

Tuning the top-k view update process

Eftychia Baikousi Panos Vassiliadis
Dept. of Computer Science, Univ. of Ioannina

Ioannina, 45110 Hellas

{ebaikou, pvassil}@cs.uoi.gr

ABSTRACT
In this paper we handle the problem of maintaining materialized
top-k views in the presence of high deletion rates. We provide a
principled method that complements the inefficiency of the state
of the art independently of the statistical properties of the data and
the characteristics of the update streams.

1. INTRODUCTION
The top-k querying problem concerns the retrieval of the top-k
results of a ranked query over a database. Specifically, given a
relation R (tid, A1, A2,...Am) and a query Q over R retrieve the top-
k tuples from R having the k highest values according to a scoring
function f that accompanies Q. Typically, f is a monotone ranking
function of the form: ℜ→××)(...)(: 1 mAdomAdomf .

Related work has extensively dealt with the problem of efficiently
computing the top-k results of a query. The first algorithms that
occurred in this context are FA [3, 4] and TA [5], with various
extensions that followed them for specific contexts (e.g., parallel
or distributed computation, etc). In recent years, in an attempt to
achieve improved performance, researchers solve the problem of
answering top-k queries via materialized views [2, 7, 8]. In this
setting, results of previous top-k queries are stored in the form of
materialized views. Then, a new top-k query may be answered
through materialized views resulting in better performance than
making use only of the base relation from the database. As
typically happens with materialized views, though, when the
source relation is updated, we need to refresh the contents of all
the materialized views in order to reflect the most recent data. To
the best of our knowledge, only [10] has dealt with the problem so
far. To sustain the update rate at the source relation without
having to fully re-compute the materialized views, [10] maintain
kmax tuples (instead of the necessary k) and perform refill queries
whenever the contents of the materialized views fall below the
threshold of k tuples. Yet, the approach of [10] suffers from the
following problems: (a) the method is theoretically guaranteed to
work well only when insertions and deletions are of the same
probability (in fact, the authors deal with updates in their
experiments), (b) there is no quality-of-service guarantee when
deletions are more probable than insertions.

In this paper, we compensate for these shortcomings by providing

a method that is able to provide quality guarantees when the
deletion rate is higher than the insertion rate. The case is not so
rare if one considers that the number of persons logged in a web
server or a portal presents anticipated high peaks and valleys at
specific time points or dates. The main intuition, thus, behind our
work, is to deal with these phenomena efficiently. Consider for
example, a database containing data about stores, products and
customers visiting a shopping center near the metro station. When
a train arrives, several potential customers arrive with it, at the
same time though, there is a massive departure of existing
potential customers due to the train’s departure. We assume a
pervasive environment, where customers are equipped with
wireless devices and connect to the shopping center’s server as
they enter the building. Assume a relation Customer (c_id,
c_name, c_age, c_income) as well as accompanying relations with
the customer’s profile, sales history, etc. For a salesman that
needs to send the appropriate advertisements, it is important to
know which customers are the top-k ones according to their
characteristics. To achieve this, salesmen use queries that have
scoring functions over customer data. For example, assume a
salesman wants to advertise a new gadget about mobile phones.
The salesman needs to create a profile for the new product, or
register the product in an existing profile. The profile includes a
formula that assigns a score for a potential customer according to
several distance functions and matching of the gadget’s and the
customer’s characteristics. To speed up things, it is reasonable to
search for the top-k customers in order to send them the
advertisement. When a train departs, many customers leave the
shopping center; still, the top-k list of candidates per product must
be maintained so that the remaining possibly interested clients are
notified. Consequently, the top-k customer lists should be
maintained when updates occur in the relation of customers.

The solution to the problem is not obvious for the following
reasons. First, even if the value distributions of the attributes that
participate in the computation of the score are known individually,
it is not possible to compute the distribution of their linear
combination, i.e., the score (unless they are stable probabilities –
e.g., Normal, Cauchy). Second, even if we extend k with extra
tuples to sustain the incoming stream of updates that eventually
affects the top-k materialized view, the extra tuples increase the
possibility that an incoming source update might affect the view,
thus resulting in the need to recursively compute this extension.
Finally, we need to accommodate statistical fluctuations from the
expected values. In this paper, we provide a principled method
that handles all the aforementioned problems. Moreover, we
validate our approach with extensive experiments.

Roadmap. The structure of this paper is as follows: in Section 2
we review related work. We present our method for the fine-
tuning of the actual size of a top-k materialized view in Section 3

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

and present an example in Section 4. In Section 5 we present
experimental results and in Section 6 we conclude our results.

