
Modeling and Language Support for the Management of
Pattern-Bases∗

Manolis Terrovitis† Panos Vassiliadis‡ Spiros Skiadopoulos† Elisa Bertino§

Barbara Catania¶ Anna Maddalena¶

Abstract

In our days knowledge extraction methods are able to
produce artifacts (also called patterns) that concisely rep-
resent data. Patterns are usually quite heterogeneous and
require ad-hoc processing techniques. So far, little empha-
sis has been posed on developing an overall integrated en-
vironment for uniformly representing and querying dif-
ferent types of patterns. Within the larger context of mod-
elling, storing, and querying patterns, in this paper, we:
(a) formally define the logical foundations for the global
setting of pattern management through a model that cov-
ers data, patterns and their intermediate mappings; (b)
present a pattern specification language for pattern man-
agement along with safety restrictions; and (c) intro-
duce queries and query operators and identify interest-
ing query classes.

1. Introduction

Nowadays, we are experiencing a phenomenon of in-
formation overload, which escalates beyond any of our
traditional beliefs. As a recent survey states [13], the
world produces between 1 and 2 exabytes of unique in-
formation per year, 90% of which is digital and with a
50% annual growth rate. To deal with the vast amounts
of collected data, we reduce the available data to knowl-
edge artifacts (e.g., clusters, association rules) through
data processing methods (pattern recognition, data

∗ This work was partially funded by the European Commission
and the Hellenic Ministry of Education through EPEAEK II
and the PANDA IST Thematic Network.

† School of Electrical and Computer Engineering, Nat’l Tech-
nical Univ. of Athens, Zographou 157 73 Athens, Hellas,
{mter,spiros}@dblab.ntua.gr

‡ Dept. of Computer Science, Univ. of Ioannina, Ioannina, Hel-
las, pvassil@cs.uoi.gr

§ CS Department, Purdue University, bertino@cs.purdue.edu
¶ Dept. of Computer and Information Science, Univ. of Genoa,

Italy, {catania,maddalena}@disi.unige.it

mining, knowledge extraction) that reduce their num-
ber and size (so that they are manageable by humans),
while preserving as much as possible from their hid-
den/interesting/available information. Again, the vol-
ume, diversity and complexity of these knowledge ar-
tifacts make their management by a DBMS-like en-
vironment imperative. In the remainder of this docu-
ment, we will refer to all these knowledge artifacts as
patterns.

So far, patterns have not been adequately treated
as persistent objects that can be stored, retrieved and
queried. Thus, the challenge of integration between pat-
terns and data seems to be achievable by designing funda-
mental approaches for providing database support to pat-
tern management. In particular, since patterns represent
relevant knowledge, often very large in size, it is impor-
tant that such knowledge is handled as first-class citizen.
This means that patterns should be modelled, stored, pro-
cessed, and queried, in a fashion analogous to data in
traditional DBMSs.

To this end, our research is focused mainly towards
providing a generic and extensible model for patterns,
along with the necessary languages for their defini-
tion and manipulation. In this context, there is al-
ready a first attempt towards a model for pattern man-
agement [15], which is able to support different forms
of patterns (constraints, functions, etc.) as the new
data types of the PBMS. In this paper, we provide
formal foundations for the above issues by the follow-
ing means: First, we formally define the logical foun-
dations for the global setting of PBMS management
through a model that covers data, patterns, and inter-
mediate mappings. Second, we discuss language issues
in the context of pattern definition and management.
In particular, we present a pattern specification calcu-
lus that enables us to specify pattern semantics in a
rich and concise way. Safety issues are also discussed
in this context. Finally, we introduce queries and iden-
tify interesting query classes for the problem. We in-
troduce query operators for patterns and discuss their



usage and semantics.
The rest of this paper is organized as follows. In Sec-

tion 2 we introduce the notion of Pattern-Base Man-
agement system. Section 3 presents a generic model
for the coexistence of data and patterns. In Section 4
we present the Pattern Specification Language, that
enables us to specify pattern semantics. In Section 5
we explain how patterns can be queried and introduce
query classes and operators. In Section 6 we present
related work. Finally, Section 7 offers conclusions and
topics of future work. A long version of this work ap-
pears in [18].

2. Patterns and Pattern-Base Manage-
ment Systems (PBMS’s)

Patterns can be regarded as artifacts, which describe
(a subset of) raw data with similar properties and/or
behavior, providing a compact and rich in semantics
representation of data. There exists a data space (the
space of raw data) and a pattern space. Patterns and
data are related through many-to-many relationships.

Patterns can be managed by a Pattern-Base Man-
agement System (PBMS) exactly as database records
are managed by a database management system. In our
setting, a PBMS can be envisaged as a system where:

• patterns are (semi-)automatically extracted from
raw data and loaded in the PBMS;

• patterns are updated as new (existing) data are
loaded into (deleted from or updated in) the raw
database. These updates can be done in an ad-hoc,
on-demand or periodical (batch) manner;

• users are enabled to define the internal structure of
the PBMS through an appropriate definition lan-
guage;

• users are allowed to pose queries to and retrieve
answers from the PBMS, with the results of these
answers properly visualized and presented;

• an (approximate or exact) mapping between pat-
terns and raw data is available whenever retrieval
of raw data corresponding to patterns is needed.

