

Blueprints and Measures for ETL Workflows

Panos Vassiliadis1, Alkis Simitsis2, Manolis Terrovitis2, Spiros Skiadopoulos2

1 University of Ioannina,
Dept. of Computer Science,

Ioannina, Hellas
pvassil@cs.uoi.gr

2 National Technical University of Athens,
Dept. of Electrical and Computer Eng.,

Athens, Hellas
{asimi,mter,spiros}@dbnet.ece.ntua.gr

Abstract. Extract-Transform-Load (ETL) workflows are data centric
workflows responsible for transferring, cleaning, and loading data from their
respective sources to the warehouse. Previous research has identified graph-
based techniques that construct the blueprints for the structure of such
workflows. In this paper, we extend existing results by explicitly incorporating
the internal semantics of each activity in the workflow graph. Apart from the
value that blueprints have per se, we exploit our modeling to introduce rigorous
techniques for the measurement of ETL workflows. To this end, we build upon
an existing formal framework for software quality metrics and formally prove
how our quality measures fit within this framework.

1 Introduction

All engineering disciplines employ blueprints during the design of their engineering
artifacts. Modeling in this fashion is not a task with a value by itself; as [1] mentions
“we build models to communicate the desired structure and behavior of our system …
to visualize and control the system’s architecture … to better understand the system
we are building … to manage risk”.

In this paper, we discuss the constructing entities and the usage of blueprints for a
particular category of database-centric software, namely, the Extract-Transform-Load
(ETL) workflows. ETL workflows are an integral part of the back-stage of data
warehouse architectures, where data are (a) collected from the operational sources, (b)
cleansed (to remove any noise or inconsistencies), (c) transformed (so that they
syntactically comply with the schema of the warehouse tables) and finally, (d) loaded
to the target warehouse tables. Out of the aforementioned benefits of modeling,
control of the system’s architecture and risk management are of particular importance.
For example, we would like to answer questions like:

- Which attributes/tables are involved in the population of a certain attribute?
- What part of the scenario is affected if we delete an attribute?
- How good is the design of my ETL scenario? Is variant A or variant B better?

Previous research has provided some results towards the aforementioned tasks. The
work of [9, 11] provides conceptual modeling techniques for ETL. In [10] we have
presented a first attempt towards a graph-based model for the definition of the ETL
scenarios. The model of [10] treats ETL scenarios as graphs. Activities and data stores
are modeled as the nodes of the graph; the attributes that constitute them are modeled

as nodes too. Activities have input and output schemata and provider relationships
relate inputs and outputs between data providers and data consumers. Nevertheless,
what is missing from previous efforts is a full model of the semantics of ETL
workflows and a rigorous framework for the measurement of our design artifacts.

In this paper, we significantly extend previous works to capture the internals of the
workflow activities in sufficient detail. We make use of a logical abstraction of ETL
activity semantics in the form of LDL++ programs [14]. The approach is not
unrealistic: in fact, in [12] the authors discuss the possibility of providing extensible
libraries of ETL tasks, logically described in LDL. On the basis of this result, it is
reasonable to assume the reusability of these libraries. In this paper, we extend the
graph of [12] by incorporating the internals of the activity semantics to the graph. To
this end, we provide a principled way of transforming LDL programs to graphs, in a
way that gracefully complements the model of [10, 12]. The resulting graph, which is
called Architecture Graph can provide sufficient answers to what-if and dependency
analysis in the process of understanding or managing the risk of the environment.

Moreover, another question can also be answered: “How good is my design?”. The
community of software engineering has provided numerous metrics towards
evaluating the quality of software designs [4]. Are these metrics sufficient? In this
paper, we build upon the fundamental contribution of [2] that develops a rigorous and
systematic framework that classifies usually encountered metrics into five families,
each with its own characteristics. These five families are size, length, complexity,
cohesion and coupling of software artifacts. In this paper, we develop specific
measures for the Architecture Graph and formally prove their fitness for the rigorous
framework of [2].

In a nutshell, our contributions can be listed as follows:
− an extension of [10] to incorporate internal semantics of activities in the

architecture graph;
− a principled way of transforming LDL programs to the graph, so that the latter

can be explored both at the granular (i.e., attribute) level of detail and at
different levels of abstraction;

− a systematic definition of software measures for the Architecture Graph, based
on the rigorous framework of [2].

This paper is organized as follows. In Section 2, we present the graph model for
ETL activities. Section 3 discusses measures for the introduced model. In Section 4,
we present related work. Finally, in Section 5 we conclude our results and provide
insights for future work. The reader is encouraged to refer to the long version of this
paper [13] for all the proofs and several technical issues, omitted from this paper for
lack of space.

