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ABSTRACT 
In this paper we handle the problem of maintaining materialized 
top-k views in the presence of high deletion rates. We provide a 
principled method that complements the inefficiency of the state 
of the art independently of the statistical properties of the data and 
the characteristics of the update streams.  

1. INTRODUCTION   
The top-k querying problem concerns the retrieval of the top-k 
results of a ranked query over a database. Specifically, given a 
relation R (tid, A1, A2,...Am) and a query Q over R retrieve the top-
k tuples from R having the k highest values according to a scoring 
function f that accompanies Q.  Typically, f is a monotone ranking 
function of the form: ℜ→×× )(...)(: 1 mAdomAdomf . 

Related work has extensively dealt with the problem of efficiently 
computing the top-k results of a query. The first algorithms that 
occurred in this context are FA [3, 4] and TA [5], with various 
extensions that followed them for specific contexts (e.g., parallel 
or distributed computation, etc). In recent years, in an attempt to 
achieve improved performance, researchers solve the problem of 
answering top-k queries via materialized views [2, 7, 8]. In this 
setting, results of previous top-k queries are stored in the form of 
materialized views. Then, a new top-k query may be answered 
through materialized views resulting in better performance than 
making use only of the base relation from the database. As 
typically happens with materialized views, though, when the 
source relation is updated, we need to refresh the contents of all 
the materialized views in order to reflect the most recent data. To 
the best of our knowledge, only [10] has dealt with the problem so 
far. To sustain the update rate at the source relation without 
having to fully re-compute the materialized views, [10] maintain 
kmax tuples (instead of the necessary k) and perform refill queries 
whenever the contents of the materialized views fall below the 
threshold of k tuples. Yet, the approach of [10] suffers from the 
following problems: (a) the method is theoretically guaranteed to 
work well only when insertions and deletions are of the same 
probability (in fact, the authors deal with updates in their 
experiments), (b) there is no quality-of-service guarantee when 
deletions are more probable than insertions. 

In this paper, we compensate for these shortcomings by providing 

a method that is able to provide quality guarantees when the 
deletion rate is higher than the insertion rate. The case is not so 
rare if one considers that the number of persons logged in a web 
server or a portal presents anticipated high peaks and valleys at 
specific time points or dates. The main intuition, thus, behind our 
work, is to deal with these phenomena efficiently. Consider for 
example, a database containing data about stores, products and 
customers visiting a shopping center near the metro station. When 
a train arrives, several potential customers arrive with it, at the 
same time though, there is a massive departure of existing 
potential customers due to the train’s departure. We assume a 
pervasive environment, where customers are equipped with 
wireless devices and connect to the shopping center’s server as 
they enter the building. Assume a relation Customer (c_id, 
c_name, c_age, c_income) as well as accompanying relations with 
the customer’s profile, sales history, etc. For a salesman that 
needs to send the appropriate advertisements, it is important to 
know which customers are the top-k ones according to their 
characteristics. To achieve this, salesmen use queries that have 
scoring functions over customer data. For example, assume a 
salesman wants to advertise a new gadget about mobile phones. 
The salesman needs to create a profile for the new product, or 
register the product in an existing profile. The profile includes a 
formula that assigns a score for a potential customer according to 
several distance functions and matching of the gadget’s and the 
customer’s characteristics. To speed up things, it is reasonable to 
search for the top-k customers in order to send them the 
advertisement. When a train departs, many customers leave the 
shopping center; still, the top-k list of candidates per product must 
be maintained so that the remaining possibly interested clients are 
notified. Consequently, the top-k customer lists should be 
maintained when updates occur in the relation of customers.  

The solution to the problem is not obvious for the following 
reasons. First, even if the value distributions of the attributes that 
participate in the computation of the score are known individually, 
it is not possible to compute the distribution of their linear 
combination, i.e., the score (unless they are stable probabilities – 
e.g., Normal, Cauchy). Second, even if we extend k with extra 
tuples to sustain the incoming stream of updates that eventually 
affects the top-k materialized view, the extra tuples increase the 
possibility that an incoming source update might affect the view, 
thus resulting in the need to recursively compute this extension. 
Finally, we need to accommodate statistical fluctuations from the 
expected values. In this paper, we provide a principled method 
that handles all the aforementioned problems. Moreover, we 
validate our approach with extensive experiments.  

