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Abstract. Extract-Transform-Load (ETL) workflows are data centric 
workflows responsible for transferring, cleaning, and loading data from their 
respective sources to the warehouse. Previous research has identified graph-
based techniques that construct the blueprints for the structure of such 
workflows. In this paper, we extend existing results by explicitly incorporating 
the internal semantics of each activity in the workflow graph. Apart from the 
value that blueprints have per se, we exploit our modeling to introduce rigorous 
techniques for the measurement of ETL workflows. To this end, we build upon 
an existing formal framework for software quality metrics and formally prove 
how our quality measures fit within this framework.  

1 Introduction 

All engineering disciplines employ blueprints during the design of their engineering 
artifacts. Modeling in this fashion is not a task with a value by itself; as [1] mentions 
“we build models to communicate the desired structure and behavior of our system … 
to visualize and control the system’s architecture … to better understand the system 
we are building … to manage risk”. 

In this paper, we discuss the constructing entities and the usage of blueprints for a 
particular category of database-centric software, namely, the Extract-Transform-Load 
(ETL) workflows. ETL workflows are an integral part of the back-stage of data 
warehouse architectures, where data are (a) collected from the operational sources, (b) 
cleansed (to remove any noise or inconsistencies), (c) transformed (so that they 
syntactically comply with the schema of the warehouse tables) and finally, (d) loaded 
to the target warehouse tables. Out of the aforementioned benefits of modeling, 
control of the system’s architecture and risk management are of particular importance. 
For example, we would like to answer questions like: 

- Which attributes/tables are involved in the population of a certain attribute? 
- What part of the scenario is affected if we delete an attribute? 
- How good is the design of my ETL scenario? Is variant A or variant B better? 

Previous research has provided some results towards the aforementioned tasks. The 
work of [9, 11] provides conceptual modeling techniques for ETL. In [10] we have 
presented a first attempt towards a graph-based model for the definition of the ETL 
scenarios. The model of [10] treats ETL scenarios as graphs. Activities and data stores 
are modeled as the nodes of the graph; the attributes that constitute them are modeled 



     

as nodes too. Activities have input and output schemata and provider relationships 
relate inputs and outputs between data providers and data consumers. Nevertheless, 
what is missing from previous efforts is a full model of the semantics of ETL 
workflows and a rigorous framework for the measurement of our design artifacts. 

In this paper, we significantly extend previous works to capture the internals of the 
workflow activities in sufficient detail. We make use of a logical abstraction of ETL 
activity semantics in the form of LDL++ programs [14]. The approach is not 
unrealistic: in fact, in [12] the authors discuss the possibility of providing extensible 
libraries of ETL tasks, logically described in LDL. On the basis of this result, it is 
reasonable to assume the reusability of these libraries. In this paper, we extend the 
graph of [12] by incorporating the internals of the activity semantics to the graph. To 
this end, we provide a principled way of transforming LDL programs to graphs, in a 
way that gracefully complements the model of [10, 12]. The resulting graph, which is 
called Architecture Graph can provide sufficient answers to what-if and dependency 
analysis in the process of understanding or managing the risk of the environment.  

Moreover, another question can also be answered: “How good is my design?”. The 
community of software engineering has provided numerous metrics towards 
evaluating the quality of software designs [4]. Are these metrics sufficient? In this 
paper, we build upon the fundamental contribution of [2] that develops a rigorous and 
systematic framework that classifies usually encountered metrics into five families, 
each with its own characteristics. These five families are size, length, complexity, 
cohesion and coupling of software artifacts. In this paper, we develop specific 
measures for the Architecture Graph and formally prove their fitness for the rigorous 
framework of [2].  

In a nutshell, our contributions can be listed as follows: 
− an extension of [10] to incorporate internal semantics of activities in the 

architecture graph; 
− a principled way of transforming LDL programs to the graph, so that the latter 

can be explored both at the granular (i.e., attribute) level of detail and at 
different levels of abstraction; 

− a systematic definition of software measures for the Architecture Graph, based 
on the rigorous framework of [2]. 

This paper is organized as follows. In Section 2, we present the graph model for 
ETL activities. Section 3 discusses measures for the introduced model. In Section 4, 
we present related work. Finally, in Section 5 we conclude our results and provide 
insights for future work. The reader is encouraged to refer to the long version of this 
paper [13] for all the proofs and several technical issues, omitted from this paper for 
lack of space. 