The reference architecture for a PBMS is depicted in
Fig. 1 and consists of three major layers of information
organization. In the bottom of Fig. 1, we depict the
data space consisting of data stores that contain raw
data (forming thus, the Raw Data Layer). Raw data
can be either managed by a DBMS or can be stored in
files, streams or any other physical mean that is man-
aged outside a DBMS. At the top of Fig. 1, we de-
pict the PBMS repository that corresponds to the pat-
tern space and contains patterns. The PBMS repos-

PatternsOf
Experiment145

Ass. Rule
1

MyClustersOnT
ableEMP

Class Layer

Type Layer

Patterns
Layer

Member of

Instance of

DB1 DB2 Flat file

Data Mining
Algorithms

Pattern
Recognition
Algorithms

Raw Data
Layer

Ass.
Rules
Type

Cluster
Type

Dec.
Trees
Type

Cyclical
Cluster
Type

Ass. Rule
n

Ass. Rule
2

DBSCANC
luster 1

DBSCANC
luster m
DBSCANC

luster 2

PBMS

Intermediate
Mappings

Figure 1. Reference architecture for the Pattern-
Base Management System

itory is managed by the Pattern-Base Management
System. Finally, in the middle of Fig. 1, we can ob-
serve the intermediate mappings that relate patterns
to their corresponding data, forming the Intermedi-
ate Data Layer. Intermediate mappings facilitate the
justification of any knowledge inferred at the PBMS
with respect to the raw data. The overall architecture
is called IntegratedPattern-BaseManagementArchitec-
ture, or simply Pattern Warehouse.

Next, we present a brief description of all the en-
tities that appear in this abstract description of the
PBMS:

Intermediate Mappings Layer. Ideally, we would like
this layer to be part of the PBMS, involving special-
ized storage and indexing structures. In general, one
can imagine that the intermediate mappings can be ei-
ther precisely traced (e.g., through some form of join
index between patterns and data) or imprecisely ap-
proximated. In the latter case, one can employ differ-
ent variations of these approximations through data re-
duction techniques (e.g., wavelets), summaries, or even
on-line data mining algorithms. For practical purposes,
though, the PBMS should be constructed in such a way



that it functions even if intermediate results are out of
its control (which we would expect as the most possi-
ble scenario in real-world scenarios), or even absent.

Pattern Layer. Patterns are compact and rich in se-
mantics representations of raw data. In the general
case, although not obligatorily, patterns are generated
through the application of knowledge extraction algo-
rithms. In Fig. 1, two such algorithms have been ap-
plied: an algorithm for the extraction of association
rules and an algorithm for the extraction of cyclical
clusters.

Type Layer. The PBMS Pattern Types describe the
intentional definition, i.e., the syntax of the patterns.
Patterns of same type share similar characteristics,
therefore Pattern Types play the role of data types
in traditional DBMS’s or object types in OODBMS’s.
The type layer should be extensible to be able to in-
corporate user-defined pattern types.

Class Layer. The PBMS classes are collections of
patterns which share some semantic similarity. Pat-
terns that are members of the same class are obliga-
torily required to belong to the same type. Classes are
used to create patterns with predefined semantics given
by the designer; by doing so, the designer makes it eas-
ier for the users to work on them in a meaningful way.
For example, a class may comprise patterns that re-
sulted from the same experiments, like the association
rules of Fig. 1.

3. Modeling Data and Patterns

In this section, we will give the formal foundations
for the treatment of data and patterns within the uni-
fying framework of a pattern warehouse. First, we in-
troduce the notions of data types, attributes and re-
lations (in the usual relational sense). We exploit the
definitions already given in [5] for this purpose. Then,
we formally define pattern types, pattern classes, pat-
terns as well as the intermediate mappings. Finally, we
define pattern bases and pattern warehouses.

3.1. The Data Space

In this section, we will deal with the formal defini-
tion of the entities of the data space, i.e., data types,
relations and databases. Practically, we start with the
data model proposed by Abiteboul and Beeri in [5], and
make some changes in the type definitions. This data
model is a many-sorted model which facilitates the def-
inition of complex values. Our minor changes focus on
inserting names in the types definitions, so we can eas-
ily access the inner components of complex types. In
the data model, each constant and each variable is as-

sociated with a type and each function and predicate
with a signature. We start by introducing simple data
types.

Data types are structured types that use domain
names, set and tuple constructors and attributes. For
reasons of space and simplicity, we focus our exam-
ples in the domains of integers and reals, throughout
the rest of the paper.

Definition 1 Data Types (or simply, types) are de-
fined as follows [5]:

• If D̂ is a domain name and A is an attribute name
then A : D̂ is an atomic type.

• IfT1, . . . , Tn are types andA,A1, . . . , An are distinct
attribute names then A : [A1:T1, . . . , An:Tn] is also
a type, called tuple type.

• If T is a type and A is an attribute name then A :
{T} is also a type. We call these types set types.

For a k-ary predicate the signature is a k-tuple of
types and for a k-ary function it is a k + 1-tuple of
types.

The values of a specific type are defined the natural
way. For atomic types, we assume an infinite, countable
set of values as their domain, which we call dom(T).
The domain of set types is defined as the powerset of
the domain of the composing type. The domain of tu-
ple types is defined as the product of their constituent
types.

