
Preference Queries in Context

Kostas Stefanidis
Department of Computer

Science
University of Ioannina

GR-45110 Ioannina, Greece

kstef@cs.uoi.gr

Evaggelia Pitoura
Department of Computer

Science
University of Ioannina

GR-45110 Ioannina, Greece

pitoura@cs.uoi.gr

Panos Vassiliadis
Department of Computer

Science
University of Ioannina

GR-45110 Ioannina, Greece

pvassil@cs.uoi.gr

ABSTRACT
To handle the overwhelming amount of information cur-
rently available, personalization systems allow users to spec-
ify the information that interests them through preferences.
In general, users may have different preferences depending
on context, for instance, on the current weather, time or
location. In this paper, we define a model for expressing
contextual preferences. We model context as an ordered set
of multidimensional attributes. Then, user preferences can
be specified as functions over these context attributes. We
formulate the problem of identifying the preferences that are
most relevant to a query and present an algorithm that lo-
cates them. We also introduce index structures that exploit
contextual information for (a) storing preferences and (b)
caching the results of queries based on their context.

1. INTRODUCTION
Today, a very large and steadily increasing amount of infor-
mation is available to a wide spectrum of users, thus creating
the need for personalized information processing. Instead of
overwhelming the users with all available data, a personal-
ized query returns only the information that is of interest
to them [11]. In general, to achieve personalization, users
express their preferences on specific pieces of data either ex-
plicitly or implicitly. The results of their queries are then
ranked based on these preferences. However, most often
users may have different preferences under different circum-
stances. For instance, a user visiting Athens may prefer to
visit Acropolis in a nice sunny summer day and the archae-
ological museum in a cold and rainy winter afternoon. In
other words, the results of a preference query may depend
on context.

Context is a general term used to capture any information
that can be used to characterize the situations of an entity
[5]. Common types of context include the computing context
(e.g., network connectivity, nearby resources), the user con-
text (e.g., profile, location), the physical context (e.g., noise
levels, temperature), and time [2]. A context-aware system

is a system that uses context to provide relevant informa-
tion and services to its users. In this paper, we consider
a context-aware preference database system which supports
preferences based on context.

We model context as a set of multidimensional context pa-
rameters. A context state corresponds to an assignment of
values to context parameters. By allowing context parame-
ters to take values from hierarchical domains, different levels
of abstraction for the captured context data are introduced.
For instance, the context parameter location may take val-
ues from a region, city or country domain. Users employ
context descriptors to express their preferences on specific
database instances for a variety of context states expressed
with varying levels of detail.

Each query is associated with one or more context state.
The context state of a query may, for example, be the cur-
rent state at the time of its submission. Furthermore, a
query may be explicitly enhanced with context descriptors to
allow exploratory queries about hypothetical context states.
We formulate the context resolution problem that refers to
the problem of identifying those preferences that are ap-
plicable to the context states that are most relevant to the
state of a query. The problem can be divided in two steps:
(a) the identification of all the candidate context states that
encompass the query state and (b) the selection of the most
appropriate state among these candidates, in the sense that,
each time, we pick the state which is most specific with re-
spect to the query context. The first subproblem is resolved
through the notion of the “covers” partial order between
states that relates context states expressed at different lev-
els of abstraction. For instance, the notion of coverage al-
lows relating a context state in which location is expressed
at the level of a city and a context state in which location
is expressed at the level of a country. To resolve the second
subproblem, we propose two distance metrics that capture
similarity between context states to allow choosing the state
which is most similar to the query state.

We also propose an algorithm for locating those preferences
that refer to the context states that are most relevant to the
context states of the query. The algorithm takes advantage
of a data structure, called profile tree, that indexes users
preferences based on their associated context. Intuitively,
the algorithm starts from the query context and incremen-
tally “increases” its coverage, until a matching state is found
in the profile tree. Finally, we propose storing the resolved

pvassil
HDMS disclaimer
Disclaimer: The HDMS symposia involve announcements of published/on-going work and DO NOT have formal proceedings; the presented papers are slightly modified versions of published work and are electronically available simply for the convenience of the conference participants.

pvassil
Note
Completed set by pvassil

pvassil
Note
Marked set by pvassil

pvassil
Note
MigrationConfirmed set by pvassil

context states as well as the results of context queries in
a context query tree, so that these results may be used by
similar queries in the future. The main difference between
the profile and the context query tree is that the profile tree
stores the context states expressed by the users in their pref-
erence, while the context query tree maintains the context
states that appear in users’ queries.

In summary, the main contributions of this paper are:

• We introduce a model for representing and specify-
ing context through context descriptors that allows the
specification of the context states that are relevant to
preferences and queries at various levels of detail.

• We formulate the context resolution problem as the
problem of identifying the context states that qualify
to encompass the context state of a query and propose
appropriate distance functions between context states
as well as an algorithm to determine the best among
them.

• We introduce the profile and the context query tree for
indexing contextual preference and contextual query
results respectively.

The rest of this paper is organized as follows. In Section 2,
we present our reference example. In Section 3, we introduce
our context and preference model and the profile tree. In
Section 4, we focus on processing contextual queries, while
in Section 5, we describe the context query tree. Section
6 presents related work. Finally, Section 7 concludes the
paper with a summary of our contributions.

2. REFERENCE EXAMPLE
We consider a simple database that maintains information
about points of interest. The points of interest may be
for example museums, monuments, archaeological places or
zoos. The database schema consists of a single database re-
lation: Points of Interest(pid, name, type, location, open-
air, hours of operation, admission cost). We consider three
context parameters as relevant: location, temperature and
accompanying people. Users have preferences about points
of interest that have specific attribute values. Such prefer-
ences are expressed by providing a numeric score between 0
and 1 depending on the values of the context parameters.

For instance, a user may give to a value of the attribute open-
air different scores depending on temperature, i.e., an open-
air point of interest takes a lower score when the weather is
cold than when the weather is warm. Furthermore, the
current user’s location affects the degree of interest of a
location in which a point of interest is placed (usually,
users prefer to visit places that are nearby their current lo-
cation). Similarly, the interest score of a preference that
is related to the type of the visiting place depends on the
accompanying people that might be friends, family, or
alone. For example, a museum may be a better place to
visit than a brewery in the context of family.

3. CONTEXT AND PREFERENCE MODEL

Our model is based on relating context and database rela-
tions through preferences. First, we present the fundamental
concepts related to context modeling, and then, we proceed
in defining user preferences.

3.1 Modeling Context
Context is modeled through a finite set of special-purpose at-
tributes, called context parameters (Ci). In particular, for a
given application X, we define its context environment CEX

as a set of n context parameters {C1, C2, . . . , Cn}. For in-
stance, the context environment of our example is {location,
temperature, accompanying people}. Each context parame-
ters Ci is characterized by a context domain, dom(Ci). As
usual, a domain is an infinitely countable set of values.