Roadmap. The structure of this paper is as follows: in Section 2 
we review related work. We present our method for the fine-
tuning of the actual size of a top-k materialized view in Section 3 
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and present an example in Section 4. In Section 5 we present 
experimental results and in Section 6 we conclude our results. 

2. RELATED WORK  
The first algorithms that dealt with the problem of computing the 
top-k results of a query that utilizes a monotone function over the 
combination of a relation’s attributes are due to Fagin [3, 4]. This 
first algorithms (a.k.a FA algorithm) where later complemented 
by the highly cited TA algorithm [5, 6] that appears to provide 
better performance. The research community was quick to provide 
additional means for the computation of the top-k tuples of such a 
query via the exploitation of materialized views. First, the 
PREFER system was introduced in [7, 8], which uses a core 
algorithm that answers top-k queries using materialized views in a 
pipelined way. The results of the PREFER research were further 
expanded in [2], where a linear programming algorithm was 
introduced for the same purpose.  

To the best of our knowledge, the only paper that has dealt with 
the refreshment of top-k materialized views is [10]. [10] deal with 
the following problem: Given a base table R (id, val) where val is 
the score of the tuple according to a scoring function and a 
materialized view V (id, val) containing the top-k tuples from R 
according to their values, compute a kmax that is adjusted at 
runtime such that a refill query, that re-computes the view V from 
scratch for the missing part, is rarely needed. [10] formulates the 
problem through a random walk model. Still, the statistical 
properties of the model are guaranteed only when the probabilities 
for insertions and deletions are equal, or insertions are more 
frequent than deletions.  

3. FINE-TUNING OF VIEWS TO SUSTAIN 
HIGH UPDATE RATES 
In this section we present our method for the fine tuning of 
materialized views defined over a relation that goes through 
updates in high rates. First, we formally define the problem. 
Second, we sketch our method and then, we move on to further 
detail the individual steps of the method. 

3.1 Formal definition of the problem  
Given a base relation R (ID, X, Y) that originally contains N 
tuples, a materialized view V that contains top-k tuples of the form 
(id, val) where val is the score according to a function f(x,y)=ax + 
by and a, b are constant parameters, the update ratios Λins, Λdel 
and Λupd for insertions, deletions and updates respectively over 
the base relation R,  

Compute kcomp  that is of the form kkkcomp Δ+= . 

Such that the view will contain at least k tuples, k ≤ kcomp, with 
probability p, after a period T. 

Assume a base relation R (ID, X, Y), that contains N tuples a 
materialized view V that contains top-k tuples of the form (id, val) 
where val is the score according to a function f(x,y)=ax + by and 
a, b are constant parameters. Assume that the last tuple in the 
view has value valk. Given the aforementioned update rates, 
insertions, deletions and updates occur in the base relation R with 
probabilities PINS, PDEL and PUPD respectively. These probabilities 

are expressed as: 
UPDDELINS

INS
INSP ΛΛΛ

Λ
++

= , 

UPDDELINS
DEL

DELP ΛΛΛ
Λ

++
= and 

UPDDELINS
UPD

UPDP ΛΛΛ
Λ

++
=  

In the rest of our deliberations, updates are treated as 
combinations of deletions and insertions. This is a quite 
reasonable treatment, since we are mainly interested in the 
statistical properties of the rates of these actions and not in their 
hidden semantics. A simple method for the conversion of the 
involved rates is given in Section 3.3.  

Our problem is to find a kcomp that will guarantee that the view 
will be maintained when insertions and deletions will occur in R. 
In order to do so, we must estimate the number of insertions and 
deletions that might affect the view. In other words, we need to 
compute the probability of the view being affected by a tuple 
inserted in R or deleted from R.   

Assume that a new tuple z (id, x, y) is inserted in R. The 
probability of this tuple affecting the view is p (z > valk). Hence, 
the probability of a new tuple to be inserted in R and affect the 
view V is aff

insp  which is expressed as:  aff
insp  = p (z > valk)* pins. 

The probability of a tuple to be deleted from R and affect the view 
V is aff

delp  which occurs as aff
delp  = p (z > valk)* pdel.  

