
Supporting Streaming Updates in an Active Data Warehouse

Neoklis Polyzotis
Univ. of California - Santa Cruz

alkis@cs.ucsc.edu

Spiros Skiadopoulos
Univ. of Peloponnese

spiros@uop.gr

Panos Vassiliadis
Univ. of Ioannina
pvassil@cs.uoi.gr

Alkis Simitsis
Nat’l Tech. Univ. of Athens

asimi@dblab.ece.ntua.gr

Nils-Erik Frantzell
Univ. of California - Santa Cruz

nfrantze@ucsc.edu

Abstract

Active Data Warehousing has emerged as an alternative
to conventional warehousing practices in order to meet the
high demand of applications for up-to-date information. In
a nutshell, an active warehouse is refreshed on-line and
thus achieves a higher consistency between the stored in-
formation and the latest data updates. The need for on-line
warehouse refreshment introduces several challenges in the
implementation of data warehouse transformations, with re-
spect to their execution time and their overhead to the ware-
house processes. In this paper, we focus on a frequently en-
countered operation in this context, namely, the join of a fast
stream S of source updates with a disk-based relation R,
under the constraint of limited memory. This operation lies
at the core of several common transformations, such as, sur-
rogate key assignment, duplicate detection or identification
of newly inserted tuples. We propose a specialized join al-
gorithm, termed mesh join (MESHJOIN), that compensates
for the difference in the access cost of the two join inputs
by (a) relying entirely on fast sequential scans of R, and (b)
sharing the I/O cost of accessing R across multiple tuples of
S. We detail the MESHJOIN algorithm and develop a sys-
tematic cost model that enables the tuning of MESHJOIN

for two objectives: maximizing throughput under a specific
memory budget or minimizing memory consumption for a
specific throughput. We present an experimental study that
validates the performance of MESHJOIN on synthetic and
real-life data. Our results verify the scalability of MESH-
JOIN to fast streams and large relations, and demonstrate
its numerous advantages over existing join algorithms.

1. Introduction

Data warehouses are typically refreshed in a batch
(or, off-line) fashion: the updates from data sources are
buffered during working hours, and then loaded through the

Extraction-Transformation-Loading (ETL) process when
the warehouse is quiescent (e.g., overnight). This clean
separation between querying and updating is a fundamental
assumption of conventional data warehousing applications,
and clearly simplifies several aspects of the implementation.
The downside, of course, is that the warehouse is not contin-
uously up-to-date with respect to the latest updates, which
in turn implies that queries may return answers that are es-
sentially stale.

To address this issue, recent works have introduced the
novel concept of active (or real-time) data warehouses
[3, 13, 17, 22]. In this scenario, all updates to the produc-
tion systems are propagated immediately to the warehouse
and incorporated in an on-line fashion. This paradigm shift
raises several challenges in implementing the ETL process,
since it implies that transformations need to be performed
continuously as update tuples are streamed in the ware-
house. We illustrate this point with the common trans-
formation of surrogate key generation, where the source-
dependent key of an update tuple is replaced with a uniform
warehouse key. This operation is typically implemented by
joining the source updates with a look-up table that stores
the correspondence between the two sets of keys. Figure 1
shows an example, where the keys of two sources (column
id in relations R1 and R2) are replaced with a warehouse-
global key (column skey in the final relation). In a con-
ventional warehouse, the tuples of R1 and R2 would be
buffered and the join would be performed with a block-
ing algorithm in order to reduce the total execution time
for the ETL process. An active warehouse, on the other
hand, needs to perform this join as the tuples of R1 and R2

are propagated from the operational sources. A major chal-
lenge, of course, is that the inputs of the join have different
access costs and properties: the tuples of R1 and R2 ar-
rive at a fast rate and must be processed in a timely fashion,
while look-up tuples are retrieved from the disk and are thus
more costly to process.



Sources DWETL

id descr

10
20

coke
pepsi

R1

id descr

10
20

pepsi
fanta

R2

id source

10
20
10
20

R1
R1
R2
R2

Lookup

skey

100
110
110
120

id descr

100
110
120

coke
pepsi
fanta

RDW

Figure 1. Surrogate key generation

The previous example is characteristic of several com-
mon transformations that take place in an active ETL pro-
cess, such as duplicate detection or identification of newly
inserted tuples. Essentially, we can identify S �C R as a
core operation, where S is the relation of source updates,
R is a large, disk-resident, warehouse relation, and the join
condition C depends on the semantics of the transformation.
An active warehouse requires the evaluation of this expres-
sion on-line, i.e., as the tuples of S are streamed from the
operational sources, in order to ensure that the updates are
propagated in a timely fashion. The major challenge, of
course, is handling the fast arrival rate of S tuples relative to
the slow I/O access of R. Moreover, the join algorithm must
operate under limited memory since the enclosing transfor-
mation is chained to other transformations that are also exe-
cuted concurrently (and in the same pipelined fashion). Our
thesis is that the combination of these two elements, namely,
the mismatch in input access speeds and the limited mem-
ory, forms a fundamentally different context compared to
conventional warehousing architectures. As a result, join
algorithms that are the norm in a conventional ETL pro-
cess, such as hash join or sort-merge join, cannot provide
effective support for active data warehousing.

