
Timely Provisioning of Mobile Services in
Critical Pervasive Environments

Filippos Papadopoulos, Apostolos Zarras, Evaggelia Pitoura, and Panos
Vassiliadis

Computer Science Department, University of Ioannina, Greece
{filip, zarras, pitoura, pvassil}@cs.uoi.gr

Abstract. Timeliness in conventional real-time systems is addressed by
employing well-known scheduling techniques that guarantee the execu-
tion of a number of tasks within certain deadlines. However, these clas-
sical scheduling techniques do not take into account basic features that
characterize today’s critical pervasive computing environments.
In this paper, we revisit the issue of timeliness in the context of per-
vasive computing environments. We propose a middleware service that
addresses the timely provisioning of services, while taking into account
both the mobility of the entities that constitute pervasive computing en-
vironments and the existence of multiple alternative entities, providing
semantically compatible services. Specifically, we model the overall be-
havior of mobile entities in terms of the entities’ lifetime. The lifetime of
an entity is the duration for which the entity is present and available to
other entities. Given a new request coming from a mobile client and a
number of semantically compatible mobile entities that can fulfill the re-
quest, one of them must be selected. The proposed service realizes three
different policies that facilitate the selection. With respect to the first
policy, the selection is realized solely on the basis of the client’s and the
server’s lifetimes. The second policy additionally considers the load of
each server towards selecting the one that guarantees to serve the new
request within the lifetime of both the client and the server. The third
policy further deals with periodic service requests.

1 Introduction

Recently, the rapid emergence of WiFi and Bluetooth networks, along with the
increasing computing and communication capabilities of mobile devices such as
PDAs, Pocket PCs, Smart Phones and wireless-enabled laptops, foster the de-
velopment of a variety of new applications towards the realization of the overall
idea of pervasive computing. Enterprises facilitate their activities for their mo-
bile employees. Airports, railway stations, cafes and shopping centers deploy
wireless networks to serve their customers. The evolution of the aforementioned
technologies further enables the realization of applications that can be employed
to handle certain critical situations like accidents, natural catastrophes, war sit-
uations, etc.

Both daily and critical applications are characterized by the following main
features:

– They consist of a set of mobile entities, providing a number of services that
can be requested by other mobile entities.

– More than one mobile entity may provide semantically equivalent services.

Critical applications are further characterized by the need for timely provi-
sioning of services from mobile entities to other mobile entities. Service requests
come along with specific deadlines that should be met by the mobile entities that
serve those requests. Timeliness in conventional real-time systems is addressed
by employing well-known scheduling techniques such as the earliest deadline first
(EDF) and the rate-monotonic scheduling (RM) [1]. These techniques guaran-
tee that the execution of a number of tasks will take place within the required
deadlines. However, the classical scheduling techniques do not take into account
basic features of pervasive computing environments.

In this paper, we revisit the issue of timeliness in the context of pervasive
computing environments. Specifically, we propose techniques that address the
timely provisioning of services, while taking into account (i) the mobility of the
entities that constitute pervasive computing environments and (ii) the existence
of multiple alternative entities, providing semantically compatible services.

The behavior of mobile entities may be rather complicated and depends on
several factors [2]. For instance, so far, there has been work towards estimating
the physical motion of mobile entities [3]. An entity may become inaccessible
by moving into areas that do not belong in the transmission range of a par-
ticular wireless network. Another important feature that distinguishes mobile
entities from the basic building blocks of conventional distributed systems is
their limited resources. For example, the limited battery of a mobile entity may
render the entity permanently or temporarily inaccessible. Moreover, the entity
may explicitly disable its communication or computation capabilities towards
the economization of power, or because of the reception of orders from some
external authority.

To facilitate the timely provisioning of services in pervasive computing en-
vironments we employ a generic notion for modeling the behavior of mobile
entities. This notion shall serve as input to the scheduling techniques that we
propose in this paper. Specifically, we assume that the overall behavior of mobile
entities is modeled in terms of the entities’ lifetime. The lifetime of an entity is
defined as the time interval during which the entity is available to other entities.
The lifetime is generic enough and can be evaluated using a combination of differ-
ent means, reflecting various characteristics such as the entity’s physical motion
and the entity’s available resources. The evaluation of the entities’ lifetimes is
transparent to the proposed scheduling techniques; it is a responsibility of the
entities themselves as it depends on their specificities and could not be part of
a middleware infrastructure that is going to be used in different kinds of critical
situations. It is important to note that the lifetime of the mobile entities is actu-
ally the contract between the entities and the scheduling techniques. As long as

the lifetime is given as input to the scheduling techniques, it should be respected
by the mobile entities (i.e. the entities should not become unavailable earlier).
Such a demand may seem quite restrictive for any arbitrary ad-hoc community
of mobile entities. However, the proposed approach is aimed at communities that
have real-time requirements and it is natural to restrict their arbitrary behavior
in order to satisfy them.

The existence of more than one alternative services also plays an important
role towards the timely service provisioning in pervasive computing environ-
ments. This sort of redundancy must be considered in a systematic way. Before
issuing a service request to a mobile entity that shall serve it, the different al-
ternatives must be evaluated so as to select the mobile entity that may possibly
guarantee correct service provisioning.

