
On Relaxing Contextual Preference Queries

Kostas Stefanidis, Evaggelia Pitoura and Panos Vassiliadis
Computer Science Department, University of Ioannina, GR-45110 Ioannina, Greece

{kstef, pitoura, pvassil}@cs.uoi.gr

Abstract
Personalization systems exploit preferences for provid-

ing users with only relevant data from the huge volume of
information that is currently available. We consider pref-
erences that dependent on context, such as the location of
the user. We model context as a set of attributes, each tak-
ing values from hierarchical domains. Often, the context
of the query may be too specific to match any of the given
preferences. In this paper, we consider possible expansions
of the query context produced by relaxing one or more of
its context attributes. A hierarchical attribute may be re-
laxed upwards by replacing its value by a more general
one, downwards by replacing its value by a set of more spe-
cific values or sideways by replacing its value by sibling
values in the hierarchy. We present an algorithm based on
a prefix-based representation of context for identifying the
preferences whose context matches the relaxed context of
the query and some initial performance results.

1. Introduction
Personalization systems aim at providing users with only

the data that is of interest to them from the huge amount of
available information. One way to achieve personalization
is through preferences [3, 5]. In our previous work [7, 8],
we have argued for an extended preference model, where
preferences depend on context. Context is a general term
used to capture conditions such as time or location. We
model context as a multidimensional entity, where each di-
mension corresponds to one context parameter. In the case
of n context parameters, a context state is an n-tuple with
one value from its domain assigned to each of the n context
parameters. To enhance the expressiveness of our context
model, context parameters take values from hierarchical do-
mains. For instance, a context parameter location may take
values from a neighborhood, city or country domain.

Each query is associated with one or more context states.
Often the context of a query is too specific to match any
of the available preferences. To handle this issue, we con-
sider hierarchical relaxation as the approach of replacing
the value of one context attribute by a corresponding value
at a different level of abstraction. Various related context

states may be produced by relaxing one or more of the con-
text attributes. Such relaxations are ranked according to
their similarity to the original query state. Similarity is de-
fined based on the number of attributes that are relaxed and
the associated depth of such relaxations.

We present an algorithm for identifying the preferences
whose context states match best the relaxed context of a
query. The algorithm uses a prefix-based representation for
the set of context states of both the query and the prefer-
ences. We also present initial performance results regarding
the cost of relaxation and the size of the produced results.

2. A Contextual Preference Model
In this section, we present our multidimensional pref-

erence model. As a running example, we consider a sim-
ple database with information about points of interest
such as museums, archaeological places or zoos. The
database schema consists of a single database relation:
Points of Interest(pid, name, type, address, open-air,
hours of operation, admission cost).

Context is modeled through a finite set of special-
purpose attributes, called context parameters (Ci). In our
example, we consider three context parameters as relevant:
location, weather and accompanying people. Each con-
text parameter Ci is characterized by a context domain
dom(Ci), that is an infinitely countable set of values. To
allow flexibility in defining preferences, we model context
parameters as multidimensional attributes. In particular, we
assume that each context parameter participates in an asso-
ciated hierarchy of levels of aggregated data [8]. We use the
notation domLj

(Ci) for the domain of level Lj of parame-
ter Ci. Fig. 1 depicts the hierarchies used in our example.
Note that, we require that all values are grouped into the
single value ‘all’ that corresponds to the top level ALL.