2 A Generic Model of ETL Activities 

The purpose of this section is to present a formal logical model for the activities of an 
ETL environment. We start with the background constructs of the model, already 
introduced in [10, 12]. Then, we move on to extend this modeling with formal 
semantics of the internals of the activities.  



     

In order to formally define the semantics of ETL workflow, we can use any 
3GL/4GL programming language (C++, PL/SQL etc.). We do not consider the actual 
implementation of the workflow in some programming language, but rather, we 
employ LDL++ [14] in order to describe its semantics in a declarative nature and 
understandable way. LDL++ is a logic-programming, declarative language that 
supports recursion, complex objects and negation. Moreover, LDL++ supports 
external functions, choice, (user-defined) aggregation and updates. LDL was carefully 
chosen as the language for expressing ETL semantics. First, it is elegant and has a 
simple model for expressing activity semantics. Second, the head-body combination 
is particularly suitable for relating both (a) input and output in the simple case, and, 
(b) consecutive layers of intermediate schemata in complex cases. Finally, LDL is 
both generic and powerful, so that (large parts of) other languages can be reduced to 
the Architecture Graph constructs that result from it. 

2.1 Preliminaries 

In this subsection, we introduce the modeling constructs of [10, 12] upon which we 
will subsequently build our contribution. In brief, the basic components of this 
modeling framework are: 

− Data types. Each data type T is characterized by a name and a domain, i.e., a 
countable set of values. The values of the domains are also referred to as 
constants.  

− Attributes. Attributes are characterized by their name and data type. For 
single-valued attributes, the domain of an attribute is a subset of the domain of 
its data type, whereas for set-valued, their domain is a subset of the powerset 
of the domain of their data type 2dom(T). 

− A Schema is a finite list of attributes. Each entity that is characterized by one 
or more schemata will be called Structured Entity.  

− Records & RecordSets. We define a record as the instantiation of a schema to 
a list of values belonging to the domains of the respective schema attributes. 
Formally, a recordset is characterized by its name, its (logical) schema and its 
(physical) extension (i.e., a finite set of records under the recordset schema). In 
the rest of this paper, we will mainly deal with the two most popular types of 
recordsets, namely relational tables and record files.  

− Functions. A Function Type comprises a name, a finite list of parameter data 
types, and a single return data type. 

− Elementary Activities. In the framework of [12], activities are logical 
abstractions representing parts, or full modules of code. An Elementary 
Activity (simply referred to as Activity from now on) is formally described by 
the following elements: 

- Name: a unique identifier for the activity. 
- Input Schemata: a finite list of one or more input schemata that receive 

data from the data providers of the activity.  
- Output Schemata: a finite list of one or more output schemata that 

describe the placeholders for the rows that pass the checks and 
transformations performed by the elementary activity.  



     

- Operational Semantics: a program, in LDL++, describing the content 
passing from the input schemata towards the output schemata. For 
example, the operational semantics can describe the content that the 
activity reads from a data provider through an input schema, the 
operation performed on these rows before they arrive to an output 
schema and an implicit mapping between the attributes of the input 
schema(ta) and the respective attributes of the output schema(ta). 

- Execution priority. In the context of a scenario, an activity instance must 
have a priority of execution, determining when the activity will be 
initiated.  

− Provider relationships. These are 1:N relationships that involve attributes with 
a provider-consumer relationship. The flow of data from the data sources 
towards the data warehouse is performed through the composition of activities 
in a larger scenario. In this context, the input for an activity can be either a 
persistent data store, or another activity. Provider relationships capture the 
mapping between the attributes of the schemata of the involved entities. Note 
that a consumer attribute can also be populated by a constant, in certain cases. 

− Part_of relationships. These relationships involve attributes and parameters 
and relate them to their respective activity, recordset or function to which they 
belong.  

Based upon the previous constructs, already available from [12], we proceed with 
their extension towards fully incorporating the semantics of ETL workflow in our 
framework. To this end we introduce programs as another modeling construct. 

