
                               1 

Blueprints for ETL workflows  

Panos Vassiliadis1, Alkis Simitsis2, Manolis Terrovitis2, Spiros Skiadopoulos2  

1 University of Ioannina, 
Dept. of Computer Science, 45110, Ioannina, Greece 

pvassil@cs.uoi.gr 
2 National Technical University of Athens, Dept. of Electrical and Computer Eng.,  

Computer Science Division, Iroon Polytechniou 9, 157 73, Athens, Greece  
{asimi,mter,spiros}@dbnet.ece.ntua.gr  

 
Version 0.3, 25 July 2005, available at: 

http://www.cs.uoi.gr/~pvassil/publications/2005_ER_AG/ETL_blueprints_long.pdf 

Abstract. Extract-Transform-Load (ETL) workflows are data centric 
workflows responsible for transferring, cleaning, and loading data from their 
respective sources to the warehouse. Previous research has identified graph-
based techniques, in order to construct the blueprints for the structure of such 
workflows. In this paper, we extend existing results in several ways: (a) we 
explicitly capture the internal semantics of each activity in the workflow, (b) we 
complement querying semantics with insertions, deletions and updates, and (c) 
we show how we can transform the graph to allow zoom-in/out at multiple 
levels of abstraction (i.e., passing from the detailed description of the graph at 
the attribute level to more compact variants involving programs, relations and 
queries and vice-versa). Apart from the value that blueprints have per se, we 
exploit our modeling to introduce rigorous techniques for the measurement of 
ETL workflows. To this end, we build upon an existing formal framework for 
software quality metrics and formally prove how our quality measures fit within 
this framework.  

1. Introduction 

All engineering disciplines employ blueprints during the design of their engineering 
artifacts. Modeling in this fashion is not a task with a value by itself; as [BoRJ99] 
mentions “we build models to communicate the desired structure and behavior of our 
system … to visualize and control the system’s architecture …to better understand the 
system we are building … to manage risk”. 

In this paper, we discuss the constructing entities and the usage of blueprints for a 
particular category of database-centric software, namely, the Extract-Transform-Load 
(ETL) workflows. ETL workflows are an integral part of the back-stage of data 
warehouse architectures, where the collection, integration, cleaning and 
transformation of data takes place, in order to populate the warehouse. In Fig. 1, we 
abstractly describe the general framework for ETL processes. In the left side, we can 
observe the original data providers (Sources). Typically, data providers are relational 
databases and files. The data from these sources are extracted by extraction routines, 
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which provide either complete snapshots or differentials of the data sources. Then, 
these data are propagated to the Data Staging Area (DSA) where they are transformed 
and cleaned before being loaded to the data warehouse. Intermediate results, again in 
the form of (mostly) files or relational tables are part of the data staging area. The data 
warehouse (DW) is depicted in the right part of Fig. 1 and comprises the target data 
stores, i.e., fact tables for the storage of information and dimension tables with the 
description and the multidimensional, roll-up hierarchies of the stored facts. The 
loading of the central warehouse is performed from the loading activities depicted on 
the right side of the figure, right before the data store representing the warehouse. 

Traditional modeling approaches used for the visualization and understanding of 
this kind of systems need to be reconsidered: we need interactive, multi-view 
modeling frameworks that abstract the complexity of the system and provide 
complementary views of the system’s structure to the designer (apart from simply 
providing the big picture, like the traditional ER/DFD approaches did).  Moreover, we 
need to be able to manage risk through our modeling artifacts. For example, we would 
like to answer questions like: 

- Which attributes/tables are involved in the population of a certain attribute? 
- What part of the scenario is affected if we delete an attribute? 
- How good is the design of my ETL scenario? Is variant A or variant B better? 

Sources

Extract Transform 

& Clean

DW

Load

DSA
 

Fig. 1 The environment of Extract-Transform-Load processes 

Previous research has provided some results towards the aforementioned tasks. The 
work of [TrLu03, VaSS02a] provides conceptual modeling techniques for ETL. 
[VaSS02] presents a first attempt towards a graph-based model for the definition of 
the ETL scenarios. The model of [VaSS02] treats ETL scenarios as graphs. Activities 
and data stores are modeled as the nodes of the graph; the attributes that constitute 
them are modeled as nodes too. Activities have input and output schemata and 
provider relationships relate inputs and outputs between data providers and data 
consumers. Nevertheless, what is missing from previous efforts is a full model of the 
semantics of ETL workflows and a rigorous framework for the measurement of our 
design artifacts. 

In this paper, we significantly extend previous works to capture the internals of the 
workflow activities in sufficient detail. We make use of a logical abstraction of ETL 
activity semantics in the form of LDL++ [Zani98] programs and thus, we manage to 
avoid the difficulties that would result in from using specific 3GL/4GL programming 
languages, like C or PL/SQL. The approach is not unrealistic: in fact, in [VSGT03] 
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the authors discuss the possibility of providing extensible libraries of ETL tasks, 
logically described in LDL. On the basis of this result, it is reasonable to assume the 
reusability of these libraries. Based on this, two particular extensions are given: (a) we 
treat the cases of insertions/deletions and updates, missing from [VaSS02], and most 
importantly, (b) we incorporate the internals of the activity semantics to the graph. 
We provide a principled way of transforming LDL programs to graphs, all the way 
down to the attribute level. The resulting graph, which is called Architecture Graph 
can provide sufficient answers to what-if and dependency analysis in the process of 
understanding or managing the risk of the environment. Moreover, due to the obvious, 
inherent complexity of this modeling at the finest level of detail, we provide 
abstraction mechanisms to zoom out the graph at higher levels of abstraction (e.g., 
visualize the structure of the workflow at the activity level). 

The aforementioned contributions deal with the static description of the internals of 
the ETL workflow and their exploitation during the maintenance or evolution phase. 
Still, another question can also be answered: “How good is my design?”. The 
community of software engineering has provided numerable metrics towards 
evaluating the quality of software designs [Dumk02]. Are these metrics sufficient? In 
this paper we build upon the fundamental contribution of [BrMB96] that develop a 
rigorous and systematic framework that classifies usually encountered metrics into 
five families, each with its own characteristics. These five families are size, length, 
complexity, cohesion and coupling of software artifacts. In this paper, we develop 
specific measures for the Architecture Graph and formally prove their fitness for the 
rigorous framework of [BrMB96]. 

In a nutshell, our contributions can be listed as follows: 
− an extension of [VaSS02] to incorporate updates and internal semantics of 

activities in the architecture graph; 
− a principled way of transforming LDL programs to the graph both at the 

granular (i.e., attribute) level of detail and at different levels of abstraction; 
− a systematic definition of software measures for the Architecture Graph, based 

on the rigorous framework of [BrMB96]. 
This paper is organized as follows. In Section 2, we present the graph model for 

ETL activities. Section 3 discusses measures for the introduced model. In Section 4, 
we present related work. Finally, in Section 5 we conclude our results and provide 
insights for future work. 

2. Generic Model of ETL Activities 

The purpose of this section is to present a formal logical model for the activities of an 
ETL environment. Due to the intense data centric nature if ETL workflows, this 
model abstracts from the technicalities of monitoring, scheduling and logging while it 
concentrates on the flow of data from the sources towards the data warehouse through 
the composition of activities and data stores. Initially, we start with the background 
constructs of the model, already introduced in [VaSS02,VSGT03]. Then, we move on 
to extend this modeling with formal semantics of the internals of the activities.  
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In order to formally define the semantics of ETL workflow, we can use any 
3GL/4GL programming language (C++, PL/SQL etc.). We do not consider the actual 
implementation of the workflow in some programming language, but rather, we 
employ LDL++ [Zani98] in order to describe its semantics in a declarative nature and 
understandable way. LDL++ is a logic-programming, declarative language that 
supports recursion, complex objects and negation. Moreover, LDL++ supports 
external functions, choice, (user-defined) aggregation and updates.  