Motivated by these observations, we introduce a special-
ized join algorithm, termed MESHJOIN, that joins a fast up-
date stream S with a large disk resident relation R under the
assumption of limited memory. As we stressed earlier, this
is a core problem for active ETL transformations and its so-
lution is thus an important step toward realizing the vision
of active data warehouses. MESHJOIN applies to a broad
range of practical configurations: it makes no assumption
of any order in either the stream or the relation; no indexes
are necessarily present; the algorithm uses limited memory
to allow multiple operations to operate simultaneously; the
join condition is arbitrary (equality, similarity, range, etc.);
the join relationship is general (i.e., many-to-many, one-to-
many, or many-to-one); and the result is exact. More con-
cretely, the technical contributions of this paper can be sum-
marized as follows:

MESHJOIN algorithm. We introduce the MESHJOIN algo-
rithm for joining a fast stream S of source updates with a
large warehouse relation R. Our proposed algorithm relies
on two basic techniques in order to increase the efficiency of

the necessary disk accesses: (a) it accesses R solely through
fast sequential scans, and (b) it amortizes the cost of I/O op-
erations over a large number of stream tuples. As we show
in this paper, this enables MESHJOIN to scale to very high
stream rates while maintaining a controllable memory over-
head.

MESHJOIN performance model. We develop an analytic
model that correlates the performance of MESHJOIN to two
key factors, namely, the arrival rate of update tuples and
the memory that is available to the operator. In turn, this
provides the foundation for tuning the operating parameters
of MESHJOIN for two commonly encountered objectives:
maximizing processing speed for a fixed amount of mem-
ory, and minimizing memory consumption for a fixed speed
of processing.

Experimental study of the performance of MESH-
JOIN. We verify the effectiveness of our techniques with an
extensive experimental study on synthetic and real-life data
sets of varying characteristics. Our results demonstrate that
MESHJOIN can accommodate update rates of up to 20,000
tuples/second under modest allocations of memory, outper-
forming by a factor of 10 a conventional join algorithm.
Moreover, our study validates the accuracy of the analyt-
ical model in predicting the performance of the algorithm
relative to its operating parameters.

The remainder of the paper is structured as follows. In
Section 2, we define the problem more precisely and dis-
cuss the requirements for an effective solution. Section 3
provides a detailed definition of the proposed algorithm, in-
cluding its analytical cost model and its tuning for different
objectives. We present our experimental study in Section 4
and cover related work in Section 5. We conclude the paper
in Section 6.

2. Preliminaries and Problem Definition

We consider a data warehouse and in particular the trans-
formations that occur during the ETL process. Several of
these transformations (e.g., surrogate key assignment, du-
plicate detection, or identification of newly inserted tuples)
can be mapped to the operation S �C R, where S is the
relation of source updates, R is a large relation stored in
the data staging area, and C depends on the transformation.
To simplify our presentation, we henceforth assume that C
is an equality condition over specific attributes of S and R
and simply write S � R to denote the join. As we discuss
later, our techniques are readily extensible to arbitrary join
conditions.

Following common practice, we assume that R remains
fixed during the transformation, or alternatively that it is
updated only when the transformation has completed. We
make no assumptions on the physical characteristics of R,



e.g., the existence of indices or its clustering properties, ex-
cept that it is too large to fit in main memory. Since our
focus is active warehousing, we assume that the warehouse
receives S from the operational data sources in an on-line
fashion. Thus, we henceforth model S as a streaming input,
and use λ to denote the (potentially variable) arrival rate of
update tuples. Given our goal of real-time updates, we wish
to compute the result of S � R in a streaming fashion as
well, i.e., without buffering S first. (Buffering would corre-
spond to the conventional batch approach.)

We assume a restricted amount of available memory
Mmax that can be used for the processing logic of the op-
erator. Combined with the (potentially) high arrival rate of
S, it becomes obvious that the operator can perform limited
buffering of stream tuples in main memory, and thus has
stringent time constraints for examining each stream tuple
and computing its join results. (A similar observation can be
made for buffering S tuples on the disk, given the relatively
high cost of disk I/O.) We also assume that the available
memory is a small fraction of the relation size, and hence
the operator has limited resources for buffering data from R
as well.

We consider two metrics of interest for a specific join al-
gorithm: the service rate µ, and the consumed memory M .
The service rate µ is simply defined as the highest stream
arrival rate that the algorithm can handle and is equivalent
to the throughput in terms of processed tuples per second.
The memory M , on the other hand, relates the performance
of the operator to the resources that it requires. (We assume
that M ≤ Mmax.) Typically, we are interested in optimiz-
ing one of the two metrics given a fixed value for the other.
Hence, we may wish to minimize the required memory for
achieving a specific service rate, or to maximize the service
rate for a specific memory allocation.

Summarizing, the problem that we tackle in this paper
involves (a) the introduction of an algorithm that evalu-
ates the join of a fixed disk-based warehouse relation with
a stream of source updates without other assumptions for
the stream or the relation, (b) the characterization of the al-
gorithm’s performance in terms of the service rate and the
required memory resources.