− Programs. We assume that the semantics of each activity is given by a 
declarative program expressed in LDL++. Each program is a finite list of 
LDL++ rules. Each rule is identified by an (internal) rule identifier. We 
assume a normal form for the LDL++ rules that we employ. In our setting, 
there are three types of programs, and normal forms, respectively: 

(i) intra-activity programs that characterize the operational semantics, i.e., 
the internals of activities (e.g., a program that declares that the activity 
reads data from the input schema, checks for NULL values and populates 
the output schema only with records having non-NULL values), 

(ii) inter-activity programs that link the input/output of an activity to a data 
provider/consumer, 

(iii) side-effect programs that characterize whether the provision of data is an 
insert, update, or delete action. Due to lack of space, we discuss side-
effect rules in detail in the long version of this paper [13]. 

− Regulator Relationships. A regulator relationship in a safe rule is an 
equality/inequality relationship between two terms, i.e., of the form term1 θ 
term2, such that neither of them appears in the head of a rule. In terms of the 
architecture graph, the regulator relationship is represented (a) by a node for 
each of the terms, (b) by a node representing the condition θ, and (c) by two 
edges among the node of the condition and the nodes of the term. The 
direction of the edges follows the way the expression is written in LDL (i.e., 
from the left to right). Regulator relationships are used in order to capture the 
selection conditions and joins that take place in an LDL program. 



     

We assume that each activity is defined in isolation. In other words, the inter-
activity program for each activity is a stand-alone program, assuming the input 
schemata of the activity as its EDB predicates. Then, activities are plugged in the 
overall scenario that consists of inter-activity and side-effect rules and an overall 
scenario program can be obtained from this combination. 

 
Intra-activity programs. The intra-activity programs abide by the following rules:  

1. All input schemata are EDB predicates. 
2. All output schemata appear only as IDB predicates. Furthermore, output 

schemata are the only IDB predicates that appear in such a program. 
3. Intermediate rules are possibly employed to help with intermediate results. 
4. We assume non-recursive admissible programs. The safety of the program is 

guarantied by the requirement for admissibility, which is a generalization of 
stratifiability [3]. An admissible program does not contain any self-referential 
set definitions or any predicates defined in terms of their own negations.  

Inter-activity programs. The inter-activity programs are very simple. There is 
exactly one rule per provider relationship, with the consumer in the head and the 
provider in the body. The consumer attributes are mapped to their corresponding 
providers either through the synonym mechanism or through explicit equalities. No 
other atoms or predicates are allowed in the body of an inter-activity program; all the 
consumer attributes should be populated from the provider. 

Consumer_input(a1,…,an) <- provider_output(a1,…,am), m ≥ n 

2.2 Incorporating activity semantics in the Architecture Graph 

The focus of [10, 12] is on the input-output role of the activities instead of their 
internal operation. In this section, we extend the model of those works by translating 
the formal semantics of the internals of the activities to graph constructs, as part of the 
overall Architecture Graph. We organize this discussion as follows: first, we consider 
how individual rules are represented by graphs for intra-activity and  inter-activity 
programs. The interested author can find a discussion about side-effect programs in 
the long version of this paper [13]. Then, we discuss how the programs of activities 
are constructed from the composition of different rules and finally, we discuss how a 
scenario program can be obtained from the composition of the graph representations 
of individual programs. 

Intuitively, instead of simply stating which schema populates another schema, we 
trace how this is done through the internals of an activity. The programs that facilitate 
the input to output mappings take part in the graph, too. Any filters, joins or 
aggregations are part of the graph as first-class citizens. There is a straightforward 
way to determine the architecture graph with respect to the LDL program that defines 
the ETL scenario. 

Intra-activity rules. Given the program of the activity as a stand-alone LDL++ 
program, we introduce the following constructs, by default: 

- A node for the activity per se. 
- A node for each of the schemata of the activity and a node for the activity 

program. Part-of edges connect the activity with these components. 



     

- A node for each rule, connected through a part-of relationship to the program 
node of the activity. 

If we treat each rule as a stand-alone program, we can construct its graph as 
follows: 

- We introduce a node for each predicate of the rule. These nodes are connected 
to the rule node through a part-of relationship. The edge of the head predicate 
is tagged as ‘head’ and the edges of the negated literals of the body are tagged 
as ‘¬’. Functions are treated as predicates. A different predicate node is 
introduced for each instance of the same predicate (e.g., in the case of a self-
join). Such nodes are connected to each other through alias edges. In the long 
version [13], we detail the parts of the last cases that require extra attention.  

- We introduce a node for each variable of a predicate. Part-of relationships 
connect these nodes with their corresponding predicates. 