LDL was carefully chosen as the language for expressing ETL semantics. First, it 
is elegant and has a simple model for expressing activity semantics. Second, the head-
body combination is particularly suitable for relating both (a) input and output in the 
simple case, and, (b) consecutive layers of intermediate schemata in complex cases. 
Finally, LDL is both generic and powerful, so that (large parts of) other languages can 
be reduced to the Architecture Graph constructs that result from it. 

2.1 Preliminaries 

In this subsection, we introduce the formal model of data types, data stores and 
functions, before proceeding to the model of ETL activities. To this end, we reuse the 
modeling constructs of [VaSS02,VSGT03] upon which we subsequently build our 
contribution. In brief, the basic components of this modeling framework are: 

− Data types. Each data type T is characterized by a name and a domain, i.e., a 
countable set of values. The values of the domains are also referred to as 
constants.  

− Attributes. Attributes are characterized by their name and data type. For 
single-valued attributes, the domain of an attribute is a subset of the domain of 
its data type, whereas for set-valued, their domain is a subset of the powerset 
of the domain of their data type 2dom(T). 

− A Schema is a finite list of attributes. Each entity that is characterized by one 
or more schemata will be called Structured Entity.  

− Records & RecordSets. We define a record as the instantiation of a schema to 
a list of values belonging to the domains of the respective schema attributes. 
Formally, a recordset is characterized by its name, its (logical) schema and its 
(physical) extension (i.e., a finite set of records under the recordset schema). In 
the rest of this paper, we will mainly deal with the two most popular types of 
recordsets, namely relational tables and record files.  

− Functions. A Function Type comprises a name, a finite list of parameter data 
types, and a single return data type. 

− Elementary Activities. In the [VSGT03] framework, activities are logical 
abstractions representing parts, or full modules of code. An Elementary 
Activity (simply referred to as Activity from now on) is formally described by 
the following elements: 

- Name: a unique identifier for the activity. 
- Input Schemata: a finite list of one or more input schemata that receive 

data from the data providers of the activity.  
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- Output Schemata: a finite list of one or more output schemata that 
describe the placeholders for the rows that pass the checks and 
transformations performed by the elementary activity.  

- Operational Semantics: a program, in LDL++, describing the content 
passing from the input schemata towards the output schemata. For 
example, the operational semantics can describe the content that the 
activity reads from a data provider through an input schema, the 
operation performed on these rows before they arrive to an output 
schema and an implicit mapping between the attributes of the input 
schema(ta) and the respective attributes of the output schema(ta). 

- Execution priority. In the context of a scenario, an activity instance must 
have a priority of execution, determining when the activity will be 
initiated.  

− Provider relationships. These are 1:N relationships that involve attributes with 
a provider-consumer relationship. The flow of data from the data sources 
towards the data warehouse is performed through the composition of activities 
in a larger scenario. In this context, the input for an activity can be either a 
persistent data store, or another activity. Provider relationships capture the 
mapping between the attributes of the schemata of the involved entities. Note 
that a consumer attribute can also be populated by a constant, in certain cases. 

− Part_of relationships. These relationships involve attributes and parameters 
and relate them to their respective activity, recordset or function to which they 
belong.  

Based upon the previous constructs, already available from [VaSS02, VSGT03], 
we proceed with their extension towards fully incorporating the semantics of ETL 
workflow in our framework. To this end, we introduce programs as another modeling 
construct. 

− Programs. We assume that the semantics of each activity is given by a 
declarative program expressed in LDL++. Each program is a finite list of 
LDL++ rules. Each rule is identified by an (internal) rule identifier. We 
assume a normal form for the LDL++ rules that we employ. In our setting, 
there are three types of programs, and normal forms, respectively: 

(i) intra-activity programs that characterize the operational semantics, i.e., 
the internals of activities (e.g., a program that declares that the activity 
reads data from the input schema, checks for NULL values and populates 
the output schema only with records having non-NULL values), 

(ii) inter-activity programs that link the input/output of an activity to a data 
provider/consumer, 

(iii)side-effect programs that characterize whether the provision of data is an 
insert, update, or delete action. 

We assume that each activity is defined in isolation. In other words, the inter-
activity program for each activity is a stand-alone program, assuming the input 
schemata of the activity as its EDB predicates. Then, activities are plugged in the 
overall scenario that consists of inter-activity and side-effect rules and an overall 
scenario program can be obtained from this combination. 
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Intra-activity programs. The intra-activity programs abide by several rules that we 
list right ahead: 

1. All input schemata are EDB predicates. 
2. All output schemata appear only as IDB predicates. Furthermore output 

schemata are the only IDB predicates that appear in such a program. 
3. Intermediate rules are possibly employed to help with intermediate results. 
4. We assume non-recursive admissible programs. The safety of the program is 

guarantied by the requirement for admissibility, which is a generalization of 
stratifiability [CeGT90]. An admissible program does not contain any self-
referential set definitions or any predicates defined in terms of their own 
negations.  

 
Inter-activity programs. The inter-activity programs are very simple. There is 
exactly one rule per provider relationship, with the consumer in the head and the 
provider in the body. The consumer attributes are mapped to their corresponding 
providers either through the synonym mechanism or through explicit equalities. No 
other atoms or predicates are allowed in the body of an inter-activity program; all the 
consumer attributes should be populated from the provider. 

Consumer_input(a1,…,an) <- provider_output(a1,…,am), m ≥ n 
 

Side-effect programs. We employ side-effect rules to capture database updates. We 
will use the generic term database updates to refer to insertions, deletions and updates 
of the database content (in the regular relational sense). In LDL++, there is an easy 
way to define database updates. An expression of the form 

head <- query part, update part 
means that (a) we make a query to the database and specify the tuples that abide by 
the query part and (b) we update the predicate of the update part as specified in the 
rule. For example consider the following rule: 

 
raise1(Name, Sal, NewSal) <- 
 employee(Name, Sal), Sal = 1100,   (a) 
 NewSal = Sal * 1.1,     (b) 
 - employee(Name, Sal),     (c) 
 + employee(Name, NewSal).    (d) 

Fig. 2. Exemplary LDL++ rule for side-effect updates 

In Line (a) of the rule, we mark the employee tuples with salary equal to 1100 in 
the relation employee(Name,Sal). For each the above marked tuples, Line (b) 
computes an updated salary with a 10% raise through the variable NewSal. In Line 
(c), we delete the originally marked tuples from the relation. Finally, Line (d) inserts 
the updated tuples, containing the new salaries in the relation. In LDL updates, the 
order of the individual atoms is important and the query part should always advance 
the update part, to avoid having undesired effects from a predicate failing after an 
update (more details for the syntax of LDL can be found in [Zani98]). 
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2.2 Incorporating activity semantics in the Architecture Graph 

The model of [VSGT03] treats the semantics of activities informally, in terms of its 
graph model. Each activity is annotated with a tag of its semantics, without these 
semantics being part of the Architecture Graph. The focus of this work is on the 
input-output role of the activities instead of their internal operation. In this section, we 
extend the model of [VSGT03] by translating the formal semantics of the internals of 
the activities to graph constructs, as part of the overall Architecture Graph. We 
organize this discussion as follows: first, we consider how individual rules are 
represented by graphs for all three categories of programs (intra-activity, inter-activity 
and side-effects). Then, we discuss how the programs of activities are constructed 
from the composition of different rules and finally, we discuss how a scenario 
program can be obtained from the composition of the graph representations of inter-
activity, intra-activity and side-effect programs. 