A natural question is whether we can adapt existing join
algorithms to this setting. Consider, for instance, the In-
dexed Nested Loops (INL) algorithm, where S is accessed
one tuple a time (outer input), and R is accessed with a clus-
tered index on the join attribute (inner input). This set up
satisfies our requirements, as S does not need to be buffered
and the output of the join is generated in a pipelined fashion.
Still, the solution is not particularly attractive since: (a) it
may require the (potentially expensive) maintenance of an
additional index on R, and most importantly (b) probing the
index with update tuples incurs expensive random I/Os. The

s1

Stream S

Join module

Relation R

p1

p1
s1

t = 0
p2

Stream S

Join module

Relation R

p1

p2
s2

t = 1
p2

already
joined
with p1

Stream S

Join module

Relation R

p1

p1
s3

t = 2
p2

s2s1

already
joined
with p2

scan
resumes

Figure 2. Operation of MESHJOIN

latter affects the ability of the algorithm to keep up with the
fast arrival rate of source updates, and thus limits severely
the efficacy of INL as a solution for active data warehous-
ing. We note that similar observations can be made for
blocking join algorithms, such as sort-merge and hash join.
While it is possible to adapt them to this setting, it would re-
quire a considerable amount of disk buffering for S tuples,
which in turn would slow down the join operation. It seems
necessary therefore to explore a new join algorithm that can
specifically take into account the unique characteristics of
the S � R operation.

3. Mesh Join

In this section, we introduce the MESHJOIN algorithm
for joining a stream S of updates with a large disk-resident
relation R. We describe the mechanics of the algorithm,
develop a cost model for its operation, and finally discuss
how the algorithm can be tuned for two metrics of interest,
namely, the arrival rate of updates and the required memory.

3.1. Algorithm Definition

Before describing the MESHJOIN algorithm in detail, we
illustrate its key idea using a simplified example. Assume
that R contains 2 pages (p1 and p2) and that the join algo-
rithm has enough memory to store a window of the 2 most
recent tuples of the stream. For this example, we will as-
sume that the join processing can keep up with the arrival
of new tuples. The operation of the algorithm at different
time instants is shown in Figure 2.

– At time t = 0, the algorithm reads in the first stream tuple
s1 and the first page p1 and joins them in memory.

– At time t = 1, the algorithm brings in memory the second
stream tuple s2 and the second page p2. Note that, at this
point, page p2 is joined with two stream tuples; moreover,
stream tuple s1 has been joined with all the relation and can
be discarded from memory.

– At time t = 2, the algorithm accesses again both inputs in
tandem and updates the in-memory tuples of R and S. More
precisely, it resumes the scan of the relation and brings in
page p1, and simultaneously replaces tuple s1 with the next



Queue Q
Hash H

Relation
R

Stream
S

Output
Streamb

pages
of R

w
tupples

of S

hash
function

hash
function

w
pointers

...
w

pointers

Buffer

Buffer

Join

Figure 3. Data structures and architecture of
MESHJOIN

stream tuple s3. Page p1 is thus joined with s2 and s3, and
tuple s2 is discarded as it has been joined with the whole
relation.

The previous example demonstrates the crux behind our
proposed MESHJOIN algorithm: the two inputs are ac-
cessed continuously and meshed together in order to gen-
erate the results of the join. In more detail, MESHJOIN per-
forms a cyclic scan of relation R and joins its tuples with
a sliding window over S. The main idea is that a stream
tuple enters the window when it arrives and is expired from
the window after it has been probed with every tuple in R
(and hence all of its results have been computed). Figure 3
shows a schematic diagram of this technique and depicts
the main data structures used in the algorithm. As shown,
MESHJOIN performs the continuous scan of R with an input
buffer of b pages. To simplify our presentation, we assume
that the number of pages in R is equal to NR = k · b for
some integer k, and hence the scan wraps to the beginning
of R after k read operations. Stream S, on the other hand, is
accessed in batches of w tuples that are inserted in the con-
tents of the sliding window. (Each insert, of course, causes
the displacement of the “oldest” w tuples in the window.) To
efficiently find the matching stream tuples for each R-tuple,
the algorithm synchronously maintains a hash table H for
the in-memory S-tuples based on their join-key. Finally,
queue Q contains pointers to the tuples in H and essentially
records the arrival order of the batches in the current win-
dow. This information is used in order to remove the oldest
w tuples from H when they are expired from the window.

Figure 4 shows the pseudo-code of the MESHJOIN al-
gorithm. On each iteration, the algorithm reads w newly
arrived stream tuples and b disk pages of R, joins the R-
tuples with the contents of the sliding window, and appends
any results to the output buffer. The main idea is that the
expensive read of the b disk pages is amortized over all the
wNR/b stream tuples in the current window, thus balancing
the slow access of the relation against the fast arrival rate of
the stream.

The following theorem formalizes the correctness of the
algorithm; its proof appears in the full version of the paper
[18].

Algorithm MESHJOIN

Input: A relation R and a stream S.
Output: Stream R �� S.
Parameters: w tuples of S and b pages of R.
Method:

1. While (true)
2. Read b pages from R and w tuples from S
3. If queue Q is full Then
4. Dequeue T from Q where T are w pointers
5. Remove the tuples of hash H that correspond to T
6. EndIf
7. Add the w tuples of S in H
8. Enqueue in Q, w pointers to the above tuples in H
9. For each tuple r in the b pages of R

10. Ouput r �� H
11. EndWhile

Figure 4. Algorithm MESHJOIN

Theorem 3.1 Algorithm MESHJOIN correctly computes
the exact join between a stream and a relation provided that
λ ≤ µ.

Hence, a basic assumption is that the join operator is fast
enough to keep up with the arrival rate of update tuples.
We examine this point in the subsequent section, where we
develop an analytical model for the performance of MESH-
JOIN and use it to tune the service rate µ based on the arrival
rate λ.

3.2. Cost Model and Tuning

In this section, we develop a cost model for MESHJOIN

and use it to tune the algorithm for different performance
objectives.