For a context value ci, we use the notation level(ci) to
refer to the level Lj , such that, ci ∈ domLj

(Ci). The
relationship between the values of the context levels is
achieved through the use of a set of anc

Lj

Li
, Li � Lj ,

functions. A function anc
Lj

Li
assigns a value of the do-

main of Li to a value of the domain of Lj . For instance,

ancCountry
City (Athens) = Greece. The function desc

Lj

Li

 Neighborhood(L1)
(Plaka, Kifisia)

 City(L2) Condition(L1)
(Athens,Ioannina, ...) (mild, warm, hot)

 (freezing, cold)

 Characterization(L2)
 Country(L3) Weather Relationship(L1)

 Location Weather Accompanying_people
 ALL(L4) ALL(L3) All(L2)
 (all) (all) (all)

 (Greece, ...) (good, bad) (family, friends, alone)

Figure 1. Example Hierarchies.

is the inverse of anc
Lj

Li
. We define the extended domain

for a parameter Ci with m levels as edom(Ci) = ∪m
j=1

domLj
(Ci). An context state s is a n–tuple of the form

(c1, c2, . . . , cn), where ci ∈ edom(Ci). For example, a con-
text state may be (Athens, warm, friends).

Users express conditions regarding the values of a single
context parameter through context parameter descriptors.

Definition 1 (Context parameter descriptor) A context
parameter descriptor cod(Ci) for a parameter Ci is an
expression of the form: Ci ∈ {value1, . . . , valuem}, where
valuek ∈ edom(Ci), 1 ≤ k ≤ m.

An example context parameter descriptor for location
is location ∈ {Plaka, Ioannina}. Given a set of con-
text parameters C1, . . . , Cn, a composite context descriptor
describes a set of context states, with each state having a
specific value for each parameter.

Definition 2 (Composite context descriptor) A compos-
ite context descriptor cod is a formula cod(Ci1) ∧
cod(Ci2) ∧ . . . ∧ cod(Cik

) where each Cij
, 1 ≤ j ≤ k is

a context parameter and there is at most one parameter de-
scriptor per context parameter Cij

.

For instance, the context descriptor (location ∈ {Plaka}
∧ weather ∈ {warm, hot} ∧ accompanying people
∈ {friends}) corresponds to the following two con-
text states: (Plaka,warm, friends) and (Plaka, hot,
friends). If a context descriptor does not contain a context
parameter Ci, this means that the absent context parameter
is irrelevant. This is equivalent to a condition Ci ∈ {all}.

To achieve personalization, users express their prefer-
ence for specific database instances by providing a numeric
score between 0 and 1. Value 1 indicates extreme interest,
while value 0 indicates lack of interest. Interest is expressed
for specific values of attributes of the database relations. In
particular:

Definition 3 (Contextual preference) A contextual pref-
erence is a triple of the form (cod, attr clause, int score),
where cod is a context descriptor, attr clause is a selection
condition including attributes of a relation and int score is
a real number between 0 and 1.

The meaning is that in the set of context states speci-
fied by cod, all database tuples for which the attr clause

holds have the indicated interest score. For example, con-
sider that a user wants to express the fact that, when she
is in Plaka and the weather is warm, she likes to visit
Acropolis. This may be expressed through the contex-
tual preference: ((location ∈ {Plaka} ∧ temperature ∈
{warm}), (name = Acropolis), 0.9).

A profile P is a set of contextual preferences.

3. Hierarchical Context Relaxation

Each query is enhanced with information regarding con-
text. We assume that the context of a query is also expressed
through a composite context descriptor. Usually, the con-
text associated with a query is the context surrounding the
user at the time of the submission of the query. Besides this
implicit context, queries may also be explicitly augmented
with a context descriptor to allow exploratory queries, for
instance: “What places should I visit during my family va-
cations in Athens this summer (implying good weather)?”.
Let PC be the set of context states that correspond to a given
profile P and QC be the set of context states that corre-
spond to a query Q. We are interested in computing the set
PC ∩ QC and returning any related preferences.

It is possible that the set PC ∩ QC is empty or that the
preferences associated with its elements are not enough for
achieving an effective personalization of the query. Further,
it may not be possible to express the context of a query pre-
cisely. Thus, we consider ways of relaxing the query con-
text. First, we focus on relaxing context parameter descrip-
tors. To achieve this, we introduce relaxation operators. A
hierarchical context parameter may be relaxed upwards by
replacing its value with a more general value or downwards
by replacing its value by a set of more specific values. To
quantify the degree of hierarchical relaxation, we define first
the distance between two levels as follows:

Definition 4 (Level distance) Given two levels Li and Lj ,
their distance dH(Li, Lj) is defined as follows:

1. if a path exists in a hierarchy between Li and Lj , then
dH(Li, Lj) is the minimum number of edges that con-
nect Li and Lj ,

2. otherwise, dH(Li, Lj) = ∞.