Intuitively, instead of simply stating which schema populates another schema, we 
trace how this is done through the internals of an activity. The programs that facilitate 
the input to output mappings take part in the graph, too. Any filters, joins or 
aggregations are part of the graph as first-class citizens. Then, there is a 
straightforward way to determine the architecture graph with respect to the LDL 
program that defines the ETL scenario. All attributes, activities and relations are 
nodes of the graph, connected through the proper part-of relationships. Each LDL rule 
connecting inputs (body of the rule) to outputs (head of the rule) is practically mapped 
to a set of provider edges, connecting inputs to outputs. Special purpose regulatory 
edges, capturing filters or joins are also part of the graph. 

 
Intra-activity rules. Given the program of the activity as a stand-alone LDL++ 
program, we introduce the following constructs, by default: 

- A node for the activity per se. 
- A node for each of the schemata of the activity and a node for the activity 

program. Part-of edges connect the activity with these components. 
- A node for each rule, connected through a part-of relationship to the program 

node of the activity. 
If we treat each rule as a stand-alone program, we can construct its graph as 

follows: 
- We introduce a node for each predicate of the rule. These nodes are connected 

to the rule node through a part-of relationship. The edge of the head predicate 
is tagged as ‘head’ and the edges of the negated literals of the body are tagged 
as ‘¬’. Functions are treated as predicates. A different predicate node is 
introduced for each instance of the same predicate (e.g., in the case of a self-
join). Such nodes are connected to each other through alias edges. In 
Subsection 2.3, we detail the tricky parts of the last cases.  

- We introduce a node for each variable of a predicate. Part-of relationships 
connect these nodes with their corresponding predicates. 

- For each condition of the form Input attribute = Output attribute (or its 
equivalent presence of synonyms in the output and input schemata), we add a 
provider edge. Here, we assume as input (output) attributes, attributes 
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belonging to predicates of the rule body (head). A provider relationship is thus, 
an edge from the body towards the head of the rule. 

- For relationships among input attributes (practically, involving functions and 
built-ins), a regulator edge is introduced (see next).  

 
R06: sk.a_in1(pkey,suppkey,date,qty,cost)<- 
        dsa_ps(pkey,suppkey,date,qty,cost). 
 
R07: sk.a_in2(pkey,source,skey)<- 
 lookUp(l_pkey,source,l_skey), pkey=l_pkey, skey=l_skey, 

source=1. 
R08: sk.a_out(pkey,suppkey,date,qty,cost,skey)<- 
 add_sk1.a_in1(pkey,date,qty,cost), 
 add_sk1.a_in2(pkey,source,l_skey). 
 
R09: dollar2euro.a_in(skey,suppkey,date,qty,cost)<- 
 sk.a_out(pkey,suppkey,date,qty,cost,skey). 

Fig. 3 LDL++ for a small part of a scenario 

Inter-activity rules. For each recordset of a scenario, we assume a node representing 
its schema. For simplicity, we do not discriminate a recordset from its schema using 
different nodes. For each intra-activity rule (between input-output schemata of 
different activities and/or recordsets) there is a simple way to construct its 
corresponding graph: we introduce a provider edge from the input towards the output 
attributes. 

Observe Fig. 3. Activity SK (Surrogate Key assignment) takes as input the data 
from a recordset DSA_PS(PKey,SuppKey,Date,Qty,Cost), and obtains a globally 
unique surrogate key SKey for the production key PKey, through a lookup table 
LookUp(PKey, Source, SKey); in this example, we consider that data originate from 
source 1. Then, the transformed data are propagated to another activity dollar2euro 
that converts the dollar values of attribute cost, to Euros (only the input schema of 
this activity is depicted). The rules R06, R07 and R09 are inter-activity rules: they 
describe how the input schemata of the activities are populated from their providers. 
Activities and recordsets can both play the role of provider, as one can see. Rule R08 
is an intra-activity rule. Fig. 4 depicts the architecture graph for this example. The 
grey area concerns the intra-activity program; the rest concern the inter-activity 
program rules. Solid arrows depict provider relationships, dotted arrows depict 
regulator relationships (see next) and part-of relationships are depicted with simple 
lines. 
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Fig. 4 Architecture graph for the example of Fig. 3 

Side-effect rules. Side-effects involve a rather complicated modeling, since there are 
both values to be inserted or deleted and the rest of the values of a recordset. There is 
a principled way to map LDL side-effects to the Architecture Graph. 

1. The side-effect rule is treated as an activity, with the corresponding node. The 
output schema of the activity is derived from the structure of the predicate of 
the head of the rule. 

2. For every predicate with a + or – in the body of the rule, a respective provider 
edge from the output schema of the side-effect activity is assumed. A basic 
syntactic restriction here is that the updated values appear in the output 
schema. All provider relations from the output schema to the recordset are 
tagged with a + or –. 

3. For every predicate that appears in the rule without a + or – tag, we assume the 
respective input schema. Provider edges from this predicate towards these 
schemata are added as usual. The same applies for the attributes of the input 
and output schemata of the side effect activity. An obvious syntactic restriction 
is that all predicates appearing in the body of the rule involve recordsets or 
activity schemata (and not some intermediate rule). 

Notice that it is permitted to have cycles in the graph, due to the existence of a 
recordset in the body of a rule both tagged and untagged (i.e., both with its old and 
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new values). The old values are mapped to the input schema and the new to the output 
schema of the side-effect activity.  

In Fig. 5 we depict an example for the usage of side-effects over the LDL++ rule of 
Fig. 2. Observe that Name is tagged both as + or –, due to its presence at two 
predicates, one removing the old value of Sal and another inserting NewSal 
respectively. Observe, also, how the input is derived from the predicate employee at 
the body of the rule. 

raise1

input
Functio

n_*
output

head

Name

Sal

NewSal

Scale

Name

Sal

NewSal

Sal=

=1.1

=1100

Emplo

yee

Name

Sal

+/-

+

-

 

Fig. 5 Side-effects over the LDL++ rule of Fig. 2 

Deriving the graph of an activity program from the graphs of its rules. 
Combining the graphs of the rules of an activity is straightforward. Recall that so far, 
we have created the graph for each rule, considering each rule in isolation. Then, the 
graph for the overall activity is as follows: 

- The nodes of the new graph comprise all the nodes of the rule graphs. If the 
same predicate appears to more than one rule, we merge all its corresponding 
nodes (i.e., the predicate node and all its variables). In the case where more 
than one instance of the same predicate exists in one rule, we randomly select 
one of these occurrences to be merged with the nodes of other rules. 

- The edges of the new graph are all the edges, of the individual rules, after the 
merging takes place.  

- All edges are tagged with the rule identifier of the rule they belong to. 
Through part of relationships and edge tagging, we can reconstruct the graphs 
of the individual rules, if necessary. 

 
Deriving the graph of a scenario program from the graphs of its components. 
The construction of the graph for the scenario program is simple.  

- First, we introduce all inter-activity and side-effect rules. We merge all 
multiple instances of the same recordset and its attributes. The same applies 
with the input and output schemata of an activity. We annotate all edges with 
the rule identifier of their corresponding rule.  
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- Then, intra-activity graphs are introduced too. Activity input and output 
schemata are merged with the nodes that already represent them in the 
combined intra-activity/side-effect graph. The same applies to activity nodes, 
too. No other action needs to be taken, since intra-activity programs are 
connected to the rest of the workflow only through their input and output 
schemata. 