2. RELATED WORK
The first algorithms that dealt with the problem of computing the
top-k results of a query that utilizes a monotone function over the
combination of a relation’s attributes are due to Fagin [3, 4]. This
first algorithms (a.k.a FA algorithm) where later complemented
by the highly cited TA algorithm [5, 6] that appears to provide
better performance. The research community was quick to provide
additional means for the computation of the top-k tuples of such a
query via the exploitation of materialized views. First, the
PREFER system was introduced in [7, 8], which uses a core
algorithm that answers top-k queries using materialized views in a
pipelined way. The results of the PREFER research were further
expanded in [2], where a linear programming algorithm was
introduced for the same purpose.

To the best of our knowledge, the only paper that has dealt with
the refreshment of top-k materialized views is [10]. [10] deal with
the following problem: Given a base table R (id, val) where val is
the score of the tuple according to a scoring function and a
materialized view V (id, val) containing the top-k tuples from R
according to their values, compute a kmax that is adjusted at
runtime such that a refill query, that re-computes the view V from
scratch for the missing part, is rarely needed. [10] formulates the
problem through a random walk model. Still, the statistical
properties of the model are guaranteed only when the probabilities
for insertions and deletions are equal, or insertions are more
frequent than deletions.

3. FINE-TUNING OF VIEWS TO SUSTAIN
HIGH UPDATE RATES
In this section we present our method for the fine tuning of
materialized views defined over a relation that goes through
updates in high rates. First, we formally define the problem.
Second, we sketch our method and then, we move on to further
detail the individual steps of the method.

3.1 Formal definition of the problem
Given a base relation R (ID, X, Y) that originally contains N
tuples, a materialized view V that contains top-k tuples of the form
(id, val) where val is the score according to a function f(x,y)=ax +
by and a, b are constant parameters, the update ratios Λins, Λdel
and Λupd for insertions, deletions and updates respectively over
the base relation R,

Compute kcomp that is of the form kkkcomp Δ+= .

Such that the view will contain at least k tuples, k ≤ kcomp, with
probability p, after a period T.

Assume a base relation R (ID, X, Y), that contains N tuples a
materialized view V that contains top-k tuples of the form (id, val)
where val is the score according to a function f(x,y)=ax + by and
a, b are constant parameters. Assume that the last tuple in the
view has value valk. Given the aforementioned update rates,
insertions, deletions and updates occur in the base relation R with
probabilities PINS, PDEL and PUPD respectively. These probabilities

are expressed as:
UPDDELINS

INS
INSP ΛΛΛ

Λ
++

= ,

UPDDELINS
DEL

DELP ΛΛΛ
Λ

++
= and

UPDDELINS
UPD

UPDP ΛΛΛ
Λ

++
=

In the rest of our deliberations, updates are treated as
combinations of deletions and insertions. This is a quite
reasonable treatment, since we are mainly interested in the
statistical properties of the rates of these actions and not in their
hidden semantics. A simple method for the conversion of the
involved rates is given in Section 3.3.

Our problem is to find a kcomp that will guarantee that the view
will be maintained when insertions and deletions will occur in R.
In order to do so, we must estimate the number of insertions and
deletions that might affect the view. In other words, we need to
compute the probability of the view being affected by a tuple
inserted in R or deleted from R.

Assume that a new tuple z (id, x, y) is inserted in R. The
probability of this tuple affecting the view is p (z > valk). Hence,
the probability of a new tuple to be inserted in R and affect the
view V is aff

insp which is expressed as: aff
insp = p (z > valk)* pins.

The probability of a tuple to be deleted from R and affect the view
V is aff

delp which occurs as aff
delp = p (z > valk)* pdel.

A problem that occurs with the maintenance of kcomp tuples at the
view side is that kcomp incurs extra maintenance overheads, since
the tuples of Δk can suffer updates too. Thus, we need to compute

aff
insp and aff

delp for the case where kcomp tuples are maintained.
Therefore, the view V will contain kcomp tuples instead of k.
Assume that the last tuple of the view containing kcomp tuples is
valkcomp. Consequently, the probability of a new tuple z to affect
the view V is p(z>valkcomp) whereas the probability of a new tuple
to be inserted in R and affect the view occurs as: aff

insp =
p(z>valkcomp)* pins. Respectively the probability of a tuple z to be
deleted form R and affect the view V can be expressed as: aff

delp =
p(z>valkcomp)* pdel.