2 A Generic Model of ETL Activities

The purpose of this section is to present a formal logical model for the activities of an
ETL environment. We start with the background constructs of the model, already
introduced in [10, 12]. Then, we move on to extend this modeling with formal
semantics of the internals of the activities.

In order to formally define the semantics of ETL workflow, we can use any
3GL/4GL programming language (C++, PL/SQL etc.). We do not consider the actual
implementation of the workflow in some programming language, but rather, we
employ LDL++ [14] in order to describe its semantics in a declarative nature and
understandable way. LDL++ is a logic-programming, declarative language that
supports recursion, complex objects and negation. Moreover, LDL++ supports
external functions, choice, (user-defined) aggregation and updates. LDL was carefully
chosen as the language for expressing ETL semantics. First, it is elegant and has a
simple model for expressing activity semantics. Second, the head-body combination
is particularly suitable for relating both (a) input and output in the simple case, and,
(b) consecutive layers of intermediate schemata in complex cases. Finally, LDL is
both generic and powerful, so that (large parts of) other languages can be reduced to
the Architecture Graph constructs that result from it.

2.1 Preliminaries

In this subsection, we introduce the modeling constructs of [10, 12] upon which we
will subsequently build our contribution. In brief, the basic components of this
modeling framework are:

− Data types. Each data type T is characterized by a name and a domain, i.e., a
countable set of values. The values of the domains are also referred to as
constants.

− Attributes. Attributes are characterized by their name and data type. For
single-valued attributes, the domain of an attribute is a subset of the domain of
its data type, whereas for set-valued, their domain is a subset of the powerset
of the domain of their data type 2dom(T).

− A Schema is a finite list of attributes. Each entity that is characterized by one
or more schemata will be called Structured Entity.

− Records & RecordSets. We define a record as the instantiation of a schema to
a list of values belonging to the domains of the respective schema attributes.
Formally, a recordset is characterized by its name, its (logical) schema and its
(physical) extension (i.e., a finite set of records under the recordset schema). In
the rest of this paper, we will mainly deal with the two most popular types of
recordsets, namely relational tables and record files.

− Functions. A Function Type comprises a name, a finite list of parameter data
types, and a single return data type.

− Elementary Activities. In the framework of [12], activities are logical
abstractions representing parts, or full modules of code. An Elementary
Activity (simply referred to as Activity from now on) is formally described by
the following elements:

- Name: a unique identifier for the activity.
- Input Schemata: a finite list of one or more input schemata that receive

data from the data providers of the activity.
- Output Schemata: a finite list of one or more output schemata that

describe the placeholders for the rows that pass the checks and
transformations performed by the elementary activity.

- Operational Semantics: a program, in LDL++, describing the content
passing from the input schemata towards the output schemata. For
example, the operational semantics can describe the content that the
activity reads from a data provider through an input schema, the
operation performed on these rows before they arrive to an output
schema and an implicit mapping between the attributes of the input
schema(ta) and the respective attributes of the output schema(ta).

- Execution priority. In the context of a scenario, an activity instance must
have a priority of execution, determining when the activity will be
initiated.

− Provider relationships. These are 1:N relationships that involve attributes with
a provider-consumer relationship. The flow of data from the data sources
towards the data warehouse is performed through the composition of activities
in a larger scenario. In this context, the input for an activity can be either a
persistent data store, or another activity. Provider relationships capture the
mapping between the attributes of the schemata of the involved entities. Note
that a consumer attribute can also be populated by a constant, in certain cases.

− Part_of relationships. These relationships involve attributes and parameters
and relate them to their respective activity, recordset or function to which they
belong.

Based upon the previous constructs, already available from [12], we proceed with
their extension towards fully incorporating the semantics of ETL workflow in our
framework. To this end we introduce programs as another modeling construct.

− Programs. We assume that the semantics of each activity is given by a
declarative program expressed in LDL++. Each program is a finite list of
LDL++ rules. Each rule is identified by an (internal) rule identifier. We
assume a normal form for the LDL++ rules that we employ. In our setting,
there are three types of programs, and normal forms, respectively:

(i) intra-activity programs that characterize the operational semantics, i.e.,
the internals of activities (e.g., a program that declares that the activity
reads data from the input schema, checks for NULL values and populates
the output schema only with records having non-NULL values),

(ii) inter-activity programs that link the input/output of an activity to a data
provider/consumer,

(iii) side-effect programs that characterize whether the provision of data is an
insert, update, or delete action. Due to lack of space, we discuss side-
effect rules in detail in the long version of this paper [13].