Cost Model. Our cost model provides the necessary ana-
lytical tools to interrelate the following key parameters of
the problem: (a) the stream rate λ, (b) the service rate µ of
the join, and (c) the memory M used by the operator. Our
goal will be to link these parameters to the operating param-
eters of MESHJOIN, namely, the number of stream tuples w
that update the sliding window, and the number of pages b
that can be stored in the relation buffer. For ease of refer-
ence, the notation used in our discussion is summarized in
Table 1.

The total memory M required by MESHJOIN can be
computed by summing up the memory used by the buffers,
the hash table H , and the queue Q. We can easily verify
that: (a) the buffer of R uses b ·vP bytes, (b) the buffer of S
uses w · vS bytes, (c) the queue Q uses w · NR

b · sizeof(ptr)
bytes (where sizeof(ptr) is the size of a pointer) and (d) the
hash table H uses w ·f · NR

b ·vS bytes (where f is the fudge
factor of the hash table implementation). Thus, we have:

M = b·vP +w·vS+w·NR

b
·sizeof(ptr)+w·f ·NR

b
·vS ≤ Mmax

(1)



Parameter Symbol

Size of tuples of S (in bytes) vS

Stream rate λ
Number of pages of R NR

The selectivity or relation R σ
Size of tuples of R (in bytes) vR

Size of a page (in bytes) vP

Cost of reading b pages of R cI/O(b)

Cost of removing a tuple from H cE

Cost of reading a tuple from the stream buffer cS

Cost of adding a tuple in H and Q cA

Cost of probing a hash table of size w NR
b

cH

Cost of creating a result tuple cO

Memory used by MESHJOIN M
Total memory budget Mmax

Cost of a While loop of MESHJOIN cloop

Service rate of the join module µ
Number of I/O’s per tuple IOt

Number of I/O’s per second IOs

Table 1. Notation of the cost model
Having related w and b to the required memory, we now

shift our attention to the processing speed of the algorithm.
We use cloop to denote the cost of a single iteration of the
MESHJOIN algorithm, and express it as the sum of costs for
the individual operations. In turn, the cost of each operation
is expressed in terms of w, b, and an appropriate cost factor
that captures the corresponding CPU or I/O cost. These cost
factors are listed in Table 1 and are straightforward to mea-
sure in an actual implementation of MESHJOIN. In total,
we can express the cost cloop as follows:

cloop = cI/O(b)+ (Read b pages)
w · cE+ (Expire w tuples from Q and H)
w · cS+ (Read w tuples from the stream buffer)
w · cA+ (Add w tuples to Q and H)

b vP
vR

cH+ (Probe H with R-tuples)
σb vP

vR
cO (Construct results)

(2)

Every cloop seconds, Algorithm MESHJOIN handles w
tuples of the stream with b I/O’s to the hard disk. Thus, the
service rate µ of the join module (i.e., the number of tuples
per second processed by MESHJOIN algorithm) is given by
the following formula:

µ =
w

cloop
(3)

Moreover, the number of read requests per stream tuple
and per time unit (denoted as IOs and IOt respectively) are
given by the following formulas:

IOs =
b

w
and IOt =

b

cloop
(4)

The expression of IOs demonstrates the amortization of
the I/O cost over multiple stream tuples. Essentially, the
cost of sequential access to b pages is shared among all the
w tuples in the new batch, thus increasing the efficiency of

accessing R. We can contrast this with the expected I/O
cost of an Indexed Nested Loops algorithm, where the in-
dex probe for each stream tuple is likely to cause at least
one random I/O operation in practice. This difference is
indicative of the expected benefits of our approach.

Finally, from Theorem 3.1 and Equation 3, we can derive
the relation between λ, cloop and w.

λ ≤ µ ⇒ λcloop ≤ w (5)

By substituting the expression for cloop (Equation 2),
we arrive at an inequality that links the parameters of
MESHJOIN (namely, w and b) to the arrival rate of the
stream. Combined with Equation 1 that links w and b to the
memory requirements of the operator, the previous expres-
sion forms our basic tool for tuning MESHJOIN according
to different objectives.

Tuning. We now describe the application of our cost model
to the tuning of the MESHJOIN algorithm. We investi-
gate how we can perform constrained optimization on two
important objectives: minimizing the amount of required
memory given a desirable service rate µ, and maximizing
the service rate µ assuming that memory M is fixed. As de-
scribed earlier, our goal is to achieve these optimizations by
essentially modifying the parameters w and b of the algo-
rithm. In the remainder of our discussion, we will assume
that we have knowledge of the first set of parameters shown
in Table 1, i.e., the physical properties of the stream and the
relation, and the basic cost factors of our algorithm’s oper-
ations. The former can be known exactly from the meta-
data of the database, while the latter can be measured with
micro-benchmarks.

Minimizing M . In this case, we assume that the stream rate
λ is known and we want to achieve a matching service rate
µ = λ using the least amount of memory M . The following
observations devise a simple methodology for this purpose:

1. M linearly depends on w (Equation 1). Therefore, to
minimize M , we have to minimize w.

2. The minimum value for w is specified by Equation 5
as follows:

w = λcloop (6)

This value corresponds to the state of the algorithm
where the service rate of MESHJOIN is tuned to be ex-
actly the as with the stream rate, i.e., λ = µ.

