort the speeds of the lines of N at ongoing order in list L1.
2 Sort the sizes of messages that are sending between servers (from last operation at server i to first

operation at server i+1) at ongoing order in list L2.
3 for i=1 to N-1 do
4 if Is_Critical_Bridge(S, M, i, L1, L2, shift_direction) = True then
5 if shift_direction = right then
6 M = M + {LastOperationAt(Si)→Si+1} – {LastOperationAt(Si)→Si}
7 else
8 M = M + {FirstOperationAt(Si+1)→Si} – {FirstOperationAt(Si+1)→Si+1}
9 end if
10 end if
11 end for
End

Function Is Critical Bridge
Input: The workflow W, the network N of algorithm Line-Line, a mapping M, an integer “i” representing the bridge to be
checked and the sorted lists L1 and L2 with the network connections and the message sizes for each bridge, respectively.
Output: the function returns True if the bridge among Si και Si+1 is critical; otherwise it returns False. The
shift_direction variable stores the direction of the move that must take place, in the former case.
Begin
1 if Line_Speed(Si, Si+1) ≤ Top20 of L1 and

 MsgSize(LastOperationAt(Si), FirstOperationAt(Si+1)) ≥ Bottom20 of L2 then
2 if MsgSize(PenultOperationAt(Si), LastOperationAt(Si)) ≤ Top20 of L2 then
3 shift_direction = right
4 return True
5 end if
6 if MsgSize(FirstOperationAt(Si+1), SecondOperationAt(Si+1)) ≤ Top20 of L2 then
7 shift_direction = left
8 return True
9 end if
10 end if
11 return False
End

Algorithm Fair Load
Input: A workflow W(O, E) (in line topology), where Ο = (Ο1, Ο2, …, ΟΜ) a set of operations, Ε = {(Οi, Οi+1) | ∀ i =
1,…, M-1} the set of transitions among operations and N(S, L) a server network (in bus topology), where S = {S1, S2,
…, SN} a set of servers and L = {(Si, Si+1) | ∀ i = 1, …, N-1} the network connections among servers (Μ>Ν).
Output: A mapping M of Ο to S.
Begin

1. Sum_Cycles = ∑
=

M

1i

i)C(O

2. Sum_Capacity = ∑
=

N

1i

i)P(S

3. Ideal_Cycles(Si) = Sum_Cycles ×
tySum_Capaci

)P(Si , ∀ i = 1, …, N

4. Servers_List = (s1, s2, …, sN) = (S1, S2, …, SN)
5. Operations_List = (o1, o2, …, oM) = (O1, O2, …, OM)
6. Sort Servers_List so that ∀ i = 1, …, N-1 Ideal_Cycles(si) ≥ Ideal_Cycles(si+1)
7. Sort Operations_List so that ∀ i = 1, …, M-1 C(oi) ≥ C(oi+1)
8. Μ = ∅
9. for i=1 to M do
10. M = M ∪ {oi→s1}
11. Ideal_Cycles(s1) – = C(oi)
12. Move s1 in Servers_List so that ∀ i = 1, …, N-1: Ideal_Cycles(i) ≥ Ideal_Cycles(i+1)
13. Continue with new Servers_List = (s1, s2, …, sN)
14. end for
15. return M
End

Algorithm Fair Load – Tie Resolver for Cycles
Input: A workflow W(O, E) (in line topology), where Ο = (Ο1, Ο2, …, ΟΜ) a set of operations, Ε = {(Οi, Οi+1) | ∀ i =
1,…, M-1} the set of transitions among operations and N(S, L) a server network (in bus topology), where S = {S1, S2,
…, SN} a set of servers and L = {(Si, Si+1) | ∀ i = 1, …, N-1} the network connections among servers (Μ>Ν).
Output: A mapping M of Ο to S.
Begin

1. Sum_Cycles = ∑
=

M

1i

i)C(O

2. Sum_Capacity = ∑
=

N

1i

i)P(S

3. Ideal_Cycles(Si) = Sum_Cycles ×
tySum_Capaci

)P(Si , ∀ i = 1, …, N

4. Servers_List = (s1, s2, …, sN) = (S1, S2, …, SN)
5. Operations_List = (o1, o2, …, oM) = (O1, O2, …, OM)
6. Sort Servers_List so that ∀ i = 1, …, N-1 Ideal_Cycles(si) ≥ Ideal_Cycles(si+1)
7. Sort Operations_List so that ∀ i = 1, …, M-1 C(oi) ≥ C(oi+1)
8. Initialize M to a random Mapping
9. while Operations_List is not empty do
10. gain1 = Gain_Of_Operation_At_Server(o1, s1, M)
11. i=2
12. while C(o1) = C(oi) and i ≤ M do
13. gain2 = Gain_Of_Operation_At_Server(oi, s1, M)
14. if gain2 > gain1
15. swap(o1, oi)
16. gain1 = gain2
17. end if
18. i++
19. end while
20. Μ = Μ – {o1→Server(o1)}
21. M = M ∪ {o1→s1}
22. Delete o1 from Operations_List
23. Ideal_Cycles(s1) – = C(o1)
24. Move s1 in Servers_List so that ∀ i = 1, …, N-1: Ideal_Cycles(i) ≥ Ideal_Cycles(i+1)
25. Continue with new Servers_List = (s1, s2,…, sN)
26. end while
27. return M
End