Relations in our setting are considered to be sets of
tuples defined over a certain composite data type. We
model relations in the object-relational context and we
make the following assumptions:

• For reasons of simplicity, we assume that relations
are sets of tuples of the same type instead of just
sets (in contrast with [5] which requires only that
relations are sets).

• At least one of the tuple components, by default
named RID, is atomic and all its values are unique.
Intuitively, we want each relation tuple to have a
row identifier, according to classical (object-) rela-
tional terminology. This enables us to use just sets
instead of bags. We consider RID to be an implicit
attribute and we do not explicitly refer to it when
we define the data schema.

Definition 2 ([5]) A database schema is a pair D̂B =
〈[D̂1, . . . , D̂k], [R̂1:T1, . . . , R̂n:Tn]〉, where T1, . . . , Tn are
set types involving only the domain names corresponding
to the data types D̂1, . . . , D̂k and R̂1, . . . , R̂n are relation
names.



Definition 3 ([5]) An instance of D̂B, i.e., a
database, is a structure DB = 〈[D1, . . . , Dk],
[R1, . . . , Rn]〉, where Ri’s are relations and Di’s are do-
mains.

We also refer to D̂B as the database type, and to DB
as the database value.

As we will see in the following, we need to be able
to define patterns over joins, projections and selections
over database relations. To do that, we extend Def-
inition 2 with a set of materialized views V1, . . . , Vm

which are defined over relations R1, . . . , Rn using rela-
tional algebra. We require that each tuple in a material-
ized view has a unique identifier called RID. Through-
out the rest of the paper, we address views as relations,
unless explicitly specified otherwise.

3.2. The Pattern Space

Now that we have defined the constructs found at
the data space, we are ready to proceed with the def-
inition of the entities belonging to the pattern space.
Therefore, we will introduce pattern types, which are
templates for the actual patterns and pattern classes
which are groups of semantically similar patterns. The
definition of a pattern base then comes straightfor-
wardly.

Patterns as defined in [15] are compact, yet rich in
semantics, representations of the raw data. This infor-
mal principle is formally translated as a quintuple. We
will intuitively define these components here and give
the definition right next.

• First, a pattern is uniquely identified by a Pattern
Id (PID).

• Second, a pattern has a structure: for example, an
association rule comprises a head and a body, and
a cyclical cluster comprises a center and a radius.

• Third, a pattern corresponds to some underlying
data. The subset of the underlying data space that
is represented by the pattern must be specified,
e.g., through the appropriate relation.

• Fourth, a pattern informs the user on its qual-
ity, i.e., how closely does it approximate reality
as compared to the underlying data, through a set
of statistical measures. For example, an associa-
tion rule is characterized by a confidence and a
support measure.

• Finally, a formula provides the richness in seman-
tics for the pattern. The formula demonstrates a
possibly simplified form, of the relation between
the data that are represented by the pattern and
the pattern structure. In Section 4 we present a

Pattern Specification Language (PSL) in which the
formula is expressed.

A Pattern Type represents the intentional descrip-
tion of a pattern, pretty much like abstract data types
do in the case of object-relational data. In other words,
a pattern type acts as a template for the generation of
patterns. Each pattern is an instance of a specific pat-
tern type. There are four major components that a Pat-
tern Type specifies.

• First, the pattern type dictates the structure of its
instances, through a structure schema. For exam-
ple, it obliges association rules to comprise a head
and a body.

• Moreover, a pattern type specifies a data schema
which dictates the schema of the underlying data
which have produced the pattern type; practi-
cally this is the schema of the relation which can
be employed as the test-bed for pattern genera-
tion/definition.

• Third, it dictates a measure schema, i.e., which set
of statistical measures that quantify the quality of
the approximation is employed by the instances of
the pattern type.

• Finally, a template for the formula of the instances
dictates the structure of the formula. The formula
is a predicate bounding the DataSchema and the
StructureSchema, expressed in the PSL.

Definition 4 A Pattern Type is a quintuple [Name,
StructureSchema, DataSchema, MeasureSchema,
Formula] such that (a) Name is a unique identi-
fier among pattern types, (b) StructureSchema is a dis-
tinct complex type (can be set, set of sets etc), (c)
DataSchema is a relation type, (d) MeasureSchema is
a tuple of atomic types and (e) Formula is a predicate ex-
pressed in the PSL language over the StructureSchema
and the DataSchema.

Definition 5 A Pattern (Instance) p over a Pat-
tern Type PT is a quintuple [PID, Structure, Data,
Measure, Formula] such that (a) PID is a unique
identifier among all patterns of the same class, (b)
Structure and Measure are valid values of the respec-
tive schemata of PT , and (c) Data and formula are
expressions in the PSL language, properly instantiat-
ing the corresponding expressions of the pattern type
PT .

Example 1 Let us now present an example of a pattern
type Cluster that defines a cyclical cluster and an exam-
ple of one of its instance.