Considering the above, in this paper we propose three different policies that
enable the timely execution of mobile services in the context of critical pervasive
computing environments. The proposed policies are realized in the core of a
middleware service that is incorporated within every mobile entity. Specifically,
given a new request coming from a mobile client and a number of semantically
compatible servers that can fulfill the request, one of them must be selected.

The ultimate goal of the selection process is to guarantee that a response will
be sent back to the client within the client’s lifetime.

The first of the proposed policies takes into account solely the lifetimes of
the client and the server entities; it guarantees that a reply will be sent to the
client as long as the server manages to serve the client’s request. The second
policy provides stronger guarantees by additionally examining the load of avail-
able servers towards selecting the one that can serve the new request within the
lifetime of both the client and the server. The third policy further deals with
periodic service requests. To deal with such cases we extend classical real-time
scheduling techniques to the needs of pervasive computing environments. Each
different policy provides different levels of timeliness in the execution of mobile
services and requires different amount of resources. In this particular paper, we
concentrate on the number of messages required in each policy since communi-
cation between mobile devices is amongst the key causes of wasting battery.

The remainder of this paper is structured as follows. Section 2 presents a
motivating example, employed throughout this paper to demonstrate the use of
the proposed service. Section 3 presents the overall architecture of the proposed
middleware service. Section 4 details the three alternative policies we propose.
Section 5 discusses related work and finally Section 6 concludes this paper with
a summary of our contribution and future research issues.

2 Motivating Example

In this section we present a scenario where the timely provision of services is
essential to confront a critical situation. This scenario serves to exemplify the
use of the proposed middleware service. Specifically, we face the case of an acci-
dent in a nuclear plant. The plant consists of a number of different laboratories

shown in Figure 1. The accident caused a rapid increment in the overall level of
radioactivity observed in the plant area. The exact radioactivity measures range
from laboratory to laboratory, depending on the physical location of each one
of them (i.e., the radioactivity measures are higher in labs that are closer to
the area where the accident took place). The accident took place at daytime.
Hence, several employees may be trapped within the different labs. Several rescue
squads enter the plant area towards dealing with this situation. Each squad is in
charge of a different lab and tries to locate trapped employees. Each squad con-
sists of firemen equipped with wireless-enabled radioactivity sensors with limited
processing capabilities. Communication between different squads is feasible only
through the squads leaders who are additionally equipped with small laptops
serving as base stations for the networks formed in each room.

Fig. 1. Overview of the nuclear accident situation.

A group of scientists also enters the accident area. The main goal of the the
scientists is to gather radioactivity measures from different labs and use them
for the post-mortem analysis of the situation, which shall result in estimating
the impact of the accident in the plant territory. Each scientist is assigned to a
different lab and carries a PDA, used for contacting the sensor-equipped firemen.
Firemen and scientists can not remain in the accident area for long. Each one of
them has a strict time-to-leave and within this deadline he must accomplish his
assigned tasks. Taking for instance the firemen who accept radioactivity measure
requests by the scientists, it is important to accept these requests only if they
can be served within their time-to-leave and the time-to-leave of the scientists.
Failing to serve these requests on-time shall delay the accurate estimation of the
impact of the accident, which is critical for the identification of the particular
strategy that should be followed to rapidly deal with the accident’s consequences.
Depending on the availability of replacements, the leaving person may be sub-
stituted by new ones. The firemen may also move from lab to lab, depending

on the current situation in each one of them. For instance, a fireman may be
asked by his leader (who is constantly in contact with other leaders) to move to
another lab where there exist injured employees. Locally, the leader may assign
several tasks to his firemen.

In our example, the members of the rescue squads and the scientists are mo-
bile entities. In particular, the firemen are service providers used by the scientists
and the leaders of the rescue groups, which constitute the mobile clients in our
critical situation.

3 Service Architecture

The overall architecture of the proposed middleware service is designed over
WSAMI [4]. WSAMI is a lightweight platform developed at INRIA, which aims
at facilitating the development of ad-hoc communities of mobile entities. WSAMI
entities may execute on either stationary or mobile devices. They may provide
or use a number of WEB services, conforming to the standard WEB services
architecture [5]. Specifically, WSAMI services are specified using a declarative
language that extends the features of the standard WEB Service Description
Language (WSDL), with additional features that prescribe qualitative properties
of the services such as security and transactions. Communication with the ser-
vices is realized through the exchange of messages, whose format conforms with
the Simple Object Access Protocol (SOAP). The WSAMI platform comprises
two main subsystems used for the realization of the proposed middleware ser-
vice: (1) The CSOAP broker, which facilitates the exchange of SOAP messages
between resource constrained mobile entities; and (2) the Naming and Discovery
(ND) service, which allows mobile entities to gather information regarding WEB
services provided by other available entities.

WSAMI is a highly scalable platform since the realization of the ND service
is completely distributed. Every WSAMI entity comprises an instance of the
ND service, which periodically checks the environment for other instances of
ND services hosted by neighboring WSAMI entities. This task is realized using
the standard Service Location Protocol (SLP). The resulted information is kept
locally by the service and is used afterwards for the discovery of WEB services
provided by the neighboring entities.