− Regulator Relationships. A regulator relationship in a safe rule is an
equality/inequality relationship between two terms, i.e., of the form term1 θ
term2, such that neither of them appears in the head of a rule. In terms of the
architecture graph, the regulator relationship is represented (a) by a node for
each of the terms, (b) by a node representing the condition θ, and (c) by two
edges among the node of the condition and the nodes of the term. The
direction of the edges follows the way the expression is written in LDL (i.e.,
from the left to right). Regulator relationships are used in order to capture the
selection conditions and joins that take place in an LDL program.

We assume that each activity is defined in isolation. In other words, the inter-
activity program for each activity is a stand-alone program, assuming the input
schemata of the activity as its EDB predicates. Then, activities are plugged in the
overall scenario that consists of inter-activity and side-effect rules and an overall
scenario program can be obtained from this combination.

Intra-activity programs. The intra-activity programs abide by the following rules:

1. All input schemata are EDB predicates.
2. All output schemata appear only as IDB predicates. Furthermore, output

schemata are the only IDB predicates that appear in such a program.
3. Intermediate rules are possibly employed to help with intermediate results.
4. We assume non-recursive admissible programs. The safety of the program is

guarantied by the requirement for admissibility, which is a generalization of
stratifiability [3]. An admissible program does not contain any self-referential
set definitions or any predicates defined in terms of their own negations.

Inter-activity programs. The inter-activity programs are very simple. There is
exactly one rule per provider relationship, with the consumer in the head and the
provider in the body. The consumer attributes are mapped to their corresponding
providers either through the synonym mechanism or through explicit equalities. No
other atoms or predicates are allowed in the body of an inter-activity program; all the
consumer attributes should be populated from the provider.

Consumer_input(a1,…,an) <- provider_output(a1,…,am), m ≥ n

2.2 Incorporating activity semantics in the Architecture Graph

The focus of [10, 12] is on the input-output role of the activities instead of their
internal operation. In this section, we extend the model of those works by translating
the formal semantics of the internals of the activities to graph constructs, as part of the
overall Architecture Graph. We organize this discussion as follows: first, we consider
how individual rules are represented by graphs for intra-activity and inter-activity
programs. The interested author can find a discussion about side-effect programs in
the long version of this paper [13]. Then, we discuss how the programs of activities
are constructed from the composition of different rules and finally, we discuss how a
scenario program can be obtained from the composition of the graph representations
of individual programs.

Intuitively, instead of simply stating which schema populates another schema, we
trace how this is done through the internals of an activity. The programs that facilitate
the input to output mappings take part in the graph, too. Any filters, joins or
aggregations are part of the graph as first-class citizens. There is a straightforward
way to determine the architecture graph with respect to the LDL program that defines
the ETL scenario.

Intra-activity rules. Given the program of the activity as a stand-alone LDL++
program, we introduce the following constructs, by default:

- A node for the activity per se.
- A node for each of the schemata of the activity and a node for the activity

program. Part-of edges connect the activity with these components.

- A node for each rule, connected through a part-of relationship to the program
node of the activity.

If we treat each rule as a stand-alone program, we can construct its graph as
follows:

- We introduce a node for each predicate of the rule. These nodes are connected
to the rule node through a part-of relationship. The edge of the head predicate
is tagged as ‘head’ and the edges of the negated literals of the body are tagged
as ‘¬’. Functions are treated as predicates. A different predicate node is
introduced for each instance of the same predicate (e.g., in the case of a self-
join). Such nodes are connected to each other through alias edges. In the long
version [13], we detail the parts of the last cases that require extra attention.

- We introduce a node for each variable of a predicate. Part-of relationships
connect these nodes with their corresponding predicates.

- For each condition of the form Input attribute = Output attribute (or its
equivalent presence of synonyms in the output and input schemata), we add a
provider edge. Here, we assume as input (output) attributes, attributes
belonging to predicates of the rule body (head). A provider relationship is thus,
an edge from the body towards the head of the rule.

- For relationships among input attributes (practically, involving functions and
built-ins), a regulator edge is introduced.

R06: sk.a_in1(pkey,suppkey,date,qty,cost)<-
 dsa_ps(pkey,suppkey,date,qty,cost).

R07: sk.a_in2(pkey,source,skey)<-
 lookUp(l_pkey,source,l_skey),pkey=l_pkey,skey=l_skey,

source=1.
R08: sk.a_out(pkey,suppkey,date,qty,cost,skey)<-
 add_sk1.a_in1(pkey,date,qty,cost),
 add_sk1.a_in2(pkey,source,l_skey).

R09: dollar2euro.a_in(skey,suppkey,date,qty,cost)<-
 sk.a_out(pkey,suppkey,date,qty,cost,skey).