Pattern Type Cluster



Name Cluster

Structure
Schema

disk:[Center: [X:real, Y :real], Rad:real]

Data
Schema

rel:{[A1:real, A2:real]}

Measure
Schema

Precision:real

Formula
Schema

(t.A1 − disk.Center.X)2 + (t.A1 −
disk.Center.Y )2 ≤ disk.Rad2 where
t ∈ rel

Pattern Instance CustomerCluster
Pid 337

Structure disk:[Center:[X:32, Y :90], Rad:12]

Data customer:{[Age, Income]}
Measure Precision: 0.91

Formula (t.Age−32)2+(t.Income−90)2 ≤ 122 where
t ∈ customer

Intuitively we can see that the formula requires that
all data that belong to the relation customer must sat-
isfy the predicate (t.Age − 32)2 + (t.Income − 90)2 ≤
122. Precision in this case indicates that only 91% of
them do.

In order to define Pattern Types correctly, we need
to be able to define their DataSchema properly. Since
a Pattern Type is a generic construct, not particularly
bound to a specific data set, we employ a set of aux-
iliary names, which are employed in the definition of
the DataSchema of Pattern Types for the specifica-
tion of generic relations and attributes.

Having said that, the instantiation procedure that
generates patterns on the basis of Pattern Types, is
straightforward. Assume that a certain Pattern Type
PT is instantiated in a new pattern p. Then:

• The domains involved in the StructureSchema
and the MeasureSchema of PT are instantiated
by valid values in p.

• The auxiliary relation and attribute names in
the DataSchema of PT are replaced by regu-
lar relation and attribute names of an underlying
database.

• Both the previous instantiations apply for
the FormulaSchema, too: the attributes of
the StructureSchema are instantiated to val-
ues and the auxiliary names of the DataSchema
are replaced by regular names. All other vari-
able names remain the same.

Having defined the data space and the pattern enti-
ties, we are ready to define the notions of Pattern Class
and Pattern Pase (PB). A Pattern Class over a pattern
type is a collection of semantically related patterns,

which are instances of this particular pattern type. Pat-
tern classes play the role of pattern placeholders, just
like relations do for tuples in the relational model.

Definition 6 A Pattern Class is a triplet [Name, PT ,
Extension] such that (a) Name is a unique identifier
among all classes, (b) PT is a pattern type and (c)
Extension is a finite set of patterns with pattern type
PT .

Definition 7 A Pattern Base Schema de-
fined over a database schema D̂D is defined as
P̂B = 〈[D̂1, . . . , D̂n], [P̂C1:PT1, . . . , P̂Cm:PTm]〉,
where PTi’s are pattern types involving the domains
D̂1, . . . , D̂n and P̂Ci’s are pattern class names.

Definition 8 An instance of P̂B, i.e., a pat-
tern base, over a database DB is a structure
PB = 〈[PT1, . . . , PTk], [PC1, . . . , PCm]〉, where
PCi’s are pattern classes defined over pattern types PTi

with patterns whose data range over the data in DB.

3.3. The Pattern Warehouse

Having defined the data and the pattern space, we
are ready to introduce the global framework, in the con-
text of which data- and pattern-bases coexist. To this
end, we formally define the intermediate mappings be-
tween data and patterns and the overall context of pat-
terns, data and their mappings.

Each pattern corresponds to a set of underlying data
whom it represents. At the same time, each record in
the source database corresponds to a (possibly empty)
set of patterns that abstractly represent it. We assume
a mapping Φ that relates patterns with their corre-
sponding data. Through this mapping, we can capture
both the relationship between a pattern and its corre-
sponding data and at the same time, the relationship
of a record with its corresponding patterns.

For reasons of simplicity, we avoid defining the rela-
tionship between data items and patterns at the level
of individual relations and classes. Rather, we employ
a generic representation, by introducing the union of
all data items ∆ and the union of all patterns Ω. Prac-
tically, the existence of RID ’s and PID ’s allows us to
perform this union.

Definition 9 The active data space of all data items of
a database instance DB = 〈[D1, . . . , Dk], [R1, . . . , Rn]〉,
∆DB, is the union of all relations, i.e., ∆DB = R1∪· · ·∪
Rn. The active pattern space of all patterns Ω of a pat-
tern base instance PB is the union of all pattern classes,
i.e., ΩPB = PC1 ∪ · · · ∪ PCn.

Definition 10 Given the active data- and pat-
tern spaces ∆DB and ΩPB, an intermediate pattern-data



mapping Φ over ∆DB and ΩPB is a total func-
tion Φ : ∆DB × ΩPB → {true, false}.We say that a
data item d is represented by a pattern p and we write
d ↪→ p or p ←↩ d iff Φ(d, p) = true.

It should be obvious now that the formula of each pat-
tern is an approximation of the mapping Φ. In principle,
it is an issue of implementation and mostly adminis-
tration whether the intermediate mappings will be ex-
plicitly saved (with the storage and maintenance cost
that this incurs) or simply approximated by the pat-
tern formula (with the respective approximation error).
In the sequel, we will demonstrate the usage of the for-
mula as an approximation for the intermediate map-
pings.

Now, we are ready to define the notion of Pat-
tern Warehouse which incorporates the underlying
database (or source), the pattern bases and the inter-
mediate mappings. Notice that although we separate
patterns from data, we need the full environment in or-
der to answer interesting queries, going all the way
back to the data and to support interactive user ses-
sions that navigate from the pattern to the data space
and vice-versa.

Definition 11 A Pattern Warehouse Schema is a pair
〈D̂B, P̂B〉, where D̂B is a database schema and P̂B is a
pattern base schema.