Figure 2 gives an overview of the main components that constitute the archi-
tecture of the proposed service. A pervasive computing environment is a commu-
nity of WSAMI entities. Each entity may play the role of a client to other mobile
entities, playing the role of the server. The entity can be accessed through the
use of the WEB services it provides. The mobile entity further includes a com-
munity directory that contains a local view of the community that corresponds
to the entity. Specifically, the directory contains information regarding the WEB
services that are provided by other community members, which can be accessed
by the mobile entity. This information is divided into different categories de-
pending on the different types of community members (e.g., scientists, firemen,
etc.). The directory is managed by the community manager service. Whenever a

Fig. 2. Overview of the service architecture.

mobile entity joins a pervasive computing environment, the community manager
populates its local directory. This takes place as follows: First, the mobile entity
queries the community manager for available WEB services belonging to the
particular categories that interest the querying entity; the manager forwards the
entity’s request to ND, which subsequently contacts all other neighboring NDs;
the results are collected and stored in the community directory; following, the
entity configures the community manager to periodically refresh the directory
by following the three steps mentioned above; alternatively, the entity may also
explicitly refresh the directory.

The community manager is rather typical and is not further detailed in this
paper. On the other hand, the behavior of the rest of the components showed
in Figure 2 is actually the one that facilitates the timely execution of services
among community members. Briefly, each mobile entity comprises an assessor
and a scheduler service. The assessor service accepts as input requests from
client objects encapsulated in the mobile client. For every request, the category
of community entities that can serve it is further specified. Given this informa-
tion, the assessor takes charge of selecting a particular mobile entity from the
local community directory. Following, the assessor forwards the client request to
the scheduler service of the selected entity. In particular, the scheduler accepts
input messages, which are subsequently stored in a message queue maintained
by the scheduler. The selection process relies on the lifetime of the community
entities, which is actually part of the WSAMI description of the mobile entities.
The selection process may follow three alternative policies, providing different
timeliness guarantees. The three policies are the focus of the remainder of this
paper.

Regarding our motivating example, each member of the rescue squads con-
tains an instance of the server-side architecture shown in the right part of Fig-
ure 2. On the other hand, the scientists contain an instance of the client-side
architecture given in the left part of the figure.

4 Timeliness Policies for the Provision of Services

Before getting into details regarding the policies of the proposed middleware
service, let us formally define our execution environment. As already discussed,
a critical pervasive computing environment is a community of mobile entities,
E = {m : MobileEntity}. In the most general case, a mobile entity may play
both the client and the server role. Therefore, the mobile entity is a tuple
m = (D,C, S, A, lifetime), where D is the community directory, C is the direc-
tory manager, S is the scheduler, A is the assessor and lifetime is the lifetime of
the entity. Regarding the directory D we have: D = {ct : Category} and ∀ct ∈
D, ct = {epa : EndPointAddressInfo}. Every element within a category con-
tains information regarding the endpoint address of a scheduler service, provided
by a neighboring mobile entity. This information comprises the URI of the service
and the lifetime of the neighboring entity, ∀epa ∈ ct, epa = (uri, lifetime).

The ultimate goal of the three policies is to guarantee that a client will re-
ceive a reply to a request made on a server entity, before leaving the community.
Hereafter, we assume that the worst case communication delay for sending a
SOAP message between two entities can be estimated. This estimation depends
on the length of the message that is to be sent and the characteristics of the un-
derlying network protocol. The length of the requests and responses exchanged
between two entities are known to the assessor and the scheduler services. Re-
garding the underlying network protocol, the proposed service relies on IEEE
802.11 for wireless LANs [6]. This particular protocol provides two fundamental
mechanisms for accessing the medium. The first one is called Distributed Co-
ordination Function (DCF) and handles the retransmission of collided packets
with respect to binary exponential back-off rules. The handling of packet col-
lisions with DCF renders the estimation of the medium access delay difficult
(i.e. the time required to obtain access to the medium). Consequently, the es-
timation of the overall delay for sending a message to a target endpoint is also
complicated. The second mechanism that is provided by IEEE 802.11 is called
Point Coordination Function (PCF). This mechanism guarantees collision free
and time bounded packet transmissions. However, it requires the existence of a
Point Coordinator (PC) that resides on an access point 1. The PC periodically
gives the right to transmit messages to each of the mobile entities that consti-
tute a community. During this period, the mobile entities may transmit their
messages or part of their messages, depending on the message length. Based on
the above, the PCF mechanism is more suitable for the purpose of the proposed
service.

4.1 Lifetime Policy

The first of the policies of the proposed service is based solely on the lifetimes of
the mobile entities. The schedulers of the mobile servers maintain FIFO queues
of requests scheduled according to the classical Round Robin (RR) algorithm.
1 The time-bounded election or substitution of a PC is an interesting issue that is

complementary to our approach and is not further discussed in this paper.

