
A combination of trie-trees and inverted files for the
indexing of set-valued attributes

Manolis Terrovitis
Nat. Technical Univ. Athens

mter@dblab.ece.ntua.gr

Spyros Passas
Nat. Technical Univ. Athens

spas@dblab.ece.ntua.gr

Panos Vassiliadis
Univ. of Ioannina
pvassil@cs.uoi.gr

Timos Sellis
Nat. Technical Univ. Athens

timos@dblab.ece.ntua.gr

ABSTRACT
Set-valued attributes frequently occur in contexts like market-
basked analysis and stock market trends. Late research lit-
erature has mainly focused on set containment joins and
data mining without considering simple queries on set val-
ued attributes. In this paper we address superset, subset and
equality queries and we propose a novel indexing scheme for
answering them on set-valued attributes. The proposed in-
dex superimposes a trie-tree on top of an inverted file that
indexes a relation with set-valued data. We show that we
can efficiently answer the aforementioned queries by index-
ing only a subset of the most frequent of the items that
occur in the indexed relation. Finally, we show through ex-
tensive experiments that our approach outperforms the state
of the art mechanisms and scales gracefully as database size
grows.

1. INTRODUCTION
Containment queries on set-values emerge in a variety of

application areas ranging from scientific databases to XML
documents. Examples of set valued data can be found in
market basket analysis, production models, image and mole-
cular databases [7]. Containment queries span a wide range
of query families, ranging from simple existence queries to
composite similarity, pattern matching, or graph isomor-
phism queries. Naturally, the fundamental set-containment
operators are typical for a large number of situations (e.g.,
“Give me all photographs whose annotation contains the
terms ‘galaxy’ and ‘red giant’, possibly among others”, or
“Give me all protein sequences that contain either ‘G’ or
‘T’ or a combination of them, but nothing else”). Moreover,
set-containment operators can be used in other query classes
where a pruning of the candidate sets to be processed takes
place (e.g., “Give me all medicines sequences that are similar
to my XYZ test medicine and their X component contains ei-
ther ‘G’ or ‘T’ or a combination of them, but nothing else”).
Another important application area for containment queries
is the evaluation of path expressions in XML data, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

partially resolves to keyword searching [9]. As RDBMSs
and IR come closer, often in the interest of storing and han-
dling XML [20] and web data [4], containment queries on
set values become a more and more significant use case for
an RDBMS.

A natural way of modelling and storing set-values in mod-
ern RDBMS is by using set valued attributes. Set valued at-
tributes are an integral part of the object-relational model
and they are supported by most modern RDBMS’s [17]. In
this context, we are interested in containment queries over
the set valued attributes of a relation. More specifically,
assuming a relation D(id, set values) and a set of interest-
ing items qs = {i1, . . . , in}, we would be interested to ask
queries of the form {t | t ∈ D∧qs θ t.set values}, where θ ∈
{⊆,≡,⊇}. The problem of efficiently computing the result
set of these operations is challenging, mainly due to the vast-
ness of the underlying data volumes and the particularities
of the queries. The problem with set values is that the space
of potentially indexed values is enormous (2n, for n items)
and the resulting index would also be huge as well. More-
over, the query semantics are quite different: whereas simple
subset queries retrieve the tuples that contain a certain set
of items, superset values require that some (but not neces-
sarily all) of these items are contained in the result tuples,
and nothing else. Therefore, an efficient indexing scheme
that can (a) support the coexistence of multiple items in the
same query set and (b) adequately support different classes
of containment queries by exploiting their characteristics is
necessary.

To this day, the database and the information retrieval(IR)
research communities are mainly the ones having studied
set-values in depth. From the database perspective, there is
a need to efficiently handle huge volumes of small sets, usu-
ally taking values from a limited domain. So far, database
research has mostly focused on similarity and join queries.
Similarity queries [3, 12] retrieve the set values that are most
similar to the one provided in the query. Join queries, which
are classified as (a) similarity joins [15], or (b) set contain-
ment joins [11, 13], focus on intersecting two different rela-
tions based on their set valued attributes. Research on ac-
cess methods for basic containment queries is very limited.
To the best of our knowledge, only access methods based
on signature files [2] and inverted file indices [10, 22] have
been used in the database research literature for supporting
containment queries on set valued attributes.

A recent survey [7] has shown that inverted files clearly
outperform signature-based methods for containment queries
on low cardinality set values. The same holds for text doc-

1

pvassil
HDMS Disclaimer
Disclaimer: The HDMS symposia involve announcements of published/on-going work and DO NOT have formal proceedings; the presented papers are slightly modified versions of published work and are electronically available simply for the convenience of the conference participants.

uments as Zobel et. al. showed in [21]. Moreover, Zhang
et. al., studied in [20] how inverted files indices compare to
traditional relational methods for containment queries, mo-
tivated by the integration of IR functionality in RDBMSs.
Using traditional relational indices like B-trees for contain-
ment queries was shown to have significantly inferior perfor-
mance in most cases. Considering inverted files as the state-
of-the-art mechanism for set containment is also supported
by the fact that they used by all WWW search engines [19].

Still, the performance of inverted files suffers when the do-
main of the distinct items of the database is small or when
the distribution of the items is skewed and few items dom-
inate the dataset. This is due to their internal structure:
inverted files contain a header list with all the items of the
vocabulary; for each item, an inverted list with pointers to
the transactions that contain this item is maintained. Thus,
if some items appear in many set values, their inverted lists
become very long. Since containment queries usually require
scanning the entire inverted lists of the query items, having
long inverted lists has a deteriorating impact of the query
evaluation. This is often the case of real world. A charac-
teristic case of numerous records of set values from a limited
domain are the real datasets from UCI KDD archive [8] that
we use in our experimental evaluation. These datasets are
logs that trace the behavior of users in large web portals,
which is a common source of data that are analyzed by us-
ing containment queries (e.g., “Which users downloaded only
drivers and patches from our website and did not visit any
other page?”). Moreover, highly skewed data is a common
case for retail transactions, where some basic products dom-
inate the transactional logs.

In this paper, we focus on the efficient evaluation of con-
tainment queries on large collections of low cardinality sets
with exact query semantics. The query classes under in-
vestigation include subset, superset and set equality queries.
These queries test a set of items, a.k.a query set, over a set
valued attribute of a set of records, for the fulfillment of
the query’s selection condition (subset, superset or equal-
ity). The exact set of transactions that fulfill the selection
condition is returned. To efficiently answer these classes of
queries, we propose a novel indexing scheme, the Hybrid
Trie-Inverted file (HTI) index. The HTI-index superim-
poses a trie structure, the access tree, over an inverted file
index. The access tree offers pointers to the inverted lists of
the most frequent items, thus leveraging the performance of
inverted files. In the HTI index, queries over the frequent
items are evaluated by the access tree. At the same time,
the memory requirements remain low, since information for
the vast majority of the data is kept in the inverted file. This
evaluation mechanism has a significant impact on query an-
swering efficiency in the average case, since we expect items
to be queried according to their frequency of appearance. In
short, our contribution comprises the following:

1. We propose a novel indexing scheme, the HTI index
that combines a trie with an inverted file, for large
collections of low cardinality sets. The main idea is
that the trie is placed in main memory, indexing the
top−k most frequent items of the data set, whereas the
inverted file is placed in secondary storage, associating
each item with all the transactions that contain it. The
index is particularly fit for data from a limited domain
or skewed data, which is a very common real world
case.