Definition 12 A Pattern Warehouse is an in-
stance of a pattern warehouse schema defined as a
triplet: 〈DB, PB, Φ〉, where DB is a database in-
stance, PB is a pattern base instance, and Φ is an
intermediate pattern-data mapping over DB and PB.

4. Pattern Specification Language and
Formula

The pattern formula describes the relation between
the patterns, which are described in the structure field,
and the raw data which are described in the source
field. It is evident that we need a common language
to describe all these fields. Therefore, in this section,
we present the Pattern Specification Language (PSL),
with particular focus on the following aspects: (a) lan-
guage syntax, (b) the treatment of functions and pred-
icates by PSL and (c) safety considerations.

Syntax. We chose as Pattern Specification Language
the complex value calculus, presented in [5] by Abite-
boul and Beeri. This calculus is a many-sorted calcu-
lus. The sorts are types as defined previously. Each con-
stant and each variable is associated with a type and
each function and predicate with a signature. The sig-
nature of a k-ary predicate is a k-tuple of types. The
signature of a k-ary function is a k + 1-tuple of types,

involving the types of the parameters and the result
of the function. The set of terms of the language is
the smallest set that contains the atomic constants and
variables, and it is closed under the application of func-
tions. Simple formulae consist of predicates applied to
terms and formulae are combinations of atomic formu-
lae through the combination of the connectives ∧,∨,¬,
and the quantifiers ∀,∃.

Functions and Predicates. Functions and predicates
are quite important in the PBMS setting, since the
approximation of the data to patterns mapping, usu-
ally needs complex functions to be expressed. Func-
tions and predicates can possibly appear both in the
formula field and in queries, associating relation names
with the pattern structure. We believe that having in-
terpreted functions is the best approach for the PBMS,
since we would like the formula to be informative to
the user and we would like to be able to reason on it.

Safety andRangeRestriction. The formula is a predi-
cate that we would ideally like to be true for all the data
that are mapped to a pattern. Notice that the formula
by itself does not contain a logical expression involv-
ing the pattern structure schema and the data schema,
i.e., it is not a query on the relations of the raw data.
The formula is merely a predicate to be used in queries.
We would like for example to use it in queries that nav-
igate between the data and the pattern space like the
following:

{x | fp(x) ∧ x ∈ R}
where fp is a formula predicate and R is a relation ap-
pearing in the Data component. We require that fp is
defined in such a way that we can construct queries like
the previous, which are “safe”. Safety is considered in
terms of domain independence. Still, we cannot adopt
the classical notion of domain independence (which re-
stricts values to the active domain of the database),
since even the simple functions can create new values
(not belonging to the domain of the database). There-
fore, we should consider a broader sense of domain in-
dependence similar to the one presented in [5, 17, 8],
which allows the finite application of functions. For ex-
ample, the n-depth domain independence as suggested
in [5] considers domain independence with respect to
the active domain closed under n application of func-
tions. This includes the active domain and all the val-
ues that can be produced by applying the database
functions n times, where n some finite integer.

The easiest way to ensure safety in these terms is to
range restrict all variables appearing in a query. To this
end, we introduce the where keyword in the formula,
which facilitates the mapping of the formula predicate
free variables to the relation schema that appears in
the DataSchema or Data component. More specifi-



cally, we require that there are no free variables in the
fp that are not mapped to the relation of the Data com-
ponent by the use of the where keyword. This restriction,
guarantees that all the variables appearing in fp are ei-
ther range restricted or that the system knows how to
range restrict them to a finite set of values when fp is
used in a query.

Now we can formally define the well-formed
formula for the pattern-type:

Definition 13 A pattern type formula is of the form:

fp(dv, pv), where dv ∈ ds (1)

where fp (formula predicate) is a PSL predicate, dv are
variable names mapped by the where keyword to the rela-
tion in DataSchema and pv are variable names that ap-
pear in the StructureSchema.

At instantiation time pv is assigned values of the
Structure component and dv is mapped to the rela-
tion appearing in Data component. The definition for
the pattern well-formed formula is now straightfor-
ward:

Definition 14 A pattern formula is of the form:

fp(dv), where dv ∈ ds (2)

where fp (formula predicate) is a PSL predicate, dv are
variablesmapped by thewhere keyword to the relation ap-
pearing in Data component.

From the previous definitions the semantics of the
where keyword become evident: we impose that the
variables of the formula will take values from specific
relations when the formula predicate is employed in
queries.

Example 2 Let us consider the following formulas.

1. f(x) where x ∈ R(x)

2. f(g(x), y) where x ∈ R(x)

In the first formula variable x is mapped to R using the
where keyword, thus the formula is well formed. Keep in
mind that the formula predicate by itself is just the part
f(x), which is not range restricted. The second formula
is not well-formed since y is not mapped via where to any
relation, or otherwise range restricted.

5. Querying the Pattern Warehouse

We define queries to be posed over the pattern ware-
house and not individually over its data- or pattern-
base components. Through this approach, we are able
to sustain queries traversing from the pattern to the

data space and vice-versa. At the same time, the con-
sistency of the results is guaranteed by the pattern-data
mapping Φ.