3.2 Sketch of the method
The proposed method is focused around three main steps: first, we
compute the percentage of the incoming source updates that affect
a top-k materialized view; second, we compute a safe value for the
additional view tuples that we need in order to sustain high
deletion rates; third, we fine tune this value with a safety range of
values. Specifically, the three main steps are:

1. Given ΛINS, ΛDEL and ΛUPD, we can compute λins and λdel, pins
and pdel, and finally, aff

insp and aff
delp as well as aff

insλ and aff
delλ .

ΛINS, ΛDEL and ΛUPD denote the ratios of insertions deletions
and updates that occur in the base table R. pins and pdel denote
the probabilities of an insertion and deletion occurring on the
base table R respectively. aff

insp and aff
delp denote the

probabilities of insertions and deletions that affect the view V
respectively. These probabilities are expressed as a function
of kcomp. aff

insλ and aff
delλ denote the ratios of insertions and

deletions occurring in the view V in the period of operations
T. Updates are treated as a combination of deletions and
insertions thus λins and λdel denote the ratios of insertions and
deletions including those occurring from updates.

2. Compute kcomp as a function of aff
insλ , aff

delλ .

kcomp denotes the number of tuples that the view V should
initially contain, such that after a period of operations T, V
will contain at least k tuples.

3. Fine-tune kcomp by using the variance of the probability that a
deletion and insertion action affects the materialized view.

3.3 Handling of updates
Given ΛINS, ΛDEL and ΛUPD and treating updates as a combination
of deletions and insertions, the ratios λins and λdel can be computed
through the following equations:
λins = number of insertions including those from updates / T

λdel = number of deletions including those from updates / T

ΛINS = number of insertions / T

ΛDEL = number of deletions /T

ΛUPD = number of updates /T

Therefore, λins=ΛINS+ΛUPD λdel=ΛDEL+ΛUPD. In addition, pins and
pdel can be expressed through the usage of ratios as

delins

ins
insp

λλ
λ
+

= and
delins

del
delp

λλ
λ
+

= respectively.

3.4 Computation of the actual rates that
affect V
The problem now is to compute the probabilities

aff
insp and aff

delp that affect the view V. These probabilities can be

computed as aff
insp = pins* p (z > valkcomp) and aff

delp = pdel *p (z>

valkcomp) respectively. Actually, aff
insp is the number of insertions

affecting the view V divided by the number of insertions and
deletions occurring on the base table R and aff

delp is the number of
deletions affecting the view V divided by the number of insertions
and deletions occurring on the base table R. Now the problem is
focused upon finding the probability p(z>valk).

In order to compute the above probability we will use the
Empirical Cumulative Distribution Function Fn(x) (ECDF).
Instead of using of a particular parametric cumulative distribution
function, we will use ECDF which is a non parametric cumulative
distribution function that adapts itself to the data. ECDF returns
the values of a function F(x) such that Fn(x) represents the
proportion of observations in a sample less than or equal to x.
Fn(x) assigns the probability 1/n to each of n observations in the
sample. In other words Fn(x) estimates the true population
proportion F(x). ECDF is formally defined as follows [9]:

Let X1, X2, …, Xn be independent, identically distributed random
variables and let x1<x2<…<xn denote the values of the order
statistics of the sample. Then the empirical distribution function
Fn(x) is defined by the following formula:

0, x<x1

n
i , xi ≤ x<xi+1 Fn(x) =

1, xn≤ x.

The alternative definition of Fn(x) is:

n
xarethatsampletheinvaluesofnumber(x)Fn

≤
=

Assume that the base relation R contains N tuples and the view V
should contain kcomp tuples. If we order these tuples according to
their values then there are N-kcomp tuples in R with value less than
the value of kcomp. The following theorem implies that when the
sample size n is large, Fn(x) is quite likely to be close to F(x) over
the entire real line.

Glivenko-Cantelli Theorem [1]:

Let F(x) denote the density function of the distribution from
which the random sample X1, X2,…, Xn was drawn. For each
given number x (-∞<x<∞) the probability that any particular
observation Xi will be less than of equal to x is F(x). Therefore, it
follows from the law of large numbers that as ∞→n , the
proportion Fn(x) of observations in the sample that are less than or
equal to x will converge to F(x) uniformly over all values of x.
Let |)()(|sup xFxFD n

x
n −=

∞<<∞−
, the Glivenko-Cantelli theorem

states that 0⎯→⎯p
nD . □

Therefore, the probability of a tuple z affecting the view V can be
expressed as:

p(z>valkcomp)= 1- p(z≤valkcomp)=1-FN(kcomp)

p(z>valkcomp)=1-
N

k
N
kN compcomp =

−
 (1)

As a more general example, consider a base relation R where the
score of its tuples according to a function follow an exponential
distribution in the interval [0, 2] and that a view V requires the
top-k tuples of R according to their score value. In Figure 1 the
probability distribution function of an exponential distribution is
illustrated. In addition, assume that the top-k tuples are the 20% of
the relation R and thus the vertical line top-k shown in Figure 1
denotes the values of the tuples that participate in the top-k view.
Thus, the values in the view are greater or equal to 0.3. Assume a
new tuple t following the same exponential distribution being
inserted in R. For the new tuple t the probability of its value
participating in the top-k ones is again 20%.