 
Summarizing, let G(V,E) be the architecture graph of an ETL workflow. Then, the 

workflow, apart from schemata, recordsets and activities, has also attributes as its 
nodes. The edges of the graph are part-of relationships among strong entities and their 
corresponding components (e.g., activities to schemata, schemata to attributes) and 
provider relationships among attributes. The internal operation of an activity, 
provided either by some filtering condition or some function that performs 
transformations/calculations, is covered through regulator edges (cf. Section 2.3). The 
direction of provider edges is again from the provider towards the consumer and the 
direction of the part-of edges is from the container entity towards its components. 
Edges are tagged appropriately according to their type (part-of or provider).  

2.3 Special cases for the modeling of the graph 

In this subsection, we extend our basic modeling to cover special cases where 
particular attention needs to be paid. First, we discuss regulator relationships in detail. 
Then we discuss aliases, negation, aggregation and functions. 

 
Regulator relationships. Regulator relationships are parts of the graph, used to trace 
down the selection conditions and joins that take place in an LDL program. Observe 
the case of the rule presented in Fig. 6, which practically performs a join of the two 
input schemata through the condition a_in2.pkey=a_in1.pkey. We choose to 
introduce a regulator relationship between attributes and constants, whenever they 
appear in a rule. 

 

Fig. 6 Regulator relationships. Dotted arrows stand for regulators, solid arrows for providers 
and simple lines for part-of relationships 

Formally, a regulator relationship in a safe rule is an equality/inequality 
relationship between two terms, i.e., of the form term1 θ term2, such that neither of 
them appear in the head of a rule. In terms of the architecture graph, the regulator 
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relationship is represented (a) by a node for each of the terms, (b) by a node 
representing the condition θ, and (c) by two edges among the node of the condition 
and the nodes of the term. The direction of the edges follows the way the expression 
is written in LDL (i.e., from the left to right). For reasons of graphical representation, 
we will represent condition nodes with squares and regulator relationships with dotted 
lines. 

Notice that there are more than one case that regulator relationships cover: 
- Input attribute θ constant. In this case, the input attribute is filtered in terms of 

a constant. 
- Input attribute1 θ Input attribute2. In this case, we have a join between input 

attributes. 
Notice that expressions like Input attribute = Output attribute denotes a provider and 
not a regulator relationship. This is the only case where inputs and outputs are 
allowed to be linked through equality; this case is covered by provider and not 
regulator edges. The same applies for the case where the input and the output schema 
employ the same name for an attribute. 

In all the aforementioned cases, θ can take any of the values {=,>,<,≠,≥,≤}, as long 
as the rule remains safe [CeGT90]. Also, in the above definitions, input attributes may 
include (a) attributes of the input schemata and (b) attributes of the function schema. 
 
Alias relationships. An alias relationship is introduced whenever the same predicate 
appears in the same rule (e.g., in the case of a self-join). All the nodes representing 
these occurrences of the same predicate are connected through alias relationships to 
denote their semantic interrelationship. Note that due to the fact that intra-activity 
programs do not directly interact with external recordsets or activities, this practically 
involves the rare case of internal intermediate rules.  
 
Negation. When a predicates appears negated in a rule body, then the respective 
part-of edge between the rule and the literal’s node is tagged with ‘⌐’. Note that 
negated predicates can appear only in the rule body. 
 
Aggregation. Another interesting feature is the possibility of employing aggregation. 
In LDL, aggregation can be coded in two steps: (a) grouping of values to a bag and 
(b) application of an aggregate function over the values of the bag. Observe the 
example of Fig. 7, where data from the table DW.PARTSUPP are summarized, through 
activity Aggregate1 to provide the minimum daily cost in view V1. In Fig. 7, we list 
the LDL program for this activity. Rules (R16-R18) explain how the data of table 
DW.PARTSUPP are aggregated to produce the minimum cost per supplier and day. 
Observe how LDL models aggregation in rule R17. Then, rule R19 populates view V1 
as an inter-activity program. 

The graph of an LDL rule is created as usual with only 3 differences: 
1. Relations which create a set from the values of a field employ a pair of 

regulator edges through an intermediate node‘<>’. 
2. Provider relations for attributes used as groupers are tagged with ‘g’. 
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3. One of the attributes of the aggr function node, consumes data from a 
constant that indicates which aggregate function should be used (avg, min, 
max etc) 

 
R16: aggregate1.a_in(skey,suppkey,date,qty,cost)<- 
 dw.partsupp(skey,suppkey,date,qty,cost) 
R17: temp(skey,day,<cost>) <- 
 aggregate1.a_in(skey,suppkey,date,qty,cost). 
R18: aggregate1.a_out(skey,day,min_cost) <- 
 temp(skey,day,all_costs), 
 aggr(min,all_costs,min_cost). 
R19: v1(skey,day,min_cost) <- 
 aggregate1.a_out(skey,day,min_cost). 

 

Fig. 7 LDL specification for an activity involving aggregation and the resulting graph for 
rules R17 and R18. 

Functions. Functions are treated as any other predicate in LDL, thus they appear as 
common nodes in the architecture graph. Nevertheless, there are certain special 
requirements for functions: 

1. The function involves a list of parameters, the last of which is the return value 
of the function. 

2. All function parameters referenced in the body of the rule either as homonyms 
with attributes, of other predicates or through equalities with such attributes, 
are linked through equality regulator relationships with these attributes. 

3. The return value is possibly connected to the output through a provider 
relationship (or with some other predicate of the body, through a regulator 
relationship). 
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For example, observe Fig. 5 where a function involving the multiplication of 
attribute Sal with a constant is involved. Observe the part-of relationship of the 
function with its parameters and the regulator relationship with the first parameter and 
its populating attribute. The return value is linked to the output through a provider 
relationship. 

 
Moreover, a detailed discussion of the ability to zoom-in/out the Architecture 

Graph in different levels of detail (in order to handle the complexity of the graph 
abstraction) is given in Section 2.4. 

2.4 Different levels of detail of the Architecture Graph 

As the reader might have guessed, the Architecture Graph is a rather complicated 
construct, involving the full detail of activities, recordsets, attributes and their 
interrelationships. Although it is important and necessary to track down this 
information at design time, in order to formally specify the scenario, it quite clear that 
this information overload might be cumbersome to manage at later stages of the 
workflow lifecycle. In other words, we need to provide the user with different 
versions of the scenario, each at a different level of detail. 

We will frequently refer to these abstraction levels of detail simply, as levels. We 
have already defined the Architecture Graph at the attribute level. The attribute level 
is the most detailed level of abstraction of our framework. Yet, coarser levels of detail 
can also be defined. The schema level, abstracts the complexities of attribute 
interrelationships and presents only how the input and output schemata of activities 
interplay in the data flow of a scenario. In fact, due to the composite structure of the 
programs that characterize an activity, there are more than one variants that we can 
employ for this description. Finally, the coarser level of detail, the activity level, 
involves only activities and recordsets. In this case, the data flow is described only in 
terms of these entities.  

 
Architecture Graph at the Schema Level. Let GS(VS,ES) be the architecture graph 
of an ETL scenario at the schema level. The scenario at the schema level has 
schemata, functions, recordsets and activities for nodes. The edges of the graph are 
part-of relationships among structured entities and their corresponding schemata and 
provider relationships among schemata. The direction of provider edges is again from 
the provider towards the consumer and the direction of the part-of edges is from the 
container entity towards its components (in this case just the involved schemata). 
Edges are tagged appropriately according to their type (part-of or provider).  