A problem that occurs with the maintenance of kcomp tuples at the 
view side is that kcomp incurs extra maintenance overheads, since 
the tuples of Δk can suffer updates too. Thus, we need to compute 

aff
insp and aff

delp for the case where kcomp tuples are maintained. 
Therefore, the view V will contain kcomp tuples instead of k. 
Assume that the last tuple of the view containing kcomp tuples is 
valkcomp. Consequently, the probability of a new tuple z to affect 
the view V is p(z>valkcomp) whereas the probability of a new tuple 
to be inserted in R and affect the view occurs as: aff

insp = 
p(z>valkcomp)* pins. Respectively the probability of a tuple z to be 
deleted form R and affect the view V can be expressed as: aff

delp  = 
p(z>valkcomp)* pdel. 

3.2 Sketch of the method 
The proposed method is focused around three main steps: first, we 
compute the percentage of the incoming source updates that affect 
a top-k materialized view; second, we compute a safe value for the 
additional view tuples that we need in order to sustain high 
deletion rates; third, we fine tune this value with a safety range of 
values. Specifically, the three main steps are:  

1. Given ΛINS, ΛDEL and ΛUPD, we can compute λins and λdel, pins 
and pdel, and finally, aff

insp and aff
delp as well as aff

insλ and aff
delλ . 

ΛINS, ΛDEL and ΛUPD  denote the ratios of insertions deletions 
and updates that occur in the base table R. pins and pdel denote 
the probabilities of an insertion and deletion occurring on the 
base table R respectively. aff

insp and aff
delp denote the 

probabilities of insertions and deletions that affect the view V 
respectively. These probabilities are expressed as a function 
of  kcomp. aff

insλ and aff
delλ denote the ratios of insertions and 

deletions occurring in the view V in the period of operations 
T. Updates are treated as a combination of deletions and 
insertions thus λins and λdel denote the ratios of insertions and 
deletions including those occurring from updates. 



 

2. Compute kcomp as a function of aff
insλ , aff

delλ . 

kcomp denotes the number of tuples that the view V should 
initially contain, such that after a period of operations T, V 
will contain at least k tuples. 

3. Fine-tune kcomp by using the variance of the probability that a 
deletion and insertion action affects the materialized view. 

3.3 Handling of updates 
Given ΛINS, ΛDEL and ΛUPD and treating updates as a combination 
of deletions and insertions, the ratios λins and λdel can be computed 
through the following equations: 
λins = number of insertions including those from updates / T 

λdel = number of deletions including those from updates / T 

ΛINS = number of insertions / T 

ΛDEL = number of deletions /T 

ΛUPD = number of updates /T  

Therefore, λins=ΛINS+ΛUPD    λdel=ΛDEL+ΛUPD. In addition, pins and 
pdel can be expressed through the usage of ratios as 

delins

ins
insp

λλ
λ
+

=  and 
delins

del
delp

λλ
λ
+

= respectively. 

3.4 Computation of the actual rates that 
affect V 
The problem now is to compute the probabilities 

aff
insp and aff

delp that affect the view V. These probabilities can be 

computed as aff
insp = pins* p (z > valkcomp) and aff

delp = pdel *p (z> 

valkcomp) respectively. Actually, aff
insp  is the number of insertions 

affecting the view V divided by the number of insertions and 
deletions occurring on the base table R and aff

delp is the number of 
deletions affecting the view V divided by the number of insertions 
and deletions occurring on the base table R. Now the problem is 
focused upon finding the probability p(z>valk).  

In order to compute the above probability we will use the 
Empirical Cumulative Distribution Function Fn(x) (ECDF). 
Instead of using of a particular parametric cumulative distribution 
function, we will use ECDF which is a non parametric cumulative 
distribution function that adapts itself to the data. ECDF returns 
the values of a function F(x) such that Fn(x) represents the 
proportion of observations in a sample less than or equal to x. 
Fn(x) assigns the probability 1/n to each of n observations in the 
sample. In other words Fn(x) estimates the true population 
proportion F(x). ECDF is formally defined as follows [9]:  

Let X1, X2, …, Xn  be independent, identically distributed random 
variables and let x1<x2<…<xn denote the values of the order 
statistics of the sample. Then the empirical distribution function 
Fn(x) is defined by the following formula: 

0, x<x1 

n
i , xi ≤ x<xi+1 Fn(x) = 

1, xn≤ x. 