Fig. 1. LDL++ for a small part of a scenario

Inter-activity rules. For each recordset of a scenario, we assume a node representing
its schema. For simplicity, we do not discriminate a recordset from its schema using
different nodes. For each intra-activity rule (between input-output schemata of
different activities and/or recordsets) there is a simple way to construct its
corresponding graph: we introduce a provider edge from the input towards the output
attributes.

Observe Fig. 1. Activity SK (Surrogate Key assignment) takes as input the data
from a recordset DSA_PS(PKey,SuppKey,Date,Qty,Cost), and obtains a globally
unique surrogate key SKey for the production key PKey, through a lookup table
LookUp(PKey, Source, SKey); in this example, we consider that data originate from
source 1. Then, the transformed data are propagated to another activity dollar2euro
that converts the dollar values of attribute cost, to Euros (only the input schema of
this activity is depicted). The rules R06, R07 and R09 are inter-activity rules: they
describe how the input schemata of the activities are populated from their providers.

Activities and recordsets can both play the role of provider, as one can see. Rule R08
is an intra-activity rule. Fig. 2 depicts the architecture graph for this example. The
grey area concerns the intra-activity program; the rest concern the inter-activity
program rules. Solid arrows depict provider relationships, dotted arrows depict
regulator relationships and part-of relationships are depicted with simple lines.

pkey

suppkey

date

qty

cost

DSA_PS

R06 head

SK

Program

R08

a_in1 a_out
d2e.
a_in

R09

pkey

suppkey

date

qty

cost

l_key

source

l_skey

lookup

R07 head

a_in2

pkey

source

skey

=

=

1

head
head

pkey

suppkey

date

skey

cost

skey

suppkey

date

qty

cost

cost

Fig. 2. Architecture graph for the example of Fig. 1

Deriving the graph of an activity program from the graphs of its rules.
Combining the graphs of the rules of an activity is straightforward. Recall that so far,
we have created the graph for each rule, considering each rule in isolation. Then, the
graph for the overall activity is as follows:

- The nodes of the new graph comprise all the nodes of the rule graphs. If the
same predicate appears to more than one rule, we merge all its corresponding
nodes (i.e., the predicate node and all its variables). In the case where more
than one instance of the same predicate exists in one rule, we randomly select
one of these occurrences to be merged with the nodes of other rules.

- The edges of the new graph are all the edges, of the individual rules, after the
merging takes place.

- All edges are tagged with the rule identifier of the rule they belong to.
Through part of relationships and edge tagging, we can reconstruct the graphs
of the individual rules, if necessary.

Deriving the graph of a scenario program from the graphs of its components.
The construction of the graph for the scenario program is simple.

- First, we introduce all inter-activity and side-effect rules. We merge all
multiple instances of the same recordset and its attributes. The same applies
with the input and output schemata of an activity. We annotate all edges with
the rule identifier of their corresponding rule.

- Then, intra-activity graphs are introduced too. Activity input and output
schemata are merged with the nodes that already represent them in the
combined intra-activity/side-effect graph. The same applies to activity nodes,
too. No other action needs to be taken, since intra-activity programs are
connected to the rest of the workflow only through their input and output
schemata.

Once again, the reader is encouraged to refer to the long version of this paper [13],
where we handle several issues omitted here due to lack of space. Specifically, these
issues involve updates, aggregation, negation, functions and self-join queries.
Moreover, the possibility of zooming in/out the Architecture Graph is also provided in
[13]. The latter is a most useful interactive facility, necessary for avoiding the
information overload due to the potentially high volume of detailed information at the
attribute level, as described in this section.

3 Measuring the Architecture Graph: a Principled Approach

One of the main roles of blueprints is their usage as testbeds for the evaluation of the
design of an engineer. In other words, blueprints serve as the modeling tool that
provides answers to the questions “How good is my design?” or “Between these two
designs, which one is better?”. In other words, one can define metrics or, more
generally, measurement tests, to evaluate the quality of a design. In this section, we
will address this issue, for our ETL workflows, in a principled manner.

