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Abstract
To handle the overwhelming amount of information cur-

rently available, personalization systems allow users to
specify the information that interests them through prefer-
ences. Most often, users have different preferences depend-
ing on context. In this paper, we introduce a model for ex-
pressing such contextual preferences. Context is modeled
as a set of multidimensional attributes. We formulate the
context resolution problem as the problem of (a) identify-
ing those preferences that qualify to encompass the con-
text state of a query and (b) selecting the most appropri-
ate among them. We also propose an algorithm for context
resolution that uses a data structure, called the profile tree,
that indexes preferences based on their associated context.
Finally, we evaluate our approach from two perspectives:
usability and performance.

1. Introduction
Today, a very large and steadily increasing amount of

information is available to a wide spectrum of users, thus
creating the need for personalized information processing.
Instead of overwhelming the users with all available data,
a personalized query returns only the information that is of
interest to them [10]. In general, to achieve personalization,
users express their preferences on specific pieces of data ei-
ther explicitly or implicitly. However, often users may have
different preferences under different circumstances. For in-
stance, a user visiting Athens may prefer to visit Acropolis
in a nice sunny summer day and the archaeological museum
in a cold and rainy winter afternoon. In other words, the re-
sults of a preference query may depend on context.

Context is a general term used to capture any informa-
tion that can be used to characterize the situations of an
entity [4]. Common types of context include the comput-
ing context (e.g., network connectivity, resources), the user
context (e.g., profile, location), the physical context (e.g.,
noise levels, temperature) and time [2]. We model context
as a set of multidimensional context parameters. A context
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state corresponds to an assignment of values to context pa-
rameters. Different levels of abstraction for the captured
context data are introduced by allowing context parameters
to take values from hierarchical domains. For instance, the
context parameter location may take values from a region,
city or country domain. Users employ context descriptors
to express preferences on specific database instances for a
variety of context states expressed with varying levels of
detail.

Each query is associated with one or more context state.
The context state of a query may, for example, be the cur-
rent state at the time of its submission. Furthermore, a query
may be explicitly enhanced with context descriptors to al-
low exploratory queries about hypothetical context states.
We formulate the context resolution problem that refers to
the problem of identifying those preferences whose context
states are the most relevant to the context state of the query.
The problem can be divided into two steps: (a) the identi-
fication of all the candidate context states that encompass
the query state and (b) the selection of the most appropri-
ate state among these candidates. The first subproblem is
resolved through the notion of the “covers” partial order be-
tween states that relates context states expressed at different
levels of abstraction. For instance, the notion of coverage
allows relating a context state in which location is expressed
at the level of a city and a context state in which location is
expressed at the level of a country. To resolve the second
subproblem, we consider two distance metrics that capture
similarity between context states.

Our algorithm for context resolution uses a profile tree
that indexes user preferences based on their associated con-
text. Intuitively, the algorithm starts from the query context
and incrementally “extends” its coverage until a matching
state is found in the profile tree. Finally, we evaluate our ap-
proach from two perspectives: usability and performance.

The rest of this paper is organized as follows. In Section
2, we present our reference example. In Section 3, we intro-
duce our context and preference model and the profile tree.
In Section 4, we focus on processing contextual queries,
while in Section 5, we present our evaluation results. Sec-
tion 6 describes related work. Finally, Section 7 concludes
the paper with a summary of our contributions.



2. Reference Example
We consider a simple database that maintains infor-

mation about points of interest. Points of interest
may for example be museums, monuments, archaeological
places or zoos. The database schema consists of a single
database relation: Points of Interest(pid, name, type, lo-
cation, open-air, hours of operation, admission cost). We
consider three context parameters as relevant: location,
temperature and accompanying people. Depending on
context, users prefer points of interest that have specific
attribute values. Such preferences are expressed by provid-
ing a numeric score between 0 and 1. For instance, the in-
terest score of a preference that is related to the type of the
visiting place depends on the accompanying people that
might be friends, family, or alone. For example, a zoo
may be a preferred place to visit than a brewery in the con-
text of family.

3. Context and Preference Model
First, we present the fundamental concepts related to

context modeling, and then, define user preferences.

3.1. Modeling Context
Context is modeled through a finite set of special-

purpose attributes, called context parameters (Ci). In
particular, for a given application X , we define its con-
text environment CEX as a set of n context parame-
ters {C1, C2, . . . , Cn}. For instance, the context environ-
ment of our example is {location, temperature, accom-
panying people}. Each context parameter Ci is charac-
terized by a context domain, dom(Ci). As usual, a do-
main is an infinitely countable set of values. A context
state w is a n–tuple of the form (c1, c2, . . . , cn), where
ci ∈ dom(Ci). For instance, a context state in our ex-
ample may be: (Plaka, warm, friends). The set of all
possible context states called world, W , is the Cartesian
product of the domains of the context attributes: W =
dom(C1)× dom(C2)× . . .× dom(Cn).

To allow more flexibility in defining preferences, we
model context parameters as multidimensional attributes.
In particular, we assume that each context parameter par-
ticipates in an associated hierarchy of levels of aggregated
data, i.e., it can be viewed from different levels of de-
tail. Formally, an attribute hierarchy is a lattice (L,≺):
L = (L1, . . . , Lm−1, ALL) of m levels and ≺ is a par-
tial order among the levels of L such that L1 ≺ Li ≺ ALL,
for every 1 < i < m. We require that the upper bound of
the lattice is always the level ALL, so that we can group all
values into the single value ‘all’. The lower bound of the
lattice is called the detailed level of the context parameter.
We use the notation domLj (Ci) for the domain of level Lj

of parameter Ci. For the domain of the detailed level, we
shall use both domL1(Ci) and dom(Ci) interchangeably.
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Figure 1. Example Hierarchies.