A context parameter descriptor can be relaxed upwards
by allowing a parameter to take a more general value, that
is, a value at a higher level of the hierarchy.

Definition 5 (Upwards relaxed CoD) Given a context pa-
rameter descriptor cod(Ci): Ci ∈ S, for a parameter Ci,
up(cod(Ci), r) is the expression Ci ∈ S′, where S′ = {v′ |
v′ = anc

level(v′)
level(v) (v), v ∈ S and dH(level(v), level(v′)) =

r}.

We call the parameter r relaxation depth. For in-
stance, up((location ∈ {Plaka}), 1) is {Athens}, while
up((location ∈ {Plaka}), 2) is {Greece}. Similarly, a con-
text parameter descriptor can also be relaxed downwards:

Definition 6 (Downwards relaxed CoD) Given a context
parameter descriptor cod(Ci): Ci ∈ S, for a parameter Ci,
down(cod(Ci), r) is the expression Ci ∈ S′, where S′ = {v′

| v′ = desc
level(v)
level(v′)(v), v ∈ S and dH(level(v), level(v′))

= r}.

For example, down((weather ∈ {good}), 1) is the set
of values {mild, warm, hot}. Finally, a context parame-
ter may be relaxed sideways by being replaced by one or
more values that belong to the same level of the hierarchy.
To quantify the depth of sideways relaxation, we use the
following definition of sibling value distance:

Definition 7 (Sibling value distance) The sibling value
distance of two context values c1 and c2 ∈ edom(Ci), with
level(c1) = level(c2) is defined as follows:

dS(c1, c2) = |level(lca(c1, c2)) − level(c1)|.
where lca(c1, c2) is the least common ancestor of c1 and c2.

Definition 8 (Sideways relaxed CoD) Given a context pa-
rameter descriptor cod(Ci): Ci ∈ S, for a parameter Ci,
side(cod(Ci), r) is the expression Ci ∈ S′, where S′ = {v′

| level(v′) = level(v), u ∈ S and dS(v′, v) = r}.

For example, side((weather ∈ {hot}), 1) is the set of
values {mild, warm, hot}. Note that using the sibling dis-
tance, the distance of two values at the same level depends
on how far up the hierarchy their first common ancestor is
located. For example, dS(hot, warm) = 1, while, dS(hot,
cold) = 2.

Having defined the upwards, downwards and sideways
relaxed CoD, we define the overall distance between two
context parameters descriptors, as the minimum possible
distance for all directions for all members of a CoD.

Definition 9 (Overall CoD distance) Given two context
parameter descriptors cod1(Ci): Ci ∈ S1, and cod2(Ci):
Ci ∈ S2, the distance between the two context parameter
descriptors is the minimum distance r such that one of the
following holds:

• cod2(Ci)
⋂

up(cod1(Ci), r) �= 	
• cod2(Ci)

⋂
down(cod1(Ci), r) �= 	

• cod2(Ci)
⋂

side(cod1(Ci), r) �= 	
Assume a query Q with a context descriptor codQ =

cod(C1) ∧ cod(C2) . . . ∧ cod(Cn), where any missing con-
text parameter descriptor Cl is replaced by the descriptor Cl

∈ {all}. We can relax Q by relaxing upwards, downwards
or sideways any subset of the n context parameter descrip-
tors. Next, we define the distance between the original codQ

and a relaxed context descriptor that results by relaxing one
or more of its constituting context parameter descriptors.