2. We present efficient evaluation algorithms for set con-
tainment queries that utilize the proposed index. For
all types of queries we quickly identify the set of fre-
quent items that participate in the query by exploiting
the main memory part of HTI and complement the
answer by testing the infrequent items through the in-
verted file.

3. We demonstrate the superiority of our proposal over
the state of the art access methods, by extensive ex-
periments. We evaluate the HTI index on real and
synthetic data. We assess the number of disk page ac-
cesses performed by the HTI index as a function of
domain of items, database size and size of the query
set. In all occasions, HTI significantly outperforms
a competitor inverted file, and scales gracefully, espe-
cially in the cases of large database and query sizes
(as opposed to the inverted file that fails to scale sim-
ilarly). In the case of the real datasets, which involve
320k and 1M transactions, the HTI index performs
an order of magnitude less disk page accesses with a
memory overhead of less than 0.5Mb. Our experiments
with synthetic data show that even for large domains,
keeping a low threshold for the top-k items held in the
trie is sufficient for achieving high performance with
minimum memory expenses.

The rest of the paper is organized as follows: In Section
2 we formulate the problem and in Section 3 we present the
proposed HTI index. Section 4 describes the query evalua-
tion algorithms and in Section 5 we demonstrate the results
of the experimental comparison of our proposal against the
inverted file index. Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION
For reasons of simplicity we assume that the data are or-

ganized under a simple object relational schema D with each
tuple t = [id, s] having two attributes; id is a unique iden-
tifier of the transaction and s is a set (not a bag or a list)
of objects from an infinitely countable domain of distinct
items. We refer to the active domain of D, with the term
vocabulary and denote it as I. Thus, every t.s ⊆ I. More-
over, throughout the paper we consider the id as adequate
information to allow us to retrieve the whole transaction
from the hard disk in one step (i.e., in one page access).

Queries. In queries on set valued data, the user specifies
the query predicate and the query set qs. The query set is
a set of items belonging to the vocabulary I that are given
as parameters to the query predicate. The queries we are
interested in are defined as follows:

• Subset queries. In subset queries the user asks for all
transactions t that contain the query set qs, i.e., {t |
t ∈ D ∧ qs ⊆ t.s}.

• Equality queries. In equality queries the user asks for
all transactions that contain exactly the query set, i.e.,
{t | t ∈ D ∧ qs ≡ t.s}.

• Superset queries. In superset queries the user asks for
all transactions whose items are contained in the query
set, i.e., {t | t ∈ D ∧ qs ⊇ t.s}.

2

ID Items bought

1 {f, a, c}
2 {c, b, d}
3 {f, a}
4 {a, c}

ID Items bought

5 {f, d}
6 {f, c}
7 {f}

Figure 1: Example relation D of customer transac-
tions

1, 3f

1, 2c

1, 3a

2, 5d

2b

5,6

4,6

4

7

4

7

a, c

f

Database

transactions (D)

Inverted lists of

transaction id’s

V
o
ca

b
u
la

ry
 (

I)

Figure 2: A simple inverted file index scheme for
the example of Figure 1.

3. INDEX STRUCTURE
Tries and inverted files have been extensively used for text

indexing, still the former have not been employed for index-
ing set-valued attributes in object-relational databases. In
this section, we introduce the HTI index that combines a
main memory trie with an inverted file residing in secondary
storage. First, we give background information for inverted
files and tries and we explain their benefits and drawbacks.
Then, we show how these indexing schemes are combined
in the HTI index. Finally, we also describe the necessary
insertion and deletion methods for the HTI index.

3.1 The inverted file
The inverted file index has two major components: (a)

the vocabulary and (b) the inverted lists. The vocabulary is
a list of all the distinct items appearing in the database, i.e.,
it is the same with the database vocabulary I of Section 2.
Each list node has a label indicating the item it represents
and a pointer to the head of the inverted list. The inverted
list contains information about all the transactions in which
the item appears. In our case, this information comprises
the transaction id alongside with its length. The length
of the transaction is required in order to efficiently execute
equality and superset queries.

Figure 2 depicts an inverted file index for the relation of
Figure 1. The vocabulary includes all the distinct items that
appear in the transactions. The inverted lists may be huge
for large databases; the id and the length of a transaction is
inserted as many times as the number of items it contains.
This means that, theoretically, the size of the inverted file
could be similar to the size of the transaction collection or
even larger. Uncompressed inverted files for text documents
typically consume around 30% of the space required for the
uncompressed database [16]. In the cases that we are mostly
interested, where there are no repetitions and the vocabulary
is significantly smaller than the number of transactions (I ¿
D), the inverted file can be equal or larger than the database,
since the t.id requires more bits than the items of I.

We can trace the answer to subset, superset and equality

queries by using set operations on the inverted lists. Due to
their size, the inverted lists are stored in secondary storage.
Therefore, the larger these inverted lists are, the more mem-
ory pages have to be retrieved from the disk for evaluating
a query. This means that the most frequent items that have
the larger inverted lists are the most expensive to process.
This is an important weakness, when dealing with set val-
ues in databases, considering that most frequent items are
usually the ones most frequently queried.

3.2 Tries in the context of set-values
Tries are multiway tree structures for storing string keys

which enable retrieval in time proportional to the string
length [1]. Unlike inverted files, tries are letter oriented
and each string corresponds to a path in the tree. Conse-
quently, common prefixes in strings correspond to common
prefix paths in the tree. Leaf nodes include either the doc-
uments themselves, or links to the documents that contain
the string that corresponds to the path. Since strings are
words of some language, the maximum number of children
for a node, is limited by the number of letters of the alpha-
bet of the documents’ language. The way tries are created
allows for prefix (or suffix, if strings are inverted before be-
ing mapped to paths) search, i.e., they provide a kind of
range search, based on the first letters of the string.