Regarding our running example, levels of location are
Region (L1), City (L2), Country (L3) and ALL (L4).
For example, a value of City is Athens and two Regions
in Athens are Plaka and Kifisia. For weather, there
are three levels: the detailed level Conditions (L1)
whose domain includes freezing, cold, mild, warm and
hot, the level Weather Characterization (L2) which just
refers to whether the weather is good (grouping mild,
warm and hot) or bad (grouping freezing and cold)
and the level ALL (L3). Finally, the context parameter
accompanying people has the lower level Relationship
(L1) which consists of the values friends, family, alone
and the level ALL (L2). Figure 1 depicts these hierarchies.

The relationship between the values of the context levels
is achieved through the use of the set of anc

Lj

Li
, Li ≺ Lj ,

functions [17]. A function anc
Lj

Li
assigns a value of the do-

main of Li to a value of the domain of Lj . For instance,
ancCity

Region(Plaka) = Athens. Formally, the set of func-

tions anc
Lj

Li
satisfies the following conditions:

1. For each pair of levels L1 and L2 such that L1 ≺ L2,
the function ancL2

L1
maps each element of domL1(Ci)

to an element of domL2(Ci).
2. Given levels L1, L2 and L3 such that L1 ≺ L2 ≺ L3,

the function ancL3
L1

is equal to the composition ancL1
L2

◦ ancL2
L3

.
3. For each pair of levels L1 and L2 such that L1 ≺

L2, the function ancL2
L1

is monotone, i.e., ∀ x, y

∈ domL1(Ci), L1 ≺ L2, x < y ⇒ ancL2
L1

(x) ≤
ancL2

L1
(y).

The function descL2
L1 is the inverse of ancL2

L1, that is
descL2

L1
(v)= {x ∈ domL1(Ci) : ancL2

L1(x) = v}. For in-
stance, descCity

Region(Athens) = {Plaka, Kifisia}. We use
L1 ¹ L2 between two levels to mean L1 ≺ L2 or L1 = L2 .

We define the extended domain for a parameter Ci with
m levels as edom(Ci) = ∪m

j=1 domLj (Ci). Then, an (ex-
tended) context state is an assignment of values to con-
text parameters from their extended domain. In particu-
lar, an extended context state s is a n–tuple of the form
(c1, c2, . . . , cn), where ci ∈ edom(Ci). For instance, a con-
text state in our example may be (Greece, warm, friends)
or (Greece, good, all). The set of all possible extended



context states called extended world, EW , is the Cartesian
product of the extended domains of the context attributes:
EW = edom(C1)× edom(C2)× . . .× edom(Cn).

Users can express conditions regarding the values of a
context parameter through context descriptors.

Definition 1 (Context parameter descriptor) A context
parameter descriptor cod(Ci) for a parameter Ci is an
expression of the form:

1. Ci = v, where v ∈ edom(Ci), or
2. Ci ∈ {value1, . . . , valuem}, where valuek ∈

edom(Ci), 1 ≤ k ≤m, or
3. Ci ∈ [value1, valuem], where [value1, valuem] de-

notes a range of values x ∈ edom(Ci), such that
value1 ≤ x ≤ valuem.

For example, given a context parameter location,
a context parameter descriptor can be of the form
location = Plaka, or location ∈ {Plaka, Acropolis}.
Given a context parameter temperature, a range-
based context parameter descriptor can be of the form
temperature ∈ [mild, hot], signifying thus the set of val-
ues {mild, warm, hot}. There is a straightforward way
to translate context parameter descriptors to sets of values.
Practically, this involves translating range descriptors to sets
of values (recall that all domains are infinitely countable,
hence, they are not dense and all ranges can be translated to
finite sets of values).
Definition 2 (Context of a context parameter descrip-
tor) Given a context parameter descriptor c = cod(Ci) for
a parameter Ci, its context is a finite set of values, computed
as follows:

Context(c) =





{v} if c of the form Ci = v
{v1, . . . , vm} if c of the form

Ci ∈ {v1, . . . , vm}
{v1, . . . , vm} if c of the form

Ci ∈ [v1, vm]
A context descriptor is a specification that a user can

make for a set of context parameters, through the combi-
nation of simple parameter descriptors.
Definition 3 (Composite context descriptor) A (compos-
ite) context descriptor cod is a formula cod(Ci1) ∧
cod(Ci2) ∧ . . . ∧ cod(Cik

) where each Cij , 1 ≤ j ≤ k is
a context parameter and there is at most one parameter de-
scriptor per context parameter Cij .