Definition 15 Let PW the set of all possible Pat-
tern Warehouses. A query is a function with signature
PW → PW. Given a query q and a pattern ware-
house pw = (DB, PB, Φ), with p̂w = (D̂B, P̂B),
q(pw) = (DB′, PB′, Φ′), D̂B′ = 〈[D̂1, ...D̂k], [R̂1:T1]〉,
P̂B′ = 〈[D̂1, ..., D̂m], [P̂C1:PT1]〉. We assume that
∀tr, tp(tr ∈ R1 ∧ tp ∈ PC1) ⇒ Φ′(tr, tp).

Note that, similarly to the relational case, the re-
sult of a query is always a pattern warehouse contain-
ing just one relation and one pattern class. It is also im-
portant to point out that, in practice, even if a query
always involve both the data and pattern space, oper-
ations over patterns are executed in isolation, locally
at the PBMS. The reference to the underlying data is
activated only on-demand (whenever the user specifi-
cally requests so) and efficiently enabled through the
stored intermediate mappings or the formula approxi-
mation.

5.1. Query operators

In this section we introduce query operators that al-
low basic queries over the the PW . Assuming that DB
denotes the set of all possible database instances and
PB the set of all possible pattern bases, we consider
the following groups of operators:

• Database operators: they can be applied locally to
the DBMS. op : DB → DB. We denote the set of
database operators with OD.

• Pattern base operators: they can be applied locally
to the PBMS. op : PB → PB. We denote the set
of database operators with OP .

• Cross-over database operators: they involve evalu-
ation on both the DBMS and the PBMS, the re-
sult is a database. op : DB × PB → DB. We de-
note the set of database operators with OCD.

• Cross-over pattern base operators: they involve
evaluation on both the DBMS and the PBMS, the
result is a pattern base. op : DB × PB → PB. We
denote the set of database operators with OCP .

In the following, we present examples of the last
three classes of operators (database operators coincide
with usual relational operators). Before presenting such
operators, we introduce some examples of predicates
defined over patterns.



5.1.1. Pattern predicates We identify two main
classes of atomic predicates: predicates over patterns
and predicates over pattern components. From those
atomic predicates we can then construct complex pred-
icates. In the following, we denote pattern components
by using the dot notation. For example, the measure
component of a pattern p is denoted by p.Measure.
Predicates over pattern components. They check prop-
erties of specific pattern components. Let p1 and p2 be
two patterns, possibly selected by some queries. The
general form of a predicate over pattern components is
t1θt2, where t1 and t2 are path expressions that must
define components of patterns p1 and p2, of compat-
ible type and θ must be an operator, defined for the
type of t1 and t2. For example, if t1 and t2 are inte-
ger expressions, then θ can be a disequality operator
(e.g. one of <,>). We consider the following special
cases:

• If t1 and t2 are pattern data for patterns p1 and
p2, then θ ∈ {=,⊆}. t1 = t2 is true if and only if
∀x x ↪→ p1 ⇔ x ↪→ p2 and t1 ⊆ t2 is true if and
only if ∀x x ↪→ p1 ⇒ x ↪→ p2.

• If t1 and t2 are pattern formulas for patterns p1

and p2, then θ ∈ {=,¹}. t1 = t2 is true if and
only if t1 ≡ t2 and t1 ¹ t2 is true if and only if t1
logically implies t2.

Predicates over patterns. We consider the following set
of predicates:

• Identity (=). Two patterns p1 and p2 are identical
if they have the same PID, i.e. p1.P ID = p2.P ID.

• Shallow equality (=s). Two patterns p1 and p2

are shallow equal if their corresponding compo-
nents (except for the PID component) are equal,
i.e. p1.Structure = p2.Structure, p1.Source =
p2.Source, p1.Measure = p2.Measure, and
p1.formula = p2.formula. Note that, to check
the equality for each component pair, the ba-
sic equality operator for the specific component
type is used.

• Deep equality (=d). Two patterns p1 and p2 are
deep equal if their corresponding data are identi-
cal, i.e., ∀x x ↪→ p1 ⇔ x ↪→ p2.

• Subsumption (¹). A pattern p1 subsumes a pat-
tern p2 (p1 ¹ p2) if they have the same struc-
ture but p2 represents a smaller set of raw data,
i.e. p1.Structure = p2.Structure, p1.Source ⊆
p2.Source and p1.formula ¹ p2.formula.

Complex predicates. They are defined by applying usual
logical connectives to atomic predicates. Thus, if F1

and F2 are predicates, then F1 ∧ F2,F1 ∨ F2,¬F1 are

predicates. We make a closed world assumption, thus
the calculation of ¬F is always finite.

5.1.2. Pattern base operators OP In this subsec-
tion, we introduce several operators defined over pat-
terns. Some of them, like set-based operators, renaming
and selection are quite close to their relational coun-
terparts; nevertheless, some others, like join and pro-
jection have significant differences.
Set-based operators. Since classes are sets, usual opera-
tors such as union, difference and intersection are de-
fined for pairs of classes of the same pattern type.
Renaming. Similarly to the relational context, we con-
sider a renaming operator ρ that takes a class and a
renaming function and changes the names of the pat-
tern attributes according to the specified function.
Projection. The projection operator allows one to re-
duce the structure and the measures of the input pat-
terns by projecting out some components. The new ex-
pression is obtained by projecting the formula defin-
ing the expression over the remaining attributes [12].
Note that no projection is defined over the data source,
since in this case the structure and the measures would
have to be recomputed.