A significant difference between set values and text docu-
ments, is that unlike words (which are composed of letters),
the items of a set are not further decomposable to smaller
units. Even if the items are alphanumeric values themselves,
this is simply a coding scheme of the database, that eventu-
ally has no relationship to the user queries. Therefore, it is
meaningless to exploit the alphanumeric value of the items
for indexing purposes, but rather, we need to use the set
of all items I as the vocabulary of the index. As a result,
each node might have |I| intermediate descendants. This
makes the potential size of the trie very large and thus the
space gain achieved from common prefixes is a lot smaller
compared to the one in the text document case. Practically,
even for a moderately large I, e.g., 20k, the maximum space
of the trie is so big, that it grows almost linearly with the
number of transactions.

In our following deliberations, we need to define the fun-
damental notion of item frequency ordering that concerns
the ordering of the items of a vocabulary.

Item frequency ordering. The item frequency ordering
of the items of a vocabulary I (over a database D) is the
total frequency of the vocabulary items in the underlying
database. We denote the item frequency ordering with <I

(D is omitted for simplicity). In our reference example, the
item reference ordering <I = {f, c, a, d, b}.

To construct a trie for set values, we follow the approach
of Han et al. in [5, 6]. First, each transaction is trans-
formed from an unordered set to an ordered sequence based
on the item frequency ordering of the vocabulary. An item
x precedes another item y in an ordered transaction if x is
more frequent than y in the whole database D. The ordered
transaction is subsequently mapped to a path starting from
the trie tree root. If some nodes already exist, due to a com-
mon prefix with a previously inserted transaction, we only
add the new nodes.

An abstract form of the trie tree for the database of Figure
1 is depicted in Figure 3. The transaction with id = 1 and
set value s = {a, f, c} is ordered according to the frequency

3

Null

f

c d

a

a

c

d
a

b

Ordered

Transactions

1 {f,c,a}

2 {c,d,b}

3 {f,a}

4 {c,a}

5 {f,d}

6 {f,c}

7 {f}

tid’s: 1, 3, 5, 6, 7

tid’s: 1

tid’s: 1,6

tid’s: 3

tid’s: 5

tid’s: 2, 4

tid’s: 4
tid’s: 2

tid’s: 2

How the full trie would ideally be. The shaded area is to be excluded

in the access tree of HTI

Figure 3: An abstract form of a trie tree for the
example of Figure 1

of its items in the database. Since f occurs 5 times, c occurs
4 and a occurs 3 times, the transaction’s set is transformed
to a sequence s = {f, c, a} that subsequently contributes the
path f → c → a in the trie. Unlike typical tries, in Figure 3
we annotate each node with the list of transaction id’s that
correspond to it (without implying that they are actually
kept in main memory along with the trie). Note that de-
pending on its prefix, a transaction might belong to the list
of more than one nodes. For example, the transaction with
id = 1 belongs to the lists of all the nodes of its prefix, i.e.,
all the nodes of the path f → c → a. Finally, there is a
difference among the transactions that pertain “solely” to
a node and the transactions that also pertain to its descen-
dants. Observe the node c of the path f → c → a. The
transaction with id = 1 is the transaction {f, c, a} that also
belongs to the node a of the same path. On the contrary, the
transaction with id = 6 refers exactly to the path f → c.
The distinction will be very useful later, for equality and
superset queries.

The potentially very large number of descendants that a
node might have and the fact that tries are unbalanced, does
not make the trie a good candidate for secondary memory
storage. Therefore, we choose to use it as a main memory
structure offering alternative access to the data, on top of
the inverted file.

3.3 The HTI index
As we have explained in Section 3.1, the performance of

the inverted file suffers, when very long inverted lists have
to be processed. The issues involved in the processing of
inverted files are (a) the IO cost of transferring the disk
pages with the inverted lists to main memory and (b) the
CPU cost of intersecting inverted lists of different items that
participate in the same query set.

To counter this effect we propose the HTI-index, which
uses a relatively small main memory trie to offer additional
access points to the inverted lists of the most frequent items
(that also have the longest inverted lists).

The basic idea of the HTI-index is to split the vocabulary
of the database into (a) a small set of frequent items Ifr

and (b) a large set of infrequent items I \ Ifr. Then, a trie
is used for the former, in order to speed up the access to
the lists that pertain only to the combinations of frequent
items, whereas the latter are treated as usually, through an

inverted file.
The HTI-index, has three major components: a vocab-

ulary, an access tree and a set of inverted lists. An HTI
index is schematically depicted in Figure 4.

The vocabulary. Like inverted files, the HTI has a list of
all the distinct items of the database, which offers access to
the inverted lists. The items in the vocabulary are divided
in two classes: (a) the frequent items Ifr, Ifr ⊆ I, whose
vocabulary entries point to the access tree in main memory,
and (b) the infrequent items, Iinfr = I \ Ifr, whose vocabu-
lary entries lead directly to their inverted lists in secondary
storage, exactly like in inverted files. The vocabulary is
kept as an array in main memory and together with the ac-
cess tree root they comprise the initial access points to the
inverted lists. The array is ordered (in descending order)
according to the item frequency ordering of the vocabulary
items in the underlying database D.

The access tree. The access tree is a trie structure that
offers access points to blocks of transactions that share the
same access prefix paths (app). The app of a transaction
can easily be computed if we order its items according to
the item frequency ordering of I. Then, we define as access
prefix path the sequence prefix path whose items all lie in
Ifr – i.e., the ordered sequence of the frequent items of the
transaction. For example, the app of {f, a} is {f}. We store
the app of each transaction in the access tree, by putting
the first and most frequent element as a direct child of the
root (see also the next section for a detailed discussion on
the creation of the access tree). The access tree has two
kinds of nodes: (a) the root, which does not correspond to
any item in Ifr and (b) information nodes, which are all the
other nodes of the trie. Each such node holds the following
information:

• A label indicating the item of Ifr, which corresponds
to the node.

• A link to the inverted sublist of the transactions that
contribute to the path from the root to the node.
These are all the transactions whose prefix is the same
with the path from the root to the current node.

• Navigational links to the children-nodes, the parent-
node and to the rest of the nodes with the same label.

It is important to stress here that due to the vast volume
of the full-fledged trie presented in the previous section, the
access tree is a subset of it, concerning only its most frequent
items Ifr. The vocabulary entries concerning these frequent
items point to the access tree nodes, who in turn, point to
the respective inverted lists, stored in secondary storage.

In Figure 4 we depict an example HTI index for the re-
lation of Figure 1. We choose as frequent items Ifr = f, c
(having a frequency greater than 3), and we create the ac-
cess tree considering only them. Observe that in Figure 3,
these were also the items with the longest transaction lists.
The shaded area in Figure 3 concerns the infrequent items
that were subsequently dropped from the access tree of Fig-
ure 4. Item f is more frequent than c, thus it precedes it
in access tree paths. Assuming this Ifr set, all the trans-
actions of Figure 1, contribute to three paths: root → f ,
root → f → c and root → c. Observe, also, how the nodes
labeled c are linked to each other.