Given a set of context parameters C1, . . . , Cn, a com-
posite context descriptor describes a set of possible context
states, with each state having a specific value for each pa-
rameter. Clearly, one context descriptor can produce more
than one state. The production of these states can be per-
formed by computing the Cartesian product of the context
states of all the individual parameter descriptors of a context
descriptor. If a context descriptor does not contain all con-
text parameters, that means that the absent context parame-
ters have irrelevant values. This is equivalent to a condition

Ci = all. Observe that the set of produced states is finite,
due to the finite character of the context of the parameter
descriptors.
Definition 4 (Context of a context descriptor) Assume a
set of context parameters C1, . . . , Cn and a context descrip-
tor cod = cod(Ci1)∧cod(Ci2)∧ . . .∧cod(Cik

), 0 ≤ k ≤ n.
Without loss of generality, we assume that the parameters
without a parameter descriptor are the last n−k ones. The
context states of a context descriptor, called Context(cod)
are defined as:
Context(cod(Ci1)) × . . . × Context(cod(Cik

)) × {all}
× . . . × {all}

Suppose for instance, the context descriptor (location =
Plaka ∧ temperature ∈ {warm, hot} ∧ accompanying
people = friends). This descriptor corresponds to the fol-
lowing two context states: (Plaka,warm, friends) and
(Plaka, hot, friends).

3.2. Contextual Preferences
In this section, we define how context affects the results

of queries, so that the same query returns different results
based on the context of its execution. Such context-aware
personalization is achieved through the use of preferences.
In general, there are two different approaches for expressing
preferences: a quantitative and a qualitative one. With the
quantitative approach (e.g., [1]), preferences are expressed
indirectly by using scoring functions that associate a nu-
meric score with every tuple of the query answer. In the
qualitative approach (such as the work in [3]), preferences
between tuples in the query answer are specified directly,
typically using binary preference relations.

Although, our context model can be used with both quan-
titative and qualitative approaches, we use a simple quan-
titative preference model to demonstrate the basic issues
underlying contextualization. In particular, users express
their preference for specific database instances by provid-
ing a numeric score which is a real number between 0 and
1. This score expresses their degree of interest. Value 1
indicates extreme interest, while value 0 indicates no inter-
est. Interest is expressed for specific values of non context
attributes of a database relation, for instance for the vari-
ous attributes (e.g., type, location) of our Point of Interest
database relation. In particular, a contextual preference is
defined as follows.
Definition 5 (Contextual preference) A contextual pref-
erence is a triple of the form contextual preference=(cod,
attributes clause, interest score), where cod is a con-
text descriptor, the attributes clause {A1θ1a1, A2θ2a2,
. . . , Akθkak} specifies a set of attributes A1, A2, . . . , Ak

with their values a1, a2, . . . , ak with ai ∈ dom(Ai), θi ∈
{=, <, >,≤,≥, 6=} and interest score is a real number be-
tween 0 and 1.

The meaning is that in the set of context states spec-
ified by cod, all database tuples (instances) for which



the attributes A1, A2, . . . , Am have respectively values
a1, a2, . . . , am are assigned the indicated interest score.
Since our focus in this paper is on context descriptors, we
further simplify our model, so that in the following, we shall
use attributes clauses with a single attribute A of the form
A = a, for a ∈ dom(A). Further, we assume that for tu-
ples for which more than one preference applies, appropri-
ate combining preference functions exist [1, 14].

In our reference example, there are three context param-
eters location, temperature and accompanying people.
As non-context parameters, we use the attributes of the re-
lation Points of Interest. For example, consider that a
user wants to express the fact that, when she is at Plaka
and the weather is warm, she likes to visit Acropolis. This
may be expressed through the following contextual prefer-
ence: contextual preference1 = ((location = Plaka ∧
temperature = warm), (name = Acropolis), 0.8). Sim-
ilarly, she may also express the fact that when she is
with friends, she likes to visit breweries through prefer-
ence contextual preference2 = ((accompanying people
= friends), (type = brewery), 0.9). More involved
context descriptors may be used as well, for example,
contextual preference3 = ((location = Plaka ∧ tempera-
ture ∈ {warm, hot}), (name = Acropolis), 0.8), where the
context descriptor is cod = (location = Plaka ∧ tempera-
ture ∈ {warm, hot}).

A contextual preference may conflict with another one.
For example, assume that a user defines that she prefers to
visit Acropolis in a nice sunny day, giving a high score of
0.8 to this preference. If, later on, she gives the interest
score 0.3 to the same preference, this will cause a conflict.
Definition 6 (Conflicting preferences) A
contextual preferencei = (codi, (Ai = ai),
interest scorei) conflicts with a contextual preferencej

= (codj , (Aj = aj), interest scorej) if and only if:
1. Context(codi) ∩ Context(codj) 6= ∅, and
2. Ai = Aj and ai = aj , and
3. interest scorei 6= interest scorej .

Such conflicting preferences are detected when users en-
ter their preferences. Finally, we define profile P as:
Definition 7 (Profile) A profile P is a set of non-
conflicting contextual preferences.

3.3. The Profile Tree
Contextual preferences are stored in a hierarchical data

structure called profile tree. Let P be a profile and S be
the set of context states of all context descriptors that ap-
peared in P . The basic idea is to store in the profile tree
the context states in S such that there is exactly one path
in the tree for each context state s ∈ S. Specifically, the
profile tree for P is a directed acyclic graph with a single
root node and at most n+1 levels. Each one of the first n
levels corresponds to a context parameter and the last one

type=cafeteria
 0.9

warm        all

    all

 0.9
type=brewery

  friends            all

warm       hot

 Plaka

name=Acropolis
 0.8

name=Acropolis
 0.8

 PlakaKifisia

Figure 2. An instance of a profile tree.

to the leaf nodes. For simplicity, assume that context pa-
rameter Ci is mapped to level i. Each non-leaf node at level
k maintains cells of the form [key, pointer], where key ∈
edom(Ck) for some value of ck that appeared in a state s
∈ S. No two cells within the same node contain the same
key value. The pointer points to a node at level k+1 having
cells with key values in edom(Ck+1) which appeared in the
same state s with the key. Each leaf node is a set of cells
of the form [attribute = value, interest score], where
[attribute = value, interest score] is the one associated
with the path (state) leading to it.