Definition 10 (Distance between composite CoDs)
Assume two context descriptors cod1 = cod1(C1) ∧
cod1(C2) . . . ∧ cod1(Cn) and cod2 = cod2(C1) ∧
cod2(C2) . . . ∧ cod2(Cn). Then, the distance between

the two composite context descriptors is the sum of the
individual distances of context parameter descriptors:

dist(cod1, cod2) =
∑n

i=1 |dist(cod1(Ci), cod2(Ci))|.
To compute the distance between a context descriptor

and a state, we must simply transform the state to a com-
posite context descriptor.

Definition 11 (Distance between state and composite CoD)
Assume a context descriptor cod1 = cod1(C1) ∧ cod1(C2)
. . . ∧ cod1(Cn), and, a state s2 = (c2

1, c
2
2, . . . , c

2
n).

Construct a context descriptor cod2 = cod2(C1)
∧ cod2(C2) . . . ∧ cod2(Cn), s.t., cod2(Ci): Ci

= c2
i . Then, the distance between cod1 and s2 is

dist(cod1, s2) = dist(cod1, cod2)
Finally, to construct the distance between two states, we

simply need to construct the appropriate descriptors and
measure their distance.

Definition 12 (Distance between states) Assume two
states s1 = (c1

1, c
1
2, . . . , c

1
n) and s2 = (c2

1, c
2
2, . . . , c

2
n).

Construct two context descriptor codi = codi(C1) ∧
codi(C2) . . . ∧ codi(Cn), s.t., codi(Cj): Cj=c2

j , iε{1, 2},
jε{1, . . . , n}. Then, the distance between s1 and s2 is

dist(s1, s2) = dist(cod1, cod2)
Often, the relaxation of a state s may result in two states

s1 and s2 that are equally similar to s, that is, dist(s1, s)
= dist(s2, s). In this case, we use the Jaccard distance be-
tween the two states s1 and s2 to select one of them. Intu-
itively, this allows us to select the “largest” state in terms
of the cardinality, in particular, we choose the state that re-
sults in the largest number of values at level L1 (the lowest
level of detail). The motivation is that (in the absence of
any other information), this is the state that is more likely to
appear. The formal definitions can be found in [9].

4. A Relaxed Context Resolution Algorithm
The question that arises is which of the context parame-

ters of the query context to relax and how much (i.e., what
is an appropriate relaxation depth, r) so that a large enough
set of preferences in PC match the context state of the re-
laxed query. We call this problem relaxed context resolu-
tion. We assume that the system (or the user) associates a
value k with each query that specifies how many matching
preferences from the profile should be returned. In particu-
lar, given a query Q with a context descriptor codQ, we look
for k preferences in PC that match the set of context states
specified by codQ. As long as there are less than k prefer-
ences, we relax a number of the context parameter descrip-
tors in codQ by using gradually larger relaxation depths.
Data Structures. To store the contextual preferences in P ,
we use a data structure called profile tree [8]. Let PC be the
set of context states of all context descriptors that appear in
P . The basic idea is to store in the profile tree the context
states in PC so that there is exactly one path in the tree for

each context state s ∈ PC . Specifically, the profile tree for
PC is a directed acyclic graph with a single root node and
n + 1 levels. Each one of the first n levels corresponds to a
context parameter. For simplicity, assume that context pa-
rameter Ci is mapped to level i. Each non-leaf node at level
k maintains cells of the form [key, pointer], where key ∈
edom(Ck) for some value of ck that appeared in a state s
∈ PC . No two cells within the same node contain the same
key value. The pointer points to a node at level k + 1 hav-
ing cells with key values in edom(Ck+1) which appeared in
the same state s with the key. Each leaf node maintains the
part [attr clause, int score] of the preference associated
with the path (context state) leading to it.

Let QC be the set of context states derived from the de-
scriptor codQ of query Q. As opposed to [8], where we
used the profile tree to check for each individual s in QC ,
the proposed algorithm tests for all states in QC within a
single pass of the profile tree. To achieve this, the context
states in QC are also represented by a data structure similar
to the profile tree, that we call the Query tree, so that there
is exactly one path in the tree for each context state s ∈ QC .