Again, consider a similar situation where a view contains the top-
k tuples from a base relation R according to a scoring function.
Assume that the score values of R this time follow a beta

Figure 1. Exponential probability distribution.

distribution in the interval [0, 1] with parameters given as 5 and 2.
Figure 2 illustrates the probability distribution function of such a
distribution. Similar to the previous example, the vertical line
illustrated as top-k in Figure 2 denotes that the view contains 20%
of R’s tuples where the values participating in the view are greater
or equal to 1.7. Assume a new tuple denoted as t being inserted in
R. The new tuple t will again follow the same beta distribution
and the probability of t having a value greater than 0.8 is 20%.

Therefore, aff
insλ and aff

delλ are computed through the following
equations:

)(* delins
aff
ins

aff
ins p λλλ += and)(* delins

aff
del

aff
del p λλλ += .

According to equation (1), aff
insλ and aff

delλ can be expressed as:

)(*)(* delinskcompins
aff
ins valzpp λλλ +>=

)(** delins
comp

ins
aff
ins N

k
p λλλ += and (2)

)(*)(* delinskcompdel
aff
del valzpp λλλ +>=

)(** delins
comp

del
aff
del N

k
p λλλ += . (3)

3.5 Computation of kcomp
The last step of the method is to compute kcomp, such that it will
guarantee that the view will contain at least k tuples, k ≤ kcomp,
with probability p, after a period of operation T. In other words
compute a kcomp that is of the form kkkcomp Δ+= . In general,
when the ratio of insertions λins is greater than that of deletions λdel
it is clear that V will be maintained. The problem arises when the
opposite occurs. That is when the ratio of deletions is greater than
that of insertions. In such a case it is vital to compute a value for
kcomp that can guarantee that V will contain at least k tuples after a
period of operations.

1. Let us denote the frequency of deletions that affect the view
V as aff

delλ . In a period of time T, in order to keep the view
maintained the following inequality should
hold: kk aff

del
T
comp ≥Τ− *λ .

2. Thus, in case both insertions and deletions occur in a period
of time T, in order to keep the view maintained for kcomp the
following inequality should hold

Tkk aff
ins

aff
delcomp ∗−+≥)(λλ . Clearly, to minimize memory

consumption, we need to take the minimum possible kcomp
and thus treat the above inequality as the
equation Tkk aff

ins
aff
delcomp ∗−+=)(λλ .

Therefore, by replacing aff
insλ and aff

delλ from equations (2) and (3)
the following equality occurs:

⇒+−+= T
N

k
ppkk comp

delinsinsdelcomp **)(*)(λλ

T
N

k
kk comp

insdelcomp **)(λλ −+= (4)

Thus, by solving the above equation according to kcomp we obtain:

TN
Nkk

delins
comp *)(

*
λλ −+

= (5)

Equation (5) has a meaning when 0*)(>−+ TN delins λλ . This
states that the size of the base relation R will not fall below 0,
after updates occur in a period of operations T. At the same time,
when λins – λdel < 0 (i.e., the case we are particularly interested in),
then the fraction is greater than 1 and thus, kcomp > k.

3.6 Fine-tuning of kcomp
Although we now have a formula to compute the value of kcomp,
we have expressed the probability of a new tuple z(id, x, y)
affecting the top-kcomp tuples of the view as p(z>valkcomp). Assume
that a new tuple z is inserted in R. The probability of this tuple to
affect the view is p(z>valkcomp) whereas, the probability of this
tuple not to affect the view is 1- p(z>valkcomp). The above can be
expressed as a Bernoulli experiment with two possible events.
These are a) the new tuple being inserted in V with probability of
success p(z>valkcomp) and b) the exact opposite where the new
tuple is not inserted in V with probability 1- p(z>valkcomp). When
the ratio of insertions occurring in the base relation R are λins, a
Bernoulli experiment is occurring λins times where the probability
of success is p(z>valkcomp) and the number of successes follow a
Binomial distribution. The probability of having Yins affected
insertions in the view follow a Binomial distribution of the
form))(,(kcompins valzpBinomial >λ . The variance of the above
distribution can be expressed as:

Var(Yins) = λins* p(z>valkcomp)*(1- p(z>valkcomp)).