A context state corresponds to an assignment of values to
context parameters at some point in time. In particular,
a context state w is a n–tuple of the form (c1, c2, . . . , cn),
where ci ∈ dom(Ci). For instance, a context state in our
example may be: (Plaka, warm, friends). The set of all
possible context states called world, W , is the Cartesian
product of the domains of the context attributes: W =
dom(C1)× dom(C2)× · · · × dom(Cn).

To allow more flexibility in defining preferences, we model
context parameters as multidimensional attributes. In par-
ticular, we assume that each context parameter participates
in an associated hierarchy of levels of aggregated data, i.e., it
can be viewed from different levels of detail. Formally, an at-
tribute hierarchy is a lattice (L,≺): L = (L1, . . . , Lm−1, ALL)
of m levels and ≺ is a partial order among the levels of L
such that L1 ≺ Li ≺ ALL, for every 1 < i < m. We require
that the upper bound of the lattice is always the level ALL,
so that we can group all values into the single value ‘all’.
The lower bound of the lattice is called the detailed level of
the context parameter. We use the notation domLj (Ci) for
the domain of level Lj of parameter Ci. For the domain of
the detailed level, we shall use both domL1(Ci) and dom(Ci)
interchangeably.

For instance, consider the hierarchy location of Fig. 1 (left).
Levels of location are Region, City, Country, and ALL.
Region is the most detailed level. Level ALL is the most
coarse level.

The relationship between the values of the context levels

is achieved through the use of the set of anc
Lj

Li
, Li ≺ Lj ,

functions [20]. A function anc
Lj

Li
assigns a value of the do-

main of Li to a value of the domain of Lj . For instance,

ancCity
Region(Plaka) = Athens. Formally, the set of functions

anc
Lj

Li
satisfies the following conditions:

1. For each pair of levels L1 and L2 such that L1 ≺ L2,
the function ancL2

L1
maps each element of domL1(Ci)

to an element of domL2(Ci).

2. Given levels L1, L2 and L3 such that L1 ≺ L2 ≺ L3,
the function ancL3

L1
equals to the composition ancL1

L2
◦

ancL2
L3

.

3. For each pair of levels L1 and L2 such that L1 ≺ L2, the
function ancL2

L1
is monotone, i.e., ∀ x, y ∈ domL1(Ci),

Athens

 Greece

Region

City

Country

 Perama

Ioannina

ALL all

KifisiaPlaka

Figure 1: Hierarchies on location.

Location Temperature Accompanying_people

Weather Country (L3)

Region (L1)

Relationship (L1)
Characterization (L2)

Conditions (L1)City (L2)

ALL (L4) ALL (L3) ALL (L2)

Figure 2: Hierarchies on location, temperature and
accompanying people.

L1 ≺ L2, x < y ⇒ ancL2
L1

(x) ≤ ancL2
L1

(y).

The function descL2
L1 is the inverse of ancL2

L1, that is descL2
L1

(v)=

{x ∈ domL1(Ci) : ancL2
L1(x) = v}. For instance, descCity

Region

(Athens) = {Plaka, Kifisia} and descCountry
City (Greece) =

{Athens, Ioannina}. Finally, we use L1 ¹ L2 between two
levels to mean L1 ≺ L2 or L1 = L2 .

Regarding our running example, levels of location are Region,
City, Country and ALL. For weather, there are three levels:
the detailed level Conditions (L1) whose domain includes
the values freezing, cold, mild, warm and hot, the level
Weather Characterization (L2) which just refers to whether
the weather is good (grouping mild, warm and hot) or bad
(grouping freezing and cold) and the level ALL (L3) so that
we can group all the values into the single value ‘all’. Fi-
nally, the context parameter accompanying people has the
lower level Relationship (L1) witch consists of the values
friends, family, alone and the level ALL (L2). Figure 2
(right) depicts the hierarchies on location, temperature and
accompanying people.

We define the extended domain for a parameter Ci with m
levels as edom(Ci) = ∪m

j=1 domLj (Ci). Then, an extended
context state is an assignment of values to context parame-
ters from their extended domain. In particular, an extended
context state s is a n–tuple of the form (c1, c2, . . . , cn), where
ci ∈ edom(Ci). For instance, a context state in our exam-
ple may be (Greece, warm, friends) or (Greece, good, all).
The set of all possible extended context states called ex-
tended world, EW , is the Cartesian product of the extended
domains of the context attributes: EW = edom(C1) ×
edom(C2)× · · · × edom(Cn).

Users can express conditions regarding the values of a con-
text parameter through context descriptors. Specifically, a
context parameter descriptor is a specification that a user
can make for a particular context parameter.

Definition 1 (Context parameter descriptor). A
context parameter descriptor cod(Ci) for a parameter Ci is
an expression of the form:

1. Ci = V , where V ∈ edom(Ci), or

2. Ci ∈ {value1, . . . , valuem}, where valuek ∈ edom(Ci),
1 ≤ k ≤ m, or

3. Ci ∈ [value1, valuem], where [value1, valuem] denotes
a range of values x ∈ edom(Ci), such that value1 ≤ x
≤ valuem.

For example, given a context parameter location, a context
parameter descriptor can be of the form location = Plaka,
or location ∈ {Plaka, Acropolis}. Given a context parame-
ter temperature, a range-based context parameter descrip-
tor can be of the form temperature ∈ [mild, hot], signifying
thus the set of values {mild, warm, hot}.

There is a straightforward way to translate context parame-
ter descriptors to sets of values. Practically, this involves
translating range descriptors to sets of values (remember
that all domains are infinitely countable, hence, they are
not dense and all ranges can be translated to finite sets of
values).

Definition 2. (Context of a context parameter de-
scriptor). Given a context parameter descriptor c = cod(Ci)
for a parameter Ci, its context is a finite set of values, com-
puted as follows:

Context(c) =

8
>>><
>>>:

{v} if c of the form Ci = v
{v1, . . . , vm} !!if c of the form Ci ∈

{v1, . . . , vm}
{v1, . . . , vm} if c of the form Ci ∈

[v1, vm]

A context descriptor is a specification that a user can make
for a set of context parameters, through the combination of
simple parameter descriptors.

Definition 3 (Composite context descriptor). A
(composite) context descriptor cod is a formula cod(Ci1) ∧
cod(Ci2) ∧ . . . ∧ cod(Cik) where each Cij , 1 ≤ j ≤ k is a
context parameter and there is at most one parameter de-
scriptor per context parameter Cij .

Given a set of context parameters C1, . . . , Cn, a compos-
ite context descriptor can describe a set of possible context
states, with each state having a specific value for each pa-
rameter. Clearly, one context descriptor can produce more
than one states. The production of these states can be per-
formed by computing the Cartesian product of the context
states of all the individual parameter descriptors of a con-
text descriptor. If there is no parameter descriptor for a
context parameter, then the value all is assumed. Observe,
that the set of produced states is finite, due to the finite
character of the context of the parameter descriptors.