The inverted lists. For all the non-frequent nodes, the
inverted lists are exactly the same as those of a regular in-

4

F
re

q
u

en
t

It
em

s
In

fr
eq

u
en

t

It
em

s

Null

f

c

c

3, 5

1, 6

1, 3

2, 5

2

7,1

2, 4

4

6

Vocabulary

Access Tree

Inverted lists

Sec
on

da
ry

 s
to

ra
ge

f

c

a

d

b

M
ai

n m
em

or
y

Figure 4: HTI index for the relation of Figure 1.

f

3, 5 7,1 63 5

Total number of transactions that

contain the item f

Number of transactions

whose app ends at current

node, i.e., transactions 3,5,7

Light shaded boxes stand for HD pages

Dark shaded box stands

for the inverted list of f

Figure 5: The transaction list corresponding to the
node f , assuming two id’s per disk page.

verted file; single, sorted lists containing the id’s of all the
transactions that contain the respective item. The inverted
lists of the frequent items belonging to Ifr are made up of
many smaller sorted lists, each of them corresponding to an
access tree node. Each such sublist contains the id’s of the
transactions, whose app is the same with the path from the
root node. For the single case of the most frequent item,
which appears only once in the trie tree, we still have one
big list with all the transactions that contain it. To enhance
the evaluation of equality and superset queries, we further
divide the inverted sublists of the access tree to two parts
and we distribute the transaction ids depending on whether
the current node is the last node of the transaction app or
not.

As shown in Figure 4, the access tree and the vocabulary
are kept in the main memory, whereas the inverted lists re-
side at secondary storage. Transactions 1,3,5,6,7 contribute
to the path root → f , thus they are stored at the inverted
sublist of node f . Observe that f , being the most frequent
item has exactly one inverted list. This is not necessarily the
case for all the items, though. Take, for example, the item
c. Two of the transactions of f , 1 and 6, also contribute to
the path root → f → c, and they are stored in the respec-
tive inverted sublist. At the same time, transactions 2 and
4 contribute to the path root → c and they are stored at the
respective sublist. For storage efficiency, the inverted list
of item c comprises the individual sublists of all the differ-
ent nodes of c stored contiguously, one after the other. The
nodes of the access tree point to the offset of the inverted
list where their corresponding sublist begins. Thus, we do
not need to store one page per sublist (which is a significant
earning in space) and we keep the benefit that all the sublist
of the same node is clustered in the hard disk (although not
internally ordered).

The rest of the items are indexed by an inverted file and
the id’s of the transactions that include them are stored in

the respective inverted lists. Note that, concerning the in-
frequent items a, d, b, their vocabulary entries point directly
to the inverted lists in secondary storage without any in-
terference with the access tree. However, transactions that
contain both frequent and infrequent items are kept in the
transaction lists of both. For example, the transaction with
id = 3, i.e., {f, a} is tracked in the inverted lists of both f
and a.

The structure of the transaction sublist corresponding to
a single node of the trie is depicted in Figure 5 for the case
of the f node. The associated list has two components: (a)
the id′s of the transactions whose app ends at this node;
these are transactions id′s 3,5 and 7, (b) the id′s of rest of
the transactions that contribute to the current node; these
are id′s 1 and 6. In the beginning of the list we store the
number of transactions of case (a) alongside with the total
number of the transactions that contribute to the current
node, so that we can retrieve the right block from the disk
each time.

3.4 Creation and maintenance of the HTI in-
dex

In this section, we describe the insertion and deletion pro-
cedures for an HTI index. When a new transaction is to
be inserted or deleted from the HTI index we practically
have to perform two different updates: one to the inverted
file component and one to the trie tree. To identify what
part of the index has to be updated, we must first transform
the set to a sequence according to the order <I . Then, we
identify the part of the sequence that affects the trie, which
is the list of frequent items of the new transaction, i.e., its
app. As we have already mentioned in the previous section,
this is always the prefix of the sequence whose items belong
to the Ifr.

Insertions. For the case of the insertion of a transac-
tion t = {f1, . . . , fk, ik+1, . . . , in} of length n, having app =
{f1, . . . , fk}, k ≤ n, we have to take the following actions
(the algorithm in pseudo-code is presented in Figure 6):

1. For all the infrequent items of t that do not appear in
app, the transaction id must be added in their inverted
list, in secondary storage.

2. The app path must be added to the access tree (if not
already there) and the transaction id to the respec-
tive transaction lists. Possibly, some prefix of app, say
{f1 → · · · → fe}, e ≤ k already exists in the access
tree as a result of a previous insertion. For all the
nodes belonging to the maximal such part of the app,
we simply add the new transaction t to their inverted
list. The rest part of the app, fe+1 → · · · → fk that
has not been mapped in the trie as part of the proper
path is added as a child to the node that corresponds
to item fe.

If the transaction does not have any common prefix with a
previously inserted transaction, the whole app of the trans-
action forms a new path in the trie, starting from the root.
If on the other hand, its app is the same with the app of a
previously inserted transaction, its insertion does not cause
the insertion of any new nodes in the access tree.

Deletions. For the case of deletions the steps are prac-
tically the same. For the infrequent items that are indexed
only in the inverted file but not in the trie, we simply re-
move their transaction id from the transaction lists. For the

5

Function boolean insertPath(app,t.id){
1. currentNode=root
2. while (app not empty) {
3. firstLabel=pop(app)
4. if (exists child c of currentNode

with label=firstLabel){
5. add t.id to the inverted sublist of c
6. } else {
7. add a new node with label firstLabel

as a child of currentNode{
8. }
9. currentNode= c

10. }

Figure 6: Pseudo-code for the insertPath function
that inserts into the trie the transaction t that has
t.id as an id and app as its access prefix path.

frequent items of the transaction, we locate the path of the
trie that corresponds to the app of the transaction. Then,
we remove the transaction id from all the inverted lists of all
the nodes in this path. In the case that the inverted list of
a node becomes empty, then we remove the node from the
access tree. By the definition of the trie, if a non-leaf node
has an empty inverted list, then all its children obligatorily
have an empty inverted list, too. Therefore, the whole path
from the non-leaf node to its descendant leaves is directly
removed.

The algorithm for deleting a transaction from the trie tree
is presented in Figure 7.

Function boolean deletePath(app,t.id){
1. currentNode=root
2. while (app not empty) {
3. firstLabel=pop(app)
4. find the child c of currentNode

with label=firstLabel
5. remove t.id from the inverted sublist of c
6. if the list is now empty{
7. remove the sub-tree of c
8. break
9. }

10. currentNode= c
11. }

Figure 7: Pseudo-code for the deletePath function
that deletes the transaction t that has t.id as an id
and app as its access prefix path.