According to the Lifetime policy, every request req is issued by a client object
of a mobile entity mclient to the assessor service of this entity, mclient.A. The
assessor must select a mobile server out of a category ct ∈ mclient.D that contains
information about all the alternative mobile servers that may possibly serve req,
and forward req to the selected server. Within ct there may exist servers whose
lifetimes are greater than the lifetime of the client and servers whose lifetimes
are smaller or equal to the lifetime of the client. Selecting one of the former
implies that the request may be served after the end of the client’s lifetime. On
the other hand, selecting one of the latter implies that the request may be served
earlier than the end of the client’s lifetime. In both cases, a request may not be
served at all, depending on the load of the server, which is not known to the
assessor. Considering the above, if there exist one or more servers whose lifetimes
are smaller or equal to the client’s lifetime, one of them is selected randomly by
the assessor. In the opposite case, the assessor selects randomly a server with a
longer lifetime. More precisely, let crep be the worst case communication delay
for sending a reply message to req. Let ct′, ct” ⊆ ct|ct′

⋃
ct” = ct be two disjoint

subsets of ct defined as follows:
ct′ = {epamserver

∈ ct|epamserver
.lifetime ≤ mclient.lifetime− crep}

ct” = ct− ct′

Then, for the selected server mserver we have:{
if ct′ 6= ∅ then mserver ∈ ct′

else mserver ∈ ct”

Hence, if mserver ∈ ct′ the Lifetime policy guarantees that the client will
receive a reply on time, as long as the request is served. However, there is ab-
solutely no guarantee that the request will be served at all. The Lifetime policy
is quite simple since it does not introduce any communication overhead apart
from the one needed to exchange the request and the reply messages. It requires
minimal information regarding the behavior of the different mobile entities of
the environment.

After the selection of mserver, the request is forwarded towards the selected
entity. Eventually, req is received by the scheduler service of mserver and it is
placed in the request queue maintained by this service.

Fig. 3. Applying the Lifetime policy.

Getting to our case study example, assume that a scientist enters a lab in the
plant area and wants to request from a fireman the current value of radioactivity.
In the same lab there exist 3 possible firemen and the scientist is supposed to
select one of them and issue his request. Suppose that the lifetimes of the scientist
and the firemen are respectively 9, 8, 9 and 11 time units (Figure 3)2. The
communication overhead is at most 1 time unit. According to the Lifetime policy,
the scientist selects Fireman 1. If the fireman manages to serve the request, in
the worst case this will happen at time = 8. Consequently, the scientist will
receive a reply at time = 9. On the other hand, if the scientist selects the second
fireman, in the worst case his request will be completed at time = 9 and the
reply will arrive at time = 10, which is too late for the scientist. Similarly, if
the scientist selects the third fireman, in the worst case his request will finish at
time = 9 and the reply will arrive at time = 11, which is also too late.

4.2 LifetimeLoad Policy

The second policy of the proposed service provides stronger timeliness guaran-
tees. Still, the scheduler services of the mobile servers manage FIFO queues of
requests, which are scheduled according to the classical Round Robin (RR) algo-
rithm. However, with this policy we examine both the lifetimes and the current
load of the mobile entities that may serve a client request.

As with the Lifetime policy, a request req is issued by a client object of
a mobile entity mclient to the assessor service mclient.A. The assessor forwards
directly req to the scheduler service of an accessible mobile entity, mserver, which
is randomly selected. The scheduler service eventually receives req and examines
the feasibility of its execution based on the load and the lifetime of mserver.

Specifically, let Nmserver be the total number of pending requests for mserver,
including req. Creqi denotes the time units required for serving each pending re-
quest reqi, issued by mclienti

. Moreover, crepi
denotes the worst-case communica-

tion delay required to send a response back to mclienti
. Given that the scheduler

queue is FIFO, req is the Nmserver
-th pending request. Every new request added

to the scheduler queue introduces an additional overhead in the execution of all
the other pending requests. This is due to the fact that requests are scheduled in
a RR fashion. Hence, before adding a new request in the scheduler queue we have
to verify that this additional overhead shall not delay the rest of the pending
requests too long, making it impossible to send the corresponding replies back
to the clients that issued the requests. Moreover, we have to verify that the new
request will be served within the server’s lifetime and a reply will be send back
to the client within the client’s lifetime. To achieve the previous, the scheduler
performs the following:

1. For every request reqi, i = 1, . . . , Nmserver
(including the new request, reqNmserver

),
the scheduler calculates the overall time Dreqi required for serving it.

2 Note that each one of the Figures 3, 4, 5 examines three different scenarios that
correspond to the selection of Fireman 1, 2 and 3 respectively

2. Then, to accept the new request the scheduler must verify that the following
constrain holds:
∀reqi, i = 1, . . . , Nmserver

|Dreqi
≤ mclienti

.lifetime− crepi

Upon the verification of the above constraint the scheduler service reports
back to the client assessor. If the constraint holds the report is positive and the
scheduler continues serving pending requests including req. On the opposite case,
the report is negative and the scheduler forgets req. Eventually, the assessor of
mclient receives the report from mserver. In case the report is negative, another
mobile entity is selected and the same procedure is followed. If the reports of all
the available mobile entities are negative, req is dropped by mclient.