Function Gain_Of_Operation_At_Server
Begin
1. gain = 0
2. if Oi ∈ (Ο2, O3, …, OM) and {Oi-1→Sj} ∈ M then
3. gain += MsgSize(Oi-1, Oi)
4. if Oi ∈ (Ο1, O2,…, OM-1) and {Oi+1→Sj} ∈ M then
5. gain += MsgSize(Oi, Oi+1)
6. return gain
End

Algorthim Fair Load – Tie Resolver for Cycles and Servers
Input: A workflow W(O, E) (in line topology), where Ο = (Ο1, Ο2, …, ΟΜ) a set of operations, Ε = {(Οi, Οi+1) | ∀ i =
1,…, M-1} the set of transitions among operations and N(S, L) a server network (in bus topology), where S = {S1, S2,
…, SN} a set of servers and L = {(Si, Si+1) | ∀ i = 1, …, N-1} the network connections among servers (Μ>Ν).
Output: A mapping M of Ο to S.
Begin

1. Sum_Cycles = ∑
=

M

1i

i)C(O

2. Sum_Capacity = ∑
=

N

1i

i)P(S

3. Ideal_Cycles(Si) = Sum_Cycles ×
tySum_Capaci

)P(Si , ∀ i = 1, …, N

4. Servers_List = (s1, s2, …, sN) = (S1, S2, …, SN)
5. Operations_List = (o1, o2, …, oM) = (O1, O2, …, OM)
6. Not_Assigned_Operations = M
7. Initialize M to a random Mapping
8. while Not_Assigned_Operations ≠ 0 do
9. Sort Servers_List so that ∀ i = 1, …, N-1 Ideal_Cycles(si) ≥ Ideal_Cycles(si+1)
10. Sort Operations_List so that ∀ i = 1, …, Not_Assigned_Operations-1 C(oi) ≥ C(oi+1)
11. best_gain = 0;
12. for each operation oi in Operations_List where C(oi) = C(o1) do
13. for each server sj in Servers_List where Ideal_Cycles(sj)=Ideal_Cycles(s1) do
14. gain = Gain_Of_Put_Operation_At_Server(oi, sj, M)
15. if gain > best_gain then
16. best_gain = gain
17. bestO = oi
18. bestS = sj
19. end if
20. end for
21. end for
22. M = M – {bestO→Server(bestO)}
23. M = M ∪ {bestO→bestS}
24. Not_Assigned_Operations – –
25. Ideal_Cycles(bestS) – = C(bestO)
26. Delete bestO from Operation_List
27. end while
28. return M
End

Algorithm Fair Load – Merge Messages’ Ends
Input: A workflow W(O, E) (in line topology), where Ο = (Ο1, Ο2, …, ΟΜ) a set of operations, Ε = {(Οi, Οi+1) | ∀ i =
1,…, M-1} the set of transitions among operations and N(S, L) a server network (in bus topology), where S = {S1, S2,
…, SN} a set of servers and L = {(Si, Si+1) | ∀ i = 1, …, N-1} the network connections among servers (Μ>Ν).
Output: A mapping M of Ο to S.
Begin

1. Sum_Cycles = ∑
=

M

1i

i)C(O

2. Sum_Capacity = ∑
=

N

1i

i)P(S

3. Ideal_Cycles(Si) = Sum_Cycles ×
tySum_Capaci

)P(Si , ∀ i = 1, …, N

4. Servers_List = (s1, s2, …, sN) = (S1, S2, …, SN)
5. Operations_List = (o1, o2, …, oM) = (O1, O2, …, OM)
6. Messages_List = (m1, m2, …, mM-1) = ((O1, O2), (O2, O3), …, (OM-1, OM))
7. Sort Messages_List so that ∀ i = 1, …, M-2 MsgSize(mi) ≥ MsgSize(mi+1)
8. Not_Assigned_Operations = M
9. Initialize M to a random Mapping
10. while Not_Assigned_Operations ≠ 0 do
11. Sort Servers_List so that ∀ i = 1, …, N-1 Ideal_Cycles(si) ≥ Ideal_Cycles(si+1)
12. Sort Operations_List so that ∀ i = 1, …, Not_Assigned_Operations-1 C(oi) ≥ C(oi+1)
13. best_gain = 0;
14. for each operation oi in Operations_List where C(oi) = C(o1) do
15. for each server sj in Servers_List where Ideal_Cycles(sj)=Ideal_Cycles(s1) do
16. gain = Gain_Of_Put_Operation_At_Server(oi, sj, M)
17. if gain > best_gain then
18. best_gain = gain
19. bestO = oi
20. bestS = sj
21. end if
22. end for
23. end for
24. M = M – {bestO→Server(bestO)}
25. if There_Is_Constraints (bestO, bestS, M, MsgSize(m(M-1)×0.1), constraints_flag) then
26. if constraints_flag = left_message then
27. M = M ∪ {bestO→ServerOf(LeftOperationOf(bestO)}
28. Ideal_Cycles(ServerOf(LeftOperationOf(bestO) – = C(bestO)
29. else
30. M = M ∪ {bestO→ServerOf(RightOperationOf(bestO)}
31. Ideal_Cycles(ServerOf(RightOperationOf(bestO) – = C(bestO)
32. end if
33. else
34. M = M ∪ {bestO→bestS}
35. Ideal_Cycles(bestS) – = C(bestO)
36. end if
37. Not_Assigned_Operations – –
38. Delete bestO from Operation_List
39. end while
40. return M