The above formula indicates that insertions expected to affect the
view may vary by Var(Yins). Correspondingly, if there are λdel
deletions occurring in the base relation R, then the variance of
these deletions expected to affect the view is

Var(Ydel) = λdel* p(z>valkcomp)*(1- p(z>valkcomp)). This occurs as
the variance of the Binomial distribution B(λdel, p(z>valkcomp)),
which is similar to the one used for insertions.

Therefore in the worst case, in order to guarantee that the view
will contain at least k tuples with confidence 95%, where k ≤
kcomp, equation (4) becomes as stated below:

Figure 2. Beta probability distribution.

)(*2)(*2**)(YinsVarYdelVarT
N

k
kk comp

insdelcomp ++−+= λλ (6)

The confidence rate of 95% occurs from statistical properties
concerning the variance factor appearing in formula (6). In case
another confidence percentage is needed, formula (6) can be
adjusted according to typical statistical methods [1].

3.7 Discussion
The problem of maintaining a view when updates occur in a base
relation R, mainly lies in the problem of estimating the number of
updates that will affect the view. Statisticians have contributed in
this by providing formulas that compute the value of a probability
of the form p(z>valkcomp). However, the formula of such a
probability depends on the distribution that the variable z follows.
In our context, the variable z is a linear combination of the form
ax + by where x and y are values from the attributes X and Y of the
base relation. Even if the distributions that X and Y follow are
known, the distribution of the score Z can not be computed unless
X and Y follow a stable distribution. A stable distribution (e.g.,
Normal, Cauchy) has the property of stability. This property states
that if a number of independent identically distributed (iid)
random variables have a stable distribution, then a linear
combination of these variables will have the same distribution.
Therefore, the distribution of the variable Z can only be known in
few cases. However, even if the distribution of the score was
known, the probability p(z>valkcomp) could be computed only with
respect to the valk instead of the value valkcomp. This is because the
valkcomp could not been know in advance. Therefore, an iterative
procedure would be needed. This occurs from the fact that we
could compute the effect top-k tuples could have but not the effect
the extra tuples would arise. Thus, a recursive procedure would be
required.

4. EXAMPLE
As an example, consider the base relation R (ID, X, Y) initially
containing N tuples with N=20 where attributes X and Y follow a
uniform distribution over the interval [0, 100]. In addition,
consider a materialized view V that contains the top-3 tuples (k=3)
of the form (id, val) where val=3x+7y is the score according to a
function f(x,y)=ax + by and a=3, b=7. The base relation R and the
initial state of V are shown in Figure 3. Finally, the update ratios
are Λins=5, Λdel=15 and Λupd=0. We will compute kcomp such that
the view would contain kcomp tuples instead of k in order to be kept
maintained when insertions, deletions and updates will occur in
the base relation R. Moreover, let the period of operations
occurring set as T=1.

According to the method of section 3.2, the ratios λins and λdel are
5 and 15 respectively. Therefore, pins=0.25 and pdel=0.75. The
probability)(kcompvalzp ≥ can be calculated according to the
following:

p(z≤valkcomp) = FN (valkcomp)
p(z≤valkcomp) = (number of elements is score sample≤ valkcomp) / N
p(z>valkcomp) = kcomp / 20

In consequence, the probabilities aff
insp and aff

delp can be calculated

as:
20

25.0)(comp
kcompins

aff
ins

k
valzppp =≥= and

R V
id X Y id Z
1 56 41 10 929
2 58 62 15 847
3 15 97 4 836
4 78 86
5 69 10
6 96 60
7 12 43
8 74 76
9 26 71

10 95 92
11 34 51
12 27 36
13 19 25
14 68 81
15 91 82
16 84 65
17 41 59
18 37 37
19 23 17
20 47 27

Figure 3. Base relation R

20
75.0)(comp

kcompdel
aff
del

k
valzppp =≥= .