For example, assume an instance of a profile P consist-
ing of the following preferences: contextual preference1

= ((location = Kifisia ∧ temperature = warm ∧ ac-
companying people = friends), (type = cafeteria),
0.9), contextual preference2 = ((accompanying people =
friends), (type = brewery), 0.9), and contextual prefe−
rence3 = ((location = Plaka ∧ temperature ∈ {warm,
hot}), (name = Acropolis), 0.8). Assume further that
accompanying people is assigned to the first level of the
tree, temperature to the second and location to the third
one. Fig. 2 depicts the profile tree for P .

The way that the context parameters are assigned to the
levels of the context tree affects its size. Let mi, 1 ≤ i ≤ n,
be the cardinality of the domain, then the maximum number
of cells is m1∗(1+m2∗(1+. . . (1+mn))). The above num-
ber is as small as possible, when m1 ≤ m2 ≤ . . . ≤ mn,
thus, it is better to place context parameters with domains
with higher cardinalities lower in the context tree.

4. Contextual Preference Queries
In this section, we define contextual queries, formulate

the problem of identifying the preferences that are most rel-
evant to a query and present an algorithm that locates them.

4.1. Contextual Queries

A contextual query is a query enhanced with information
regarding context. Implicitly, the context associated with a
contextual preference query is the current context, that is,
the context surrounding the user at the time of the submis-
sion of the query. The current context should correspond
to a single context state, where each of the values of the



context parameters takes a specific value from its most de-
tailed domain. However, in some cases, it may be possible
to specify the current context using only rough values, for
example, when the values of some context parameters are
provided by sensor devices with limited accuracy. In this
case, a context parameter may take a single value from a
higher level of the hierarchy or even more than one value.
Besides the implicit context, we also consider queries that
are explicitly augmented with an extended context descrip-
tor. For example, a user may want to pose an exploratory
query of the form: “When I travel to Athens with my family
this summer (implying good weather), what places should I
visit?”. Formally,

Definition 8 (Contextual query) A contextual query CQ
is a query Q enhanced with a context descriptor denoted
codQ.

Now, the problem is: given the codQ of a contextual
query CQ and a user profile P , identify the contextual pref-
erences that are the most relevant to the context states speci-
fied by codQ. Next, we first formalize the problem and then,
provide a procedure for locating such preferences.

4.2. Context State of a Query
Assume a contextual query CQ enhanced with a con-

text descriptor of the form codQ = (location = Athens ∧
weather = warm) and a simple profile P = { ((location =
Greece ∧ weather = warm), attributes clause,
interest score1), ((location = Europe ∧ weather =
warm), attributes clause, interest score2)}. Intu-
itively, we are seeking for a context descriptor in P that
is more general than the query descriptor. Both context de-
scriptors in P satisfy this requirement, however, the first
one is more “specific” and should be the one used. Next,
we formalize the notion of a set of states covering another
one.
Definition 9 (Covering context state) An extended con-
text state s1 = (c1

1, c
1
2, . . . , c

1
n) ∈ EW covers an extended

context state s2 = (c2
1, c

2
2, . . . , c

2
n) ∈ EW , iff ∀ k, 1 ≤ k ≤

n, c1
k = c2

k, or c1
k = anc

Lj

Li
(c2

k) for some levels Li ≺ Lj .

It can be shown (proof in [15]) that:
Theorem 1 The covers relationship between context states
is a partial order relationship.

Definition 10 (Covering set) A set Si of extended context
states, Si ⊆ EW covers a set Sj of extended context states,
Sj ⊆ EW , iff ∀ s ∈ Sj , ∃ s′ ∈ Si, such that s′ covers s.

Now, we define formally, which context descriptor
matches the state of a query.
Definition 11 (Matching context) Let P be a profile, cod
a context descriptor and CP the set of context descriptors
appearing in the contextual preferences of P . We say that a
context descriptor cod′ ∈ CP is a match for cod iff

(i) Context(cod′) covers Context(cod), and

(ii) ¬∃ cod′′ ∈ CP , cod′′ 6= cod′, such that Context(cod′)
covers Context(cod′′) and Context(cod′′) covers
Context(cod).

There are two issues, one is whether there is at least one
context preference that matches a given cod and the other
one is what happens if there are more than one match. Re-
garding the first issue, if there is no matching context, we
consider that there is no context associated with the query.
In this case, the query is executed as a normal (i.e., non
contextual) preference query. Note that the user can define
non contextual preference queries, by using empty context
descriptors which correspond to the (all, all, . . . , all) state
(see Def. 4).

As an example for the case of more than one match, con-
sider again the cod = (location = Athens ∧ weather =
warm) and the profile P = {((location = Greece
∧ weather = warm), attributes clause, interest
score1), ((location = Athens ∧ weather = good),
attributes clause, interest score2)}. Both context de-
scriptors in P satisfy the first condition of Def. 11 (i.e.,
it holds Context(location = Greece ∧ weather = warm)
covers Context(location = Athens ∧ weather = warm)
and (location = Athens ∧ weather = good) covers
Context(location = Athens ∧ weather = warm)), but
none of them covers the other. In this case, it is necessary to
define which one is the most closely related state, i.e., a bet-
ter match. There are many ways to handle such ties, includ-
ing letting the user decide. In the next section, we propose
two ways of defining similarity among context states.