End

Function There_Is_Constraints
Input: An operation Oi∈Ο, a server Sj∈S, a threshold big_message_size that determines whether a message is large or
not and a mapping M⊆O×S.
Output: True if there is a constraint in assigning Oi to Sj; otherwise False. In the former case, a flag constraints_flag
takes one of the values left_message or right_message to signify which of the two messages (Oi-1, Oi) and (Oi, Oi+1)
triggers the constraint. If both messages trigger a constraint violation, the one furthest from the threshold value is
highlighted.
Begin
1. if Oi = O1 then
2. if MsgSize(O1, O2) ≥ big_message_size then
3. constraints_flag = right_message
4. return True
5. end if
6. else if Oi = OM then
7. if MsgSize(OM-1, OM) ≥ big_message_size then
8. constraints_flag = left_message
9. return True
10. end if
11. else if Oi ∈ (O2, O3,…, OM-1) then
12. if MsgSize(Oi-1, Oi) ≥ big_message_size then
13. constraints_flag = left_message
14. end if
15. if MsgSize(Oi, Oi+1) ≥ big_message_size then
16. if constraints_flag = left_message and MsgSize(Oi-1,Oi) ≥ MsgSize(Oi,Oi+1)
17. constraints_flag = left_message
18. return True
19. else
20. constraints_flag = right_message
21. return True
22. end if
23. end if
24. end if
25. return False
End

Algorithm Heavy Operations – Large Messages
Input: A workflow W(O, E) (in line topology), where Ο = (Ο1, Ο2, …, ΟΜ) a set of operations, Ε = {(Οi, Οi+1) | ∀ i =
1,…, M-1} the set of transitions among operations and N(S, L) a server network (in bus topology), where S = {S1, S2,
…, SN} a set of servers and L = {(Si, Si+1) | ∀ i = 1, …, N-1} the network connections among servers (Μ>Ν).
Output: A mapping M of Ο to S.
Begin

1. Sum_Cycles = ∑
=

M

1i

i)C(O

2. Sum_Capacity = ∑
=

N

1i

i)P(S

3. Ideal_Cycles(Si) = Sum_Cycles ×
tySum_Capaci

)P(Si , ∀ i = 1, …, N

4. Servers_List = (s1, s2, …, sN) = (S1, S2, …, SN)
5. Group_Of_Oper_List = (g1, g2, …, gM) = (O1, O2, …, OM)
6. Messages_List = (m1, m2, …, mM-1) = ((O1, O2), (O2, O3), …, (OM-1, OM))
7. Not_Assigned_Operations = M
8. while Not_Assigned_Operations ≠ 0 do
9. Sort Servers_List so that ∀ i=1…N-1 Ideal_Cycles(si) ≥ Ideal_Cycles(si+1)
10. Sort Group_Of_Oper_List so that ∀ i=1…number of groups-1 C(gi) ≥ C(gi+1)
11. Sort Messages_List so that
12. ∀ i = 1, …, size of Messages_List-1 MsgSize(mi)≥MsgSize(mi+1)
13. if Tproc(g1) at server s1 > Time of sending m1 via bus then
14. for each oi∈g1 do
15. M = M ∪ {oi→s1}
16. Not_Assigned_Operations – –
17. Ideal_Cycles(s1) – = C(oi)
18. end for
19. Delete g1 from Group_Of_Oper_List
20. else
21. if source(m1) is not assigned and target(m1) is assigned then
22. M = M ∪ {source(m1)→ServerOf (target(m1))}
23. Not_Assigned_Operations – –
24. Ideal_Cycles(ServerOf (target(m1))) – = C(source(m1))
25. Delete source(m1) from its group in Group_Of_Oper_List
26. else if source(m1) is assigned and target(m1) is not assigned then
27. M = M ∪ {target(m1)→ServerOf (source(m1))}
28. Not_Assigned_Operations – –
29. Ideal_Cycles(ServerOf (source(m1))) – = C(target(m1))
30. Delete target(m1) from its group in Group_Of_Oper_List
31. else // both source(m1) and target(m1) are not assigned
32. gnew = Merge (group(source(m1)), group(target(m1)))
33. Insert gnew in Group_Of_Oper_List
34. end if
35. end if
36. for i=1 to size of Messages_List do
37. if source(mi) and target(mi) are assigned
38. Delete mi from Messages_Lists
39. end while
40. return M
End