There is a huge amount of literature devoted in the evaluation of software artifacts.
Fenton proves that it is impossible to derive a unique measure of software quality [6].
Rather, measurement theory should be employed in order to define meaningful
measures of particular software attributes. A couple of years later, Briand et al.,
employ measurement theory to provide a set of five generic categories of measures
for software artifacts [2]:

− Size, referring to the number of entities that constitute the software artifact.
− Length, referring to the longest path of relationships among these entities.
− Complexity, referring to the amount of inter-relationships of a component.
− Cohesion, measuring the extent to which each module performs exactly one

job, by evaluating how closely related are its components.
− Coupling, capturing the amount of interrelationships between the different

modules of a system.
Systems and their modules are considered to be graphs with the nodes representing

their constituent entities and the edges representing different kinds of
interrelationships among them (Fig. 3). The definition of these categories is generic,
in the sense, that depending on the underlying context, one can define his own

measures that fit within one of the aforementioned categories. In order to be able to
claim fitness within one of the aforementioned categories, there is a specific list of
properties that the proposed measure must fulfill. For example, the size of a system
modeled as a graph S(E,R) is a function Size(S) that is characterized by the
properties: (a) nonnegativity, i.e., Size(S)≥0; (b) null value; E=∅ ⇒ Size(S)=0;
and (c) module additivity, i.e., if a system S has two modules m1 and m2, then Size(S)
= Size(m1) + Size(m2). The last property shows that adding elements to a system
cannot decrease its size (size monotonicity). For instance, the size of the system in
Fig. 3 is the sum of the sizes of its two modules m1 and m2. The intuition here is that if
the size of a certain module is greater than the size of another, then we can safely
argue that the former is comprised of more entities than the latter.

A

B

C D

E

G
F

IN OUT

X

Y

R
m1 m2

Fig. 3 A modular system graph containing two modules

Another important observation, found in both [6] and [2], is that measurement
theory imperatively demands that a measure describes an intuitively clear concept,
i.e., there is a clear interpretation of what we measure. This should be coupled with
clear procedures for determining the parameters of the model and interpreting the
results.

In this paper, we propose a set of measures that evaluate our ETL blueprints and
stay within the context of the measures proposed in [2]. Our fundamental concern, for
defining our measures is the effort required (a) to define and (b) to maintain the
Architecture Graph, in the presence of changes. Therefore, the statements that one
can make, concerning our measures characterize the effort/impact of these two phases
of the software lifecycle.

First, we identify the correspondence of the constructs of the Architecture Graph to
the concepts of [2]. In [2], a system S is a graph S=(E,R), where E is the set of
elements of the system and R is the set of relationships between the elements. A
module m is a subset of the elements (i.e., the nodes) of the system (observe that a
module is defined only in terms of nodes and not edges). In general, modules can
overlap. However, when the modules partition the nodes in a system, then this system
is called a modular system, MS. The authors distinguish two categories of edges: (a)
the intermodule edges that have end points in different modules and (b) the
intramodule edges that have end points in the same module. In terms of our modeling:

− The architecture graph G(V,E) is a modular system.
− Recordsets and activities are the modules of the graph. The nodes of the graph

involve attributes, functions, constants, etc. All kinds of relationships are the
edges of the graph.

− The system is indeed modular, i.e., there are no elements (nodes) that do not
belong to exactly one module (activity or recordset).

− Inter-activity and side-effect rules result in intermodule edges. All the rest of
the relationships result in intramodule edges.

− The union of two interacting activities can be defined: it requires merging the
input/output nodes (attribute/schemata) connected by provider relationships.

3.1 Measures

Next, we define our measures. Due to lack of space, the proof of fitness within the set
of properties of [2] for each measure can be found in [13]. We strongly encourage the
reader to read the correctness proofs as they offer a deeper comprehension of the
nature of the measures that we propose.

Size. Size is a measure of the amount of constituting elements of a system.
Therefore, it can be considered as a reasonable indicator of the amount to define the
system. In our framework, we adopt the number of nodes as the measuring rule for the
size of the Architecture Graph; thus, the size of the architecture graph G(V,E) is
given by the formula Size(G) = card(V).

Length. Length is a measure that refers to the maximum length of
“retransmission” of a certain attribute value. Length measures the longest path that we
possibly need to maintain if we make an alteration in the structure of the Architecture
Graph. For example, this could involve the deletion of an attribute at the source side.
Then, the length characterizes how many nodes in the graph we need to modify as a
result of this change (practically involving the nodes corresponding to this particular
attribute, within the workflow).

In [10] the authors define the (transitive) dependency of a node as the cardinality of
the (transitive closure of) provider relationships arriving at this node. To define the
length of path from a module m backwards to the fountains of the graph, we use the
maximum of its transitive dependency measure for the attributes of its output
schemata. We avoid cycles in the graph by special treatment of side-effects [13].
Thereby, the length of a module m is given by the formula:

Length(m)= max{transitive_dependency(i)}, i∈output_schemata(m).

The length of the graph is defined as the maximum length over all its modules m:

Length(G)= max(Length(mj))

Observe the reference example of Fig. 1. Although it does not depict a complete
graph, the length of the depicted subgraph is 3, since the maximum length of its
modules is 3 (input schema of activity $2E).