Definition 4 (Context of a context descriptor).
Assume a set of context parameters C1, . . . , Cn and a con-
text descriptor cod = cod(Ci1) ∧ cod(Ci2)∧ · · · ∧ cod(Cik),
0 ≤ k ≤ n. Without loss of generality, we assume that
the parameters without a parameter descriptor are the last
n−k ones. The context states of a context descriptor, called
Context(cod) are defined as:
Context(cod(Ci1)) × . . . × Context(cod(Cik)) × {all} ×
. . . × {all}

Suppose for instance, the context descriptor (location =
Plaka ∧ temperature = {warm, hot} ∧ accompanying peop-
le = friends). This descriptor corresponds to the following
two context states: (Plaka, warm, friends) and (Plaka, hot,
friends). In case a context descriptor does not contain all
context parameters, that means that the absent context pa-
rameters have irrelevant values. This is equivalent to a con-
dition Ci = all.

3.2 Contextual Preferences
In this section, we define how context affects the results
of queries, so that the same query returns different results
based on the context of its execution. Such context-aware
personalization is achieved through the use of preferences.
In particular, users express their preferences on specific data-
base instances for a variety of context states.

In general, there are two different approaches for expressing
preferences: a quantitative and a qualitative one. With the
quantitative approach, preferences are expressed indirectly
by using scoring functions that associate a numeric score
with every tuple of the query answer. In the qualitative
approach (such as the work in [4]), preferences between the
tuples in the query answer are specified directly, typically
using binary preference relations.

Although, our context model can be used for extending both
quantitative and qualitative approaches, we use a simple
quantitative preference model to demonstrate the basic is-
sues underlying contextualization. In particular, users ex-
press their preference for specific database instances by pro-
viding a numeric score which is a real number between 0
and 1. This score expresses their degree of interest. Value 1
indicates extreme interest, while value 0 indicates no inter-
est. Interest is expressed for specific values of non context
attributes of a database relation, for instance for the vari-
ous attributes (e.g., type, location) of our Point of Interest
database relation. This is similar to the general quantitative
framework of [1].

Thus, each contextual preference is described by (a) a con-
text descriptor cod, (b) a set of values a1, a2, . . . , am of
corresponding non-context parameters A1, A2, . . . , Am, with
ai ∈ dom(Ai), and (c) a degree of interest, i.e., a real number
between 0 and 1. The meaning is that in the set of context
states specified by cod, all database tuples (instances) for
which the attributes A1, A2, . . . , Am have respectively val-
ues a1, a2, . . . , am are assigned the indicated interest score.
Formally,

Definition 5 (Contextual preference). A contex-
tual preference is a triple of the form contextual prefer-

ence=(cod, attributes clause, interest score), where cod is a
context descriptor, the attributes clause {A1θ1a1, A2θ2a2, . . . ,
Akθkak} specifies a set of attributes A1, A2, . . . , Ak with their
values a1, a2, . . . , ak with ai ∈ dom(Ai), θi ∈ {=, <, >,≤,≥
, 6=} and interest score is a real number between 0 and 1.

Since our focus in this paper is on context descriptors, we
further simplify our model, so that in the following, we shall
use attributes clauses with a single attribute A of the form
A = a, for a ∈ dom(A). Further, we assume that for tu-
ples for which more than one preference applies, appropriate
combining preference functions exist [1].

In our reference example, there are three context parame-
ters location, temperature and accompanying people. As
non-context parameters, we use the attributes of the rela-
tion Points of Interest. For example, consider that a user
wants to express the fact that, when she is at Plaka and
the weather is warm, she likes to visit Acropolis. This may
be expressed through the following contextual preference:
contextual preference1 = ((location = Plaka ∧ tempera-
ture = warm), (name = Acropolis), 0.8). Similarly, she
may also express the fact that when she is with friends, she
likes to visit breweries through a preference of the form:
contextual preference2 = ((accompanying people = frie-
nds), (type = brewery), 0.9). More involved context de-
scriptors may be used as well. As an example, consider the
preference: contextual preference3 = ((location = Plaka
∧ temperature ∈ {warm, hot}), (name = Acropolis), 0.8),
where the context descriptor is cod = (location = Plaka ∧
temperature ∈ {warm, hot}).

A contextual preference may conflict with another one. For
example, assume that a user defines that she prefers to visit
Acropolis in a nice sunny day, giving to this preference a
high score of 0.8. If, later on, she gives to the same pref-
erence the interest score 0.3, this will cause a conflict. For-
mally, a conflict between contextual preferences is defined
as follows:

Definition 6 (Conflicting preferences). A conte-
xtual preferencei = (codi, (Ai = ai), interest scorei) con-
flicts with a contextual preferencej = (codj, (Aj = aj),
interest scorej) if and only if:

1. Context(codi) ∩ Context(codj) 6= ∅, and

2. Ai = Aj and ai = aj, and

3. interest scorei 6= interest scorej.

Such conflicting preferences are detected when users enter
their preferences. The context states that belong to more
than one conflicting preference are identified and they are
not maintained by the system. Finally, we define profile P
as:

Definition 7 (Profile). A profile P is a set of non-
conflicting contextual preferences.

c c c any...

...c c any ...

c any c any...c

21 23 21 23 25

11 12 14

n2 n2 n3

c c c 22 ...c

1

2

n

attribute=value, score attribute=value, score ... attribute, score

C

C

C

Figure 3: The profile tree.

3.3 The Profile Tree
In this section, we present a scheme for storing contextual
preferences. Contextual preferences are stored in a hierar-
chical data structure called profile tree, as shown in Fig.
3. Recall that each contextual preference is expressed us-
ing a context descriptor, cod, that specifies a set of context
states. The basic idea is to store in the profile tree, all
context states that correspond to context descriptors that
appear in the profile P . Each such context state will corre-
spond to a single root-to-leaf path in the profile tree. Then,
a set of paths will constitute the context descriptor of a
contextual preference. In each leaf of the tree, we store the
attribute clause and interest score applicable to the context
state corresponding to the path leading to this leaf.

Assume that the context environment CEX has n context
parameters {C1, C2, . . . , Cn}. There is one level for each
context parameter and there is one additional level for the
leaves. Thus, the total height of the tree is n + 1. Each
context parameter is assigned to one level of the tree. For
simplicity, assume that context parameter Ci is mapped to
level i.