4.3. State Similarity
To express similarity between two context states, we in-

troduce a distance function named hierarchy distance.
Using the hierarchy distance leads to choosing the prefer-
ence that refers to the most specific context state, that is the
state that is defined in the most detailed hierarchy level. To
define the hierarchy distance, we define first the level of a
state as follows.
Definition 12 (Levels of a state) Given a state s =
(c1, c2, . . . , cn), the hierarchy levels that correspond to this
state are levels(s) = [Lj1 , Lj2 , . . . , Ljn ], such that, ci ∈
domLji

(Ci), i = 1, . . . , n.
The distance between two levels is defined as:

Definition 13 (Level distance) Given two levels L1 and
L2, their distance distH(L1, L2) is defined as follows:

1. if a path exists in a hierarchy between L1 and L2, then
distH(L1, L2) is the minimum number of edges that
connect L1 and L2;

2. otherwise distH(L1, L2) = ∞.
Having defined the distance between two levels, we can

now define the level-based distance between two states.
Definition 14 (Hierarchy state distance) Given two
states s1 = (c1

1, c
1
2, . . . , c

1
n) and s2 = (c2

1, c
2
2, . . . , c

2
n), the

hierarchy distance distH(s1, s2) is defined as:
distH(s1, s2) =

∑n
i=1 |distH(L1

i , L
2
i )|.



The hierarchy state distance produces an ordering of
states that is compatible with the covers partial order in the
sense that between two covering states s2 and s3 of s1, the
matching one is the one with the smallest hierarchy distance
(proof in [15]):
Property 1 Assume a state s1 = (c1

1, c
1
2, . . . , c

1
n). For

any two different states s2 = (c2
1, c

2
2, . . . , c

2
n) and s3 =

(c3
1, c

3
2, . . . , c

3
n), s2 6= s3, that both cover s1, that is s2 cov-

ers s1 and s3 covers s1, if s3 covers s2, then distH(s3, s1)
> distH(s2, s1).

A second way to define the distance between two states is
to use the Jaccard distance function. In this case, we com-
pute all the descendants of each value of a state. For two
values of two states corresponding to the same context pa-
rameter, we measure the fraction of the intersection of their
corresponding lowest level value sets over the union of this
two sets. In this case, we consider as a better match, the
“smallest” state in terms of cardinality. Next, we define the
Jaccard distance of two values v1 and v2 and use it to define
the Jaccard state distance.
Definition 15 (Jaccard distance) The Jaccard distance of
two values v1 and v2, belonging to levels Li and Lj of the
same hierarchy H that has level L1 as the most detailed
level, is defined as:

distJ(v1, v2) = 1− desc
Li
L1

(v1)
⋂

desc
Lj
L1

(v2)

desc
Li
L1

(v1)
⋃

desc
Lj
L1

(v2)
.

The Jaccard distance is consistent with the ordering pro-
duced by the level distance (proof in [15]):

Property 2 Assume three values, vi, vj , vk, defined at dif-
ferent levels Li ≺ Lj ≺ Lk of the same hierarchy having
L1 as the most detailed level, such that vk = ancLk

Lj
(vj) =

ancLk

Li
(vi). Then, distJ(vk, vi) ≥ distJ (vj , vi).

Now, we define the Jaccard distance between states.

Definition 16 (Jaccard state distance) Given two states
s1 = (c1

1, c
1
2, . . . , c

1
n) and s2 = (c2

1, c
2
2, . . . , c

2
n), the Jac-

card state distance distJ(s1, s2) is defined as
distJ(s1, s2) =

∑n
i=1 |distJ(c1

i , c
2
i )|.

Due to Properties 1 and 2, it holds that:
Property 3 Assume a state s1 = (c1

1, c
1
2, . . . , c

1
n). For

any two different states s2 = (c2
1, c

2
2, . . . , c

2
n) and s3 =

(c3
1, c

3
2, . . . , c

3
n), s2 6= s3, that both cover s1, that is s2 cov-

ers s1 and s3 covers s1, if s3 covers s2, then distJ (s3, s1)
> distJ(s2, s1).

4.4. A Context Resolution Algorithm
Given a database and a certain context descriptor (that

characterizes either the current or a hypothetical context),
the problem is to locate the tuples of the database that cor-
respond to the given context descriptor and score them ap-
propriately. The problem is further divided in two parts:

1. (Context Resolution) Locate in the profile tree the
paths (context states) that correspond to the given con-
text descriptor (in an exact or approximate fashion).

2. On the basis of the leaves of these paths (i.e., expres-
sions of the form Ai = value, score), determine the
corresponding tuples in the underlying database and
annotate them with the appropriate score.

In the following, we detail each of these steps.
Context Resolution. Given a contextual query CQ with
an extended context descriptor, for each context state s =
(c1, c2, . . . , cn) in the context of the descriptor, we search
the contextual preferences in the profile to locate a state that
matches it. To this end, we use the profile tree. If there is a
state that exactly matches it, that is a state (c1, c2, . . . , cn),
then the associated preference is returned to the user. Note,
that this state is easily located, by a single depth-first-search
traversal of the profile tree. Starting from the root of the tree
(level 1), at each level i, we follow the pointer associated
with key = ci. If such a state does not exist, we search for
a state s′ that matches s. If more than one such state exists,
we select the one with the smallest distance, using either the
hierarchy or the Jaccard distance.