The alternative definition of Fn(x) is: 

n
xarethatsampletheinvaluesofnumber(x)Fn

≤
=

________  

Assume that the base relation R contains N tuples and the view V 
should contain kcomp tuples. If we order these tuples according to 
their values then there are N-kcomp tuples in R with value less than 
the value of kcomp. The following theorem implies that when the 
sample size n is large, Fn(x) is quite likely to be close to F(x) over 
the entire real line.  

Glivenko-Cantelli Theorem [1]: 

Let F(x) denote the density function of the distribution from 
which the random sample X1, X2,…, Xn  was drawn. For each 
given number x (-∞<x<∞) the probability that any particular 
observation Xi will be less than of equal to x is F(x). Therefore, it 
follows from the law of large numbers that as ∞→n , the 
proportion Fn(x) of observations in the sample that are less than or 
equal to x will converge to F(x) uniformly over all values of x. 
Let |)()(|sup xFxFD n

x
n −=

∞<<∞−
, the Glivenko-Cantelli theorem 

states that 0⎯→⎯p
nD .            □ 

Therefore, the probability of a tuple z affecting the view V can be 
expressed as:  

p(z>valkcomp)= 1- p(z≤valkcomp)=1-FN(kcomp) 

p(z>valkcomp)=1-
N

k
N
kN compcomp =

−
    (1) 

As a more general example, consider a base relation R where the 
score of its tuples according to a function follow an exponential 
distribution in the interval [0, 2] and that a view V requires the 
top-k tuples of R according to their score value. In Figure 1 the 
probability distribution function of an exponential distribution is 
illustrated. In addition, assume that the top-k tuples are the 20% of 
the relation R and thus the vertical line top-k shown in Figure 1 
denotes the values of the tuples that participate in the top-k view. 
Thus, the values in the view are greater or equal to 0.3. Assume a 
new tuple t following the same exponential distribution being 
inserted in R. For the new tuple t the probability of its value 
participating in the top-k ones is again 20%.  

 
 

Again, consider a similar situation where a view contains the top-
k tuples from a base relation R according to a scoring function. 
Assume that the score values of R this time follow a beta 

Figure 1. Exponential probability distribution. 



 

distribution in the interval [0, 1] with parameters given as 5 and 2. 
Figure 2 illustrates the probability distribution function of such a 
distribution. Similar to the previous example, the vertical line 
illustrated as top-k in Figure 2 denotes that the view contains 20% 
of R’s tuples where the values participating in the view are greater 
or equal to 1.7. Assume a new tuple denoted as t being inserted in 
R. The new tuple t will again follow the same beta distribution 
and the probability of t having a value greater than 0.8 is 20%.  

 
 

Therefore, aff
insλ and aff

delλ  are computed through the following 
equations:   

)(* delins
aff
ins

aff
ins p λλλ +=  and )(* delins

aff
del

aff
del p λλλ += . 

According to equation (1), aff
insλ and aff

delλ can be expressed as: 

)(*)(* delinskcompins
aff
ins valzpp λλλ +>=  

)(** delins
comp

ins
aff
ins N

k
p λλλ +=  and    (2) 

)(*)(* delinskcompdel
aff
del valzpp λλλ +>=  

)(** delins
comp

del
aff
del N

k
p λλλ += .   (3) 

3.5 Computation of kcomp 
The last step of the method is to compute kcomp, such that it will 
guarantee that the view will contain at least k tuples, k ≤ kcomp, 
with probability p, after a period of operation T. In other words 
compute a kcomp that is of the form kkkcomp Δ+= . In general, 
when the ratio of insertions λins is greater than that of deletions λdel 
it is clear that V will be maintained. The problem arises when the 
opposite occurs. That is when the ratio of deletions is greater than 
that of insertions. In such a case it is vital to compute a value for 
kcomp that can guarantee that V will contain at least k tuples after a 
period of operations. 

1. Let us denote the frequency of deletions that affect the view 
V as aff

delλ . In a period of time T, in order to keep the view 
maintained the following inequality should 
hold: kk aff

del
T
comp ≥Τ− *λ .  