Let P be a profile and CP be the set of context descrip-
tors that appear in the contextual preferences in P . There
is a path in the tree for each context state s of each cod
in CP . The profile tree for P is constructed as follows.
Each non-leaf node at level k contains cells of the form
[key, pointer], where key is equal to ckj ∈ edom(Ck) for
a value of the context parameter Ck that appeared in state
s of a context descriptor cod in CP . The pointer of each
cell points to the node at the next lower level (level k + 1)
containing all the distinct values of the next context pa-
rameter (parameter Ck+1) that appeared in the same con-
text state s of cod. In addition, key may take the special
value all, which corresponds to the lack of the specifica-
tion of the associated context parameter in cod. Each leaf
node has the form [attribute = value, interest score], where
[attribute = value, interest score] is the one associated with
cod.

Any conflicting contextual preferences are detected during
their insertion in the profile tree. Each contextual preference
is associated with a set of paths of the profile tree, one for
each of the context states of the context produced from its
descriptor cod. When a path (i.e., state) is inserted in the
tree, we check whether the same path already exists, thus

leading to a conflicting preference. If this is the case, the
path is not inserted and the user is notified. Note that
to detect conflicts, a single traversal of a root-to-leaf path
suffices.

the context parameters are assigned to the levels of the con-
textual profile tree importance. So, as smaller is the weight
of a parameter, as lower is placed in

In summary, a profile tree for n context parameters, satisfies
the following properties:

• It is a directed acyclic graph with a single root node.

• There are at most n+1 levels. Each one of the first n
levels corresponds to a context parameter and the last
one to the leaf nodes.

• Each non-leaf node at level k maintains cells of the
form [key, pointer], where key ∈ edom(Ck) for some
value of ck that appeared in a preference or key =
all. No two cells within the same node contain the
same key value. The pointer points to a node at level
k + 1 having cells with key values which appeared in
the same context descriptor with the key.

• Each leaf node stores an attribute with its value and
related degree of interest of the contextual preference
that corresponds to the path leading to it.

For example, assume an instance of a profile P consisting of
the following preferences: contextual preference1 = ((lo-
cation = Kifisia ∧ temperature = warm ∧ accompany-
ing people = friends), (type = cafeteria), 0.9), contextual
preference2 = ((accompanying people = friends), (type

= brewery), 0.9), and contextual preference3 = ((loca-
tion = Plaka ∧ temperature ∈ {warm, hot}), (name =
Acropolis), 0.8). Assume further that the three context pa-
rameters of our reference example are assigned to levels as
follows: accompanying people is assigned to the first level
of the tree, temperature to the second and location to the
third one. Leaf nodes store the relative to each contextual
preference attribute name with its value, and the interest
score of the corresponding preference. For the above con-
textual preferences, the profile tree of Fig. 4 is constructed.

The way that the context parameters are assigned to the
levels of the context tree affects its size. Let mi, 1 ≤ i ≤ n,
be the cardinality of the domain, then the maximum number
of cells is m1∗(1+m2∗(1+. . . (1+mn))). The above number
is as small as possible, when m1 ≤ m2 ≤ · · · ≤ mn, thus,
it is better to place context parameters with domains with
higher cardinalities lower in the context tree.

4. CONTEXTUAL PREFERENCE QUERIES
In this section, we define contextual queries. Then, we for-
mulate the problem of identifying the preferences that are
most relevant to a query and present an algorithm that lo-
cates them.

4.1 Contextual Queries
A contextual query is a query enhanced with information
regarding context. Implicitly, the context associated with a

type=cafeteria
 0.9

warm all

 all

 0.9
type=brewery

 friends all

warm hot

 Plaka

name=Acropolis
 0.8

name=Acropolis
 0.8

 PlakaKifisia

Figure 4: An instance of a profile tree.

contextual preference query is the current context, that is,
the context surrounding the user at the time of the submis-
sion of the query. The current context should correspond to
a single context state, where each of the values of the con-
text parameters takes a specific value from its most detailed
domain. However, in some cases, it may be possible to spec-
ify the current context using only rough values, for example,
when the values of some context parameters are provided by
sensor devices with limited accuracy. In this case, a context
parameter may take a single value from a higher level of the
hierarchy or even more than one value.

Besides the implicit context, we also consider queries that
are explicitly augmented with an extended context descrip-
tor. For example, a user may want to pose an exploratory
query of the form: “When I travel to Athens with my family
this summer (implying good weather), what places should I
visit?”. Formally,

Definition 8 (Extended context descriptor). An
extended context descriptor, ecod is a formula of the follow-
ing form: (cod11 ∧ · · · ∧ cod1j) ∨ · · · ∨ (codl1 ∧ · · · ∧ codlm)
where codij is a context descriptor.

Definition 9 (Contextual query). A contextual qu-
ery CQ is a query Q enhanced with an extended context de-
scriptor denoted ecodQ.

Now, the problem is: given the ecodQ of a contextual query
CQ and a user profile P , identify the contextual preferences
that are the most relevant to the context states specified
by ecodQ. Next, we first formalize the problem and then,
provide a procedure for locating such preferences.

4.2 Context State of a Query
Assume a contextual query CQ enhanced with an extended
context descriptor consisting of a context descriptor of the
form ecodQ = (location = Athens ∧ weather = warm) and
a simple profile P = { ((location = Greece ∧ weather =
warm), attributes clause, interest score1), ((location =
Europe ∧ weather = warm), attributes clause, interest
score2)}. Intuitively, we are seeking for a context descrip-

tor in P that is more general than the query descriptor, in
the sense that its context covers that of the query. Both
context descriptors in P satisfy this requirement, however,
the first one is more “specific” and should be the one used.

First, we formalize the notion of a set of states covering
another one.

Definition 10 (Covering context state). An exte-
nded context state s1 = (c1

1, c
1
2, . . . , c

1
n) ∈ EW covers an ex-

tended context state s2 = (c2
1, c

2
2, . . . , c

2
n) ∈ EW , iff ∀ k, 1

≤ k ≤ n, c1
k = c2

k, or c1
k = anc

Lj

Li
(c2

k) for some levels Li ≺
Lj.

It can be shown that the covers relationship among states
is a partial order.

Theorem 1. The covers relationship among states is a
partial order relationship.

Proof: We must prove that the covers relationship is (1)
reflexive (i.e., s covers s), (2) antisymmetric (if s1 covers
s2 and s2 covers s1, then s1 = s2) and (3) transitive (if s1

covers s2 and s2 covers s3, then s1 covers s3).

1. Reflexivity is straightforward.

2. Assume for the purpose of contradiction, that the anti-
symmetric property does not hold. In this case, there
is a certain parameter k, for which, c1

k = ancL1
L2

(c2
k)

and c2
k = ancL2

L1
(c1

k). But, this cannot happen due to
the partial order of levels in a hierarchy.

3. The transitivity property is proved similarly.

Definition 11 (Covering set). A set Si of extended
context states, Si ⊆ EW covers a set Sj of extended context
states, Sj ⊆ EW , iff ∀ s ∈ Sj, ∃ s′ ∈ Si, such that s′ covers
s.