Algorithm 1 presents the Search CS algorithm that
implements context resolution. Given a Profile tree
whose root node is RP , the algorithm returns all paths
whose context state is either the same or covers the
searching context state (c1, c2, . . . , cn). Each candi-
date path counts the distance from the searching path.
To search an extended context state, at first we invoke
Search CS(RP , {c1, c2, . . . , cn}, 0). At the end of the ex-
ecution of this call, we can sort all results on the basis of
their distances and select the one with the minimum dis-
tance, i.e., the one that differs the least from the searched
path based on one of the distances. Clearly the last step
can be easily replaced by a simple runtime check that keeps
the current closest leaf if its distance is smaller than the one
currently tested. Still, we prefer to keep this variant of the
algorithm to cover the general case where more than one
candidate can be selected by the system or the user.

It can be easily proved that the algorithm is correct, i.e.,
if applied for all extended context states specified by the ex-
tended context descriptor of the query, it leads to the desired
set of states according to Def. 11 (proof in [15]).

For estimating the complexity of context resolution, we
consider the number of cells accessed. In the case of an
exact match, locating the related preferences requires just
a simple root-to-leaf traversal of the profile tree. At level
i, we search for the cell having as key the ith value in the
query and descend to the next level, following the pointer
of the corresponding cell. For a profile tree with n context
parameters (C1, C2, . . . , Cn), in the worst case, we need
to access

∑n
i=1 |edom(Ci)| cells. In the case of a non-

exact match, at each level i, for the ith query value, we



also need to consider all its ancestors in the hierarchy. If
each parameter Ci has hi hierarchy levels, then in the worst
case, we need to access |edom(C1)|+ |edom(C2)| × h1 +
|edom(C3)|×h2×h1+. . .+|edom(Cn)|×hn−1×. . .×h1

cells. Note, that in the case of a sequential scan, we need
to access all cells in the profile, even for an exact match,
since there may be more than one context state exactly
matching the query (referring to a different non context-
aware attribute). Thus, a sequential scan needs to visit
|edom(C1)| × |edom(C2)| × . . .× |edom(Cn)| cells.
Algorithm 1 Search CS Algorithm

Input: A node RP of the Profile tree, the searching con-
text state (c1, c2, . . . , cn), the current distance of each
candidate path.
Output: A ResultSet of tuples of the form (Attribute
name = attribute value, interest score, distance) charac-
terizing a candidate path whose context state is either the
same or best covers the searching context state.

Begin
if RP is a non leaf node then
∀ x ∈ RP such that (x = ci) or (x = anc

Lj

Li
(ci))

Search CS(x → child, {ci+1, . . . , cn}, dist(x, ci)+
distance)

else if RP is a leaf of the form (Ai = value, score) then
ResultSet = ResultSet

⋃
(Ai = value, score,

distance)
end if
End

Determination of the database tuples that correspond to
the identified states. Assume a relation R(A1, A2, ...An)
and a profile tree P with leaves containing expressions of
the form (Ai = value, score). The problem now is that
given a context descriptor cod, we need to rank the tuples
of relation R with respect to cod. A simple algorithm is
employed for this task.

The algorithm Search CS is invoked for all extended
context states specified by the query descriptor. Each invo-
cation returns an expression that characterizes one or more
tuples of the underlying relation. Then, we perform all the
produced expressions as selections of the relational alge-
bra over the underlying relation. It is straightforward (and
practically orthogonal to our problem) to add (a) ranking
of the expressions by their score (and consequently, rank-
ing of the results of the queries over the relation) and (b)
removal of duplicate tuples produced by these selection
queries by keeping the max (equivalently, avg, min, or
some weighted average) for the score of tuples appearing
more than once in the ResultSet.
Extension to arbitrary queries. Algorithm 2 can be strai-
ghtforwardly extended to capture context-sensitive database
queries. Assume a context-independent expression E in re-
lational algebra, and its context-dependent extension EC

Algorithm 2 Rank CS Algorithm
Input: A profile tree P , a relation R(A1, A2, ...An) and
a context descriptor cod
Output: A TupleResultSet of tuples of R ranked by
the appropriate score.
Variables: An (initially empty) ExprResultSet of ex-
pressions of Search CS results.

Begin
∀ state s ∈ context(cod) {

Pick minimum distance tuple t from the result of
Search CS(P, s, 0)

ExprResultSet = ExprResultSet
⋃{t}}

∀ expression e :(Ai = value, score) ∈ ExprResultSet
{

ResultSet = ResultSet
⋃

σAi=value(R),
with the latter annotated with score.}

End

(that incorporates the context C of its run-time). Assume
that Algorithm 1 returns a set of tuples t1, . . . , tn with ex-
pressions {φ1 : Ai1 = value1, . . . , φn : Ain = valuen, }.
The evaluation of an expression σφi(E) returns the database
tuples that correspond to preference ti. Finally, the answer
to the query EC is

⋃
i σφi(E). Again, the ranking of the

results and the removal of duplicates is straightforward.

5. Evaluation

We evaluate our approach along two perspectives: us-
ability and performance.