3. The previous expression allows to solve for w and sub-
stitute the result in Equation 1, thus specifying M as
a function of b. Using standard calculus methodology,
we can find exactly the value of b that minimizes M
(more details can be found in the long version of the
paper [18]). Given Equation 1, this also implies that



4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450 500

Number of pages b in join module

(a) Memory M (MB)
(b) Service rate µ (·103tuples/sec)

Figure 5. (a) Minimizing M (µ is fixed) and (b)
Maximizing µ (M is fixed)

we can determine a suitable value for w for the given b
value.

A more intuitive view of the relationship between M and
b is presented in Figure 5(a), that shows M as a function of
b for typical values of the cost factors. As shown, mem-
ory consumption can vary drastically and is minimized for
a specific value of b. The key intuition is that there is an
inherent trade-off between b and w for maintaining a de-
sired processing rate. For small values of b, the efficiency of
I/O operations decreases as it is necessary to perform more
reads of b pages in order to cover the whole relation. As a
result, it is necessary to distribute the cost across a larger
sliding window of stream tuples, which increases memory
consumption. A larger value of b, on the other hand, allows
the operator to maintain an affordable I/O cost with a small
w, but the memory consumption is then dominated by the
input buffer of R. We note that even though there is a single
value of b that minimizes M , it is more realistic to assume
that the system picks a range of b values that guarantee a
reasonable behavior for memory consumption.

Maximizing µ. Here, we assume that the available mem-
ory for the algorithm M is fixed, and we are interested in
maximizing the service rate µ. Using the expressions for
M , cloop and µ (Equations 1, 2 and 3 respectively), we can
specify µ as a function of b, and subsequently find the value
that maximizes µ with standard calculus methodology.

Figure 5(b) shows the relationship between µ and b for
sample values of the cost factors. We observe that µ in-
creases with b up to a certain maximum and then sharply de-
creases for larger values. This can be explained as follows.
For small values of b, the efficiency of I/O is decreased and
the constrained memory M does not allow the effective dis-
tribution of I/O cost across many stream tuples; moreover,
the cost of probing the hash table H becomes more expen-
sive, as it records a larger number of tuples. As b gets larger,
on the other hand, it is necessary to decrease w in order to
stay within the given memory budget, and thus the I/O cost
per tuple increases (Equation 4). It is necessary therefore to

choose the value of b (and in effect of w) that balances the
efficiency of I/O and probe operations.

3.3. Extensions

In this section, we discuss possible extensions of the ba-
sic MESHJOIN scheme that we introduced previously. In
the interest of space, we provide only a short overview and
defer the details to the full version of the paper [18].

Approximate join processing. MESHJOIN can handle a
stream rate that is too high for the available memory, by se-
lectively dropping S-tuples and thus generating an approx-
imation of the result. The shedding strategy affects directly
the properties of the approximation, and thus must be cho-
sen carefully to match the semantics of the underlying trans-
formation.

Ordered join output. The basic algorithm does not pre-
serve stream order in the output, i.e., the resulting tuples do
not necessarily have the same order as their corresponding
input stream tuples. For all practical purposes, this situation
does not compromise the correctness of the ETL transfor-
mations that we consider in this paper. In those cases where
the output must observe the input stream order, it is pos-
sible to extend MESHJOIN with a simple buffering mecha-
nism that attaches the join results to the corresponding entry
in H , and pushes them to the output when the tuple is de-
queued and expired.

Other join conditions. MESHJOIN can be fine-tuned to
work with other join conditions. The algorithm remains
the same as detailed in Figure 4, and any changes pertain
mainly to the matching of R-tuples to the current contents
of the sliding window (line 10). For an inequality join con-
dition, for instance, MESHJOIN can simply buffer stream
tuples in Q and process them sequentially for every ac-
cessed tuple of R. It is possible to perform further optimiza-
tions to this baseline approach depending on the semantics
of the join condition. If the latter is a range predicate, for
example, then the buffered stream tuples may be kept or-
dered to speed-up the matching to R-tuples. Overall, the
only requirement is to maintain the equivalent of queue Q
in order to expire tuples correctly on every iteration.

Dynamic tuning. Up to this point, we have assumed that
parameters w and b remain fixed for the operation of MESH-
JOIN. While the algorithm can readily handle a change of w
in mid-flight, it is possible to further extend MESHJOIN so
that it can accommodate a varying b without compromising
the correctness of the generated results. In the interest of
space, the details can be found in the full version of this
paper [18]. The end goal is to extend MESHJOIN with a
self-tuning mechanism that monitors the arrival rate of the
stream and dynamically adapts w and b in order to achieve
an equal service rate with the least memory consumption.



(This mechanism would rely of course on the analytical cost
model described previously.) We plan to explore this topic
as part of our future work on MESHJOIN.

4. Experiments

In this section, we present an experimental study that
we have conducted in order to evaluate the effectiveness of
our techniques. Overall, our results verify the efficacy of
MESHJOIN in computing S � R in the context of active
ETL transformations, and demonstrate its numerous bene-
fits over conventional join algorithms.

4.1. Methodology

The following paragraphs describe the major compo-
nents of our experimental methodology, namely, the tech-
niques that we consider, the data sets, and the evaluation
metrics.

Join Processing Techniques. As mentioned from the be-
ginning, we abstract a large set of ETL processes as the join
between a stream of updates and a disk based relation. We
consider two join processing techniques in our experiments.

– MESHJOIN. We have completed a prototype implemen-
tation of the MESHJOIN algorithm that we introduce in this
paper. We have used our prototype to measure the cost fac-
tors of the analytical cost model (Section 3.1). In turn, we
have used this fitted cost model in order to set b and w ac-
cordingly for each experiment.