Now, we define formally, which context descriptor matches
the state of a query.

Definition 12 (Matching context). Let P be a pro-
file, cod a context descriptor and CP the set of context de-
scriptors appearing in the contextual preferences of P . We
say that a context descriptor cod′ ∈ CP is a match for cod
iff

(i) Context(cod′) covers Context(cod), and

(ii) ¬∃ cod′′ ∈ CP , cod′′ 6= cod′, such that Context(cod′)
covers Context(cod′′) and Context(cod′′) covers Con-
text(cod).

There are two issues, one is whether there is at least one
context preference that matches a given cod and the other
one is what happens if there are more than one match. Re-
garding the first issue, if there is no matching context, we
consider that there is no context associated with the query.
In this case, the query is executed as a normal (i.e., non

contextual) preference query. Note that the user can define
non contextual preference queries, by using empty context
descriptors which correspond to the (all, all, . . . , all) state
(see Def. 4).

As an example for the case of more than one match, consider
again the ecod = (location = Athens ∧ weather = warm)
and the profile P ={ ((location = Greece ∧ weather =
warm), attributes clause, interest score1), ((location =
Athens ∧ weather = good), attributes clause, interest sco-
re2)}. Both context descriptors in P satisfy the first con-
dition of Def. 12 (i.e., it holds Context(location = Greece
∧ weather = warm) covers Context(location = Athens ∧
weather = warm) and (location = Athens ∧ weather =
good) covers Context(location = Athens ∧ weather = wa-
rm)), but none of them covers the other.

In this case, it is necessary to define which is the most closely
related state, i.e., a better match. There are many ways to
handle such ties. One is to let the user decide. In this case,
both matching preferences are presented to the users, and
they decide which one to use. In the next section, we propose
two ways of defining similarity among context states.

4.3 State Similarity
We introduce two ways of selecting the most relevant context
state. The first one is expressed using the nearest upper
level of the hierarchy for each context parameter. The other
one selects among the matching context descriptors, the one
whose context state has the smallest cardinality. Next, we
formalize these two concepts of similarity.

To express similarity between two context states, we intro-
duce a distance function named hierarchy distance. Using
the hierarchy distance leads to choosing the preference that
refers to the most specific context state, that is the state
that is defined in the most detailed hierarchy level. To de-
fine the hierarchy distance, we define first the level of a state
as follows.

Definition 13 (Levels of a state). Given a state s =
(c1, c2, . . . , cn), the hierarchy levels that correspond to this
state are levels(s) = [Lj1 , Lj2 , . . . , Ljn], such that, ci ∈
domLji

(Ci), i = 1, . . . , n.

The distance between two levels is defined as the minimum
path between them in a hierarchy, if such a path exists.
Otherwise, the distance is infinite.

Definition 14 (Level distance). Given two levels L1

and L2, their distance distH(L1, L2) is defined as follows:

1. if a path exists in a hierarchy between L1 and L2, then
distH(L1, L2) is the minimum number of edges that
connect L1 and L2;

2. otherwise distH(L1, L2) = ∞.

Having defined the distance between two levels, we can now
define the level-based distance between two states.

Definition 15 (Hierarchy state distance). Given two
states s1 = (c1

1, c
1
2, . . . , c

1
n) and s2 = (c2

1, c
2
2, . . . , c

2
n), the hi-

erarchy distance distH(s1, s2) is defined as:
distH(s1, s2) =

Pn
i=1 |distH(L1

i , L
2
i)|.

A second way to count the distance between two states is
to use the Jaccard distance function. In this case, we com-
pute all the descendants of each value of a state. For two
values of two states corresponding to the same context pa-
rameter, we measure the fraction of the intersection of their
corresponding lowest level value sets over the union of this
two sets. In this case, we consider as a better match, the
“smallest” state in terms of cardinality.

The Jaccard distance of two values v1 and v2, belonging to
the levels Li and Lj of the same hierarchy H that has as
lowest level the level L1 can be defined by computing the
descendants at the the level L1, that is the descLi

L1(v1) and

descLi
L1

(v2) of these two values respectively.

Definition 16 (Jaccard distance). The Jaccard dis-
tance of two values v1 and v2, belonging to levels Li and Lj

of the same hierarchy H that has as lowest level the level L1,
is defined as:

distJ(v1, v2) = 1− desc
Li
L1

(v1)
T

desc
Lj
L1

(v2)

desc
Li
L1

(v1)
S

desc
Lj
L1

(v2)
.

Definition 17 (Jaccard state distance). Given two
states s1 = (c1

1, c
1
2, . . . , c

1
n) and s2 = (c2

1, c
2
2, . . . , c

2
n), the Jac-

card distance distH(s1, s2) is defined as
distJ(s1, s2) =

Pn
i=1 |distJ(c1

i , c
2
i)|.

We shall show that the ordering produced by the Jaccard
distance is consistent with the ordering produced by the
hierarchy distance.

Property 1. Assume three values, v1, v2, v3, defined at
different levels L1 ≺ L2 ≺ L3 of the same hierarchy having
L0 as the most detailed level, such that v3 = ancL3

L2
(v2) =

ancL2
L1

(v1). Then, distJ(v3, v1) ≥ distJ(v2, v1).

Proof: By definition,

distJ(v1, v2) = 1− desc
L1
L0

(v1)
T

desc
L2
L0

(v2)

desc
L1
L0

(v1)
S

desc
L2
L0

(v2)
(1)

and

distJ(v1, v3) = 1− desc
L1
L0

(v1)
T

desc
L3
L0

(v3)

desc
L1
L0

(v1)
S

desc
L3
L0

(v3)
. (2)

In both fractions, the numerator reduces to descL1
L0

(v1), clear-
ly due to the transitivity property of the ancestor func-
tions. The denominator of the first fraction is descL2

L0
(v2),

whereas the denominator of the second fraction is descL3
L0

(v3)

⊇ descL2
L0

(v2), again due to the transitivity property of the
ancestor function (i.e, all descendants of v2 at the detailed
level are also descendants of v3). Therefore dist(v3, v1) ≥
dist(v2, v1).

We show next that the hierarchy distance produces an or-
dering of states that is compatible with the covers partial
order in the sense expressed by the following property.

Property 2. Assume a state s1 = (c1
1, c

1
2, . . . , c

1
n). For

any two different states s2 = (c2
1, c

2
2, . . . , c

2
n) and s3 = (c3

1, c
3
2,

. . . , c3
n), s2 6= s3, that both covers s1, that is s2 covers

s1 and s3 covers s1, if s3 covers s2, then distH(s3, s1) >
distH(s2, s1).