Intuitively, at the schema level, instead of fully stating which attribute populates 
another attribute, we trace only how this is performed through the appropriate 
schemata of the activities. A program, capturing the semantics of the transformations 
and cleanings that take place in the activity is the means through which the input and 
output schemata are interconnected. If we wish, instead of including all the schemata 
of the activity as they are determined by the intermediate rules of the activity’s 
program, we can present only the program as a single node of the graph, to avoid the 
extra complexity.  
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Fig. 8 Different levels of detail for ETL workflows 

(a) (b) 

Fig. 9 Zooming in/out. (a) an activity with two input schemata populating an output and a 
rejection schema as follows: a subprogram P1 is assigned the population of the output schema 
only and a subprogram P2 populates only the rejection schema using only one input schema. 
(b) a single node abstracts the internal structure of the activity 

There is a straightforward way to zoom out the Architecture Graph at the attribute 
level and derive its variant at the schema level. For each node x of the architecture 
graph G(V,E) representing a schema: 

1. for each provider edge (xa,y) or (y,xa), involving an attribute of x and an 
entity y, external to x, introduce the respective provider edge between x  and y 
(unless it already exists, of course); 

2. remove the provider edges (xa,y) and (y,xa) of the previous step; 
3. remove the nodes of the attributes of x and the respective part-of edges. 
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We can iterate this simple algorithm over the different levels of part-of 
relationships, as depicted in Fig. 9. 
 
Architecture Graph at the Activity Level. In this subsection we will deal with the 
model of ETL scenarios as graphs at the activity level. Only activities and recordsets 
are part of a scenario at this level. Let GA(VA,EA) be the architecture graph of an ETL 
scenario at the activity level. The scenario at the activity level has only recordsets and 
activities for nodes and a set of provider relationships among them for edges. The 
provider relationships are directed edges from the provider towards the consumer 
entity.  

Intuitively, a scenario is a set of activities, deployed along a graph in an execution 
sequence that can be linearly serialized. For the moment we do not consider the 
different alternatives for the ordering of the execution; we simply require that a total 
order for this execution can be derived (i.e., each activity has a discrete execution 
priority). Again, we need to stress that we abstract from the complexities of the 
control flow; the focus of this paper is on the tracing of data flow structure and 
relationships. 

There is a straightforward way to zoom out the Architecture Graph at the schema 
level and derive its variant at the activity level. For each node x of the architecture 
graph GA(VA,EA) representing a structured entity (i.e., activity or recordset): 

1. for each provider edge (xc,y) or (y,xc), involving a schema of x and an 
entity y, external to x, introduce the respective provider edge between x  and y 
(unless it already exists, of course); 

2. remove the provider edges (xc,y) and (y,xc) of the previous step; 
3. remove the nodes of the schema(ta) and program (if x is an activity) of x and 

the respective part-of edges. 
 

Discussion. Navigating through different levels of detail is a facility that primarily 
aims to make the life of the designer and the administrator easier throughout the full 
range of the lifecycle of the data warehouse. Through this mechanism, the designer 
can both avoid the complicated nature of parts that are not of interest at the time of the 
inspection and drill-down to the lowest level of detail for the parts of the design that 
he is interested in.  

Moreover, apart from this simple observation, we can easily show how our graph-
based modeling provides the fundamental platform for employing software 
engineering techniques for the measurement of the quality of the produced design (cf. 
section 3). Zooming in and out the graph in a principled way allows the evaluation of 
the overall design both at different depth of granularity and at any desired breadth of 
range (i.e., by isolating only the parts of the design that are currently of interest). 

3. Measuring the Architecture Graph: a principled approach 

One of the main roles of blueprints is their usage as testbeds for the evaluation of the 
design of an engineer. In other words, blueprints serve as the modeling tool that 
provides answers to the questions “How good is my design?” or “Between these two 
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designs, which one is better?”. In other words, one can define metrics or, more 
generally, measurement tests, to evaluate the quality of a design. In this section, we 
will address this issue, for our ETL workflows, in a principled manner. 

There is a huge amount of literature devoted in the evaluation of software artifacts. 
Fenton proves that it is impossible to derive a unique measure of software quality 
[Fent94]. Rather, measurement theory should be employed in order to define 
meaningful measures of particular software attributes. A couple of years later, Briand 
et al., employ measurement theory to provide a set of five generic categories of 
measures for software artifacts [BrMB96]: 

− Size, referring to the number of entities that constitute the software artifact. 
− Length, referring to the longest path of relationships among these entities. 
− Complexity, referring to the amount of inter-relationships of a component. 
− Cohesion, measuring the extent to which each module performs exactly one 

job, by evaluating how closely related are its components. 
− Coupling, capturing the amount of interrelationships between the different 

modules of a system. 
Systems and their modules are considered to be graphs with the nodes representing 

their constituent entities and the edges representing different kinds of 
interrelationships among them (Fig. 10). The definition of these categories is generic, 
in the sense, that depending on the underlying context, one can define his own 
measures that fit within one of the aforementioned categories. In order to be able to 
claim fitness within one of the aforementioned categories, there is a specific list of 
properties that the proposed measure must fulfill.  

For example, the size of a system modeled as a graph S(E,R) is a function 
Size(S) that is characterized by the properties: (a) nonnegativity, i.e., Size(S)≥0; 
(b) null value; E=∅ ⇒ Size(S)=0; and (c) module additivity, i.e., if a system S has 
two modules m1 and m2, then Size(S) = Size(m1) + Size(m2). The last property 
shows that adding elements to a system cannot decrease its size (size monotonicity). 
For instance, the size of the system in Fig. 10 is the sum of the sizes of its two 
modules m1 and m2. The intuition here is that if the size of a certain module is greater 
than the size of another, then we can safely argue that the former is comprised of 
more entities than the latter. 
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Fig. 10 A modular system graph containing two modules 

Another important observation, found both in [Fent94] and [BrMB96], is that 
measurement theory imperatively demands that a measure describes an intuitively 
clear concept, i.e., there is a clear interpretation of what we measure. This should be 
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coupled with clear procedures for determining the parameters of the model and 
interpreting the results. 

 
In this paper, we propose a set of measures that evaluate our ETL blueprints and 

stay within the context of the measures proposed by [BrMB96]. For each measure we 
provide both its intuition and a proof for its fitness within one of the aforementioned 
categories. Our fundamental concern, for defining our measures is the effort required 
(a) to define and (b) to maintain the Architecture Graph, in the presence of changes. 
Therefore, the statements that one can make, concerning our measures characterize 
the effort/impact of these two phases of the software lifecycle. 

First, we identify the correspondence of the constructs of the Architecture Graph to 
the concepts of [BrMB96]. [BrMB96] defines a system, S, as a graph S=(E,R), 
where E is the set of elements of the system and R is the set of relationships between 
the elements. A module m is a subset of the elements (i.e., the nodes) of the system 
(observe that a module is defined only in terms of nodes and not edges). In general, 
modules can overlap. However, when the modules partition the nodes in a system, 
then this system is called a modular system, MS. The authors distinguish two 
categories of edges: (a) the intermodule edges that have end points in different 
modules and (b) the intramodule edges that have end points in the same module. In 
terms of our modeling: 

− The architecture graph G(V,E) is a modular system.  
− Recordsets and activities are the modules of the graph. The nodes of the graph 

involve attributes, functions, constants, etc. All kinds of relationships are the 
edges of the graph.  