Calculating Dreqi
is realized as follows. Given that reqi is in the i-th position

of the FIFO queue and that serving it relies on RR, it takes i time units for reqi

to be placed at the end of the queue. Let Q = {Areqk
|k = 1, . . . , N ′

mserver
} be

the remaining time units required for the execution of each one of the pending
requests at the time when reqi will be placed at the end of the queue. Note that
the cardinality of Q may be less than Nmserver given that there may be requests
from the original queue that will be completed at the time when reqi will be
placed at the end of the queue. For every Areqk

, we have that Areqk
≤ Creqk

.
Let Q′ = [Bi|i = 0, . . . M] be a sequence whose B0 = 0. The remaining elements
of Q′ result from Q by removing the duplicate values existing in Q and sorting
the remaining values in increasing order. Specifically, for Q′ the following hold:

(1) B0 = 0
(2) ∀Bi, Bj ∈ Q′|i < j ⇒ Bi < Bj

(3) ∀Bi > B0 there exists at least one Areqk
∈ Q|Areqk

= Bi

(4) ∀Areqk
∈ Q|(∃Bi ∈ Q′|Bi = Areqk

)

For all Bi ∈ Q′ we define their multiplicity multi as follows:{
multi = |QBi

|, i > 0
mult0 = 0, i = 0

where QBi
⊆ Q ∧ (∀Areqk

∈ QBi
|Areqk

= Bi).
Let Bl ∈ Q′ be the specific value that corresponds to the time units required

for completing reqi, i.e., Bl = Areqi
, then the first B1 units of Bl will actually

execute in: |Q| ∗ B1 time units. After |Q| ∗ B1 time units, all the requests that
required B1 units to complete will be removed from the queue. Hence, the length
of the scheduler’s queue will become |Q|−mult1. Moreover, all the requests that
required B2 time units to complete will now require B2−B1 units. Consequently,
the next B2−B1 units of Bl will actually execute in (|Q|−mult1)∗(B2−B1). By
induction, we can conclude that the overall service time Dreqi

can be calculated
using the following formula:

Dreqi = i +
∑

k=1,...,l((|Q| −
∑

m=0,...,l−1 multm) ∗ (Bk −Bk−1))

In Figure 4, we revisit our case study scenario. Assume the situation discussed
in Section 4.1 where the scientist wants to select out of three firemen the one

Fig. 4. Applying the LifetimeLoad policy.

that can fulfill his request, req, within the scientist’s lifetime. This time the
lifetimes of the three firemen are 9, 9 and 16 time units, respectively. The worst
case execution time for req is 2 and the worst-case communication delay is 1.
Suppose that the client assessor chooses Fireman 1 first. The scheduler of the
fireman has two pending requests in his queue. At the time when req arrives,
req11 requires 4 more time units to complete, while req12 requires 2. With the
addition of req in the queue, the overall delay for completing it shall be 6.
Given that req arrives at time = 2, its execution will complete at time = 8.
Consequently, the client will receive a reply at 9, which is legal. However, with
the addition of req, the overall delay for completing req11 shall be 8 time units.
Hence, req11 will finish at time 10, which is greater than the lifetime of the first
fireman. Accepting, thus, req causes a missing deadline for the first fireman. Let
us assume instead that the client assessor selects Fireman 2 first. The queue of
his scheduler contains only one pending request that requires 2 more time units
to complete at the arrival of req. The overall delays for completing req and req21

are 4 and 3, respectively. These values are legal with respect to the lifetimes of
the client and Fireman 2. Consequently, req can be accepted.

4.3 EDFTB Policy

As we already discussed the LifetimeLoad policy provides quite strong guaran-
tees. However, it can only provide them in cases of requests that are served once
during the lifetime of a mobile server. In practice it is often the case that a
mobile client requests a mobile server to perform a particular task more than
once, usually with a certain period. In our example, for instance, the scientists
may request the firemen to measure the level of radioactivity periodically and
produce a certain amount of measures, which should be returned back to them
towards performing more accurate analysis and estimations. Such kind of re-
quests, leading to the execution of periodic activities, can not be guarantied by
the LifetimeLoad policy.

The EDFTB policy detailed here is suitable for both requests leading to
periodic activities and typical requests that are served once. Hereafter, we call
the former periodic requests and the latter aperiodic requests. As implied by the
name of the policy, it relies on the classical EDF (Earliest Deadline First) [1]
and the TB [7](Total Bandwidth) algorithms, which are customized here for the
specific purpose of critical pervasive computing environments.