Proof: Let level(s1) = [L1
1, L

1
2, . . . , L

1
n], level(s2) = [L2

1, L
2
2,

. . . , L2
n] and level(s3) = [L3

1, L
3
2, . . . , L

3
n]. From Def. 10,

since s2 covers s1, and the fact that the level of any ancestor
of ci is larger than the level of ci, it holds L2

i º L1
i , ∀ 1 ≤ i

≤ n (1). Similarly, since s3 covers s1, it holds L3
i º L1

i , ∀ 1
≤ i ≤ n (2), and, since s3 covers s2, it holds L3

i º L2
i , ∀ 1

≤ i ≤ n (3). From (1), (2) and (3), we get L3
i º L2

i º L1
i ,

∀ 1 ≤ i ≤ n (4). Since s2 6= s3, for at least one j, 1 ≤ j ≤
n, it holds L3

j Â L2
j (5). Thus from (4), (5) and Def. 15, it

holds distH(s3, s1) > distH(s2, s1).

The property states that between two covering states s2 and
s3, the matching one is the one with the smallest hierarchy
distance. Due to Property 1, the same holds for the Jaccard
distance as well. That is:

Property 3. Assume a state s1 = (c1
1, c

1
2, . . . , c

1
n). For

any two different states s2 = (c2
1, c

2
2, . . . , c

2
n) and s3 = (c3

1, c
3
2,

. . . , c3
n), s2 6= s3, that both covers s1, that is s2 covers

s1 and s3 covers s1, if s3 covers s2, then distJ(s3, s1) >
distJ(s2, s1).

4.4 A Context Resolution Algorithm
As already mentioned, given a database with information
and a certain context descriptor (that characterizes either
the current or a hypothetical context), the problem is to
locate the tuples of the relation that correspond to the given
context descriptor and score them appropriately.

The problem is further divided in two parts:

1. Locate in the profile tree the paths (i.e., context states)
that correspond to the given context descriptor (in an
exact or approximate fashion).

2. On the basis of the leaves of these paths (i.e., expres-
sions of the form Ai = value, score), determine the
corresponding tuples in the underlying database and
annotate them with the appropriate score.

In the following, we detail each of these steps.

Determination of relevant paths in the profile tree.
Given a contextual query CQ with an extended context de-
scriptor, for each context state s = (c1, c2, . . . , cn) in the
context of the descriptor, we search the contextual prefer-
ences in the profile to locate a state that matches it. To this
end, we use the profile tree. If there is a state that exactly
matches it, that is a state (c1, c2, . . . , cn) then the associated
preference is returned to the user. Note, that this state is
easily located, by a single depth-first-search traversal of the
Profile tree. Starting from the root of the tree (level 1), at
each level i, we follow the pointer associated with key = ci.

If such a state does not exist, we search for a state s′ that
matches s. If more than one such state exists, we select the
one with the smallest distance, using either the hierarchy or
the Jaccard distances.

We use the following Search CS algorithm to find a con-
text state in the profile tree that is the most similar with a
searched state s = (c1, c2, . . . , cn). The algorithm descends
the profile tree starting from the root node in a breadth first
manner. To find the path that covers the searched one, we
collect a set of candidate paths, each annotated properly
with its distance from the given context state. Algorithm 1
presents the Search CS algorithm.

Algorithm 1 Search CS Algorithm

Input: A node RP of the Profile tree, the searching con-
text state (c1, c2, . . . , cn), the current distance of each can-
didate path.
Output: A ResultSet of tuples of the form (Attribute
name = attribute value, interest score, distance) charac-
terizing a candidate path whose context state is either the
same or best covers the searching context state.
Begin
if ∃ x ∈ RP such that x = ci then

Search CS(x → child, {ci+1, . . . , cn}, distance)

else if ∀ y ∈ RP such that y = anc
Lj

Li
(ci) then

Search CS(y → child, {ci+1, . . . , cn}, dist(y, ci) +
distance)

else if RP is a leaf of the form (Ai = value, score) then
ResultSet = ResultSet

S
(Ai = value, score,

distance)
end if
End

Given a Profile tree whose root node is RP , the algorithm
returns all paths whose context state is either the same or
covers the searching context state (c1, c2, . . . , cn). Each can-
didate path counts the distance from the searching path. To
search an extended context state, at first we invoke Search
CS(RP , {c1, c2, . . . , cn}, 0). At the end of the execution of

this call, we can sort all the results on the basis of their
distance and select the one with the minimum distance, i.e.,
the one that differs the least from the searched path based
on one of the distances. Clearly the last step can be easily
replaced by a simple runtime check that keeps the current
closest leaf if its distance is smaller than the one currently
tested. Still, we prefer to keep this variant of the algorithm
to cover the general case where more than one candidates
can be selected by the system or the user.

We show that the algorithm is correct, i.e., if applied for all
extended context states specified by the extended context
descriptor of the query, it leads to the desired set of states
according to Def. 12. For each state, the algorithm returns
a state that is the most similar with the searching one, that
is the one that has the smallest distance. By Property 2
for the hierarchy distance and Property 3 for the Jaccard
distance, it is clear that the state with the smallest distance
is one that covers the searching state. The set of extended
context states that are returned, specify an extended con-
text descriptor. This descriptor covers the query’s descrip-
tor, because each state is expressed by another similar one.
Furthermore, the textually described variant can give the

“best” matching descriptor because for each state we select
the “best” matching state.

Determination of the database tuples that corre-
spond to the identified states. Assume a relation R(A1,
A2, ...An) and a profile tree P with leaves containing expres-
sions of the form (Ai = value, score). The problem now is
that given a context descriptor cod, we need to rank the tu-
ples of relation R with respect to cod. A simple algorithm
is employed for this task.

Algorithm 2 Rank CS Algorithm

Input: A profile tree P , a relation R(A1, A2, ...An) and
a context descriptor cod
Output: A TupleResultSet of tuples of R ranked by the
appropriate score.
Variables: A (initially empty) ExprResultSet of expres-
sions of Search CS results.
Begin
∀ state s ∈ context(cod) {
Pick minimum distance tuple e from the result of
Search CS(P, s, 0)
ExprResultSet = ExprResultSet

S
e

}
∀ expressions e : (Ai = value, score) ∈ ExprResultSet {
ResultSet = ResultSet

S
σAi=value(R), with the latter

annotated with score.
}
End

The algorithm Search CS is invoked for all extended con-
text states specified by the query’s descriptor. Each invo-
cation returns an expression that characterizes one or more
tuples of the underlying relation. Then, we perform all the
produced expressions as selections of the relational algebra
over the underlying relation. It is straightforward (and prac-
tically orthogonal to our problem) to add (a) ranking of
the expressions by their score (and consequently, ranking of
the results of the queries over the relation) and (b) removal
of duplicate tuples produced by these selection queries by
keeping the max (equivalently, avg, min, or some wieghted
average) for the score of tuples appearing more than once in
the ResultSet.