Algorithm 1 Relaxed Context Resolution Algorithm
Input: The profile tree with root node RP and n + 1 levels, the query
tree with root node RQ and n levels, the number k of desired prefer-
ences.
Output: A ResultSet of tuples of the form (attr name = attr value,
int score) characterizing paths whose context states are similar with the
searching context states, i.e., the states of the query tree.

SN , SN ′ sets of pairs of nodes, each pair related with a distance value.
Initially: SN = {(RQ, Rp, 0)}, SN ′ = {}
Begin
distance = 0
while ResultSet less than k do

for level i = 0 to n − 1 do
for each pair sn ∈ SN , with sn = (q node, p node, dist) do

∀x ∈ q node
∀y ∈ p node
if dist + d(x, y) ≤ distance then

if i < n − 1 then
SN ′ = SN ′ ∪ {(x → child, y → child, dist +
d(x, y))}

else if i = n − 1 then
attr clause = y → child.attr clause
int score = y → child.int score
ResultSet = ResultSet ∪ (attr clause,
int score)

end if
end if

end for
SN = SN ′
SN ′ = {}

end for
distance++

end while
End

A Context Resolution Algorithm. The Relaxed Context
Resolution Algorithm (Algorithm 1) gradually relaxes the
query context, so that enough preferences are found. Ini-

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u
m
b
e
r

o
f

C
e
l
l
s

Number of States in Profile

20 query states in parallel
20 single query states

50 query states in parallel
50 single query states

100 query states in parallel
100 single query states

Figure 2. Cell accesses in exact match.

tially, we start by searching for states in the profile tree that
are the same with the states of the query. In a breadth first
manner, we search for pairs of nodes that belong to the same
level. Each pair consists of a node of the query tree and a
node of the profile tree. Initially, there is one pair of nodes,
(RQ, RP) (level i = 0). For each value of the query node
RQ that is equal to a value of the profile node RP , we create
a new pair of nodes (RQ → child, RP → child). These
nodes refer to the next level (i + 1). After having checked
all values of all pairs at a specific level, we examine the
pairs of nodes created for the immediately next level, and
so on. At level n, if a value of a query node is equal to a
value of a profile node, we retrieve from its leaf node the
attribute clause with its relative interest score. If the num-
ber of preferences returned are less than the desired number
k, we relax the query conditions in rounds. First, we look
for relaxed states with distance equal to 1 from the search-
ing states, then for relaxed states with distance equal to 2,
and so on. In each round, i.e., for a specific distance value,
we search for upwards, downwards and sideways relaxed
states. The algorithm stops when the total number of re-
turned preferences is at least equal to k.

5. Performance Evaluation

In this section, we present initial performance results re-
garding the relaxation algorithm. There are three context
parameters, each one having a domain with 100 values.
Profiles have various numbers of context states (from 500
to 8000). The values of two of the context parameters are
drawn from their corresponding domain using a zipf data
distribution with a = 2.0, while the values of the third pa-
rameter are selected using a uniform data distribution.

First, we report on a number of experiments that com-
pare the performance of searching for matching states for
each state of the query one at a time versus matching all
query states in parallel using Algorithm 1. Fig. 2 depicts
our results for exact match queries having query descriptors
with 20, 50 and 100 states. In each case, we count the to-
tal number of cells accessed. Searching for all states in one
pass results in savings at around 35% on average.