Briefly, Liu and Layland [1] examine a typical real-time system that executes
only periodic tasks, which arrive dynamically in a queue. The execution of the
tasks is preemptive. Every task ti is characterized by a period Ti. Every instance
of ti must complete within Ti. Hence, Ti is the deadline for the completion of ti.
Moreover, ti is characterized by a worst case execution time Cti . According to
EDF, a task is scheduled if it is the one with the earliest deadline amongst all
the periodic tasks in the queue. Liu and Layland proved that a particular set of
tasks {t1, t2, . . . tN} is scheduleable if and only if the system’s utilization is at
most 1. Formally:

UP =
∑

i=1,...N (Ci/Ti) ≤ 1
In the TB algorithm, Spuri et al. [7] further consider a real-time system with

both periodic and aperiodic tasks. To deal with this combination they propose
dividing the system utilization into UP , used for executing periodic tasks, and
US , used for the execution of aperiodic tasks. Aperiodic tasks tai are given a
deadline dtai

, on the basis of US . The given deadline is the shortest possible and
does not jeopardize the execution of periodic tasks. Specifically:

dtai = max(rk, dtai−1) + Ctai/US

In the above formula, rk denotes the time instant that tai arrived and dtai−1

denotes the deadline given to the aperiodic task whose arrival immediately pre-
ceded the arrival of tai. Based on its given deadline, tai is scheduled by EDF as
any periodic task. Given the previous, an overall set of periodic and aperiodic
tasks is scheduleable if and only if UP + US ≤ 1.

In the rest of this section, we describe in detail our specific extension to the
EDF and the TB algorithms to handle the case of critical pervasive computing
environments.

With the EDFTB policy, the scheduler of mobile entities uses the EDF al-
gorithm. However, the scheduleability of periodic and aperiodic requests further
involves additional constraints, which are verified by the scheduler service upon
the arrival of a new request req coming from the assessor of a mobile client. In
particular, if req is periodic it will result in the execution of a periodic activity
on the side of the mobile server. Since the lifetimes of both the client and the
server are limited, the client is obliged to associate req with a period Treq and
a required number of instances nreq of the periodic activity that is going to be
executed. For example, a scientist should request a fireman to measure the level
of radioactivity 3 times with a period of 2 time units. The request req is eventu-
ally received by the scheduler of mserver, which further assumes that the overall
server utilization is divided into UP and US for the execution of periodic and
aperiodic requests, respectively. Given the previous, the goal of the scheduler is
to verify whether the server can preserve the following constraints:

– For periodic requests:
1. req will be served nreq times within the lifetime of the server.
2. The replies to req will be send back to the client within the client’s

lifetime.
– For aperiodic requests:

1. req will be served within the lifetime of the server.
2. The reply to req will be send back to the client within the client’s lifetime.

Based on the outcome of the verification procedure the scheduler sends a
positive or a negative report to the client assessor. Depending on the report, the
assessor behaves as in the case of the LifetimeLoad policy.

Periodic requests: In case req is periodic, the scheduler of mserver performs
the following steps:

First it checks whether the utilization of mserver remains lower than 1 if the
new request is accepted for service. Formally, if there exist Nmserver pending
periodic requests on the server, the scheduler verifies the following:

UP =
∑

i=1,...Nmserver
(Creqi

/Treqi
) + (Creq/Treq) ≤ 1− US

In the above formula, Creqi
and Treqi

denote the worst case execution time
and the period of each pending request. If this formula holds it means that the
execution of req shall not jeopardize the execution of the rest of periodic requests
that already exist in the scheduler’s queue. However, the scheduler must further
verify that the server’s lifetime is sufficient to allow executing req nreq times.
This is accomplished in the second step by evaluating the following:

mserver.lifetime/Treq ≥ nreq

Hence, in the first two steps the scheduler of mserver verifies whether the
server can guarantee the first of the two constraints stated for periodic requests.
The third step performed by the scheduler amounts in checking the second con-
straint. Given that the execution of the activities that serve periodic requests
is preemptive, the only way to assure that the client will get the replies to req
within mclient.lifetime is by checking whether mclient lives longer than mserver.
More precisely, if crep denotes the worst case communication delay for sending
a reply to req, then the following must hold:

mserver.lifetime ≤ mclient.lifetime− crep

If all the above hold, the server reports back to the client with a positive
answer. In the opposite case, the answer is negative and the client selects another
candidate mobile entity. If the answers of all the alternative entities are negative
the request is dropped by the client.

In our case study scenario assume the following situation, depicted in Fig-
ure 5. At time 2 a scientist wants to issue a periodic request req with Creq = 1
and Treq = 4 to one of the three firemen shown in the figure. The scientist fur-
ther requires that req is executed 3 times. Suppose that Fireman 1 is selected
first by the scientist. Fireman 1 periodically executes two requests req11 and
req12 with Creq11 = 2, Treq11 = 4 and Creq12 = 2, Treq12 = 4, respectively. With
the inclusion of req in the queue of Fireman 1, the UP utilization shall become
1.5. Hence, Fireman 1 can not execute req without jeopardizing the execution

Fig. 5. Applying the EDFTB policy for periodic requests.

of req11 and req12. Assume instead that Fireman 2 is selected first by the scien-
tist. Fireman 2 is already responsible for the execution of one periodic request,
req21, with Creq21 = 1 and Treq21 = 3. Hence, with the inclusion of req the UP

utilization for Fireman 2 shall become 0.59. However, the remaining lifetime of
the fireman at the time when he receives req is 6. Consequently, he can execute
req at most 2 times. Fireman 3 in our example periodically executes one request
with Creq31 = 1 and Treq31 = 2. With req, its utilization UP , shall become 0.75.
Moreover, the remaining lifetime of the fireman when he receives req is 13. Thus
he can execute req 3 times. Finally, the lifetime of Fireman 3 is less than the
lifetime of the scientist. If the communication overhead crep is at most 1, the
fireman will deliver the replies to the scientist, within the scientist’s lifetime.
Summarizing, if the third fireman is the first entity contacted by the assessor
component of the scientist, the report will be positive and req will be successfully
executed.