- For each condition of the form Input attribute = Output attribute (or its 
equivalent presence of synonyms in the output and input schemata), we add a 
provider edge. Here, we assume as input (output) attributes, attributes 
belonging to predicates of the rule body (head). A provider relationship is thus, 
an edge from the body towards the head of the rule. 

- For relationships among input attributes (practically, involving functions and 
built-ins), a regulator edge is introduced.  

 
R06: sk.a_in1(pkey,suppkey,date,qty,cost)<- 
        dsa_ps(pkey,suppkey,date,qty,cost). 
 
R07: sk.a_in2(pkey,source,skey)<- 
 lookUp(l_pkey,source,l_skey),pkey=l_pkey,skey=l_skey, 

source=1. 
R08: sk.a_out(pkey,suppkey,date,qty,cost,skey)<- 
 add_sk1.a_in1(pkey,date,qty,cost), 
 add_sk1.a_in2(pkey,source,l_skey). 
 
R09: dollar2euro.a_in(skey,suppkey,date,qty,cost)<- 
 sk.a_out(pkey,suppkey,date,qty,cost,skey). 

Fig. 1. LDL++ for a small part of a scenario 

Inter-activity rules. For each recordset of a scenario, we assume a node representing 
its schema. For simplicity, we do not discriminate a recordset from its schema using 
different nodes. For each intra-activity rule (between input-output schemata of 
different activities and/or recordsets) there is a simple way to construct its 
corresponding graph: we introduce a provider edge from the input towards the output 
attributes. 

Observe Fig. 1. Activity SK (Surrogate Key assignment) takes as input the data 
from a recordset DSA_PS(PKey,SuppKey,Date,Qty,Cost), and obtains a globally 
unique surrogate key SKey for the production key PKey, through a lookup table 
LookUp(PKey, Source, SKey); in this example, we consider that data originate from 
source 1. Then, the transformed data are propagated to another activity dollar2euro 
that converts the dollar values of attribute cost, to Euros (only the input schema of 
this activity is depicted). The rules R06, R07 and R09 are inter-activity rules: they 
describe how the input schemata of the activities are populated from their providers. 



     

Activities and recordsets can both play the role of provider, as one can see. Rule R08 
is an intra-activity rule. Fig. 2 depicts the architecture graph for this example. The 
grey area concerns the intra-activity program; the rest concern the inter-activity 
program rules. Solid arrows depict provider relationships, dotted arrows depict 
regulator relationships and part-of relationships are depicted with simple lines. 

pkey

suppkey

date

qty

cost

DSA_PS

R06 head

SK

Program

R08

a_in1 a_out
d2e.
a_in

R09

pkey

suppkey

date

qty

cost

l_key

source

l_skey

lookup

R07 head

a_in2

pkey

source

skey

=

=

1

head
head

pkey

suppkey

date

skey

cost

skey

suppkey

date

qty

cost

cost

 
Fig. 2. Architecture graph for the example of Fig. 1 

Deriving the graph of an activity program from the graphs of its rules. 
Combining the graphs of the rules of an activity is straightforward. Recall that so far, 
we have created the graph for each rule, considering each rule in isolation. Then, the 
graph for the overall activity is as follows: 

- The nodes of the new graph comprise all the nodes of the rule graphs. If the 
same predicate appears to more than one rule, we merge all its corresponding 
nodes (i.e., the predicate node and all its variables). In the case where more 
than one instance of the same predicate exists in one rule, we randomly select 
one of these occurrences to be merged with the nodes of other rules. 

- The edges of the new graph are all the edges, of the individual rules, after the 
merging takes place.  

- All edges are tagged with the rule identifier of the rule they belong to. 
Through part of relationships and edge tagging, we can reconstruct the graphs 
of the individual rules, if necessary. 



     

Deriving the graph of a scenario program from the graphs of its components. 
The construction of the graph for the scenario program is simple.  

- First, we introduce all inter-activity and side-effect rules. We merge all 
multiple instances of the same recordset and its attributes. The same applies 
with the input and output schemata of an activity. We annotate all edges with 
the rule identifier of their corresponding rule.  

- Then, intra-activity graphs are introduced too. Activity input and output 
schemata are merged with the nodes that already represent them in the 
combined intra-activity/side-effect graph. The same applies to activity nodes, 
too. No other action needs to be taken, since intra-activity programs are 
connected to the rest of the workflow only through their input and output 
schemata. 