− The system is indeed modular, i.e., there are no elements (nodes) that do not 
belong to exactly one module (activity or recordset). Remember that side-
effects are treated as activities.  

− Inter-activity and side-effect rules result in intermodule edges. All the rest of 
the relationships result in intramodule edges. 

− The union of two interacting activities can be defined: it requires merging the 
input/output nodes (attribute/schemata) connected by provider relationships. 

3.1 Measures 

Next, we define our measures. For each measure, we present: (a) a description; (b) the 
intuition; and (c) the proof of fitness within the appropriate set of properties of 
[BrMB96]. 

 
Size. Size is a measure of the amount of constituting elements of a system. 

Therefore, it can be considered as a reasonable indicator of the amount to define the 
system. In our framework, we adopt the number of nodes as the measuring rule for the 
size of the Architecture Graph; thus, the size of the architecture graph G(V,E) is 
given by the formula: 

Size(G) = card(V) 

Intuition. Size is an indicator of the effort needed to design an ETL workflow.  
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Proof of Correctness. The function Size satisfies the following properties 

[BrMB96]. 
Property 1: Nonnegativity. The size of a graph G(V,E) is nonnegative, because the 

number of its nodes is always non negative (worst case: card(V)=0), i.e., Size(G) 
= card(V)≥0. 

Property 2: Null value. Obviously, the size of a graph G(V,E) is null when if V is 
empty: V=∅  ⇒  Size(G) = card(V) = 0. 

Property 3: Module additivity. The size of a graph G(V,E) is equal to the sum of 
the sizes of the graphs of two of its modules G1(Vm1,Em1) and G2(Vm2,Em2) such that 
any element of G is an element of either G1 or G2. Obviously, the number of nodes of 
the architecture graph is the sum of the number of all its nodes, i.e., recordsets and 
activities. V = Vm1 ∪ Vm2 ⇒ card(V) = card(Vm1) + card(Vm2) ⇒ Size(G) 

= Size(G1) + Size(G2). 
 
Length. Length is a measure that refers to the maximum length of 

“retransmission” of a certain attribute value. Length measure the longest path that we 
possibly need to maintain if we make an alteration in the structure of the Architecture 
Graph. For example, this could involve the deletion of an attribute at the source side. 
Then, the length characterizes how many nodes in the graph we need to modify as a 
result of this change (practically involving the nodes corresponding to this particular 
attribute, within the workflow).  

In [VaSS02] the authors define the (transitive) dependency of a node as the 
cardinality of the (transitive closure of) provider relationships arriving at this node. To 
define the length of path from a module m backwards to the fountains of the graph, we 
use the maximum of its transitive dependency measure for the attributes of its output 
schemata. The only possibility of cycles in the graph of provider relationships is 
incurred in the case of side-effects. Therefore, we consider a subgraph of the 
Architecture Graph: for each activity a, if there is a recordset r involved in a cycle 
with a, due to a side-effect rule, we remove all edges from r towards a. The 
dependency still holds and no cycles exist in the new graph.  

Thereby, the length of a module m is given by the formula:  

Length(m)= max{transitive_dependency(i)}, i ∈ output_schemata(m) 

The length of the graph is defined as the maximum length over all its modules m: 

Length(G)= max(Length(mj)) 

Observe the reference example of Fig. 3. Although it does not depict a complete 
graph, the length of the depicted subgraph is 3, since the maximum length of its 
modules is 3 (input schema of activity $2E).  

 
Intuition. With the measure ‘length’ we determine the maximum path of 

reproduction of the same piece of data in the system.  
 
Proof of Correctness. Length satisfies the following properties [BrMB96]. 
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Property 1: Nonnegativity. The length of a graph G(V,E) is nonnegative, because 
the minimum path in a graph comprises one node at most. Therefore, Length(G)≥0 

Property 2: Null value. An empty graph obviously has a maximum length of 0, 
therefore, a null value is obtained as the length of the system. 

Property 3: Nonincreasing monotonicity for connected components. Consider two 
nodes of the graph G for which there is a path from one to the other in the nondirected 
graph obtained from the G by removing directions in the arcs. If a new relationship is 
introduced between these two nodes, the length of the new graph G’ should not be 
greater than the length of the original graph G. This is valid in our framework, since 
we do not allow cycles in the graph. Thus: Length(G)≥Length(G’). 

Property 4: Nondecreasing monotonicity for non-connected components. Consider 
a graph G containing two modules m1 and m2 that are not connected each other. Adding 
relationships from attributes of m1 to attributes of m2 should not decrease the length of 
G. This is obvious due to the properties of the max function. Thus, in any addition the 
length either remains the same or increases.  

Property 5: Disjoint Modules. According to this property, the length of a graph G 
made of two disjoint modules m1 and m2 is equal to the maximum of the lengths of m1 
and m2 and clearly, this is inherently covered by the definition of Length(G). 

 
Complexity. Complexity is an inherent property of systems; in our case, 

complexity stands to the amount of interconnection of constituent entities of the 
Architecture Graph. This is an indicator of maintenance effort in the presence of 
changes. The more complex a system is the more amount of maintenance effort is 
expected to be required in the case of changes. [BrMB96] indicates that the properties 
of complexity focus on edges, thus, our function for complexity concerns the edges of 
the graph G(V,E) at the most detailed level. Again, we distinguish module from 
system complexity. 

We define overall degree of a module to be the overall number of edges of any 
kind (i.e., provider, part-of, etc) among its components, independently of direction. 
We count inter-module provider edges as half for each module. Then, 

Complexity(m) = |Eintramodule| + 0.5*|Eintermodule| 

 The complexity of the architecture graph G(V,E) is defined as the summary of the 
complexities of all the modules of the graph (i.e., recordsets and activities).  

Complexity(G) = overall_degree(G)=|E| 

Intuition. In our framework, complexity represents the difficulty to maintain a 
certain combination of activities or the whole ETL scenario.  

 
Proof of Correctness. Complexity satisfies the following properties [BrMB96]. 
Property 1: Nonnegativity. Obvious, similar to the proof of property 1 for length. 

Thus: Complexity(G)≥0. 
Property 2: Null value. Obvious, since if there is no relationship in the graph, then: 

E=∅ ⇒ Complexity(G)=0. 
Property 3: Symmetry. Complexity should not be sensitive to representation 

conventions with respect to the direction of arcs representing system relationships. A 



                               21 

relation can be represented in either an “active” (E) or “passive” (E-l) form. The graph 
and the relationships between its nodes are not affected by these two equivalent 
representation conventions, and overall degree is insensitive to this by definition. 
Thus, for graphs G=(V,E) and G-1=(V,E-1) the following formula holds: 
Complexity(G)= Complexity(G-1). 

Property 4: Module monotonicity. This property necessitates that if there exist two 
modules (i.e., activities or recordsets) that share elements (e.g., attributes) but they do 
not have any relationship in common, then the complexity of a system is no less than 
the sum of complexities of the two modules. Considering that two activities or 
recordsets cannot have a common attribute (element in [BrMB96] terminology), this 
property trivializes to the next one.  

Property 5: Disjoint module additivity. According to this property, the complexity 
of a graph composed of two disjoint modules is equal to the sum of the complexities 
of the two modules. This is obvious in our case, since if we consider a graph G of two 
disjoint activities/recordsets A1 and A2 then the complexity of the graph is the 
summary of the overall degree of the two activities, since no provider edges exist to 
relate them and all other kinds of relationships are internal to each module. Thus, the 
following formula holds: Complexity(G)= Complexity(A1)+ Complexity(A2). 