5.1. Usability Evaluation

We use a real database of points-of-interest of the two
largest cities in Greece, namely Athens and Thessaloniki.
To ease the specification of contextual preferences, we cre-
ated a number of default profiles based on the (a) age (be-
low 30, between 30-50, above 50), (b) sex (male or female)
and (c) taste (broadly categorized as mainstream or out-of-
the-beaten track). Based on the above three characteristics,
users were assigned one of the 12 available profiles. Each
of these profiles has 650 user preferences. Each preference
consists of three context values (accompanying people,
time, location), an attribute name, an attribute value
and an interest score. The active domains of the context
parameters have 4, 17, 100 values, respectively.

Users were allowed to modify the default profiles as-
signed to them by adding, deleting or updating preferences.
We evaluated the system along two lines: easy of profile
specification and quality of results. We run our prototype
implementation for 10 users; the results are summarized in
Table 1. For all users, it was the first time that they used the
system.



Table 1. User Study Results
User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

Num of updates 22 31 12 28 24 32 38 13 18 25
Update time (mins) 30 45 20 30 30 40 45 15 20 25
Exact match 100% 90% 90% 95% 90% 100% 100% 85% 100% 100%
1 cover state 100% 95% 90% 85% 90% 100% 100% 85% 90% 100%
More cover states

Hierarchy 90% 85% 80% 80% 90% 90% 90% 70% 85% 85%
Jaccard 95% 90% 85% 100% 95% 90% 100% 75% 85% 95%

With regards to profile specification, we count the num-
ber of modifications (insertions, deletions, updates) of pref-
erences of the default profile that was originally assigned
to the users. In addition, we report how long (in minutes),
it takes users to specify/modify their profile. This also in-
cludes the time it took users to understand how profile spec-
ification works. The results are reported in the first two lines
of Table 1. The general impression was that predefined pro-
files save time in specifying user preferences. Furthermore,
having default profiles makes it easier for someone to un-
derstand the main idea behind the system, since the prefer-
ences in the profile act as examples. With regards to time,
as expected, there is deviation among the time users spent
on specifying profiles: some users were more meticulous
than others, spending more time in adjusting the profiles as-
signed to them.

With regards to the quality of the results, users were
asked to rank the results of each contextual query manu-
ally. Then, we compare the ranking specified by the users
with what was recommended by the system, for the follow-
ing three cases: (i) when there is an exact match (ii) when
there is exactly one cover, and (iii) when there is more than
one cover, and the hierarchy or the Jaccard distance func-
tions are used. For each case, we consider the best 20 re-
sults, i.e., the 20 points-of-interest that were ranked higher.
When there are ties in the ranking, we consider all results
with the same score. We report the percentage of the re-
sults returned that belong to the results given by the user.
As shown in Table 1, this percentage is generally high. Sur-
prisingly, sometimes users do not conform even to their own
preferences as shown by the results for exact match queries.
In this case, although the context state of the preferences
used was an exact match of the context state in the query,
still some users ranked their results differently than the sys-
tem. In such cases, traceability helps a lot, since users can
track back which preferences were used to attain the results
and either modify the preferences or reconsider their rank-
ing. Note that users that customized their profile by mak-
ing more modifications got more satisfactory results than
those that spent less time during profile specification. Fi-
nally, it seems that the Jaccard distance produces more ac-

Figure 3. Size using real profiles.

curate results than the hierarchy distance mainly because
the hierarchy distance produces rankings with many ties.

5.2. Performance Evaluation
To evaluate performance, we run a set of experiments

using both real and synthetic profiles. The real profile is the
one used for the usability study. We consider: (a) the space
required to store preferences when using a profile tree as
opposed to storing them sequentially and (b) the complexity
of context resolution.
Size of the Profile Tree. In this set of experiments, we
evaluate the size of the context tree for different mappings
of the context parameters to the levels of the tree.
Using a Real Profile. We count the total number of cells and
the total number of bytes of the context tree that is created
for each ordering of the context parameters. Let A stand
for accompanying people, T for time and L for location.
We call order 1 the ordering in which A is assigned to the
first level of the tree, T to the second and L to the third one,
that is the ordering (A, T, L). Order 2 is the ordering (A,
L, T), order 3 is (T, A, L), order 4 is (T, L, A), order 5 is
(L, A, T) and order 6 is (L, T, A). As shown in Fig. 3, the
orderings that result in trees with smaller sizes are the ones
that map the context parameter with large domains lower in
the tree. In addition, all trees occupy less space than storing
preferences sequentially.
Using Synthetic Profiles. We study the size of the tree as a
function of the size of the profile (i.e, number of user pref-
erences). Synthetic profiles have three context parameters,