2. Thus, in case both insertions and deletions occur in a period 
of time T, in order to keep the view maintained for kcomp the 
following inequality should hold 

Tkk aff
ins

aff
delcomp ∗−+≥ )( λλ . Clearly, to minimize memory 

consumption, we need to take the minimum possible kcomp 
and thus treat the above inequality as the 
equation Tkk aff

ins
aff
delcomp ∗−+= )( λλ .  

Therefore, by replacing aff
insλ and aff

delλ from equations (2) and (3) 
the following equality occurs: 

⇒+−+= T
N

k
ppkk comp

delinsinsdelcomp **)(*)( λλ  

T
N

k
kk comp

insdelcomp **)( λλ −+=    (4) 

Thus, by solving the above equation according to kcomp we obtain: 

TN
Nkk

delins
comp *)(

*
λλ −+

=    (5) 

Equation (5) has a meaning when 0*)( >−+ TN delins λλ . This 
states that the size of the base relation R will not fall below 0, 
after updates occur in a period of operations T. At the same time, 
when λins – λdel < 0 (i.e., the case we are particularly interested in), 
then the fraction is greater than 1 and thus, kcomp > k. 

3.6 Fine-tuning of kcomp 
Although we now have a formula to compute the value of kcomp, 
we have expressed the probability of a new tuple z(id, x, y) 
affecting the top-kcomp tuples of the view as p(z>valkcomp). Assume 
that a new tuple z is inserted in R. The probability of this tuple to 
affect the view is p(z>valkcomp) whereas, the probability of this 
tuple not to affect the view is 1- p(z>valkcomp). The above can be 
expressed as a Bernoulli experiment with two possible events. 
These are a) the new tuple being inserted in V with probability of 
success p(z>valkcomp) and b) the exact opposite where the new 
tuple is not inserted in V with probability 1- p(z>valkcomp). When 
the ratio of insertions occurring in the base relation R are λins, a 
Bernoulli experiment is occurring λins times where the probability 
of success is p(z>valkcomp) and the number of successes follow a 
Binomial distribution. The probability of having Yins affected 
insertions in the view follow a Binomial distribution of the 
form ))(,( kcompins valzpBinomial >λ . The variance of the above 
distribution can be expressed as:  

Var(Yins) = λins* p(z>valkcomp)*(1- p(z>valkcomp)).  

The above formula indicates that insertions expected to affect the 
view may vary by Var(Yins). Correspondingly, if there are λdel 
deletions occurring in the base relation R, then the variance of 
these deletions expected to affect the view is  

Var(Ydel) = λdel* p(z>valkcomp)*(1- p(z>valkcomp)).  This occurs as 
the variance of the Binomial distribution B(λdel, p(z>valkcomp)), 
which is similar to the one used for insertions.  

Therefore in the worst case, in order to guarantee that the view 
will contain at least k tuples with confidence 95%, where k ≤ 
kcomp, equation (4) becomes as stated below: 

Figure 2. Beta probability distribution. 



 

)(*2)(*2**)( YinsVarYdelVarT
N

k
kk comp

insdelcomp ++−+= λλ    (6) 

The confidence rate of 95% occurs from statistical properties 
concerning the variance factor appearing in formula (6). In case 
another confidence percentage is needed, formula (6) can be 
adjusted according to typical statistical methods [1].  

3.7 Discussion 
The problem of maintaining a view when updates occur in a base 
relation R, mainly lies in the problem of estimating the number of 
updates that will affect the view. Statisticians have contributed in 
this by providing formulas that compute the value of a probability 
of the form p(z>valkcomp). However, the formula of such a 
probability depends on the distribution that the variable z follows. 
In our context, the variable z is a linear combination of the form 
ax + by where x and y are values from the attributes X and Y of the 
base relation. Even if the distributions that X and Y follow are 
known, the distribution of the score Z can not be computed unless 
X and Y follow a stable distribution. A stable distribution (e.g., 
Normal, Cauchy) has the property of stability. This property states 
that if a number of independent identically distributed (iid) 
random variables have a stable distribution, then a linear 
combination of these variables will have the same distribution. 
Therefore, the distribution of the variable  Z can only be known in 
few cases. However, even if the distribution of the score was 
known, the probability p(z>valkcomp) could be computed only with 
respect to the valk instead of the value valkcomp. This is because the 
valkcomp could not been know in advance. Therefore, an iterative 
procedure would be needed. This occurs from the fact that we 
could compute the effect top-k tuples could have but not the effect 
the extra tuples would arise. Thus, a recursive procedure would be 
required.  