 
Cohesion. A commonly agreed upon property of modular software is that each 

module ideally performs exactly one job. Cohesion is the measure employed to assess 
the extent to which the modules of a system abide by this rule. In our case, we can 
exploit the peculiarities of our setting to assess the cohesion of our ETL workflows.  

ETL operations can largely be classified in two categories. Each activity in our 
model performs one of two tasks: (a) filtering, meaning that a certain criterion is 
applied over the employed data in order to block those that do not pass the test and (b) 
transformation, meaning that a certain function is applied in order to generate some 
new value in the workflow. Both these tasks involve regulator relationships among 
the involved attributes and the functions/built-in selectors (=, ≤, etc.) of the activities. 
Therefore, the amount of regulator relationships should be a good indicator of the 
cohesion of a system. Moreover, we impose two extra requirements that we consider 
reasonable: (a) the more functions/built-ins employed, the less cohesive the module is 
(i.e., it is assumed/expected to perform more than one job) and (b) if more attributes 
are involved in regulator relationships, cohesion increases. In the sequel, we will refer 
to functions and built-ins as functionality nodes.  

 

Fig. 11 Cohesion for this module takes the value of (1+1)/1*5=0.4 
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Before giving the formal definition, we will present the intuition of our proposed 
measure. Due to requirement (a), we need the inverse of the number of employed 
functionality nodes. Also due to the requirement (b) we need a measure analog to the 
number of attributes involved in a regulator relationship. Since [BrMB96] require 
cohesion to be normalized within a range [0…max] we need to normalize the number 
of attributes involved with the total number of attributes. To simplify things we 
measure only input and output attributes. Still, we count an input/output attribute as 
functionality-related even if it is not directly involved in a regulator relationship, but 
transitively dependent (or responsible) with an internal attribute that is involved. 

In Fig. 11, we depict providers with solid lines and regulators with dotted lines. 
The input attribute A is involved in a regulator relationship transitively (through 
attribute C), whereas the attribute G is directly involved in a regulator relationship. 

Now, we are ready to define cohesion for our modules and system. 

OUT)(IN*F

F_OUTF_IN
)Cohesion(m

+

+

= , 

where F is the number of functions of the module, IN (OUT) is the number of input 
(output) attributes of the module, and F-IN (F-OUT) is the number of functionally-
related input (output) attributes of  module m. 

Cohesion(G) = avg(cohesion(mi)), for all the modules mi of G  

Intuition. Cohesion indicates the extent to which (a) a module performs a single 
task, (b) as many as possibly of its attributes are involved in this task. 

 
Proof of Correctness. The function Cohesion satisfies the following properties 

[BrMB96]. 
Property 1. Nonnegativity and normalization. Obviously module cohesion is a 

positive value. The fraction of (F_IN+F_OUT)/(IN+OUT) is obviously lower than 1, 
therefore cohesion is normalized within [0..1]. Observe that the zero value is 
obtained if no regulators exist (e.g., the case of an ftp activity) and the maximum 
value is obtained if all the input and output attributes are involved in the only function 
employed by the activity. The same apply for the system cohesion. 

Property 2. Null Value. Obvious: if no relationships exist, cohesion takes the zero 
value. 

Property 3: Monotonicity. Adding intramodule relationships to a module does not 
decrease cohesion. There are two cases here: (a) the added relationship is not a 
regulator (in which case, cohesion remains the same), or (b) the added relationship is 
a regulator, in which case the cohesion increases. If the cohesion of a module 
increases, then the average module cohesion increases too. 

Property 4: Cohesive modules. Assume we merge two completely unrelated 
activities. Then, the cohesion of the new module should be lower than the maximum 
cohesion of the two constituents and the cohesion of the graph G’ obtained by the 
merger is not greater than the cohesion of the original graph G.  

In our case, this can be handled as follows. Replacing two unrelated activities by 
their union means that we introduce an activity having as input (output) schemata the 
union of the respective schemata of the two activities. Also, the functionality nodes 
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employed are the same with the ones of the constituents and the same applies for 
regulator relationships. Assume two activities A1 and A2. Without loss of generality, 
assume that A1 is more cohesive, therefore: 
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where INVi is the number of functionally-related attributes of activity i and Ni is its 
total number of input and output attributes. We want to show that: 
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This is simple since, if we proceed to the removal of the fractions, we have: 
INV1*F1*N1+INV1*F1*N2+INV1*F2*N1+INV1*F2*N2 ≥ INV1*F1*N1+ INV2*F1*N1 

=> INV1*F1*N2+INV1*F2*N1+INV1*F2*N2 ≥ INV2*F1*N1 
which is obvious, since INV1*F2*N2≥ INV2*F1*N1 in the first place. 

Therefore, module cohesion does not increase and consequently, the average 
module cohesion does not increase either. 

 
Coupling. In our framework, coupling captures the amount of relationship between 

the attributes belonging to different recordsets or activities (i.e., modules) of the 
graph. Two kinds of coupling can be defined: inbound coupling and outbound 
coupling. Given a module m, the former captures the amount of relationships from 
attributes outside m to attributes inside m; while the latter captures the amount of 
relationships from attributes inside m to attributes outside m. In what follows, when 
referring to coupling, we will use the word coupling to denote either inbound or 
outbound coupling. 

[BrMB96] indicates that the properties of complexity focus on intermodule edges, 
thus our function for complexity concerns the provider edges of the graph G(V,E) 
that start from an output node of a module and terminate to an input node of another 
module. Thus, we define the coupling of a graph G(V,E) as the sum of incoming and 
outgoing provider edges of each activity or recordset. This summary of edges for a 
certain module is called local degree according to the terminology we introduced in 
[VaSS02]. Thus, coupling is given by: 

Coupling(G) = ∑ilocal_degree(mi), for all the modules mi of G 

In the reference example of Section 2, the coupling of the activity SK is 13, i.e., the 
total number of its incoming and outgoing provider relationships. 

 
Intuition. The coupling of a system denotes the extent to which its different 

modules are correlated. 
 
Proof of Correctness. Coupling satisfies the following properties [BrMB96]. 
Property 1: Nonnegativity. Obvious, similar to the proof of property 1 for length. 

Thus: Coupling(G)≥0. 
Property 2: Null value. Obvious, since if there is no relationship in the graph, then: 

E=∅ ⇒ Coupling(G)=0. 
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Property 3: Monotonicity. Adding intermodule relationships does not decrease 
coupling. And this is true, since when a new provider relationship is added the local 
degree of the respective module is increased, the coupling of this module is increased 
and the coupling of the whole graph is increased too. 

Property 4: Merging of modules. This property is satisfied, because the coupling of 
a graph G’ obtained by merging two modules is not greater than the coupling of the 
original graph G, since the two modules may have common intermodule relationships. 
So, if there is a provider relationship p between the two modules, when these two are 
merged, then p should be removed from graph and the local degree of the new merged 
module will be less than the sum of the local degrees of the two modules. Thus, as the 
property demands, the following is hold: Coupling(G) ≥ Coupling(G’). 

Property 5: Disjoint module additivity. According to this property, the coupling of 
a system obtained by merging two unrelated modules is equal to the coupling of the 
original system. This is obvious, since if there are not common relationships between 
the two modules, then the merge of these two does not impose any change to the local 
responsibilities of their combination. Thus, Coupling(G)=Coupling(G’). 

3.2 Example 

In order to demonstrate the usage of our proposed metrics, we present an exemplary 
scenario, implemented in three different ways. For each of these implementations we 
measure the different properties that we have proposed and discuss the observed 
phenomena. 