Aperiodic requests: If req is aperiodic, the scheduler follows the TB approach
[7]. Based on US , the scheduler assigns a deadline to req and checks whether this
deadline is consistent with respect to the lifetimes of the client and the server.
Formally, the deadline is given according to the following formula:

dreq = max(r, dreq′) + Creq/US

In the above, r is the moment when req arrived and dreq′ is the deadline given
to the aperiodic request req′ whose arrival immediately preceded the arrival of
req. Moreover, the following must hold to guarantee that with the given deadline
a reply to req will be delivered back to the client, within the client’s lifetime:

dreq ≤ min(mserver.lifetime, (mclient.lifetime− creq))
In Figure 6 we revisit the situation discussed in Figure 5. In particular, the

periodic request previously issued by the scientist is scheduled in Fireman 3
(req32 in the figure). Suppose now that the scientist further issues an aperi-
odic request req to the same fireman. For Fireman 3 we have UP = 0.75 and
US = 0.25. The request arrives at time 5. Since it is the first aperiodic request,

Fig. 6. Applying the EDFTB policy for aperiodic requests.

it is given a deadline that is equal to 9 (i.e., 5 + 1/0.25). If the worst case com-
munication overhead is 1, the scientist will receive a reply at time 10, at the
latest. Consequently, req can be scheduled on Fireman 3 and the report sent to
the scientist is positive. Actually, we can observe in the figure that req can be
served earlier than 9 and the scientist may get the reply at time = 8.

4.4 Assessment

In Figure 7 we summarize our first experimental results produced by the ap-
plication of the proposed policies in a simulated environment realized using the
PARASOL simulator [8]. The environment consists of 3 mobile server entities,
providing compatible services. We performed 2 different classes of experiments.
In the first one (Figure 7(a)), we compare the performance of the Lifetime and
the LifetimeLoad policies with 4 different workloads of aperiodic requests (100,
200, 400 and 800 requests, respectively). Similarly, in the second class of ex-
periments (Figure 7(b)) we compare the performance of the Lifetime and the
EDFTB policies with 4 different workloads of periodic requests (100, 200, 400
and 800 requests, respectively). The lifetimes of the mobile entities, the worst-
case execution times for the requests and the periods of the periodic requests
are randomly generated by following a uniform distribution. Our performance
metric is the percentage of accepted requests (i.e., the requests that are actually
stored in the queue of a scheduler) that complete on time, with respect to the
lifetimes of the clients and the mobile servers.

Specifically, in Figure 7(a) we observe that the percentage of aperiodic re-
quests that complete on time in the case of the Lifetime policy, linearly decreases
as we increase the number of requests that constitute the overall workload issued
to the mobile servers. As opposed to that, the LifetimeLoad policy guarantees
that all the accepted requests are executed on time (i.e., we do not have any
missed deadlines). In Figure 7(b) we observe that the behavior of the Lifetime
policy gets even worst, given that the requests are periodic and require more time
to complete. The EDFTB policy behaves perfectly in this case as we observe that
all the accepted requests finish on time. The price to pay for avoiding missed
deadlines is given in Figure 7(c). As mentioned in Section 1, we can estimate

the battery overhead introduced by the three policies by examining the num-
ber of messages exchanged between a mobile client and a mobile server. In the
figure we can observe that the overall number of messages exchanged between
a mobile client and the alternative mobile servers is constant in the Lifetime
policy, which is the cheapest. For the other two policies the minimum number
of messages exchanged is greater but is still constant. On the other hand, the
maximum number of messages for the LifetimeLoad and the EDFTB policies
linearly increases with the number of alternative mobile servers.

(a) Lifetime vs. LifetimeLoad (b)Lifetime vs. EDFTB

(c) Number of messages exchanged with respect to the timeliness properties.

Fig. 7. Experimental results.

5 Related Work

Up to know, there have been several approaches dealing with various dependabil-
ity attributes in the context of pervasive computing environments [9, 10]. These
approaches most frequently concentrate on reliability, performance, availability,
security, reputation, etc. However, to our knowledge the approach proposed in
this paper is the first attempt that focuses on timeliness.

In the past, the middleware community proposed standards for real-time
middleware platforms, which were aimed at conventional distributing comput-
ing environments where both the client and the server entities are deployed on
top of stationary workstations. Among these standard approaches we have the
one proposed by the OMG for Real-Time CORBA and related implementations

like TAO and ZEN [11, 12], which proved to be useful in conventional systems.
However, they can not be directly employed in the environments examined in
this paper.