Once again, the reader is encouraged to refer to the long version of this paper [13], 
where we handle several issues omitted here due to lack of space. Specifically, these 
issues involve updates, aggregation, negation, functions and self-join queries. 
Moreover, the possibility of zooming in/out the Architecture Graph is also provided in 
[13]. The latter is a most useful interactive facility, necessary for avoiding the 
information overload due to the potentially high volume of detailed information at the 
attribute level, as described in this section. 

3 Measuring the Architecture Graph: a Principled Approach 

One of the main roles of blueprints is their usage as testbeds for the evaluation of the 
design of an engineer. In other words, blueprints serve as the modeling tool that 
provides answers to the questions “How good is my design?” or “Between these two 
designs, which one is better?”. In other words, one can define metrics or, more 
generally, measurement tests, to evaluate the quality of a design. In this section, we 
will address this issue, for our ETL workflows, in a principled manner. 

There is a huge amount of literature devoted in the evaluation of software artifacts. 
Fenton proves that it is impossible to derive a unique measure of software quality [6]. 
Rather, measurement theory should be employed in order to define meaningful 
measures of particular software attributes. A couple of years later, Briand et al., 
employ measurement theory to provide a set of five generic categories of measures 
for software artifacts [2]: 

− Size, referring to the number of entities that constitute the software artifact. 
− Length, referring to the longest path of relationships among these entities. 
− Complexity, referring to the amount of inter-relationships of a component. 
− Cohesion, measuring the extent to which each module performs exactly one 

job, by evaluating how closely related are its components. 
− Coupling, capturing the amount of interrelationships between the different 

modules of a system. 
Systems and their modules are considered to be graphs with the nodes representing 

their constituent entities and the edges representing different kinds of 
interrelationships among them (Fig. 3). The definition of these categories is generic, 
in the sense, that depending on the underlying context, one can define his own 



     

measures that fit within one of the aforementioned categories. In order to be able to 
claim fitness within one of the aforementioned categories, there is a specific list of 
properties that the proposed measure must fulfill. For example, the size of a system 
modeled as a graph S(E,R) is a function Size(S) that is characterized by the 
properties: (a) nonnegativity, i.e., Size(S)≥0; (b) null value; E=∅ ⇒ Size(S)=0; 
and (c) module additivity, i.e., if a system S has two modules m1 and m2, then Size(S) 
= Size(m1) + Size(m2). The last property shows that adding elements to a system 
cannot decrease its size (size monotonicity). For instance, the size of the system in 
Fig. 3 is the sum of the sizes of its two modules m1 and m2. The intuition here is that if 
the size of a certain module is greater than the size of another, then we can safely 
argue that the former is comprised of more entities than the latter. 
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Fig. 3 A modular system graph containing two modules 

Another important observation, found in both [6] and [2], is that measurement 
theory imperatively demands that a measure describes an intuitively clear concept, 
i.e., there is a clear interpretation of what we measure. This should be coupled with 
clear procedures for determining the parameters of the model and interpreting the 
results. 

In this paper, we propose a set of measures that evaluate our ETL blueprints and 
stay within the context of the measures proposed in [2]. Our fundamental concern, for 
defining our measures is the effort required (a) to define and (b) to maintain the 
Architecture Graph, in the presence of changes. Therefore, the statements that one 
can make, concerning our measures characterize the effort/impact of these two phases 
of the software lifecycle. 

First, we identify the correspondence of the constructs of the Architecture Graph to 
the concepts of [2]. In [2], a system S is a graph S=(E,R), where E is the set of 
elements of the system and R is the set of relationships between the elements. A 
module m is a subset of the elements (i.e., the nodes) of the system (observe that a 
module is defined only in terms of nodes and not edges). In general, modules can 
overlap. However, when the modules partition the nodes in a system, then this system 
is called a modular system, MS. The authors distinguish two categories of edges: (a) 
the intermodule edges that have end points in different modules and (b) the 
intramodule edges that have end points in the same module. In terms of our modeling: 

− The architecture graph G(V,E) is a modular system.  
− Recordsets and activities are the modules of the graph. The nodes of the graph 

involve attributes, functions, constants, etc. All kinds of relationships are the 
edges of the graph.  