The scenario involves the propagation of data from the product suppliers table 
DSA_PS(PKEY,SUPPKEY,DATE,QTY,COST) towards the table DW_V1(PKEY, 

SUM_COSTS) with the obvious semantics. Three operations need to take place 
between the two data stores: (a) a selection involving dates after 1/1/2004, (b) a 
second selection test involving only quantities greater than zero and (c) a summation 
of costs per product key. In the first scenario, we employ a different activity for each 
of the operations, with the activities connected serially. In the second scenario, we 
have merged the two filters in a single activity. In the third scenario, the selections are 
performed in parallel, the results are then joined and subsequently aggregated. The 
graph representation of the scenarios is partially depicted in Fig. 12, where the 
abstract representation of each scenario is shown in the upper part of each column and 
the part of the detailed representation is depicted in the lower part. We omit part-of 
relationships and details higher than the schema level for reasons of space and 
presentation. In the figure, we refer to attribute SUPPKEY as SUPP for lack of space. 
The metrics for each scenario are depicted in the tables 1 - 3 and refer to the depicted 
graphs (with very small discrepancies from the overall graphs). 

The observation of the above figures reveals interesting properties of the proposed 
designs. As an overall estimation, the second scenario outperforms all the others in all 
categories. This is due to the fact that by merging the selections in a single activity, all 
provider relationships among modules are shortened. The same applies, of course, for 
the size of the graph. 
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Table 1: Measures for Scenario 1, involving a linear composition of three activities 
 Size Length Complexity Cohesion Coupling 
DSA_PS 6 0 7.50 -  5 
σ1 14 2 24.00 0.10 10 
σ2 14 4 24.00 0.10 10 
sum 14 7 20.75 0.29 7 
DW_V1 3 8 3.00 -  2 
Overall 51 8 79.25 0.16 34 

Table 2: Measures for Scenario 2, where selections are merged 
 Size Length Complexity Cohesion Coupling 
DSA_PS 6 0 7.50 -  5 
Σ 16 2 28.00 0.10 10 
Sum 14 5 20.75 0.29 7 
DW_V1 3 6 3.00 -  2 
Overall 39 6 59.25 0.19 24 

Table 3: Measures for Scenario 3, where selections are performed in parallel 
 Size Length Complexity Cohesion Coupling 
DSA_PS 6 0 7.50 -  5 
σ1 14 2 24.00 0.10 10 
σ2 14 2 24.00 0.10 10 
join 20 4 36.50 0.07 15 
sum 14 7 20.75 0.29 7 
DW_V1 3 8 3.00 -  2 
Overall 71 8 115.75 0.14 49 

 
In terms of individual measures, we can observe the following: 
• Size has obvious results, simply due to the number of attributes in the input 

and output schemata of the activities.  
• The length is a clear indication of the maximum reproduction path of a datum 

and, obviously, no major differences are observed.  
• The complexity and cohesion of the second scenario are quite impressing. 

Ideally, for reasons of maintainability, we would appreciate a scenario with 
low complexity and high cohesion. The complexity of the second scenario is 
significantly lower than any other alternative, since, obviously, fewer activities 
and fewer operations are performed. Although the combined selection activity 
has the same cohesion with the two individual ones (by a simple application of 
the formula), the overall cohesion drops due to the smaller number of involved 
activities. Thus, the cohesion of the second scenario is noticeably higher than 
the other two. Also, the fact that the cohesion of the combined activity remains 
the same is not surprising: although two selections are performed, the number 
of attributes involved increases, so the fraction remains stable. 

• Finally, the coupling is clearly a subset of the complexity measure: by 
isolating only provider relationships, we clearly see that module 
interconnections are lowest when the second scenario is employed. 
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Fig 12. Equivalent scenarios for the propagation of data from a data source to the warehouse 
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As a final comment, we can easily observe (both by the visualization and 

measurement) that there exist attributes that should not participate in the workflow, in 
the first place. Attribute SUPPKEY (SUPP as a shortcut in Fig. 12) should be omitted in 
the first place. Attributes DATE and COST should also be omitted once the selections 
involving them have taken place. 

4. Related Work 

Two main lines of research pertain to this paper: (a) research on the modeling of ETL 
activities and (b) research on the measurement of software artifacts and in particular, 
measurement in a principled way. 

As far as ETL is concerned, there is a variety of tools in the market, including the 
three major database vendors, namely Oracle with Oracle Warehouse Builder 
[Orac04], Microsoft with Data Transformation Services [Micr04] and IBM with the 
Data Warehouse Center [IBM04]. Major other vendors in the area are Informatica’s 
Powercenter [Info04] and Ascential’s DataStage suites [Asce04]. Research-wise, 
there are several works in the area, including [GFSS00] and [RaHe01] that present 
systems, tailored for ETL tasks. The main focus of these works is on achieving 
functionality, rather than on modeling the internals or dealing with the software 
design or maintenance of these tasks.  

Concerning the conceptual modeling of ETL, [TrLu03] and [VaSS02a] are the first 
attempts that we know of. The former approach employs UML as a modeling 
language whereas the latter introduces a generic graphical notation. Still, the focus is 
only on the conceptual modeling part. As far as the logical modeling of ETL is 
concerned, in [VSGT03] the authors give a template-based mechanism to define ETL 
workflows. The focus there is on building an extensible library of reusable ETL 
modules that can be customized to the schemata of the recordsets of each scenario.  In 
an earlier work [VaSS02] the authors have presented a graph-based model for the 
definition of the ETL scenarios. As already mentioned, we extend this model (a) by 
treating particular cases like side-effects, but most importantly, (b) by incorporating 
the internals of the activity semantics to the graph. 

Concerning related work on software measurement, we have already mentioned the 
fundamental works that have guided our approach. [Fent94] gives the fundamentals of 
measurement theory and the way they should applied in the case of measuring 
software artifacts. There is an extensive discussion of software metrics in [Dumk02] 
and an interesting discussion of this area in [FeNe02]. Briand et al. [BrMB96] present 
the overall framework for defining our particular measures. The particular 
contribution of this paper is that it gives the principles for defining large categories of 
software measures. In our case, we prove that the proposed measures fit within the 
context given by [BrMB96].  
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5. Conclusions 

In this paper, we construct the blueprints for the structure ETL workflows by mapping 
both their inter-connection and their internal semantics to a graph, which we call the 
Architecture Graph. The Architecture Graph constitutes the blueprint over which we 
can perform further analysis for the structure of such a workflow. The first of our 
contributions involves extending existing results in two ways: (a) we explicitly 
capture the internal semantics of each activity in the workflow, and (b) we incorporate 
extra information on the interaction of activities with data stores such as the case of 
updates. We employ the LDL language in order to capture the semantics of ETL 
activities: therefore, we have provided a principled way of transforming LDL 
programs to the graph both at the attribute (i.e., granular) level of detail and at 
different levels of abstraction. Apart from the value that blueprints have per se, we 
exploit our modeling to introduce rigorous techniques for the measurement of ETL 
workflows. To this end, we have built upon an existing formal framework for 
software quality metrics and formally prove how our quality measures fit within this 
framework.  

Research can be continued in more than one direction. We need an extra step, in 
order to link our results to the control flow of the graph. Precise algorithms for the 
evaluation of the impact of changes in the Architecture Graph can also be devised. 
New metrics can also be discovered, if they appear to reveal properties not covered 
here. Finally, the usage of the Architecture Graph in all phases of the software 
lifecycle (e.g., testing) can also be evaluated. 
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