and thus, the profile tree has three levels (plus one for the
leaves). There are three different types regarding the cardi-
nality of the domains of the context parameters: a domain
with 50 values, a domain with 100 values and a domain with
1000 values and profiles with various numbers (500, 1000,
5000 and 10000) of user preferences. Context values are
drawn from their corresponding domain, either using a uni-
form data distribution, or a zipf data distribution with a =
1.5. The size of the tree depends on the ordering of context
parameters. We call order 1 the ordering in which the pa-
rameter whose domain has 50 values is assigned to the first
level, the parameter with 100 values to the second one, and
the parameter with 1000 values to the last one. Order 2
is the ordering (50, 1000, 100), order 3 is (100, 50, 1000),
order 4 is (100, 1000, 50), order 5 is (1000, 50, 100) and
order 6 is (1000, 100, 50). As expected, storage is mini-
mized when the parameters with large domains are placed
lower in the tree (Fig. 4 (left, center)). For the zipf distribu-
tion (Fig. 4, center), the total number of cells is smaller than
for the uniform distribution (Fig. 4, left), because “hot” val-
ues appear more frequently in preferences, i.e., more con-
text values are the same. We also consider the case in which
one of the parameter is highly skewed. In this case, it may
be more space efficient to map it higher in the tree, even
if its domain is large (Fig. 4, right). In this experiment,
the profile has 5000 preferences, and the context parame-
ters have domains with 50, 100 and 200 values. The values
of the parameters with domains with 50 and 100 values are
selected using a uniform data distribution and the values
of the parameter with 200 values using a zipf data distribu-
tion with various values for the parameter a, varying from
0 (corresponding to the uniform distribution) to 3.5 (cor-
responding to a very high skew). Order 1 is the order-
ing (50, 100, 200), order 2 is (50, 200, 100) and order 3 is
(200, 50, 100).

Context Resolution. To study the usefulness of the pro-
file tree in answering preference queries, and in particular
for finding the appropriate preferences, we performed a set
of experiments in which we count the number of cell ac-
cesses during context resolution. We run this experiment
using both the real (Fig. 5, left) and synthetic profiles (Fig.
5, center and right). We use synthetic profiles with 500,
1000, 5000, and 10000 preferences. In all cases, the pro-
file tree is the one in which the larger domains are mapped
in lower levels. In synthetic profiles, the context values are
selected from the corresponding domain, using both a uni-
form and a zipf data distribution with a = 1.5. We report
results where the context parameters have hierarchies with
(i) 2, 3 and 3 levels and (ii) 4, 6 and 6 levels, and for 50 ran-
domly generated queries, where the context parameters take
values from different hierarchy levels. With the profile tree,
exact match queries are resolved by a simple root-to-leaf
traversal, while non exact matches need to consider multi-

ple candidate paths. In the case of the sequential scan, for
both the exact and the non exact matches the whole profile
needs to be scanned.

6. Related Work
There is little work on context-aware preference queries.

In our previous research [14, 16], we have addressed the
same problem of expressing contextual preferences. How-
ever, the model used there for defining preferences includes
only a single context parameter. Interest scores of prefer-
ences involving more than one context parameter are com-
puted by a simple weighted sum of the preferences of single
context parameters. Here, we allow contextual preferences
that involve more than one context parameter and also as-
sociate context with queries. The problem of context state
resolution and its development is also new here. Contextual
preferences, called situated preferences, are also discussed
in [9]. Situations (i.e., context states) are uniquely linked
through an N:M relationship with preferences expressed us-
ing the quantitative approach. Our model is compatible
with this approach and further supports multidimensional
attributes and context resolution. Next, we discuss related
work on context queries and on preference queries.
Context and Queries. Although, there is much research
on location-aware query processing in the area of spatio-
temporal databases, integrating other forms of context in
query processing is less explored. In the context-aware
querying processing framework of [7], there is no notion
of preferences, instead context attributes are treated as nor-
mal attributes of relations. Storing context data using data
cubes, called context cubes, is proposed in [8] for develop-
ing context-aware applications that use archive sensor data.
The Context Relational Model ([12]) is an extended rela-
tional model that allows attributes to exist under some con-
texts or to have different values under different contexts.
Context as a set of dimensions (e.g., context parameters) is
also considered in [13] where the problem of representing
context-dependent semistructured data is studied. A similar
context model is deployed in [6] for enhancing web service
discovery with contextual parameters. Recently, context has
been used in information filtering to define context-aware
filters which are filters that have attributes whose values
change frequently [5]. Finally, in [11], the current contex-
tual state of a system is represented as a multidimensional
subspace within or near other situation subspaces.
Preference Queries. The research literature on prefer-
ences is extensive. In the context of database queries, there
are two different approaches for expressing preferences: a
quantitative and a qualitative one. With the quantitative ap-
proach, preferences are expressed indirectly by using scor-
ing functions that associate a numeric score with every tu-
ple of the query answer. In our work, we have adapted the
general quantitative framework of [1]. In the quantitative
framework of [10], user preferences are stored as degrees
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Figure 4. Uniform (left), zipf with a=1.5 (center) and combined (right) data distribution.
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Figure 5. Number of cells accessed to find related preferences to queries, in real profiles (left) and in
synthetic profiles, for an exact (center) and non exact match (right).

of interest in atomic query elements (such as individual se-
lection or join conditions) instead of interests in specific
attribute values. Our approach can be generalized for this
framework as well, by making the degree of interest for
each atomic query element depend on context. In the qual-
itative approach (i.e., [3]), the preferences between tuples
in the answer to a query are specified directly, typically us-
ing binary preference relations. This framework can also be
readily extended to include context.

7. Summary
In this paper, we focus on handling contextual prefer-

ences. We define context descriptors for specifying condi-
tions on context parameters that allow the specification of
context states at various levels of detail. Preferences are
augmented with context descriptors that specify their scope
of applicability. Similarly, queries are enhanced with con-
text descriptors. We formulate the context resolution prob-
lem of identifying the preferences that are most relevant to
the context of a query. To address this problem, we develop
the notion of cover between states as well as appropriate dis-
tance functions. We also present an algorithm that locates
relevant preferences. Finally, we evaluate both the usability
of our model and the performance of context resolution.
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