Complexity. Complexity is an inherent property of systems; in our case,
complexity stands to the amount of interconnection of constituent entities of the
Architecture Graph. This is an indicator of maintenance effort in the presence of
changes. The more complex a system is the more amount of maintenance effort is
expected to be required in the case of changes. Briand et al. [2] indicate that the
properties of complexity focus on edges, thus, our function for complexity concerns

the edges of the graph G(V,E) at the most detailed level. Again, we distinguish
module from system complexity.

We define the overall degree of a module to be the overall number of edges of any
kind (i.e., provider, part-of, etc) among its components, independently of direction.
We count inter-module provider edges as half for each module. Then,

Complexity(m) = |Eintramodule| + 0.5*|Eintermodule|

 The complexity of the architecture graph G(V,E) is defined as the summary of the
complexities of all the modules of the graph (i.e., recordsets and activities).

Complexity(G) = overall_degree(G)=|E|

Cohesion. A commonly agreed upon property of modular software is that each
module ideally performs exactly one job. Cohesion is the measure employed to assess
the extent to which the modules of a system abide by this rule. In our case, we can
exploit the peculiarities of our setting to assess the cohesion of our ETL workflows.

ETL operations can largely be classified in two categories. Each activity in our
model performs one of two tasks: (a) filtering, meaning that a certain criterion is
applied over the employed data in order to block those that do not pass the test and (b)
transformation, meaning that a certain function is applied in order to generate some
new value in the workflow. Both these tasks involve regulator relationships among
the involved attributes and the functions/built-in selectors (=, ≤, etc.) of the activities.
Therefore, the amount of regulator relationships should be a good indicator of the
cohesion of a system. Moreover, we impose two extra requirements that we consider
reasonable: (a) the more functions/built-ins employed, the less cohesive the module is
(i.e., it is assumed/expected to perform more than one job) and (b) if more attributes
are involved in regulator relationships, cohesion increases. In the sequel, we will refer
to functions and built-ins as functionality nodes.

Before giving the formal definition, we will present the intuition of our proposed
measure. Due to requirement (a), we need the inverse of the number of employed
functionality nodes. Also due to the requirement (b) we need a measure analog to the
number of attributes involved in a regulator relationship. Since Briand et al. [2]
require cohesion to be normalized within a range [0…max], we need to normalize the
number of attributes involved with the total number of attributes. To simplify things
we measure only input and output attributes. Still, we count an input/output attribute
as functionality-related even if it is not directly involved in a regulator relationship,
but transitively dependent (or responsible) with an internal attribute that is involved.

In Fig. 3, we depict providers with solid lines and regulators with dotted lines. The
input attribute A of module m2 is involved in a regulator relationship transitively
(through attribute C), whereas the attribute G is directly involved in a regulator
relationship. Now, we are ready to define cohesion for our modules and system.

OUT)(IN*F

F_OUTF_IN
)Cohesion(m

+
+

= ,

where F is the number of functions of the module, IN (OUT) is the number of input
(output) attributes of the module, and F-IN (F-OUT) is the number of functionally-
related input (output) attributes of module m.

Cohesion(G) = avg(cohesion(mi)), for all the modules mi of G

Cohesion for the module m2 of Fig. 3 takes the value of (1+1)/1*5=0.4

Coupling. In our framework, coupling captures the amount of relationship between
the attributes belonging to different recordsets or activities (i.e., modules) of the
graph. Briand et al. [2] indicate that the properties of complexity focus on intermodule
edges, thus our function for complexity concerns the provider edges of the graph
G(V,E) that start from an output node of a module and terminate to an input node of
another module. Thus, we define the coupling of a graph G(V,E) as the sum of
incoming and outgoing provider edges of each activity or recordset. This summary of
edges for a certain module is called local degree according to the terminology we
introduced in [10]. Thus, coupling is given by:

Coupling(G) = ∑ilocal_degree(mi), for all the modules mi of G

In the reference example of Section 2, the coupling of the activity SK is 13, i.e., the
total number of its incoming and outgoing provider relationships.

3.2 Example

In order to demonstrate the usage of our proposed metrics, we present an exemplary
scenario, implemented in three different ways. For each of these implementations we
measure the different properties that we have proposed and discuss the observed
phenomena.