5. CACHING CONTEXTUAL QUERIES
In this section, we present a scheme for storing (caching)
results of previous queries executed at a specific context, so
that these results can be re-used by subsequent queries.

5.1 The Contextual Query Tree
To store the results of previous queries, we use a data struc-
ture similar to the profile tree, called contextual query tree
(Fig. 5). Similarly with the profile tree, a contextual query
tree has n + 1 levels. Each of the n context parameters
is assigned to the first n levels of the tree and there is an
additional level for the leaves. For simplicity, assume that
context parameter Ci is mapped to level i. A path in the
context tree corresponds to an extended context state, i.e.,
an assignment of values to context parameters. In the leaves
of the tree, we store (cache) the results of previous queries,
so that they can be re-used by subsequent ones.

The contextual query tree is constructed incrementally each

c c c any...

...c c any ...

c any c any...c

21 23 21 23 25

11 12 14

n2 n2 n3

c c c 22 ...c

1

2

n

top_k list {(id, score)}

C

C

C

Figure 5: The contextual query tree.

time a contextual query is computed. Each non-leaf node at
level k contains cells of the form [key, pointer], where key is
equal to ckj ∈ edom(Ck) for a value of the context parameter
Ck that appeared in some previously computed query. The
pointer of each cell points to the node at the next lower
level (level k + 1) containing all the distinct values of the
next context parameter (parameter Ck+1) that appeared in
the same context of a contextual query with ckj . In addition,
key may take the special value any, which corresponds to the
lack of the specification of the associated context parameter
in the query.

Besides just storing the context states that appear in the
query, in the case in which there is no exact matching state
in a contextual preference, we also store the best matching
state as produced by the context resolution algorithm (Algo-
rithm 1). For instance, given a state (Athens, warm, any)
specified by the context descriptor (location = Athens ∧
weather = warm), if the state does not exist in any con-
textual preference and its matching state returned by Algo-
rithm 1 is (Europe, warm, any), we store both states in the
tree and link them together. This allows us to save the cost
of resolution as well as to re-use any results for both states.

An issue is what is stored in the leaves. In our running
example, we may store a list of ids, e.g., points of interest
ids, along with their interest scores for the associated context
state, that is, for the path from the root leading to them.
Instead of storing scores for all non-context parameters, to
be storage-efficient, we may just store the top−k ids (keys),
that is the ids of the items having the k-highest scores for
the path leading to them. The motivation is that this allows
us to provide users with a fast answer with the data items
that best match their query. Only if more than k-results are
needed, additional computation will be initiated. The list
of ids is sorted in decreasing order of their scores.

Alternatively, similarly with the profile tree, we may store
in the leaves just the associated preference (attribute-clause
and interest score). In the case in which the path leading to
the leaf does not correspond exactly to a path at the profile
tree, we store as well its distance from the actual state.

The way that the context parameters are assigned to the
levels of the contextual query tree affects its size. If the
domain of the first level of the tree, i.e., the root of the tree,
has n0 values (including the any value), the second level n1

values, and the last one nk, then the maximum number of
cells is n0 ∗ (1 + n1 ∗ (1 + . . . (1 + nk))). The above number
is as small as possible, when n0 ≤ n1 ≤ · · · ≤ nk, thus,
it is better to place context parameters with domains with
higher cardinalities lower in the context tree.

Finally, there are two additional issues related to manag-
ing the contextual query tree: replacement and update.
To bound the space occupied by the tree, standard cache
replacement policies, such as LRU or LFU, may be em-
ployed to replace the entry, that is the path, in the tree
that was least frequently or least recently used. Regarding
cache updates, stored results may become obsolete, either
because there is an update in the contextual preferences or
because entries (points of interests, in our running example)
are deleted, inserted or updated. In the case of a change in
the contextual preferences, we update the contextual query
tree by deleting the entries that are associated with paths,
that is context states, that are involved in the update. In the
case of updates in the database instance, we do not update
the tree, since this would induce high maintenance costs.
Consequently, some of the scores of the entries cached in
the tree may be invalid. Again, standard techniques, such
periodic cache refreshment or associating a time-out with
each cache entry, may be used to control the deviation be-
tween the cached and the actual scores.

5.2 Querying the Contextual Query Tree
Using the contextual query tree, we speed up query process-
ing for a submitted query. Assume a contextual query with
an extended context descriptor that specifies a set of ex-
tended context states. Before computing the relative to each
state results (using the profile tree), we check the contextual
query tree to see if some of the states exist. If so, we avoid to
compute the top-k results for these states. Else, we compute
the top-k results, using the profile to find the appropriate
preferences, and insert the new context state, i.e., the new
path, and the associated top-k results in the tree.

Note that by using the tree, we also save the cost of context
resolution for previously resolved queries. Assume that we
have stored state s1 and the fact that state s2 is its best
match. When a query with state s1 or s2 is submitted,
we can re-use the stored results for both states s1 and s2.
Further, we save the cost for all states s, such that s covers
s1 and s2 covers s. By just traversing the contextual query
tree, we can deduce that s does not appear in the profile
tree and that its best match is s2. This can be easily proved
by contradiction as follows. Assume that s appears in the
profile tree. Then, since s covers s1 and s2 covers s, we
should have selected s as a best match for s1 instead of s2,
which is not the case. Thus, s does not appear in the profile
tree. Also, s2 is its best match, since if another s′ was its
best match, then s′ should be the best match for s1 as well,
which is again a contradiction.

The search process for a context state is a simple traver-
sal of the contextual query tree. At level i, we search in
a node for the cell having as key value the ith value of
the searched context state and descend to the next lower
level, following the appropriate pointer. For a context tree
with n context parameters (C1, C2, . . . , Cn), if each para-
meter has |edom(Ci)| values in its domain, the maximum

number of cells that are required to be visited for a query
is |edom(C1)| + |edom(C2)| + · · · + |edom(Cn)|. So, each
search in the contextual query tree is fast, simply, because
it requires exactly as many node visits as the height of the
tree minus one, i.e., as the number of the context parame-
ters.

6. RELATED WORK
Although there has been a lot of work on developing a vari-
ety of context infrastructures and context-aware middleware
and applications (such as, the Context Toolkit [15] and the
Dartmouth Solar System [3]), there has been only little work
on the integration of context information into databases.
Next, we discuss work related to context-aware queries and
preference queries. In our previous research ([18, 19], we
have addressed the same problem of expressing contextual
preferences. However, the model used there for defining
preferences includes only a single context parameter. In-
terest scores of preferences involving more than one context
parameter are computed by a simple weighted sum of the
preferences of single context parameters. Here, we allow
contextual preferences that involve more than one context
parameter as well as we associate context with queries. The
problem of context state resolutions and its development is
also new in this paper.