– Index-Nested-Loops. We have implemented a join mod-
ule based on the Indexed Nested Loops (INL) algorithm.
We have chosen INL as it is readily applicable to the partic-
ular problem without requiring any modifications. Our im-
plementation examines each update tuple in sequence and
uses a clustered B+-Tree index on the join attribute of R
in order to locate the matching tuples. We have used the
Berkeley DB library (version 4.3.29) for creating and prob-
ing the disk-based clustered index. In all experiments, the
buffer pool size of Berkeley DB was set equal to the amount
of memory allocated to MESHJOIN.

In both cases, our implementation reads in memory the
whole stream before the join starts and provides update tu-
ples to the operator as soon as they are requested. This al-
lows an accurate measurement of the maximum processing
speed of each algorithm, as new stream tuples are accessed
with essentially negligible overhead.

Data Sets. We evaluate the performance of join algorithms
on synthetic and real-life data of varying characteristics.

– Synthetic Data Set. Table 2 summarizes the characteris-
tics of the synthetic data sets that we use in our experiments.
We assume that R joins with S on a single integer-typed

Parameter Value

zR: skew of join attribute in R 0-1
zS : skew of join attribute in S 0-1
D: domain of join attribute [1, 3.5 106]

vR: size of R-tuple 120 bytes
nR: number of tuples in R 3.5M

vS : size of S-tuple 20 bytes

Table 2. Data Set Characteristics
attribute, with join values following a zipfian distribution
in both inputs. We vary the skew in R and S indepen-
dently, and allow it to range from 0 (uniform join values)
to 1 (skewed join values). In all cases, we ensure that the
memory parameter Mmax does not exceed 10% of the size
of R, thus modeling a realistic ETL scenario where R is
much larger than the available main memory. We note that
we have performed a limited set of experiments with a big-
ger relation of 10 million tuples and our results have been
qualitatively the same as for the smaller relation.

– Real-Life Data Set. Our real-life data set is based on
weather sensor data that measure cloud cover over differ-
ent parts of the globe [11]. We use measurements from two
different months to create a relation and a stream of update
tuples, both consisting of 10 million tuples each. The tuple-
size is 32 bytes for both R and S and the underlying value
domain is [0, 36000].

Evaluation Metrics. We evaluate the performance of a join
algorithm based on its service rate µ, that is, the maximum
number of update tuples per second that are joined with
the disk-based relation. For MESHJOIN, we let the algo-
rithm perform the first four complete loops over relation R
and then measure the rate for the stream tuples that corre-
spond to the last loop only. For INL, we process a prefix of
100,000 stream tuples and measure the service rate on the
last 10,000 tuples.

Experimental Platform. We have performed our experi-
ments on a Pentium IV 3GHz machine with 1GB of main
memory running Linux. Our disk-based relations are stored
on a local 7200RPM disk and the machine has been other-
wise unloaded during each experiment. In all experiments,
we have ensured that the file system cache is kept to a min-
imum in order to eliminate the effect of double-buffering
in our measurements. (We note that the MESHJOIN algo-
rithm is less sensitive to buffering as it performs continuous
sequential scans over the large disk-based relation.)

4.2. Experimental Results

In this section, we report the major findings from our
experimental study. We present results on the following ex-
periments: a validation of the cost model for MESHJOIN; a
sensitivity analysis of the performance of MESHJOIN; and



an evaluation of MESHJOIN on real-life data sets.

Cost model validation. In this experiment, we validate
the MESHJOIN cost model that we have presented in Sec-
tion 3.1. We use the synthetic data set with a fixed memory
budget of 21MB (5% of the relation size) and we vary (b, w)
so that the total memory stays within the budget. For each
combination, we measure the service rate of MESHJOIN

and we compare it against the predicted rate from the cost
model.

Figure 6(a) depicts the predicted and measured service
rate of MESHJOIN as a function of b. (Note that each b
corresponds to a unique setting for w according to the al-
lotted memory of 21MB.) As the results demonstrate, our
cost model tracks accurately the measured service rate and
can thus be useful in predicting the performance of MESH-
JOIN. The measurements also indicate that the service rate
of MESHJOIN remains consistently high for small values of
b and drops rapidly as b is increased. (Our experiments with
different memory budgets have exhibited a similar trend.)
In essence, a large b reduces w (and effectively the size of
the sliding window over S), which in turn decreases signifi-
cantly the effectiveness of amortizing I/O operations across
stream tuples. This leads to an increased iteration cost cloop

and inevitably to a reduced service rate.

Sensitivity Analysis. In this set of experiments, we exam-
ine the performance of MESHJOIN when we vary two pa-
rameters of interest, namely, the available memory budget
M and the skew of the join attribute. We use synthetic data
sets, and we compare the service rate of MESHJOIN to the
baseline INL algorithm.

Varying M . We first evaluate the performance of MESH-
JOIN when we vary the available memory budget M . We
assume that the join attribute is a key of the relation and set
zs = 0.5 for generating join values in the stream. These
parameters model the generation of surrogate-keys, a com-
mon operation in data warehousing. In the experiments
that we present, we vary M as a percentage of the size
of the disk-based relation, from 0.1% (M=200KB) up to
10% (M=40MB). All reported measurements are with a
cold cache.