4. EXAMPLE 
As an example, consider the base relation R (ID, X, Y) initially 
containing N tuples with N=20 where attributes X and Y follow a 
uniform distribution over the interval [0, 100]. In addition, 
consider a materialized view V that contains the top-3 tuples (k=3) 
of the form (id, val) where val=3x+7y is the score according to a 
function f(x,y)=ax + by and a=3, b=7. The base relation R and the 
initial state of V are shown in Figure 3. Finally, the update ratios 
are Λins=5, Λdel=15 and Λupd=0. We will compute kcomp such that 
the view would contain kcomp tuples instead of k in order to be kept 
maintained when insertions, deletions and updates will occur in 
the base relation R. Moreover, let the period of operations 
occurring set as T=1. 

According to the method of section 3.2, the ratios λins and λdel are 
5 and 15 respectively. Therefore, pins=0.25 and pdel=0.75. The 
probability )( kcompvalzp ≥ can be calculated according to the 
following:   

p(z≤valkcomp) = FN (valkcomp) 
p(z≤valkcomp) = (number of elements is score sample≤ valkcomp) / N 
p(z>valkcomp) = kcomp / 20  

In consequence, the probabilities aff
insp and aff

delp can be calculated 

as:
20

*25.0)(* comp
kcompins

aff
ins

k
valzppp =≥= and 

 

R V 
id X Y id Z 
1 56 41 10 929 
2 58 62 15 847 
3 15 97 4 836 
4 78 86   
5 69 10 
6 96 60 
7 12 43 
8 74 76 
9 26 71 

10 95 92 
11 34 51 
12 27 36 
13 19 25 
14 68 81 
15 91 82 
16 84 65 
17 41 59 
18 37 37 
19 23 17 
20 47 27 

 

 

Figure 3. Base relation R 

20
*75.0)(* comp

kcompdel
aff
del

k
valzppp =≥= .  

Given the previous probabilities, the effective update ratios for the 
view V are then:  

)155(*
20

*25.0)(* +=+= comp
delins

aff
ins

aff
ins

k
p λλλ  

)155(*
20

*75.0)(* +=+= comp
delins

aff
del

aff
del

k
p λλλ  

The above formulas state that if 5 insertions will occur in the base 
relation R, aff

insλ will affect the view and if 15 deletions occur then 
aff
delλ will affect the view respectively. To be more specific the 

ceiling function is applied on aff
insλ and aff

delλ . Therefore, for kcomp 
the following inequality holds:  

6

*)(

≥

−+≥

compk

Taff
ins

aff
delkcompk λλ

 

where actually kcomp = 6. Thus, kcomp should be 6 in order to keep 
the view maintained after insertions, deletions and updates will 
occur in the base relation R. Suppose that insertions and deletions, 
shown in Figure 4, occur in the base relation R. The view V 
contains initially top-6 tuples and after updates the view will 
contain top-3 tuples. These are shown in Figure 5 where the dark 
shading denotes the initial top-3 tuples of V whereas the light 
shading denotes the extra top-3 tuples in order to have top-kcomp 
tuples.  



 

insertions   deletions   
id X Y id X Y 
21 25 33 1 56 41 
22 18 64 2 58 62 
23 97 83 3 15 97 
24 31 50 4 78 86 
25 53 82 5 69 10 

7 12 43 
8 74 76 
10 95 92 
11 34 51 
12 27 36 
13 19 25 
15 91 82 
16 84 65 
17 41 59 

 20 47 27 
Figure 4. Insertions and deletions occurring in base relation R 

V  V  
id Z 

 
id Z 

10 929 Deleted 23 872 
23 872 Inserted 14 771 
15 847 Deleted 25 733 
4 836 Deleted 
14 771  
8 754 Deleted 
25 733 Inserted 
3 724 Deleted 

 

 

Figure 5. The view V prior and subsequent to updates 

5. EXPERIMENTS 
In this section we report on the experimental assessment of our 
method. We start with presenting the experimental methodology 
and then we discuss our findings.  