Updates to the frequencies of the underlying data.
Updates in the data can incur changes in the items of Ifr or
just changes in their order. In the general case, in most
application areas that involve transactional data like re-
tail store transactions, the relative frequencies of the items
change slowly or remain stable. In any case, the frequency
ordering reflects a heuristic for keeping the size of the access
tree small, as reported in [5]; the proposed query evaluation
algorithms are correct for any ordering. Moreover, small
changes in the item frequencies, even if they cause changes
in the ordering of items, do not incur significant changes in
the size of the access tree, or the evaluation of containment
queries over them.

Synergy with inverted files. There is a question of
how the HTI index compares to inverted files, when com-
pression techniques are applied [16, 14] or a cache equal to

the access tree size is given to the inverted file. As far as
the former is concerned, the HTI index is complementary to
compression and not competitive to it. If the inverted lists
become smaller, then the threshold of the HTI index can be
reduced. The scaling to the database size, which reflects the
size of the lists, is dependent on the threshold, as we show
in Section 5, thus smaller lists require smaller thresholds.
Giving cache to the inverted lists on the other hand, may be
a good solution for uniform distributions with large vocab-
ularies. Still, the effectiveness of the cache is dependent on
how big it is when compared with the total inverted file and
it will be reduced as the size of the inverted file grows. On
the contrary, the main memory requirements of the HTI
index depend mostly on the size of the vocabulary, since
duplicate or similar transactions do not affect its size and
effectiveness. Thus, for small vocabularies and especially for
skewed distributions, the HTI index is a better choice.

4. QUERY EVALUATION
In this section, we present the evaluation algorithms for

the three types of queries that we are interested in: sub-
set, equality and superset. The evaluation algorithms for
all types of queries have two main stages: (a) evaluation in
the access tree, and (b) evaluation in the inverted file. The
evaluation in the access tree concerns the frequent items of
the query set, and the evaluation in the inverted file the
rest of the items. The basic idea is that we use the access
points to the inverted lists offered by the trie, to quickly
trace the final or a candidate answer to the query. The ben-
efit is quite significant since the access points are given for
the largest lists, which correspond to the items of Ifr. This
way we avoid expensive union or intersection operations be-
tween the lists indexed by the access tree, and instead we
implicitly perform these operations in the tree itself.

For all three cases of queries, we assume a query set of the
form qs = {f1, . . . , fk, ik+1, . . . , in}, where the first k items
fi concern the frequent items of the query set, belonging to
the access tree, and the next n−k items ij are the infrequent
items that are only indexed by the inverted file.

In the following, we detail the evaluation techniques for
each type of queries.

4.1 Subset queries
Subset queries are the most common queries executed

against transaction and text collections and most broadly
studied in research literature. Furthermore, the evaluation
of many query classes, including ranking ones, partially re-
solves to the evaluation of subset queries.

The main idea around evaluating subset queries is that the
transactions that contain the app part of the qs can easily
be identified by using the access tree, without merging the
respective inverted lists. This is efficiently done by tracing
all the appearances of the last element of the app, fk (which
is also the least frequent in app), and then identifying which
paths from the root to the fk nodes contain the app of the
qs. These paths possibly contain other frequent items too,
but they necessarily contain the app of the query set. We
call the set of the retrieved transaction id’s candidateIds.
Possibly, apart from the frequent items, there are also in-
frequent items in the query set. The only way to access
these infrequent items ik+1, . . . , in is through the inverted
file. Therefore, to compute the final query answer we must
find the intersection of the lists of transaction id’s that cor-

6

respond to the infrequent items ik+1, . . . , in with the list of
the already retrieved candidateIds. Any transaction id that
belongs to this result contains both the frequent items of the
app and the infrequent items ik+1, . . . , in. The algorithm in
pseudo-code is depicted in Figure 8.

Algorithm SubsetQueries
Input: An HTI index H over a dataset D, a query set qs =
{f1, . . . , fk, ik+1, . . . , in} and a query Q={t | qs ⊆ t.s}.
Output: the t.id’s of the transactions that contain qs
Method:

1. Determine the app = {f1, . . . , fk} of the query set.
2. If app is not empty use subsetTrie(app) to retrieve the

candidateIds from the trie.
3. If {ik+1, . . . , in} is not empty in the query set:
4. result=merge-join the candidateIds with the inverted

lists of {ik+1, . . . , in}
5. else
6. result=candidateIds
7. return result

Function subsetTrie(app)
Input: An HTI index H over a dataset D, the app of the qs
Output: The candidateIds, i.e. the t.id’s of the transactions that
contain the items of app
Method:

1. Let c be the last item (least frequent) of app
2. For every appearance of c in the trie
3. if every item fi ∈ app appears in the path from the root

to the current node.
4. add the t.ids of the inverted sublists of the current

node to the candidateIds
5. return candidateIds

Figure 8: Algorithm for determining subset queries

Assume for example that the user asks for all transac-
tions that contain the {f, c, a} items from the relation D
depicted in Figure 1. If we evaluate the query against the
inverted file, depicted in Figure 2, we would have to per-
form a merge-join of the inverted lists of all the items in the
query set. That would require six disk page accesses and we
would only have one answer, that is t.id = 1. If, instead, we
evaluate the query against the HTI index, the disk pages
accesses are much less. First, we have to identify the app
of the qs which is f → c. Then, we must trace all the c
nodes of the access tree and identify the paths from root to
c, which contain the rest of the items of app, i.e., f . This re-
sults in only one path: root → f → c. Now we can directly
retrieve the transactions that contain f and c, which are 1
and 6 by performing only 1 page access. Subsequently we
can merge-join {1, 6} with the inverted list of a to retrieve
the final answer. The total disk page accesses we encounter
in this case is two. In general, if the inverted lists of the
items of the qs (ordered by frequency) cover l1, . . . , ln disk
pages, the worst case evaluation will require l1 + · · · + ln
disk page accesses. This holds for both the inverted file and
HTI-index, but as experiments in Section 5 show, the av-
erage cases clearly favor the HTI index. The benefit from
using the access tree comes from the fact that we avoid per-
forming intersections between the largest inverted lists. This
benefit can potentially be very significant, especially if the
frequent items are not correlated. Moreover, the larger the
inverted lists are and the greater the skewness of the items
distribution is, the greater benefit we gain from using the
access tree.

Some more technical notes should also be made for algo-
rithm of Figure 8. Whereas the simplified form of the algo-

rithm, implies that we use the access tree to actually retrieve
the t.ids from the disk and put them in the candidateIds
this is not the most effective implementation in most cases.
Instead, we return the links to the inverted sublists in the
disk, which are then merged-joined with the inverted lists
of the {ik+1, . . . , in} items. Furthermore, the merge-join is
performed by starting from the less frequent item, thus it is
not always necessary to use the access tree. In some cases,
we can quickly decide that there is no solution, by intersect-
ing the smaller inverted lists, and avoid any further compu-
tation. Practically, the algorithm first traverses the access
tree and decides if there is a solution for the app items, and
how many disk page accesses it will need to retrieve them.
Depending on how many disk page accesses it will need, the
algorithm decides the order of the merge-joins i.e., whether
it will start from the trie or the inverted file.