In the remainder of this section we concentrate on work that is comple-
mentary to the approach we propose. In particular, the issue of calculating the
lifetime of mobile entities is central to our approach. Currently, we have useful
techniques that aim at estimating the physical motion of mobile entities [3] and
motion independent techniques that estimate the unavailability of mobile entities
[13]. Several classical algorithms for scheduling real-time tasks have been pro-
posed in the past. Usually their are divided into static and dynamic. Obviously,
static algorithms can not be used in critical pervasive computing environments.
Dynamic scheduling algorithms, schedule tasks on-the-fly. The EDF algorithm
that we employed in this paper is among the most widely known ones. However,
several others like MLF (minimum-laxity-first) and MUF (maximum-urgency-
first) [14, 15] may prove useful in the context of critical pervasive computing
environments. As in the case of EDF, these algorithms should also be appropri-
ately enhanced before they are introduced in such environments. In our partic-
ular case, we consider using MUF instead of EDF to deal with cases where all
of the alternative mobile servers are incapable of serving a new client request.
MUF associates tasks with an importance factor, which may serve as a criterion
for rejecting pending requests towards serving new ones of greater importance.

6 Conclusion

In this paper, we proposed a middleware service that facilitates the timely execu-
tion of mobile services in critical pervasive computing environments. The overall
service architecture relies on the WSAMI platform and supports three different
timeliness policies for the execution of requests issued by mobile clients to mo-
bile servers. The first policy takes into account the lifetimes of the client and the
server entities and guarantees that a reply will be sent to the client as long as
the server manages to serve the client’s request. The second policy guarantees
both that the client request will be served and that a reply will be sent back
within the client’s lifetime. This is achieved by examining the servers’ load along
with the client and the servers lifetimes. The third policy extends the classical
EDF and TB algorithms for the purpose of pervasive computing environments,
to deal with periodic requests in such environments. So far, the proposed service
deals with the timely execution of independent client requests. An interesting
extension would be to further incorporate support for the timely execution of
workflows [16].

Acknowledgments. This work is partially funded by the MobWS GSRT grant for
Cooperation in S&T areas with European countries.

References

1. C. L. Liu and J. W. Layland: Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM 20 (1973) 46–61

2. E. Pitoura and G. Samaras: Data Management for Mobile Computing. Kluwer
Academic Publishers (1998)

3. H. M. O. Mokhtar and J. Su: Universal Trajectory Queries for Moving Object
Databases. In: Proceedings of the IEEE International Conference on Mobile Data
Management (MDM’04). (2004) 133–146

4. V. Issarny, D. Sacchetti, F. Tartanoglou, F. Sailhan, R. Chibout, N. Levy and A.
Talamona: Developing Ambient Intelligence Systems:A Solution Based on Web
Services. Journal of Automated Software Engineering 12 (2005) 101–137

5. W3C: Web Services Architecture. Technical report, (W3C) http://www.w3.org/
TR/ws-arch/.

6. IEEE: IEEE Standard for Wireless LAN Medium Access Control (MAC). Technical
report, IEEE (1997)

7. M. Spuri, G. Buttazzo and F. Sensini: Robust Aperiodic Scheduling under Dynamic
Priority Systems. In: Proceedings of the 16th IEEE Real Time Systems Symposium
(RTSS’95). (1995) 210–221

8. J. Neilson: PARASOL Users’ Manual (v 3.1.). Technical report, (School of Com-
puter Science - Carleton University - Ottawa) K1S5B6.

9. J. Liu and V. Issarny: QoS-Aware Service Location in Mobile Ad-Hoc Networks.
In: Proceedings of the 5th IEEE International Conference on Mobile Data Man-
agement (MDM’04). (2003)

10. L. Zeng, B. Benatallah and M. Dumas: Quality Driven Web Services Composition.
In: Proceedings of the 12th ACM International Conference on the World Wide
Web (WWW’03). (2003) 411–421

11. R. E. Schantz, J. P. Loyall, D. C. Schmidt, C. Rodrigues, Y. Krishnamurthy, and
I. Pyarali: Flexible and Adaptive QoS Control for Distributed Real-time and Em-
bedded Middleware. In: Proceedings of the 4th IFIP/ACM/USENIX International
Conference on Distributed Systems Platforms (Middleware’03). (2003)

12. A. Krishna, D. C. Schmidt, and R. Klefstad: Enhancing Real-Time CORBA via
Real-Time Java. In: Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS’04). (2004)

13. Y. Xiong, X. Lin and J. Rowson: Estimating Device Availability in Pervasive Peer-
to-Peer Environment. In: Proceedings of the 10th IEEE International Workshop
on Future Trends of Distributed Computing Systems (FTDCS’04). (2004)

14. M. L. Dertouzos and A. K. L. Mok: Multiprocessor On-Line Scheduling of Hard
Real-Time Tasks. IEEE Transactions on Software Engineering 15 (1989) 1497–
1506

15. D. B. Stewart and P. K. Khosla: Real-Time Scheduling of Sensor-Based Control
Systems. In: Proceedings of the 8th IEEE International Workshop on Real-Time
Operating Systems and Software (RTOSS’91). (1991)

16. A. Zarras, P. Vassiliadis and V. Issarny: Model-Driven Dependability Analysis of
Web Services. In: Proceedings of the 6th International Conference on Distributed
Objects and Applications (DOA’04). (2004) 1608–1625