5.1 Experimental Methodology 
Our experimental study has been conducted towards assuring the 
following two goals: 
1. Effectiveness. The first desideratum of the experimental 

study has been the verification of the fact that the proposed 
method can accurately sustain intervals with high deletion 
activity in the workload. In other words, the experimental 
goal was to verify that a top-k materialized view contains at 
least k items, in at least 95% of the cases.  

2. Efficiency. The second desideratum of the experimental study 
has been the establishment of the fact that the computation of 
the exact number of auxiliary view tuples is faster than the 
computation of refill queries as proposed in the related 
literature. As well as the number of auxiliary view tuples is 
less than the number proposed in [10].  

To achieve the first goal we have estimated kcomp via two 
methods: (a) without the fine tuning that uses the rates’ variances 
(i.e., through formula 5) and (b) with this fine tuning (i.e., through 
formula 6). For both methods, we have computed the number of 
tuples that were deleted from the view, below the threshold of k.  
In the context of the second goal, we have measured three metrics: 
(a) the memory overhead for kcomp and kcomp with tuning, 
measured as the number of extra tuples that we need to keep in the 
view, (b) the time overhead for computing kcomp and kcomp eith 
tuning as compared to the necessary time to compute the refill 

queries of [10] and (c)the time needed to compute the formula for 
kcomp. Again, we have evaluated these metrics using both the 
aforementioned methods.  
In all our experiments we have used one relation R(RID, X, Y) and 
one view V(RID, score)  with a formula score = 3X+7Y. The 
parameters that we have tested for their effect over the 
aforementioned measures are: (a) the number of relation tuples, 
(b) the number of materialized top-k results, (c) the fraction of the 
delete rate, over the insertion rate and (d) the percentage of the 
update stream over the relation size. We have not altered the time 
window T in our experiments; nevertheless, this is equivalent to 
varying the last parameter (denoted as λ), which measures the 
amount of modifications that take place as a percentage of the size 
of R. In other words, it is equivalent to increase the modifications 
number instead of reducing the window size. 
We have tested the method over data whose attributes X and Y 
followed the Gaussian (with mean μ=50 and variance σ=10 for 
both X, Y), negative exponential (with a=1.5 for X and a=2.0 for 
Y) and Zipf distributions (with a=2.1 for both X, Y). The notation 
for the parameters and the specific values that we have used are 
listed in Table 1. 

Table 1. Experimental parameters 
 Size of source table R (tuples) |R|  1x105, 5x105, 1x106, 2x106 
 Size of mat. view (tuples) k  5, 10, 100, 1000 
 Size of update stream  
(pct over |R|) 

λ  1/1000, 1/100 

 Deletion rate over insertion rate 
(ratio) 

D/I  1.0, 1.5, 2.0 

 

5.2 Effectiveness of the method 
The effectiveness of the method is demonstrated in Fig. 6 and Fig. 
7.  We present results organized by the data distribution of the 
attributes and compare two methods for computing kcomp, (a) the 
method including the fine-tuning part and (b) the method simply 
based on formula (5). We have conducted the full range of 
combinations of the values listed in Table 1, but we only present 
some indicative combinations for lack of space. 
In Fig. 6, we fix D/I to 1.5 and k to 1000 (the largest possible 
value) and vary the size of R (in the X-axis) and the update stream 
size (in different lines in the Figure). Each experiment has been 
conducted 5 times. We measure both the average and the 
maximum number of misses. In Fig. 7 we report only the 
maximum number of misses, as it appears to be in analogy with 
the average in almost all the cases, and we vary k and D/I, while 
keeping R fixed to 1M rows and λ to 1%. The findings are as 
follows: 

− The fine tuning method gives 0 losses, and thus describes the 
bold line lying on top of the X-axis in Fig. 6 and 7. 

− If the fine tuning was not included, misses would have been 
encountered. In cases where insertions are close to deletions, 
the underestimation of the value of kcomp would lead to 
potentially important errors (in the Zipf case, errors have 
come up to 9 misses which is almost 1% of the top-k view 
size). 