     

− The system is indeed modular, i.e., there are no elements (nodes) that do not 
belong to exactly one module (activity or recordset).  

− Inter-activity and side-effect rules result in intermodule edges. All the rest of 
the relationships result in intramodule edges. 

− The union of two interacting activities can be defined: it requires merging the 
input/output nodes (attribute/schemata) connected by provider relationships. 

3.1 Measures 

Next, we define our measures. Due to lack of space, the proof of fitness within the set 
of properties of [2] for each measure can be found in [13]. We strongly encourage the 
reader to read the correctness proofs as they offer a deeper comprehension of the 
nature of the measures that we propose. 

Size. Size is a measure of the amount of constituting elements of a system. 
Therefore, it can be considered as a reasonable indicator of the amount to define the 
system. In our framework, we adopt the number of nodes as the measuring rule for the 
size of the Architecture Graph; thus, the size of the architecture graph G(V,E) is 
given by the formula Size(G) = card(V). 

Length. Length is a measure that refers to the maximum length of 
“retransmission” of a certain attribute value. Length measures the longest path that we 
possibly need to maintain if we make an alteration in the structure of the Architecture 
Graph. For example, this could involve the deletion of an attribute at the source side. 
Then, the length characterizes how many nodes in the graph we need to modify as a 
result of this change (practically involving the nodes corresponding to this particular 
attribute, within the workflow).  

In [10] the authors define the (transitive) dependency of a node as the cardinality of 
the (transitive closure of) provider relationships arriving at this node. To define the 
length of path from a module m backwards to the fountains of the graph, we use the 
maximum of its transitive dependency measure for the attributes of its output 
schemata. We avoid cycles in the graph by special treatment of side-effects [13]. 
Thereby, the length of a module m is given by the formula:  

Length(m)= max{transitive_dependency(i)}, i∈output_schemata(m). 

The length of the graph is defined as the maximum length over all its modules m: 

Length(G)= max(Length(mj)) 

Observe the reference example of Fig. 1. Although it does not depict a complete 
graph, the length of the depicted subgraph is 3, since the maximum length of its 
modules is 3 (input schema of activity $2E).  

Complexity. Complexity is an inherent property of systems; in our case, 
complexity stands to the amount of interconnection of constituent entities of the 
Architecture Graph. This is an indicator of maintenance effort in the presence of 
changes. The more complex a system is the more amount of maintenance effort is 
expected to be required in the case of changes. Briand et al. [2] indicate that the 
properties of complexity focus on edges, thus, our function for complexity concerns 



     

the edges of the graph G(V,E) at the most detailed level. Again, we distinguish 
module from system complexity. 

We define the overall degree of a module to be the overall number of edges of any 
kind (i.e., provider, part-of, etc) among its components, independently of direction. 
We count inter-module provider edges as half for each module. Then, 

Complexity(m) = |Eintramodule| + 0.5*|Eintermodule| 

 The complexity of the architecture graph G(V,E) is defined as the summary of the 
complexities of all the modules of the graph (i.e., recordsets and activities).  

Complexity(G) = overall_degree(G)=|E| 

Cohesion. A commonly agreed upon property of modular software is that each 
module ideally performs exactly one job. Cohesion is the measure employed to assess 
the extent to which the modules of a system abide by this rule. In our case, we can 
exploit the peculiarities of our setting to assess the cohesion of our ETL workflows.  

ETL operations can largely be classified in two categories. Each activity in our 
model performs one of two tasks: (a) filtering, meaning that a certain criterion is 
applied over the employed data in order to block those that do not pass the test and (b) 
transformation, meaning that a certain function is applied in order to generate some 
new value in the workflow. Both these tasks involve regulator relationships among 
the involved attributes and the functions/built-in selectors (=, ≤, etc.) of the activities. 
Therefore, the amount of regulator relationships should be a good indicator of the 
cohesion of a system. Moreover, we impose two extra requirements that we consider 
reasonable: (a) the more functions/built-ins employed, the less cohesive the module is 
(i.e., it is assumed/expected to perform more than one job) and (b) if more attributes 
are involved in regulator relationships, cohesion increases. In the sequel, we will refer 
to functions and built-ins as functionality nodes.  