6.1 Context and Queries
Although, there is much research on location-aware query
processing in the area of spatio-temporal databases, inte-
grating other forms of context in query processing is less
explored. In the context-aware querying processing frame-
work of [8], there is no notion of preferences, instead con-
text attributes are treated as normal attributes of relations.
Storing context data using data cubes, called context cubes,
is proposed in [9] for developing context-aware applications
that use archive sensor data. In this work, data cubes are
used to store historical context data and to extract interest-
ing knowledge from large collections of context data. The
Context Relational Model (CR) introduced in [14] is an ex-
tended relational model that allows attributes to exist un-
der some contexts or to have different values under different
contexts. CR treats context as a first-class citizen at the
level of data models, whereas in our approach, we use the
traditional relational model to capture context as well as
context-dependent preferences. Context as a set of dimen-
sions (e.g., context parameters) is also considered in [17]
where the problem of representing context-dependent semi-
structured data is studied. A similar context model is also
deployed in [7] for enhancing web service discovery with con-
textual parameters. Recently, context has been used in in-
formation filtering to define context-aware filters which are
filters that have attributes whose values change frequently
[6]. Finally, context has been used in the area of multidata-
base systems to resolve semantic differences, e.g., [10, 13,
16] and as a general mechanism for partitioning information
bases [12].

6.2 Preferences in Databases
In this paper, we use context to confine database querying by
selecting as results the best matching tuples based on the
user preferences. The research literature on preferences is
extensive. In particular, in the context of database queries,

there are two different approaches for expressing preferences:
a quantitative and a qualitative one. With the quantitative
approach, preferences are expressed indirectly by using scor-
ing functions that associate a numeric score with every tuple
of the query answer. In our work, we have adapted the gen-
eral quantitative framework of [1], since it is more easy for
users to employ. In the quantitative framework of [11], user
preferences are stored as degrees of interest in atomic query
elements (such as individual selection or join conditions) in-
stead of interests in specific attribute values. Our approach
can be generalized for this framework as well, either by in-
cluding contextual parameters in the atomic query elements
or by making the degree of interest for each atomic query
element depend on context. In the qualitative approach (for
example, [4]), the preferences between the tuples in the an-
swer to a query are specified directly, typically using binary
preference relations. This framework can also be readily
extended to include context.

7. SUMMARY
In this paper, we focus on handling contextual preferences.
We define context descriptors for specifying conditions on
context parameters that allow the specification of context
states at various levels of detail. Preferences are augmented
with context descriptors that specify their scope of applica-
bility. Similarly, queries are enhanced with context descrip-
tors that define the context of their execution. We formulate
the problem of identifying the preferences that are most rel-
evant to the context of a query. To address this problem,
we develop the notion of cover between states as well as ap-
propriate distance functions. We also present an algorithm
that locates the relevant preferences. We also introduce in-
dex structures that exploit contextual information for (a)
storing preferences and (b) caching the results of queries
based on their context.

Acknowledgment
This research was funded by the program ”Pythagoras” of
the Operational Program for Education and Initial Voca-
tional Training of the Hellenic Ministry of Education under
the 3rd Community Support Framework and the European
Social Fund.

8. REFERENCES
[1] R. Agrawal and E. L. Wimmers. A Framework for

Expressing and Combining Preferences. In Proc. of
SIGMOD, 2000.

[2] G. Chen and D. Kotz. A Survey of Context-Aware
Mobile Computing Research. Dartmouth Computer
Science Technical Report TR2000-381, 2000.

[3] G. Chen, M. Li, and D. Kotz. Design and
implementation of a large-scale context fusion
network. International Conference on Mobile and
Ubiquitous Systems: Networking and Services, 2004.

[4] J. Chomicki. Preference Formulas in Relational
Queries. TODS, 28(4), Dec 2003.

[5] A. K. Dey. Understanding and Using Context.
Personal and Ubiquitous Computing, 5(1), 2001.

[6] J.-P. Dittrich, P. M. Fischer, and D. Kossmann. Agile:
Adaptive indexing for context-aware information
filters. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of
data, pages 215–226, New York, NY, USA, 2005. ACM
Press.

[7] C. Doulkeridis and M. Vazirgiannis. Querying and
Updating a Context-Aware Service Directory in
Mobile Environments. Web Intelligence, pages
562–565, 2004.

[8] L. Feng, P. Apers, and W. Jonker. Towards
Context-Aware Data Management for Ambient
Intelligence. In Proc. of the 15th Intl. Conf. on
Database and Expert Systems Applications (DEXA),
2004.

[9] L. Harvel, L. Liu, G. D. Abowd, Y.-X. Lim,
C. Scheibe, and C. Chathamr. Flexible and Effective
Manipulation of Sensed Contex. In Proc. of the 2nd
Intl. Conf. on Pervasive Computing, 2004.

[10] V. Kashyap and A. Sheth. So Far (Schematically) yet
So Near (Semantically). In Proc. of IFIP WG 2.6
Database Semantics Conference on Interoperable
Database Systems (DS-5), 1992.

[11] G. Koutrika and Y. Ioannidis. Personalization of
Queries in Database Systems. In Proc. of ICDE, 2004.

[12] J. Mylopoulos and R. Motschnig-Pitrik. Partitioning
Information Bases with Contexts. In Proc. of CoopIS,
1995.

[13] A. Ouksel and C. Naiman. Coordinating Context
Building in Heterogeneous Information Systems. J.
Intell Inf Systems, 3, 1993.

[14] Y. Roussos, Y. Stavrakas, and V. Pavlaki. Towards a
Context-Aware Relational Model. In the proceedings
of the International Workshop on Context
Representation and Reasoning (CRR’05), 2005.

[15] D. Salber, A. K. Dey, and G. D. Abowd. The Context
Toolkit: Aiding the Development of Context-Enabled
Applications. CHI Conference on Human Factors in
Computing Systems, 1999.

[16] E. Sciore, M. Siegel, and A. Rosenthal. Using
Semantic Values to Facilitate Interoperability Among
Heterogeneous Information Systems. ACM TODS,
1994.

[17] Y. Stavrakas and M. Gergatsoulis. Multidimensional
Semistructured Data: Representing
Context-Dependent Information on the Web.
International Conference on Advanced Information
Systems Engineering (CAiSE 2002), 2002.

[18] K. Stefanidis, E. Pitoura, and P. Vassiliadis. On
Supporting Context-Aware Preferences in Relational
Database Systems. International Workshop on
Managing Context Information in Mobile and
Pervasive Environments, 2005.

[19] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Modeling
and Storing Context-Aware Preferences. Submitted.
Available at: http://www.cs.uoi.gr/∼kstef/, 2006.

[20] P. Vassiliadis and S. Skiadopoulos. Modelling and
Optimisation Issues for Multidimensional Databases.
In Proc. of 12th International on Advanced
Information Systems Engineering,(CAiSE 2000), 2000.