The scenario involves the propagation of data from the product suppliers table
DSA_PS(PKEY,SUPPKEY,DATE,QTY,COST) towards the table DW_V1(PKEY,
SUM_COSTS) with the obvious semantics. Three operations need to take place
between the two data stores: (a) a selection involving dates after 1/1/2004, (b) a
second selection test involving only quantities greater than zero and (c) a summation
of costs per product key. In the first scenario, we employ a different activity for each
of the operations, with the activities connected serially. In the second scenario, we
have merged the two filters in a single activity. In the third scenario, the selections are
performed in parallel, the results are then joined and subsequently aggregated. The
graph representation of the scenarios is partially depicted in Fig. 4, where the abstract
representation of each scenario is shown in the upper part of each column and the part
of the detailed representation is depicted in the lower part. We omit part-of
relationships and details higher than the schema level for reasons of space and
presentation. In the figure, we refer to attribute SUPPKEY as SUPP for lack of space.
The metrics for each scenario are depicted in the tables 1- 3 and refer to the depicted
graphs (with very small discrepancies from the overall graphs).

The observation of these measures reveals that the second scenario outperforms all
the others in all categories. This is due to the fact that by merging the selections in a
single activity, all provider relationships among modules are shortened. The same
applies, of course, for the size of the graph. In terms of individual measures, we can
observe the following:
• Size has obvious results, simply due to the number of attributes in the input and

output schemata of the activities.

• The length is a clear indication of the maximum reproduction path of a datum
and, obviously, no major differences are observed.

• The complexity and cohesion of the second scenario are quite impressing.
Ideally, for reasons of maintainability, we would appreciate a scenario with low
complexity and high cohesion. The complexity of the second scenario is
significantly lower than any other alternative, since, obviously, fewer activities
and fewer operations are performed. Although the combined selection activity
has the same cohesion with the two individual ones (by a simple application of
the formula), the overall cohesion drops due to the smaller number of involved
activities. Thus, the cohesion of the second scenario is noticeably higher than the
other two. Also, the fact that the cohesion of the combined activity remains the
same is not surprising: although two selections are performed, the number of
attributes involved increases, so the fraction remains stable.

• Finally, the coupling is clearly a subset of the complexity measure: by isolating
only provider relationships, we clearly see that module interconnections are
lowest when the second scenario is employed.

Table 1. Measures for Scenario 1, involving a linear composition of three activities
 Size Length Complexity Cohesion Coupling
DSA_PS 6 0 7.50 - 5
σ1 14 2 24.00 0.10 10
σ2 14 4 24.00 0.10 10
sum 14 7 20.75 0.29 7
DW_V1 3 8 3.00 - 2
Overall 51 8 79.25 0.16 34

Table 2. Measures for Scenario 2, where selections are merged
 Size Length Complexity Cohesion Coupling
DSA_PS 6 0 7.50 - 5
Σ 16 2 28.00 0.10 10
Sum 14 5 20.75 0.29 7
DW_V1 3 6 3.00 - 2
Overall 39 6 59.25 0.19 24

Table 3. Measures for Scenario 3, where selections are performed in parallel
 Size Length Complexity Cohesion Coupling
DSA_PS 6 0 7.50 - 5
σ1 14 2 24.00 0.10 10
σ2 14 2 24.00 0.10 10
join 20 4 36.50 0.07 15
sum 14 7 20.75 0.29 7
DW_V1 3 8 3.00 - 2
Overall 71 8 115.75 0.14 49

Finally, we can easily observe (both by visualization and measurement) that there
exist attributes that should not participate in the workflow, either in the first place
(e.g., attribute SUPPKEY) or after their corresponding selections have taken place (e.g.,
attributes DATE and COST).

Scenario 1 Scenario 2 Scenario 3

DSA_PS σ1 σ2 γ DW_V1

DSA_PS σ γ DW_V1

DSA_PS

σ1

σ2

γ DW_V1

 PKEY SUPP DATE QTY COST

DSA_PS

σ1.IN

σ1.OUT

σ2.IN

σ2.OUT

γ.IN

TEMP

AGG

TEMP

>
C

>
0

sum

V1

 PKEY SUPP DATE QTY COST

DSA_PS

σ.IN

σ.OUT

γ.IN

TEMP

AGG

TEMP

>
C

sum

>
0

V1

=

PKEY SUPP DATE QTY COST

DSA_PS

σ2.IN

σ2.OUT

γ.IN

TEMP

AGG

TEMP

>
C

>
0

sum

J.IN1,2

J.OUT

=

σ1.IN

σ1.OUT

=

V1

Fig. 4. Equivalent scenarios for the propagation of data from a data source to the warehouse

4 Related Work

There are several efforts that present systems tailored for ETL tasks [7, 8]. The main
focus of these works is on achieving functionality, rather than on modeling the
internals or dealing with the software design or maintenance of these tasks.
Concerning the conceptual modeling of ETL, [9] and [11] are the first attempts that
we know of. The former approach employs UML as a modeling language whereas the
latter introduces a generic graphical notation. Still, the focus is only on the conceptual
modeling part. As far as the logical modeling of ETL is concerned, in [10, 12] the
authors present a graph-based model and an extensible template-based mechanism to
define ETL workflows. As already mentioned, in this paper, we extend this model by
incorporating the internals of the activity semantics to the graph (more extensions,
e.g., updates, can be found in [13]).