Before giving the formal definition, we will present the intuition of our proposed 
measure. Due to requirement (a), we need the inverse of the number of employed 
functionality nodes. Also due to the requirement (b) we need a measure analog to the 
number of attributes involved in a regulator relationship. Since Briand et al. [2] 
require cohesion to be normalized within a range [0…max], we need to normalize the 
number of attributes involved with the total number of attributes. To simplify things 
we measure only input and output attributes. Still, we count an input/output attribute 
as functionality-related even if it is not directly involved in a regulator relationship, 
but transitively dependent (or responsible) with an internal attribute that is involved. 

In Fig. 3, we depict providers with solid lines and regulators with dotted lines. The 
input attribute A of module m2 is involved in a regulator relationship transitively 
(through attribute C), whereas the attribute G is directly involved in a regulator 
relationship. Now, we are ready to define cohesion for our modules and system. 

OUT)(IN*F

F_OUTF_IN
)Cohesion(m

+
+

= , 

where F is the number of functions of the module, IN (OUT) is the number of input 
(output) attributes of the module, and F-IN (F-OUT) is the number of functionally-
related input (output) attributes of  module m. 



     

Cohesion(G) = avg(cohesion(mi)), for all the modules mi of G  

Cohesion for the module m2 of Fig. 3 takes the value of (1+1)/1*5=0.4 

Coupling. In our framework, coupling captures the amount of relationship between 
the attributes belonging to different recordsets or activities (i.e., modules) of the 
graph. Briand et al. [2] indicate that the properties of complexity focus on intermodule 
edges, thus our function for complexity concerns the provider edges of the graph 
G(V,E) that start from an output node of a module and terminate to an input node of 
another module. Thus, we define the coupling of a graph G(V,E) as the sum of 
incoming and outgoing provider edges of each activity or recordset. This summary of 
edges for a certain module is called local degree according to the terminology we 
introduced in [10]. Thus, coupling is given by: 

Coupling(G) = ∑ilocal_degree(mi), for all the modules mi of G 

In the reference example of Section 2, the coupling of the activity SK is 13, i.e., the 
total number of its incoming and outgoing provider relationships. 

3.2 Example 

In order to demonstrate the usage of our proposed metrics, we present an exemplary 
scenario, implemented in three different ways. For each of these implementations we 
measure the different properties that we have proposed and discuss the observed 
phenomena. 

The scenario involves the propagation of data from the product suppliers table 
DSA_PS(PKEY,SUPPKEY,DATE,QTY,COST) towards the table DW_V1(PKEY, 
SUM_COSTS) with the obvious semantics. Three operations need to take place 
between the two data stores: (a) a selection involving dates after 1/1/2004, (b) a 
second selection test involving only quantities greater than zero and (c) a summation 
of costs per product key. In the first scenario, we employ a different activity for each 
of the operations, with the activities connected serially. In the second scenario, we 
have merged the two filters in a single activity. In the third scenario, the selections are 
performed in parallel, the results are then joined and subsequently aggregated. The 
graph representation of the scenarios is partially depicted in Fig. 4, where the abstract 
representation of each scenario is shown in the upper part of each column and the part 
of the detailed representation is depicted in the lower part. We omit part-of 
relationships and details higher than the schema level for reasons of space and 
presentation. In the figure, we refer to attribute SUPPKEY as SUPP for lack of space. 
The metrics for each scenario are depicted in the tables 1- 3 and refer to the depicted 
graphs (with very small discrepancies from the overall graphs). 

The observation of these measures reveals that the second scenario outperforms all 
the others in all categories. This is due to the fact that by merging the selections in a 
single activity, all provider relationships among modules are shortened. The same 
applies, of course, for the size of the graph. In terms of individual measures, we can 
observe the following: 
• Size has obvious results, simply due to the number of attributes in the input and 

output schemata of the activities.  



     

• The length is a clear indication of the maximum reproduction path of a datum 
and, obviously, no major differences are observed.  

• The complexity and cohesion of the second scenario are quite impressing. 
Ideally, for reasons of maintainability, we would appreciate a scenario with low 
complexity and high cohesion. The complexity of the second scenario is 
significantly lower than any other alternative, since, obviously, fewer activities 
and fewer operations are performed. Although the combined selection activity 
has the same cohesion with the two individual ones (by a simple application of 
the formula), the overall cohesion drops due to the smaller number of involved 
activities. Thus, the cohesion of the second scenario is noticeably higher than the 
other two. Also, the fact that the cohesion of the combined activity remains the 
same is not surprising: although two selections are performed, the number of 
attributes involved increases, so the fraction remains stable. 