Let c be a class of pattern type pt. Let ls be a non
empty list of attributes appearing in pt.Structure and
lm a list of attributes appearing in pt.Measure. Then,
the projection operator is defined as follows:

π(ls,lm)(c) = {(id(), πs
ls(s), d, πm

lm(m), πls∪lm(f)) |
∃p ∈ c, p = (pid, s, d,m, f)}

In the previous definition, id() is a function return-
ing new pids for patterns, πm

lm(m) is the usual relational
projection of the measure component and πs

ls(s) is de-
fined as follows: (i) if s is a tuple type, then πs

ls(s) is the
usual relational projection; (ii) if s is a set type, then
πs

ls(s) is obtained by keeping the projected components
and removing the rest from set elements. The last com-
ponent πls∪lm(f) is the new formula. This can only be
computed in certain cases, when the theory over which
the formula is constructed admits projection. This hap-
pens for example for the polynomial constraint theory
[12].
Selection. The selection operator allows one to select
the patterns belonging to one class that satisfy a cer-
tain predicate, involving any possible pattern compo-
nent, chosen among the ones presented in Section 5.1.1.
Let c be a class of pattern type pt. Let pr be a predi-
cate. Then, the selection operator is defined as follows:

σpr(c) = {p|p ∈ c ∧ pr(p) = true}
Join. The join operation provides a way to combine
patterns belonging to two different classes according
to a join predicate and a composition function speci-
fied by the user.



Let c1 and c2 be two classes over two pattern types
pt1 and pt2. A join predicate F is any predicate de-
fined over a component of patterns in c1 and a compo-
nent of patterns in c2. A composition function c() for
pattern types pt1 and pt2 is a 4-tuple of functions c =
(cStructureSchema, cDataSchema, cMeasureSchema, cFormula),
one for each pattern component. For example, func-
tion cStructureSchema takes as input two structure
values of the right type and returns a new struc-
ture value, for a possible new pattern type, gen-
erated by the join. Functions for the other pat-
tern components are similarly defined. Given two
patterns p1 = (pid1, s1, d1, m1, f1) ∈ c1 and
p2 = (pid2, s2, d2, m2, f2) ∈ c2, c(p1, p2) is de-
fined as the pattern p with the following compo-
nents:
Structure : cStructureSchema(s1, s2)
Data : cDataSchema(d1, d2)
Measure : cMeasureSchema(m1,m2)
Formula : cformula(f1, f2).

The join of c1 and c2 with respect to the join pred-
icate F and the composition function c, denoted by
c1 onF,c c2, is now defined as follows:
c1 onF,c c2 = {c(p1, p2)|p1 ∈ c1∧p2 ∈ c2∧F (p1, p2) = true}.

5.1.3. Cross-over database operators OCD
Drill-Through. The drill-through operator allows one to
navigate from the pattern layer to the raw data layer.
Thus it takes as input a pattern class and it returns
a raw data set. More formally, let c be a class of pat-
tern type pt and let d be an instance of the data schema
ds of pt. Then, the drill-through operator is denoted by
γ(c) and it is formally defined as follows:

γ(c) = {d|∃p, p ∈ c ∧ d ↪→ p}
Data-covering. Given a pattern p and a dataset D,
sometimes it is important to determine whether the
pattern represents it or not. In other words, we wish to
determine the subset S of D represented by p (p can
also be selected by some query). To determine S, we use
the formula as a query on the dataset. Let p be a pat-
tern, possibly selected by using query language opera-
tors, and D a dataset with schema (a1, ..., an), compat-
ible with the source schema of p. The data-covering op-
erator, denoted by θd(p,D), returns a new dataset cor-
responding to all tuples in D represented by p. More
formally,

θd(p, D) = {t | t ∈ D, p.formula(t.a1, ..., t.an) = true}
In the previous expression, t.ai denotes a spe-
cific component of tuple t belonging to D and
p.formula(t.a1, ..., t.an) is the formula predicate of p
instantiated by replacing each variable correspond-
ing to a pattern data component with values of the
considered tuple t.

Note that, since the drill-though operator uses the
intermediate mapping and the data covering operator
uses the formula, the covering θ(p,D) of the data set
D = γ(p) returned by the drill through operator, might
not be equal to D. This is due to the approximating na-
ture of the pattern formula.

5.1.4. Cross-over pattern base operators OCP
Pattern-covering. Sometimes it can be useful to have
an operator that, given a class of patterns and a
dataset, returns all patterns in the class representing
that dataset (a sort of inverse data-covering operation).
Let c be a pattern class and D a dataset with schema
(a1, ..., an), compatible with the source schema of the c
pattern type. The pattern-covering operator, denoted
as θp(c,D), returns a set of patterns corresponding to
all patterns in c representing D. More formally:

θp(c, D) = {p | p ∈ c, ∀t ∈ D p.formula(t.a1, ..., t.an) =

true}
Note that: θp(c,D) = {p|p ∈ c, θd(p,D) = D}

6. Related Work

Although significant effort has been invested in ex-
tending database models to deal with patterns, no co-
herent approach has been proposed and convincingly
implemented for a generic model.