Given the previous probabilities, the effective update ratios for the
view V are then:

)155(*
20

25.0)(+=+= comp
delins

aff
ins

aff
ins

k
p λλλ

)155(*
20

75.0)(+=+= comp
delins

aff
del

aff
del

k
p λλλ

The above formulas state that if 5 insertions will occur in the base
relation R, aff

insλ will affect the view and if 15 deletions occur then
aff
delλ will affect the view respectively. To be more specific the

ceiling function is applied on aff
insλ and aff

delλ . Therefore, for kcomp
the following inequality holds:

6

*)(

≥

−+≥

compk

Taff
ins

aff
delkcompk λλ

where actually kcomp = 6. Thus, kcomp should be 6 in order to keep
the view maintained after insertions, deletions and updates will
occur in the base relation R. Suppose that insertions and deletions,
shown in Figure 4, occur in the base relation R. The view V
contains initially top-6 tuples and after updates the view will
contain top-3 tuples. These are shown in Figure 5 where the dark
shading denotes the initial top-3 tuples of V whereas the light
shading denotes the extra top-3 tuples in order to have top-kcomp
tuples.

insertions deletions
id X Y id X Y
21 25 33 1 56 41
22 18 64 2 58 62
23 97 83 3 15 97
24 31 50 4 78 86
25 53 82 5 69 10

7 12 43
8 74 76
10 95 92
11 34 51
12 27 36
13 19 25
15 91 82
16 84 65
17 41 59

 20 47 27
Figure 4. Insertions and deletions occurring in base relation R

V V
id Z

id Z

10 929 Deleted 23 872
23 872 Inserted 14 771
15 847 Deleted 25 733
4 836 Deleted
14 771
8 754 Deleted
25 733 Inserted
3 724 Deleted

Figure 5. The view V prior and subsequent to updates

5. EXPERIMENTS
In this section we report on the experimental assessment of our
method. We start with presenting the experimental methodology
and then we discuss our findings.

5.1 Experimental Methodology
Our experimental study has been conducted towards assuring the
following two goals:
1. Effectiveness. The first desideratum of the experimental

study has been the verification of the fact that the proposed
method can accurately sustain intervals with high deletion
activity in the workload. In other words, the experimental
goal was to verify that a top-k materialized view contains at
least k items, in at least 95% of the cases.

2. Efficiency. The second desideratum of the experimental study
has been the establishment of the fact that the computation of
the exact number of auxiliary view tuples is faster than the
computation of refill queries as proposed in the related
literature. As well as the number of auxiliary view tuples is
less than the number proposed in [10].

To achieve the first goal we have estimated kcomp via two
methods: (a) without the fine tuning that uses the rates’ variances
(i.e., through formula 5) and (b) with this fine tuning (i.e., through
formula 6). For both methods, we have computed the number of
tuples that were deleted from the view, below the threshold of k.
In the context of the second goal, we have measured three metrics:
(a) the memory overhead for kcomp and kcomp with tuning,
measured as the number of extra tuples that we need to keep in the
view, (b) the time overhead for computing kcomp and kcomp eith
tuning as compared to the necessary time to compute the refill

queries of [10] and (c)the time needed to compute the formula for
kcomp. Again, we have evaluated these metrics using both the
aforementioned methods.
In all our experiments we have used one relation R(RID, X, Y) and
one view V(RID, score) with a formula score = 3X+7Y. The
parameters that we have tested for their effect over the
aforementioned measures are: (a) the number of relation tuples,
(b) the number of materialized top-k results, (c) the fraction of the
delete rate, over the insertion rate and (d) the percentage of the
update stream over the relation size. We have not altered the time
window T in our experiments; nevertheless, this is equivalent to
varying the last parameter (denoted as λ), which measures the
amount of modifications that take place as a percentage of the size
of R. In other words, it is equivalent to increase the modifications
number instead of reducing the window size.
We have tested the method over data whose attributes X and Y
followed the Gaussian (with mean μ=50 and variance σ=10 for
both X, Y), negative exponential (with a=1.5 for X and a=2.0 for
Y) and Zipf distributions (with a=2.1 for both X, Y). The notation
for the parameters and the specific values that we have used are
listed in Table 1.

Table 1. Experimental parameters
 Size of source table R (tuples) |R| 1x105, 5x105, 1x106, 2x106
 Size of mat. view (tuples) k 5, 10, 100, 1000
 Size of update stream
(pct over |R|)

λ 1/1000, 1/100

 Deletion rate over insertion rate
(ratio)

D/I 1.0, 1.5, 2.0

5.2 Effectiveness of the method
The effectiveness of the method is demonstrated in Fig. 6 and Fig.
7. We present results organized by the data distribution of the
attributes and compare two methods for computing kcomp, (a) the
method including the fine-tuning part and (b) the method simply
based on formula (5). We have conducted the full range of
combinations of the values listed in Table 1, but we only present
some indicative combinations for lack of space.
In Fig. 6, we fix D/I to 1.5 and k to 1000 (the largest possible
value) and vary the size of R (in the X-axis) and the update stream
size (in different lines in the Figure). Each experiment has been
conducted 5 times. We measure both the average and the
maximum number of misses. In Fig. 7 we report only the
maximum number of misses, as it appears to be in analogy with
the average in almost all the cases, and we vary k and D/I, while
keeping R fixed to 1M rows and λ to 1%. The findings are as
follows:

− The fine tuning method gives 0 losses, and thus describes the
bold line lying on top of the X-axis in Fig. 6 and 7.