• Finally, the coupling is clearly a subset of the complexity measure: by isolating 
only provider relationships, we clearly see that module interconnections are 
lowest when the second scenario is employed. 

Table 1. Measures for Scenario 1, involving a linear composition of three activities 
 Size Length Complexity Cohesion Coupling 
DSA_PS 6 0 7.50 -  5 
σ1 14 2 24.00 0.10 10 
σ2 14 4 24.00 0.10 10 
sum 14 7 20.75 0.29 7 
DW_V1 3 8 3.00 -  2 
Overall 51 8 79.25 0.16 34 

Table 2. Measures for Scenario 2, where selections are merged 
 Size Length Complexity Cohesion Coupling 
DSA_PS 6 0 7.50 -  5 
Σ 16 2 28.00 0.10 10 
Sum 14 5 20.75 0.29 7 
DW_V1 3 6 3.00 -  2 
Overall 39 6 59.25 0.19 24 

Table 3. Measures for Scenario 3, where selections are performed in parallel 
 Size Length Complexity Cohesion Coupling 
DSA_PS 6 0 7.50 -  5 
σ1 14 2 24.00 0.10 10 
σ2 14 2 24.00 0.10 10 
join 20 4 36.50 0.07 15 
sum 14 7 20.75 0.29 7 
DW_V1 3 8 3.00 -  2 
Overall 71 8 115.75 0.14 49 

Finally, we can easily observe (both by visualization and measurement) that there 
exist attributes that should not participate in the workflow, either in the first place 
(e.g., attribute SUPPKEY) or after their corresponding selections have taken place (e.g., 
attributes DATE and COST). 
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Fig. 4. Equivalent scenarios for the propagation of data from a data source to the warehouse 
 



                        

4 Related Work 

There are several efforts that present systems tailored for ETL tasks [7, 8]. The main 
focus of these works is on achieving functionality, rather than on modeling the 
internals or dealing with the software design or maintenance of these tasks. 
Concerning the conceptual modeling of ETL, [9] and [11] are the first attempts that 
we know of. The former approach employs UML as a modeling language whereas the 
latter introduces a generic graphical notation. Still, the focus is only on the conceptual 
modeling part. As far as the logical modeling of ETL is concerned, in [10, 12] the 
authors present a graph-based model and an extensible template-based mechanism to 
define ETL workflows. As already mentioned, in this paper, we extend this model by 
incorporating the internals of the activity semantics to the graph (more extensions, 
e.g., updates, can be found in [13]). 

Concerning related work on software measurement, we have already mentioned the 
fundamental works that have guided our approach. Fenton [6] gives the fundamentals 
of measurement theory and the way they should applied in the case of measuring 
software artifacts. Briand et al. [2] present the overall framework for defining our 
particular measures. The particular contribution of this paper is that it gives the 
principles for defining large categories of software measures. In our case, we prove 
that the proposed measures fit within the context given by [2]. There is an extensive 
discussion of software metrics in [4] and an interesting discussion of this area in [5]. 

5 Conclusions 

In this paper, we construct the blueprints for the structure ETL workflows by mapping 
both their inter-connection and their internal semantics to a graph, which we call the 
Architecture Graph. The Architecture Graph constitutes the blueprint over which we 
can perform further analysis for the structure of such a workflow. The first of our 
contributions involves extending existing results by capturing the internal semantics 
of each activity in the workflow. We employ the LDL language in order to capture the 
semantics of ETL activities and we have provided a principled way of transforming 
LDL programs to the graph. Apart from the value that blueprints have as modeling 
constructs, we can also exploit them in order to introduce rigorous techniques for the 
measurement of ETL workflows. To this end, we have built upon the formal 
framework of [2] and provide software measures to quantify the size, length, 
complexity, cohesion and coupling of ETL workflows. Several issues omitted in this 
paper for lack of space, can be found in [13]. 

Research can be continued in more than one direction. We need an extra step, in 
order to link our results to the control flow of the graph. Precise algorithms for the 
evaluation of the impact of changes in the Architecture Graph can also be devised. 
New metrics can also be discovered, if they appear to reveal properties not covered 
here. Finally, the usage of the Architecture Graph in all phases of the software 
lifecycle (e.g., testing) can also be evaluated. 
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