4.2 Equality queries
Employing the HTI index for equality queries leads to

very efficient evaluations. For each query, only one path
of the access tree has to be identified. This is the path,
which is identical to the app of the query set. Assuming
that nodes are organized in some efficient data structure, like
hash arrays, the evaluation on the trie can be done in time
O(|app|), that is proportional to the app of the query set.
After identifying the single inverted sublist that possibly
satisfies the query, it has to be intersected with the inverted
lists of the non-frequent items. In the process of the merge-
join, the transactions are filtered according to their length,
which must be equal to |qs|. We refer the interested user
to the long version of the paper [18] for the pseudocode
of the evaluation algorithm. The worst case in terms of
page accesses is again the same as for subset queries. Still,
experiments show that whereas evaluating equality queries
in the inverted file requires as many disk page accesses as
the respective subset queries did, the results with HTI index
are a lot better in this case.

4.3 Superset queries
Superset queries are by far the most expensive queries we

study. In a sense, a superset query is equivalent to 2|qs|

equality queries, for all its subsets. The evaluation algo-
rithms, even those that work only in the inverted file, re-
quire significantly less disk page accesses than 2|qs| equality
queries, but still the number is high. If the inverted lists
of the items of the qs (ordered by frequency) need l1, . . . , ln
disk pages respectively, evaluating a superset query solely
in the inverted file, with the algorithm presented in Figure
9, requires in the worst case l1 + 2l2 + · · · + nln disk page
accesses.

As in the case of equality, the access tree can drastically
boost the efficiency of the query evaluation. The basic idea
is to find all the paths in the trie, which are solely con-
structed by items from the app of the query. Then we can
safely add to candidateIds, the ids of all the transactions
that end in any node of these paths. For these transactions
we know that they do not contain any other item of Ifr,
except from f1, . . . , fk. If the qs has non frequent items too,
then we have to check in the inverted file if the remaining
items of the transactions of candidateIds contain only items
from ik+1, . . . , in. If the qs does not contain any other items
we filter the candidateIds using their length and the length
of the path that lead to them, as pruning criteria. If their

7

length is greater than their app, which can be inferred from
the trie without examining the transaction itself, the trans-
action is dropped, since it must have more items that are not
contained in qs. The algorithm for evaluating the superset
query is presented in Figure 9.

Algorithm SupersetQueries
Input: An HTI index H over a dataset D, a query set qs =
{f1, . . . , fk, ik+1, . . . , in} and a query Q={t | qs ⊇ t.s}.
Output: the t.id’s of the transactions that where t.s ⊂ qs
Method:

1. Determine the app = {f1, . . . , fk} of the query set.
2. If app is not empty use supersetTrie(app) to retrieve the

candidateIds from the trie.
3. Let il1 . . . ilm be the inverted lists of all the non frequent

items of the qs and the candidateIds, ordered according to
the number of memory pages

4. for (i=1 ; i ≤ n ; i++)
5. for each entry t of ili
6. unmatched=t.length− 1
7. if (unmatched == 0) add t to result and break
8. for (j = i + 1 ; j ≤ n ; j++)
9. if (unmatched > n− j) break

10. if (unmatched==0) add t to result and break
11. scan forward ilj
12. if t found in ilj unmatched = unmatched− 1
13. return result

Function supersetTrie(app,currentNode)
Input: An HTI index H over a dataset D, the app of the qs, the
root of the trie as currentNode
Output: The candidateIds, i.e. the t.id’s of the transactions
whose items are contained in app
Method:

1. while (app not empty)
2. newCNode=pop(app)
3. if newCNode is child of currentNode
4. add the inverted sublist of newCNode to

candidateIDs
5. supersetTrie(app,newCNode)
6. return candidateIds

Figure 9: Algorithm for determining superset
queries

The reduction of the disk pages accessed, when using the
HTI index for superset queries, is not only attributed to the
access points offered by the trie. It is also a result of the
possibility of identifying exactly the transactions whose app
ends at the access tree nodes, as opposed to the rest of the
transactions within the same inverted list.

5. EXPERIMENTAL STUDY
As several surveys and previous research have demon-

strated, the inverted files, although a simple technique, offer
better performance than signature based methods for low
cardinality set values [7] and for document indexing [21].
Moreover they outperform traditional indices like B-trees,
for containment queries in RDBMSs [20]. For the aforemen-
tioned reasons, we chose the inverted files as the main point
of reference for the evaluation of the HTI index.

5.1 Methodology
HTI index. We have implemented a prototype of the

HTI index according to the description we gave in Section
3. Since query evaluation performance is dominated by disk
accesses, our implementation is aimed at providing accurate

results on number of disk pages accesses during query eval-
uation on the HT -index.

Some aspects of the index functionality were simulated;
disk pages are 4k arrays in main memory, and sibling nodes
are stored in linked lists instead of arrays. This implementa-
tion provides accurate results both on the page accesses and
on the size of access tree in the main memory. The former
are explicitly counted by the program and the latter can be
computed by ignoring the links between sibling nodes.

Inverted files. We have implemented a basic version of
the inverted file index. The vocabulary is kept in a hash
table and the inverted lists in 4k arrays corresponding to
disk pages. Each entry in the inverted file comprises the id
and the length of each transaction. The size of each entry is
es = sizeof(long int) + sizeof(short int), which is 6 bytes
in our case.

Real data. We have evaluated HTI on two real datasets
from UCI KDD [8] archive. Both of them are logs of user
behavior on web portals. The first one, denoted as msweb,
is a one-week log tracing the virtual areas that users visited
in the web portal www.microsoft.com. Each record corre-
sponds to a user session and the set value comprises the
areas she/he visited. There are 32k records and the vocabu-
lary of the dataset contains 294 distinct items (areas). The
distribution of the items in the records is skewed and the av-
erage size of the record is 3 items. Since the dataset is small,
to illustrate the performance of the two indices better, we
created a new one, by duplicating the records by a factor of
10, which resulted to a dataset of 320k records. This mul-
tiplication is reasonable, since it simply corresponds to a 10
week log.

The second dataset, denoted msnbc is again a log of users
behavior on the web portal of msnbc.com taken from the UCI
KDD archive as well. The vocabulary here is very limited,
comprising only 17 distinct items and unlike the previous
one, the distribution of the items is relatively uniform. The
average size of the record is 5.7 items.

Synthetic data. To investigate how HTI behaves for
datasets and domains larger than the ones we had from real
sources, we used synthetic data, with a skewed zipfian dis-
tribution of order 1 (as in [7]). Duplicates in each transac-
tion were dropped and we ended up with transactions with
lengths from 2 to 22 items, uniformly distributed.