− If the fine tuning was not included, misses would have been
encountered. In cases where insertions are close to deletions,
the underestimation of the value of kcomp would lead to
potentially important errors (in the Zipf case, errors have
come up to 9 misses which is almost 1% of the top-k view
size).

− It is also interesting how the distribution of data affects the
stability of the error (Gaussian seems to converge, as
expected, whereas the Zipf drops when the percentage of k is
small over R, as the hot values are rather fixed)

0
1
2
3
4
5
6
7
8

100
K

500
K 1M 2M

R (D/I=1.5, k=1000)

#m
iss

es
max misses, λ=0.1%
avg misses, λ=0.1%
max misses, λ=1%
avg misses, λ=1%

0
1
2
3
4
5
6
7

100K
500K 1M 2M

R size (D/I = 1.5, k = 1000)

#m
iss

es

max misses, λ=0.1%
avg misses, λ=0.1%
max misses, λ=1%
avg misses, λ=1%

0

2

4

6

8

10

100K 500K 1M 2M
R (D/I = 1.5, k = 1000)

#m
is

se
s

max misses, λ=0.1%
avg misses, λ=0.1%
max misses, λ=1%
avg misses, λ=1%

Gaussian Negative Exponential Zipf

Fig. 6. Maximum and Average misses as a function of |R| and λ

0
1
2
3
4
5
6
7
8

5 10 100 1000
k (R=1M, λ = 1%)

#m
ax

 m
is

se
s

D/I = 1.0
D/I = 1.5
D/I = 2.0

0

1

2

3

4

5

6

5 10 100 1000
k (R=1M, λ=1%)

#m
ax

 m
is

se
s

D/I = 1
D/I = 1.5
D/I = 2

0

2

4

6

8

10

5 10 100 1000
k (R=1M, λ=1%)

m

ax
 m

is
se

s

D/I = 1.0
D/I=1.5
D/I = 2.0

Gaussian Negative Exponential Zipf

Fig. 7. Maximum misses as a function of k and D/I

D/I=1.0

D/I=2.0

D/I=1.5

0

1

2

3

4

5

6

7

5 10 10
0

10
00 5 10 10

0
10

00 5 10 10
0

10
00

k (R=100K, λ=1%)

%
tu

pl
es

KCOMP-k
KCOMP tuning -k

D/I=2
D/I=1.5

D/I=1

960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070

10
0K

50
0K 1M 2M 10

0K
500

K 1M 2M 10
0K

50
0K 1M 2M

R (k=1000, λ=1%)

#t
up

le
s

K
KCOMP
KCOMP tuning

(a) Percentage of extra tuples as a function of k and D/I (b) Number of extra tuples as a function of R and D/I

Fig. 8 Comparison of k, kcomp, and kcomp with tuning

0

500

1000

1500

2000

2500

3000

5 10 100 1000
k (R=2M, λ=1%)

#t
up

le
s

KCOMP tuning
[10]

0

200

400

600

800

1000

1200

1400

1600

100000 500000 1000000 2000000
R (k=100, λ=1%)

#t
up

le
s

KCOMP tuning
[10]

(b) Number of extra tuples as a function of k (a) Number of extra tuples as a function of R

Fig. 9 Comparison of kcomp with tuning and [10]

5.3 Efficiency of the method
We compared the values of kcomp without the fine tuning (i.e.,
through formula 5) and kcomp tuning with this fine tuning. The
comparison of the above values was conducted for all three
distributions as well as for all parameters listed in Table 1. Due to
the fact that our formula is independent of the distribution the
tuples follow and due to space limitations we only present some
indicative results. In Fig. 8 we compare kcomp and kcomp tuning (a)
as a function of k, where the size of R is 100000 tuples and (b) as
a function of the size of R where we have fixed k=1000. For both
of them and for all possible values of D/I the size of the update
stream λ is 1% and the distribution is the Negative exponential. In
Fig 8 (a) the Y-axis denotes the percentage of extra tuples. From
both graphs in Fig. 8 we observe that kcomp is slightly greater than
k and kcomp tuning is slightly greater than kcomp in all cases. The
number of the auxiliary tuples in the view (i.e., kcomp and kcomp
tuning) in the maximum case is approximately 1% and 6%
respectively. Thus, the number of the auxiliary tuples does not
cause a great extra memory cost.
In Fig. 9, we compare the value of kcomp tuning with the one
proposed by [10]. Again, we compare the above (a) as a function
of k where the size of R is set to 2M (the largest possible value)
and (b) as a function of R where k is fixed to 100. In both graphs
the distribution is the negative exponential. The parameter D/I=1,
since it is the only value that can be compared with the proposed
method in [10]. We notice that the number of tuples proposed by
[10] is significantly larger than the one proposed in our method.
Thus the memory cost in our method is considerably less.