Figure 6(b) shows the maximum service rate (tu-
ples/second) of MESHJOIN and INL as a function of the
memory allocation M . Note that the y-axis (maximum
service rate) is in log-scale. The results demonstrate that
MESHJOIN is very effective in joining a fast update stream
with a slow, disk-based relation. For a total memory allo-
cation of 4MB (1% of the total relation size), for instance,
MESHJOIN can process a little more than 6,000 tuples per
second, and scales up to 26,000 tuples/sec if more memory
is available. It is interesting to note a trend of diminishing
returns as MESHJOIN is given more memory. Essentially,
the larger memory allocation leads to a larger stream win-

dow that increases the cost factors corresponding to the ex-
piration of tuples and the maintenance of the hash table H .

Compared to INL, MESHJOIN is the clear winner as
it achieves a 10x improvement for all memory alloca-
tions. For an allotted memory M of 2MB (0.5% of the
total relation size), for instance, INL can sustain 274 tu-
ples/second while MESHJOIN achieves a service rate of
3500 tuples/second. In essence, the buffer pool of INL
is not large enough to “absorb” the large number of ran-
dom I/Os that are incurred by index probes, and hence the
dominant factor becomes the overhead of the “slow” disk.
(This is also evident from the instability of our measure-
ments for small allocation percentages.) MESHJOIN, on the
other hand, performs continuous sequential scans over R
and amortizes the cost of accessing the disk across a large
number of stream tuples. As the results demonstrate, this
approach is very effective in achieving high servicing rates
even for small memory allocations.

We have also performed experiments with different
skews in the join values, in both the relation and the stream.
Our results have been qualitatively the same and are omitted
in the interest of space.

Varying skew. In the second set of experiments, we measure
the performance of MESHJOIN for different values of the
relation skew parameter zR. Recall that zR controls the dis-
tribution of values in the join column of R and hence affects
the selectivity of the join. We keep the skew of the stream
fixed at zS = 0.5 and vary zR from 0.1 (almost uniform) to
1 (highly skewed) for a join domain of 3.5 million values.
In all experiments, the join algorithms are assigned 20MB
of main memory (5% of the size of R).

Figure 6(c) depicts the maximum service rate for MESH-
JOIN and INL as a function of the relation skew zR. (Again,
the y-axis is in log-scale.) Overall, our results indicate a
decreasing trend in the maximum service rate for both algo-
rithms as the skew becomes higher. In the case of MESH-
JOIN, the overhead stems from the uneven probing of the
hash table, as more R-tuples probe the buckets that con-
tain the majority of stream tuples. (Recall that the stream is
also skewed with zS = 0.5.) For INL, the overhead comes
mainly from the additional I/O of accessing long overflow
chains in the leaves of the B+-Tree when zR increases. De-
spite this trend, our proposed MESHJOIN algorithm main-
tains a consistently high service rate for all skew values,
with a minimum rate of 9,000 tuples/sec for the highest
skew. Compared to INL, it offers significant improvement
in all cases and is again the clear winner.

We note that we have also performed experiments by
varying the skew zS of the stream. Our results have shown
that both techniques are relatively insensitive to this param-
eter and are thus omitted in the interest of space.



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 500 1000 1500 2000 2500

Number of pages b in join module

Max Service Rate (tuples/sec)

Measured µ
�
�

�

�

�

�

�

�

�

�

Predicted µ

+

++
+

+

+

+

+

+

+

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10
Memory (% of relation)

Max Service Rate (tuples/sec)

MESHJOIN

�
� � � � � � � � �

�

INL

+
+

+ + + +
+ +

+ +

+

(a) MESHJOIN: predicted and measured
performance (synthetic data)

(b) MESHJOIN and INL: performance for varying
memory (synthetic data)

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Skew zR

Max Service Rate (tuples/sec)

MESHJOIN
�

� �
�

�

INL

+
+

+ +

+

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10
Memory (% of relation)

Max Service Rate (tuples/sec)

MESHJOIN

�
� � � � � � � � �

�

INL

+
+

+ + + +
+ +

+ +

+

(c) MESHJOIN and INL: performance for varying
data skew (synthetic data)

(d) MESHJOIN and INL: performance for varying
memory (real-life data)

Figure 6. Experimental evaluation of MESHJOIN.

Performance of MESHJOIN on real-life data sets. As a
final experiment, we present an evaluation of MESHJOIN

on our real-life data set. We vary the memory budget M as
a percentage of the relation size, from 1% (4MB) to 10%
(40MB). Again, we compare MESHJOIN to INL, using the
service rate as the evaluation metric.

Figure 6(d) depicts the service rate of MESHJOIN and
INL on the real-life data set as a function of the mem-
ory budget. Similar to our experiments on synthetic data,
MESHJOIN achieves high service rates and outperforms
INL by a large margin. Moreover, this consistently good
performance comes for low memory allocations that repre-
sent a small fraction of the total size of the relation.

5. Related Work

Join algorithms have been studied extensively since the
early days of database development, and earlier works have
introduced a host of efficient techniques for the case of finite
disk-based relations. (A review can be found in [8].)

Active or real-time data warehousing has recently ap-
peared in the industrial literature [3, 17, 22]. Research in
ETL has provided algorithms for specific tasks including
the detection of duplicates, the resumption from failure and
the incremental loading of the warehouse [14, 15, 16]. Con-
trary to our setting, these algorithms are designed to operate
in a batch, off-line fashion. Work in materialized views re-
freshment [9, 10, 23, 24] is also relevant, but orthogonal to
our setting. The crucial decision concerns whether a view
can be updated given a delta set of updates.