Query generation. We created query sets for all the
three types of queries. As in other approaches [7], we con-
sider the evaluation of the proposed method on queries that
always have a solution as more informative. We created such
queries by randomly selecting existing transactions from D.

For the synthetic data, we ranged the number of items in
the query set, |qs|, from 2 to 22 and we created 50 queries
of each type. For the real data, we ranged the |qs| from 2-7,
since their domain and the average record length is a lot
smaller. The selectivities of the subset queries are less than
3%, with highest appearing for queries with |qs| = 2. The
most common case for larger |qs| and for equality queries is
that there are less than 5 answers. On the other hand the
selectivity of superset queries can surpass 3% for large |qs|
on the real data.

Evaluation metrics. We evaluate the HTI index by
considering two main factors: (a) the benefit it provides to
query evaluation, compared to regular inverted files and (b)
the main memory requirements it imposes. We evaluate the
benefit to query evaluation by counting disk page accesses

8

as the dominating factor of the problem. We show how
main memory requirements are affected for the different D
parameters by providing the number of access tree nodes.

Experimental setup. We implemented both methods in
C, on a Linux platform (Suse 9.3) and compiled it with gcc
version 3.3.4. Our experiments were performed on an AMD
Sempron 2800+ with 2G of main memory. The disk page
accesses were directly counted by the program, by tracing
how many of the 4k arrays were accessed.

5.2 Performance of the HTI index

5.2.1 Real data
To measure the benefit on query evaluation provided by

the HTI on real data, we evaluated subset, equality and su-
perset queries against the inverted file, and the HTI index.
For the case of the HTI index we varied the threshold, i.e.,
the percentage of items that comprise the Ifr. The results
are depicted in Figures 10 and 11. For the case of msweb
data, which are skewed but they have larger vocabulary than
msnbc data, we used as thresholds 5%, 20%, 40%. The size
of the access tree that must be kept in main memory is
small in all cases, with the biggest being around 350k, for
threshold 40%. For the case of msnbc data, where the vo-
cabulary is very small, we used the thresholds 20%, 60% and
100%. The largest access tree in this case is around 200k,
for threshold 100%. Note that for a threshold of 100%, all
items of I are indexed by the access tree, thus for all types
of queries no false positives are retrieved from the disk (we
can infer the length of a transaction by the length of the
access tree path if all items are indexed by the access tree).

As we can see the HTI index outperforms the inverted
file in all cases. Moreover, it scales a lot better as the size
of the query grows. For the larger queries, the performance
of HTI (with a suitable threshold) is at least a order of
magnitude better for all types of queries.

5.2.2 Synthetic data
By using synthetic data we are able to trace the impact

of the vocabulary I, the size of the dataset D and the size
of the query set qs on the HTI index. In the following we
investigate how each of the query types we introduced is
affected by these factors.

Subset. In Figure 12 we see how the inverted file and
the HTI index perform for subset queries. We compare
three versions of HTI-index with the inverted file, each time
varying the threshold. Consider the first variant of the HTI
index with a Ifr of only the top 0.5% of the total items. In
all three experiments of Figure 12, we count the average
number of page accesses performed by all our queries on all
our datasets as a function of (a) the size of the vocabulary,
I (left); (b) the size of the underlying database D (center),
and (c) the number of items belonging to the query set qs
(right). In all three cases, results are given for the average
value of all parameters that do not appear in each figure.
Thus, when varying |D|, we present the average of the results
for all |I| and |qs|, when we vary |I| we present the average
of the results for all |D| and |qs| and when we vary |qs|
we present the average of the results for all |D| and |I|.
Individual results obey the general trend and are omitted
for the interest of space.

In all cases, the HTI index outperforms the inverted file
by a significant factor. It is important to note that the

HTI seems to scale a lot better for large databases and
large queries; whereas in the average case the increase of
|D| seems to have a linear impact on the disk page accesses
for both methods, the gradient of the HTI index perfor-
mance is significantly smaller. The larger the threshold is,
the smaller the disk page access increase is. Furthermore,
the increase of the |qs| has diverting impact on the perfor-
mance of the inverted file and the HTI index. In the former
case it is followed by a proportional increase in disk page
accesses, whereas in the latter case the required number of
page accesses is reduced. This is due to the fact that when
dealing with large queries, the chance of having more items
from Ifr is greater, thus the chance of performing a more
effective pruning in the accesses tree is greater.

The increase of the vocabulary size seems beneficial both
for the HTI index and the inverted file, but as we show in
the experiments for the HTI size, it significantly augments
the memory requirements for the access tree.

Equality. Equality queries favor the HTI-index even
more. In Figure 13 we assess the number of disk page ac-
cesses for equality queries as a function of (a) the vocabu-
lary size, |I| (left), (b) the size of the underlying database,
|D| (center) and the number of items of the query set, |qs|
(right). The evaluation in the inverted file requires exactly
the same disk page accesses for equality queries, as it did
for subset queries. On the other hand, evaluating equal-
ity queries in the HTI requires less than half of the disk
pages accesses it did for the respective subset ones. This ef-
fect is even greater for queries with low cardinality qs. The
main reason that makes equality queries behave better with
the HTI index is that each query requires retrieving one
inverted list from the access tree at most.

Superset. As it can be inferred from Figure 14 in super-
set queries the HTI-index clearly outperforms the inverted
file index. The inverted file performs very poorly, since it
requires multiple scans of many lists. Note that the disk
page accesses performed in the evaluation of the superset
queries surpass the disk page accesses needed by subset and
equality queries by almost an order of magnitude.

5.3 Memory requirements of the HTI index
The size of the access tree of the HTI index for the real

datasets we used is very small; for the case of the msweb
data it has only 1857 nodes (around 33kb) for a threshold
of 5%, and in the worst case (threshold 40%) it has 20569
nodes (around 369kb). For the case of msnbc data, it has
only 7 nodes for a threshold of 20% and in the worst case
(threshold 100%) it has 11575 nodes (206kb). The size of
the access tree is important, since it has to be resident in
main memory; therefore, we investigated how it scales for
larger D and I by using synthetic data.