Concerning related work on software measurement, we have already mentioned the
fundamental works that have guided our approach. Fenton [6] gives the fundamentals
of measurement theory and the way they should applied in the case of measuring
software artifacts. Briand et al. [2] present the overall framework for defining our
particular measures. The particular contribution of this paper is that it gives the
principles for defining large categories of software measures. In our case, we prove
that the proposed measures fit within the context given by [2]. There is an extensive
discussion of software metrics in [4] and an interesting discussion of this area in [5].

5 Conclusions

In this paper, we construct the blueprints for the structure ETL workflows by mapping
both their inter-connection and their internal semantics to a graph, which we call the
Architecture Graph. The Architecture Graph constitutes the blueprint over which we
can perform further analysis for the structure of such a workflow. The first of our
contributions involves extending existing results by capturing the internal semantics
of each activity in the workflow. We employ the LDL language in order to capture the
semantics of ETL activities and we have provided a principled way of transforming
LDL programs to the graph. Apart from the value that blueprints have as modeling
constructs, we can also exploit them in order to introduce rigorous techniques for the
measurement of ETL workflows. To this end, we have built upon the formal
framework of [2] and provide software measures to quantify the size, length,
complexity, cohesion and coupling of ETL workflows. Several issues omitted in this
paper for lack of space, can be found in [13].

Research can be continued in more than one direction. We need an extra step, in
order to link our results to the control flow of the graph. Precise algorithms for the
evaluation of the impact of changes in the Architecture Graph can also be devised.
New metrics can also be discovered, if they appear to reveal properties not covered
here. Finally, the usage of the Architecture Graph in all phases of the software
lifecycle (e.g., testing) can also be evaluated.

Acknowledgments

This work is partially supported by the European Commission and the Greek Ministry
of Education through the EPEAEK Program.

References

1. G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

2. L.C. Briand, S. Morasca, V.R. Basili. Property-Based Software Engineering
Measurement. In IEEE Trans. on Software Engineering, 22(1), Jan 1996.

3. S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer-Verlag, 1990.
4. R.R. Dumke. Software Metrics: a subdivided bibliography. Available at http://irb.cs.uni-

magdeburg.de/sw-eng/us/bibliography/bib_main.shtml
5. N.E. Fenton, M. Neil. Software metrics: roadmap. ICSE - Future of SE Track 2000. pp.

357-370, 2000.
6. N. Fenton. Software Measurement: A Necessary Scientific Basis. In IEEE Trans. on

Software Engineering, 20(3), March 1994.
7. H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible Data Cleaning

Tool. In Proc. ACM SIGMOD Intl. Conf. on the Management of Data, pp. 590, Dallas,
Texas, 2000.

8. V. Raman, J. Hellerstein. Potter's Wheel: An Interactive Data Cleaning System.
Proceedings of 27th International Conference on Very Large Data Bases (VLDB’01), pp.
381-390, Roma, Italy, 2001.

9. J. Trujillo, S. Luján-Mora. A UML Based Approach for Modeling ETL Processes in Data
Warehouses. In Proc. 22nd Intl. Conference on Conceptual Modeling (ER 2003), pp. 307-
320, Chicago, IL, USA, October 13-16, 2003.

10. P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling ETL Activities as Graphs. In Proc.
4th Intl. Workshop on Design and Management of Data Warehouses (DMDW’02), pp.
52–61, Toronto, Canada, 2002.

11. P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Conceptual Modeling for ETL Processes. In
Proc. 5th ACM Intl. Workshop on Data Warehousing and OLAP (DOLAP), pp. 14–21,
McLean, Virginia, USA, 2002.

12. P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis. A Framework for the Design of
ETL Scenarios. In Proc. 15th Conf. on Advanced Information Systems Engineering
(CAiSE '03), pp. 520-535, Klagenfurt/Velden, Austria, June, 2003.

13. P. Vassiliadis, A. Simitsis, M. Terrovitis, S. Skiadopoulos. Blueprints for ETL workflows
(long version). Available through http://www.cs.uoi.gr/~pvassil/
publications/2005_ER_AG/ETL_blueprints_long.pdf

14. C. Zaniolo. LDL++ Tutorial. UCLA. http://pike.cs.ucla.edu/ldl/, December 1998.