In recent years, the case of continuous data streams has
gained in popularity and researchers have examined tech-
niques and issues for join processing over streaming infi-
nite relations [1, 2, 6, 20]. Earlier studies [4, 7, 12, 21]
have introduced generalizations of Symmetric Hash-Join
to a multi-way join operator in order to efficiently han-
dle join queries over multiple unbounded streams. These
works, however, assume the application of window opera-
tors (time- or tuple-based) over the streaming inputs, thus
reducing each stream to a finite evolving tuple-set that fits
entirely in main-memory. This important assumption does



not apply to our problem, where the working memory is
assumed to be much smaller than the large disk-based re-
lation and there is no window restriction on the streaming
input. Works for the join of streamed bounded relations,
like the Progressive Merge Join [5], and the more recent
Rate-based Progressive Join [19] propose join algorithms
that access the streaming inputs continuously and maintain
the received tuples in memory in order to generate results
as early as possible; when the received input exceeds the
capacity of main-memory, the algorithm flushes a subset of
the data to disk and processes it later when (CPU or mem-
ory) resources allow it. Clearly, this model does not match
well the constraints of our setting, since the buffering of S
tuples would essentially stall the stream of updates and thus
compromise the requirement for on-line refreshing.

6. Conclusions

In this paper, we have considered an operation that is
commonly encountered in the context of active data ware-
housing: the join between a fast stream of source updates S
and a disk-based relation R under the constraint of limited
memory. We have proposed the mesh join (MESHJOIN), a
novel join operator that operates under minimum assump-
tions for the stream and the relation. We have developed a
systematic cost model and tuning methodology that accu-
rately associates memory consumption with the incoming
stream rate. Finally, we have validated our proposal through
an experimental study that has demonstrated its scalability
to fast streams and large relations under limited main mem-
ory.

Based on the above results, research can be pursued in
different directions. Most importantly, multi-way joins be-
tween a stream and many relations is a research topic that
requires the fine-tuning of the iteration of the multiple rela-
tions in main memory as the stream tuples flow through the
join operator(s). The investigation of other common opera-
tors for active warehousing (e.g., multiple on-line aggrega-
tion) is another topic for future work.

Acknowledgements. This work supported by PYTHAGO-
RAS EPEAEK II programme, EU and Greek Ministry of
Education, co-funded by the European Social Fund (75%)
and National Resources (25%).

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. of PODS,
2002.

[2] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Record, 30(3), 2001.

[3] D. Burleson. New developments in oracle data warehousing.
Burleson Consulting, April 2004.

[4] S. Chandrasekaran and M. Franklin. PSoup: a system for
streaming queries over streaming data. VLDB J., 12(2),
2003.

[5] J.-P. Dittrich, B. Seeger, D. Taylor, and P. Widmayer. Pro-
gressive merge join: A generic and non-blocking sort-based
join algorithm. In Proc. of VLDB, 2002.

[6] L. Golab and M. T. Özsu. Issues in data stream management.
SIGMOD Record, 32(2), 2003.

[7] L. Golab and M. T. Özsu. Processing sliding window multi-
joins in continuous queries over data streams. In Proc.
of VLDB, 2003.

[8] G. Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2), 1993.

[9] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques, and applications. IEEE Data
Eng. Bull., 18(2), 1995.

[10] H. Gupta and I. Mumick. Incremental maintenance of ag-
gregate and outerjoin expressions. Inf. Syst., to appear.

[11] C. J. Hahn, S. G. Warren, and J. London. Edited synoptic
cloud reports from ships and land stations over the globe,
1982–1991.

[12] M. Hammad, M. Franklin, W. Aref, and A. Elmagarmid.
Scheduling for shared window joins over data streams. In
Proc. of VLDB, 2003.

[13] A. Karakasidis, P. Vassiliadis, and E. Pitoura. ETL queues
for active data warehousing. In Proc. of IQIS, 2005.

[14] W. Labio and H. Garcia-Molina. Efficient snapshot differ-
ential algorithms for data warehousing. In Proc. of VLDB,
1996.

[15] W. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gore-
lik. Efficient resumption of interrupted warehouse loads. In
Proc. of SIGMOD, 2000.

[16] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom.
Performance issues in incremental warehouse maintenance.
In Proc. of VLDB, 2000.

[17] Oracle Corp. On-time data warehousing with oracle10g -
information at the speed of your business. An Oracle White
Paper, August 2003.

[18] A. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis,
and N.-E. Frantzell. Supporting Streaming Updates in an
Active Data Warehouse. Technical report, University of Cal-
ifornia Santa Cruz, 2006.

[19] Y. Tao, M. Yiu, D. Papadias, M. Hadjieleftheriou, and
N. Mamoulis. RPJ: Producing fast join results on streams
through rate-based optimization. In Proc. of SIGMOD,
2005.

[20] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous
queries over append-only databases. In Proc. of SIGMOD,
1992.

[21] S. Viglas, J. Naughton, and J. Burger. Maximizing the output
rate of multi-way join queries over streaming information
sources. In Proc. of VLDB, 2003.

[22] C. White. Intelligent business strategies: Real-time data
warehousing heats up. DM Review, 2002.

[23] X. Zhang and E. A. Rundensteiner. Integrating the mainte-
nance and synchronization of data warehouses using a coop-
erative framework. Inf. Syst., 27(4), 2002.

[24] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom.
View maintenance in a warehousing environment. In Proc.
of SIGMOD, 1995.