Then, we consider the number of returned context states

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3

N
u
m
b
e
r

o
f

m
a
t
c
h
i
n
g

s
t
a
t
e
s

Distance

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.5 1 1.5 2 2.5 3

N
u
m
b
e
r

o
f

c
e
l
l
s

Distance

upwards:20 query states
upwards:50 query states

downwards:20 query states
downwards:50 query states
sideways:20 query states
sideways:50 query states

Figure 3. Number of returned states (left), number of cell accesses (right).

and the associated number of cell accesses, when we re-
lax the query context states. We run these experiments for
profiles with 5000 context states. 75% of context values are
considered to be values at the most detailed level of the hier-
archies and the rest 25% are assigned to the other two levels.
Fig. 3 (left) shows the number of returned context states for
upwards, downwards and sideways relaxation, up to a dis-
tance 1, 2, 3, when we search for 20 and 50 states, while
Fig. 3 (right), shows the number of cell accesses in each
case. As expected, upwards relaxation incurs the smallest
cost, while sideways relaxations incurs the highest one. Fur-
ther experiments about the size of the profile tree, when we
use pre-processing techniques to map context parameters to
levels can be found in [9].

6. Related Work
Contextual preferences, called situated preferences, are

introduced in [1]. Situations (i.e., context states) are
uniquely linked through an N:M relationship with prefer-
ences. A knowledge-based context-aware query preference
model is also proposed in [10]. In our previous research
[7, 8], we have addressed the problem of expressing con-
textual preferences. Here we extend this work to allow re-
laxing the specification of the query context. For measuring
the distance between two context values, we just use their
path distance in the hierarchy and their Jaccard distance to
resolve ties. There has been a lot of work on defining the
semantic similarity of words connected through a lexical
hierarchy (e.g., [6]) that we plan to explore in future work.
Query relaxation has attracted some attention recently. A
framework to relax queries involving numeric conditions in
selection and join predicates is proposed in [4]. In this pa-
per, we focus on categorical attributes with hierarchical do-
mains. The relaxation algorithm proposed in [2] produces a
relaxed query for a given initial range query and a desired
cardinality of the result set. Again, this work considers nu-
merical attributes.

7. Summary
In this paper, we consider context-dependent prefer-

ences, which are preferences that depend on context. Con-

text is modeled as a multidimensional entity with each of its
dimensions taking values from a hierarchical domain. Each
query is also augmented with context information. We fo-
cus on the problem of relaxing the context of the query, so
that there are enough preferences whose associated context
match that of the query. We consider relaxing a hierarchical
value by using a more general (upwards relaxation), a more
specific (downwards relaxation) or a sibling (sideways re-
laxation) one. Depending on the distance in the associated
hierarchy between the original and the relaxed value, we
define different relaxation levels. We also present an algo-
rithm that incrementally relaxes the query context, until a
sufficiently large number of results is produced.

Acknowledgment
Work co-funded by the European Union - European So-

cial Fund (ESF) & National Sources, in the framework of
the program “Pythagoras I”, project CONSERV.
References

[1] S. Holland and W. Kiessling. Situated preferences and pref-
erence repositories for personalized database applications. In
ER, 2004.

[2] A. Kadlag, A. V. Wanjari, J. Freire, and J. R. Haritsa. Sup-
porting exploratory queries in databases. In DASFAA, 2004.

[3] W. Kießling and G. Köstler. Preference sql - design, imple-
mentation, experiences. In VLDB, 2002.

[4] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, 2006.

[5] G. Koutrika and Y. Ioannidis. Personalized queries under a
generalized preference model. In ICDE, 2005.

[6] Y. Li, Z. A. Bandar, and D. McLean. An approach for mea-
suring semantic similarity between words using multiple in-
formation sources. IEEE TKDE, 15(4):871–882, 2003.

[7] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Modeling and
storing context-aware preferences. In ADBIS, 2006.

[8] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding context
to preferences. In ICDE, 2007.

[9] K. Stefanidis, E. Pitoura, and P. Vassiliadis. On Relaxing
Contextual Preference Queries (extended version). Univ. of
Ioannina, Computer Science Dep., TR 2007-01, 2007.

[10] A. H. van Bunningen, L. Feng, and P. M. G. Apers. A
context-aware preference model for database querying in an
ambient intelligent environment. In DEXA, 2006.