Figures 15 and 16 show how the access tree is affected
by the vocabulary size, |I| and the size of the database |D|.
An interesting observation is that for smaller vocabularies,
where the queries take longer to evaluate due to the existence
of larger lists, the size of the access tree is smaller, too. This
means that we can create HTI indices with larger thresholds
to counter this effect. As the vocabulary increases, the max-
imum size of the trie augments superlinearly, thus, for large
vocabularies the access tree tends to increase in a propor-
tional way to the database size. For small vocabularies, the
size of the access tree grows sublinearly (or remains stable
if the maximum size has been reached) with respect to the

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Subset

Inverted
thres-5%

thres-20%
thres-40%

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Equality

Inverted
thres-5%

thres-20%
thres-40%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Superset

Inverted
thres-5%

thres-20%
thres-40%

Figure 10: Average performance of queries on msweb data

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Subset

Inverted
thres-20%
thres-60%

thres-100%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Equality

Inverted
thres-20%
thres-60%

thres-100%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Superset

Inverted
thres-20%
thres-60%

thres-100%

Figure 11: Average performance of queries on msnbc data

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10

di
sk

 p
ag

e
ac

ce
ss

es

|I| in 1000’s

inverted
thres-0.5%

thres-1%
thres-3%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800 900 1000

di
sk

 p
ag

e
ac

ce
ss

es

|D| in 1000’s

inverted
thres-0.5%

thres-1%
thres-3%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20

di
sk

 p
ag

e
ac

ce
ss

es
|qs|

inverted
thres-0.5%

thres-1%
thres-3%

Figure 12: Average performance of subset queries

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10

di
sk

 p
ag

e
ac

ce
ss

es

|I| in 1000’s

inverted
thres-0.5%

thres-1%
thres-3%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800 900 1000

di
sk

 p
ag

e
ac

ce
ss

es

|D| in 1000’s

inverted
thres-0.5%

thres-1%
thres-3%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

inverted
thres-0.5%

thres-1%
thres-3%

Figure 13: Average performance of equality queries

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8 9 10

di
sk

 p
ag

e
ac

ce
ss

es

|I| in 1000’s

inverted
thres-0.5%

thres-1%
thres-3%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900 1000

di
sk

 p
ag

e
ac

ce
ss

es

|D| in 1000’s

inverted
thres-0.5%

thres-1%
thres-3%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

inverted
thres-0.5%

thres-1%
thres-3%

Figure 14: Average performance of superset queries

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 tr

ee
 n

od
es

 in
 1

00
0’

s

|I| in 1000’s

thres-0.5%
thres-1%
thres-3%

Figure 15: Effect of |I|

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 100 200 300 400 500 600 700 800 900 1000

nu
m

be
r

of
 tr

ee
 n

od
es

 in
 1

00
0’

s

|D| in 1000’s

thres-0.5%
thres-1%
thres-3%

Figure 16: Effect of |D|

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

nu
m

be
r

of
 tr

ee
 n

od
es

|D in millions of transactions|

Figure 17: |I| = 5k, 0.5%

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

threshold

Avg. page accesses
Number of tree nodes in 1000’s

Figure 18: Effect of k

10

database size. This is evident in Figure 17, where we vary
the size of the database while keeping the vocabulary cardi-
nality at 5k and the HTI threshold at 0.5. In the respective
experiment with |I| = 1k the tree reaches its maximum size
(31 nodes) very soon and remains invariant to the size of D.

5.4 Threshold choice
Whereas the vocabulary and the database size depend on

the data we have, the threshold for the HTI index is a choice
we must make according to the speed requirements and the
memory we have at our disposal. To highlight its effect we
created several HTI indices for different thresholds and we
show their performance in Figure 18 by varying the thresh-
old from 0.2% to 10%. We depict simultaneously how the
access tree grows, in 1000’s of nodes, and how the average
disk page accesses for the three types of queries fall as the
threshold grows. After a certain threshold the average disk
pages accesses are not significantly reduced, whereas the size
of the access tree continues to grow, even if not as fast as
for very low threshold.

6. CONCLUSIONS
In this paper we have tackled the problem of containment

queries on large collections of low cardinality set-valued at-
tributes. We have proposed a novel indexing scheme, the
HTI index, which superimposes a trie tree (kept in main
memory) over an inverted file (kept in secondary storage) to
efficiently answer subset, superset and set-equality queries.
We have introduced novel evaluation algorithms for these
classes of queries that use the HTI index and experimen-
tally demonstrated that the HTI clearly outperforms the
state-of-the-art organization scheme, i.e., the inverted file,
with reasonable main-memory overhead. Our experiments
have showed that the scale of our approach is a lot smoother
than the one of inverted files and in certain cases, for large
database or query-set sizes, we can reduce the disk page
accesses by orders of magnitude, with a small overhead of
main memory.

Future work comprises further investigations on how to
reduce the size of the access tree and how to exploit the
HTI index to efficiently support other kind of queries, like,
for example, set intersections or similarity queries.

7. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press / Addison-Wesley, 1999.
[2] C. Faloutsos. Signature files. In Information Retrieval:

Data Structures & Algorithms, pages 44–65. 1992.
[3] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and

tunable similar set retrieval. In SIGMOD, 2001.
[4] R. Goldman and J. Widom. Wsq/dsq: A practical

approach for combined querying of databases and the web.
In SIGMOD, 2000.

[5] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation. In SIGMOD, 2000.

[6] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A frequent-pattern
tree approach. Data Mining and Knowledge Discovery,
8(1):53–87, 2004.

[7] S. Helmer and G. Moerkotte. A performance study of four
index structures for set-valued attributes of low cardinality.
VLDBJ, 12(3):244 – 261, 2003.

[8] S. Hettich and S. D. Bay. The UCI KDD Archive.
University of California, Department of Information and
Computer Science. 1999.

[9] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and
R. Ramakrishnan. On the integration of structure indexes
and inverted lists. In SIGMOD, 2004.

[10] D. E. Knuth. The Art of Computer Programming, Volume
III: Sorting and Searching. Addison-Wesley, 1973.

[11] N. Mamoulis. Efficient processing of joins on set-valued
attributes. In SIGMOD, 2003.

[12] N. Mamoulis, D. W. Cheung, and W. Lian. Similarity
search in sets and categorical data using the signature tree.
In ICDE, 2003.

[13] S. Melnik and H. Garcia-Molina. Adaptive algorithms for
set containment joins. ACM TODS, 28(1):56–99, 2003.

[14] A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. ACM TOIS, 14(4):349–379, Oct. 1996.

[15] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[16] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel.
Compression of inverted indexes for fast query evaluation.
In ACM SIGIR, Aug. 2002.

[17] M. Stonebraker and D. Moore. Object-Relational DBMSs:
The Next Great Wave. Morgan Kaufmann, 1996.

[18] M. Terrovitis, S. Passas, P. Vassiliadis, and T. Sellis. HTI
technical report. www.dblab.ece.ntua.gr/˜mter/papers/
TR-HTI-01.pdf, 2006.

[19] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 2nd edition, 1999.

[20] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman. On supporting containment queries in relational
database management systems. In SIGMOD, 2001.

[21] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files
versus signature files for text indexing. ACM TODS,
23(4):453–490, 1998.

[22] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient
indexing technique for full text databases. In VLDB, 1992.

11