− It is also interesting how the distribution of data affects the 
stability of the error (Gaussian seems to converge, as 
expected, whereas the Zipf drops when the percentage of k is 
small over R, as the hot values are rather fixed)
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Fig. 6. Maximum and Average misses as a function of |R| and λ 
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Fig. 7. Maximum misses as a function of k and D/I 
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(a) Percentage of extra tuples as a function of k and D/I (b) Number of extra tuples as a function of R and D/I 

Fig. 8 Comparison of k, kcomp, and kcomp with tuning 
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Fig. 9 Comparison of kcomp with tuning and [10] 



 

5.3 Efficiency of the method 
We compared the values of kcomp without the fine tuning (i.e., 
through formula 5) and kcomp tuning with this fine tuning. The 
comparison of the above values was conducted for all three 
distributions as well as for all parameters listed in Table 1. Due to 
the fact that our formula is independent of the distribution the 
tuples follow and due to space limitations we only present some 
indicative results. In Fig. 8 we compare kcomp and kcomp tuning (a) 
as a function of k, where the size of R is 100000 tuples and (b) as 
a function of the size of R where we have fixed k=1000. For both 
of them and for all possible values of D/I the size of the update 
stream λ is 1% and the distribution is the Negative exponential. In 
Fig 8 (a) the Y-axis denotes the percentage of extra tuples. From 
both graphs in Fig. 8 we observe that kcomp is slightly greater than 
k and kcomp tuning is slightly greater than kcomp in all cases. The 
number of the auxiliary tuples in the view (i.e., kcomp and kcomp 
tuning) in the maximum case is approximately 1% and 6% 
respectively. Thus, the number of the auxiliary tuples does not 
cause a great extra memory cost.  
In Fig. 9, we compare the value of kcomp tuning with the one 
proposed by [10]. Again, we compare the above (a) as a function 
of k where the size of R is set to 2M (the largest possible value) 
and (b) as a function of R where k is fixed to 100. In both graphs 
the distribution is the negative exponential. The parameter D/I=1, 
since it is the only value that can be compared with the proposed 
method in [10]. We notice that the number of tuples proposed by 
[10] is significantly larger than the one proposed in our method. 
Thus the memory cost in our method is considerably less. 

Fig. 10. Time to build the top-k view (microseconds) 
The second part of our experimental results had to do with the 
comparison of the time needed to compute the value of kcomp as 
compared to the time needed to re-compute the view as part of a 
refill query. Fig. 10 measures the computation time needed for the 
view computation for a value of k in microseconds. On the 
contrary, the time necessary to perform the computation of kcomp 
has consistently been negligible (practically 0 in all occasions). 

6. CONCLUSIONS 
In this paper we handle the problem of maintaining materialized 
top-k views in the presence of high deletion rates. We provide a 
principled method that complements the inefficiency of the state 
of the art independently of the statistical properties of the data and 
the characteristics of the update streams. The method comprises 
the following steps: (a) a computation of the rate that actually 
affects the materialized view, (b) a computation of the necessary 
extension to k in order to handle the augmented number of 
deletions that occur and (c) a fine tuning part that adjusts this 
value to take the fluctuation of the statistical properties of this 
value into consideration. Our experiments have verified that the 
computation of this value is particularly fast and method results in 
almost zero losses of tuples due to the streaming deletions. Future 
work can be pursued towards an efficient refreshment method for 
large numbers of materialized views. 
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N K Gauss Negative 
exponential Zipf 

100K 5 328000 348500 242000 
100K 10 333000 345667 239667 

100K 100 335500 343000 239667 
100K 1000 395333 406000 299500 

500K 5 1650667 1715500 1216333 
500K 10 1650667 1713000 1208333 

500K 100 1653167 1710500 1205667 
500K 1000 1736667 1796167 1291833 

1M 5 3298667 3429000 2427167 
1M 10 3301333 3426667 2429667 

1M 100 3304000 3439500 2422167 
1M 1000 3403167 3520500 2606667 

2M 5 6650667 6900500 5406333 
2M 10 6653167 6900833 4909000 

2M 100 6747167 6906000 4906500 
2M 1000 6895500 7082833 4992167 