Fig. 10. Time to build the top-k view (microseconds)
The second part of our experimental results had to do with the
comparison of the time needed to compute the value of kcomp as
compared to the time needed to re-compute the view as part of a
refill query. Fig. 10 measures the computation time needed for the
view computation for a value of k in microseconds. On the
contrary, the time necessary to perform the computation of kcomp
has consistently been negligible (practically 0 in all occasions).

6. CONCLUSIONS
In this paper we handle the problem of maintaining materialized
top-k views in the presence of high deletion rates. We provide a
principled method that complements the inefficiency of the state
of the art independently of the statistical properties of the data and
the characteristics of the update streams. The method comprises
the following steps: (a) a computation of the rate that actually
affects the materialized view, (b) a computation of the necessary
extension to k in order to handle the augmented number of
deletions that occur and (c) a fine tuning part that adjusts this
value to take the fluctuation of the statistical properties of this
value into consideration. Our experiments have verified that the
computation of this value is particularly fast and method results in
almost zero losses of tuples due to the streaming deletions. Future
work can be pursued towards an efficient refreshment method for
large numbers of materialized views.

7. ACKNOWLEDGMENTS
This research co-funded by the European Union - European Social
Fund (ESF) & National Sources, in the framework of the program
“Pythagoras II” of the “Operational Program for Education and
Initial Vocational Training” of the 3rd Community Support
Framework of the Hellenic Ministry of Education.

8. REFERENCES
[1] Morris H. DeGroot, Mark J. Schervish, Probability and

statistics, Addison Wesley, 2002.
[2] Gautam Das, Dimitrios Gunopulos, Nick Koudas, Dimitris

Tsirogiannis. Answering Top-k Queries Using Views. In Proc.
of the 32nd VLDB conference, pp. 451-462, Seoul Korea, 2006.

[3] Ronald Fagin. Combining fuzzy information from multiple
systems. In Proc. of the 15th ACM Symposium on principles of
database systems, pp. 216-226, Montreal Canada, 1996.

[4] Ronald Fagin. Fuzzy queries in multimedia database systems. In
Proc. of the 17th ACM Symposium on principles of database
systems, pp. 1-10, Seattle USA, 1998.

[5] Ronald Fagin, Amnon Lotem, Moni Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci. 66(4), pp. 614-
656, 2003.

[6] Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling. Optimizing
Multi-Feature Queries for Image Databases. In proc. of the 26th

VLDB conference, pp. 419-428, Cairo Egypt, 2000.
[7] Vagelis Hristidis, Nick Koudas, Yannis Papakonstantinou.

PREFER a system for the efficient execution of multi-
parametric ranked queries. In Proc. of the ACM Special Interest
Group on Management of Data Conference (SIGMOD), pp.
259-270, Santa Barbara USA, 2001

[8] Vagelis Hristidis, Yannis Papakonstantinou. Algorithms and
applications for answering ranked queries using ranked views.
VLDB journal, 13(1), pp. 49-70, 2004.

[9] Kishor S. Trivedi. Probability and statistics with reliability,
queuing and computer science applications. John Wiley & Sons,
Inc, 2002.

[10] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, Yuguo Chen.
Efficient Maintenance of Materialized Top-k Views.
Proceedings of the 19th International Conference on Data
Engineering (ICDE), pp.189-200, Bangalore, India, 2003.

N K Gauss Negative
exponential Zipf

100K 5 328000 348500 242000
100K 10 333000 345667 239667

100K 100 335500 343000 239667
100K 1000 395333 406000 299500

500K 5 1650667 1715500 1216333
500K 10 1650667 1713000 1208333

500K 100 1653167 1710500 1205667
500K 1000 1736667 1796167 1291833

1M 5 3298667 3429000 2427167
1M 10 3301333 3426667 2429667

1M 100 3304000 3439500 2422167
1M 1000 3403167 3520500 2606667

2M 5 6650667 6900500 5406333
2M 10 6653167 6900833 4909000

2M 100 6747167 6906000 4906500
2M 1000 6895500 7082833 4992167