There exist several standardization efforts for mod-
eling patterns, like the Predictive Model Markup
Language (PMML) [4], which is an XML-based mod-
eling approach, the ISO SQL/MM standard [2], which
is SQL-based, and the Common Warehouse Model
(CWM) framework [1], which is a more generic model-
ing effort. Also, the Java Data Mining API (JDMAPI)
[3] addresses the need for a language-based man-
agement of patterns. Although these approaches
try to represent a wide range of data mining re-
sult, the theoretical background of these frame-
works is not clear. Most importantly, though, they
do not provide a generic model capable of han-
dling arbitrary cases of pattern types; on the contrary,
only a given list of predefined pattern types is sup-
ported.

To our knowledge, research has not dealt with the is-
sue of pattern management per se, but, at best, with
peripheral proximate problems. For example, the pa-
per by Ganti et. al. [9] deals with the measurement
of similarity (or deviation, in the authors’ vocabulary)
between decision trees, frequent itemsets and clusters.
Although this is already a powerful approach, it is not
generic enough for our purpose. The most relevant re-
search effort in the literature, concerning pattern man-
agement is found in the field of inductive databases,



meant as databases that, in addition to data, also con-
tain patterns [10], [7]. Our approach differs from the in-
ductive database one mainly in two ways. Firstly, while
only association rules and string patterns are usually
considered there and no attempt is made towards a gen-
eral pattern model, in our approach no predefined pat-
tern types are considered and the main focus lies in
devising a general and extensible model for patterns.
Secondly, differently from [10], we claim that the pecu-
liarities of patterns in terms of structure and behavior,
together with the characteristic of the expected work-
load on them, call for a logical separation between the
database and the pattern-base in order to ensure effi-
cient handling of both raw data and patterns through
dedicated management systems.

Finally, we remark that even if some languages have
been proposed for pattern generation and retrieval
[14, 11], they mainly deal with specific types of pat-
terns (in general, association rules) and do not con-
sider the more general problem of defining safe and
sufficiently expressive language for querying heteroge-
neous patterns.

7. Conclusions and Future Work

In this paper we have dealt with the issue of mod-
elling and managing patterns in a database-like setting.
Our approach is enabled through a Pattern-Base Man-
agement System, enabling the storage, querying and
management of interesting abstractions of data which
we call patterns. In this paper, we have (a) formally
defined the logical foundations for the global setting of
PBMS management through a model that covers data,
patterns and intermediate mappings and (b) discussed
language issues for PBMS management. To this end
we presented a pattern specification language for pat-
tern management along with safety constraints for its
usage and introduced queries and query operators and
identified interesting query classes.

Several research issues remain open. First, it is an
interesting topic to incorporate the notion of type
and class hierarchies in the model [15]. Second, we
have intentionally avoided a deep discussion of sta-
tistical measures in this paper: it is more than a
trivial task to define a generic ontology of statisti-
cal measures for any kind of patterns out of the var-
ious methodologies that exist (general probabilities,
Dempster-Schafer, Bayesian Networks, etc. [16]). Fi-
nally, pattern-base management is not a mature tech-
nology: as a recent survey shows [6], it is quite cum-
bersome to leverage their functionality through object-
relational technology and therefore, their design and
engineering is an interesting topic of research.

References

[1] Common Warehouse Metamodel (CWM).
http://www.omg.org/cwm, 2001.

[2] ISO SQL/MM Part 6. http://www.sql-
99.org/SC32/WG4/Progression Documents/FCD/fcd-
datamining-2001-05.pdf, 2001.

[3] Java Data Mining API.
http://www.jcp.org/jsr/detail/73.prt, 2003.

[4] Predictive Model Markup Language (PMML).
http://www.dmg.org/
pmmlspecs v2/pmml v2 0.html, 2003.

[5] S. Abiteboul and C. Beeri. The power of languages for
the manipulation of complex values. VLDB Journal,
4(4):727–794, 1995.

[6] B. Catania, A. Maddalena, E. Bertino, I. Duci, and
Y.Theodoridis. Towards abenchmark for patternbases.
http://dke.cti.gr/panda/index.htm, 2003.

[7] L. De Raedt. A perspective on inductive databases.
SIGKDD Explorations, 4(2):69–77, 2002.

[8] M. Escobar-Molano, R. Hull, and D. Jacobs. Safety and
translation of calculus queries with scalar functions. In
Proceedings of PODS, pages 253–264. ACM Press, 1993.

[9] V. Ganti, R. Ramakrishnan, J. Gehrke, and W.-Y. Loh.
A framework for measuring distances in data character-
istics. PODS, 1999.

[10] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. Communications of the ACM,
39(11):58–64, 1996.

[11] T. Imielinski and A. Virmani. MSQL: A Query Lan-
guage for Database Mining. Data Mining and Knowl-
edge Discovery, 2(4):373–408, 1999.

[12] P. Kanellakis, G. Kuper, and P. Revesz. Constraint
QueryLanguages. Journal of Computer and SystemSci-
ences, 51(1):25–52, 1995.

[13] P. Lyman and H. R. Varian. How much information.
http://www.sims.berkeley.edu/how-much-info, 2000.

[14] R. Meo, G. Psaila, and S. Ceri. An Extension to SQL for
Mining Association Rules. Data Mining and Knowledge
DiscoveryM, 2(2):195–224, 1999.

[15] S. Rizzi, E. Bertino, B. Catania, M. Golfarelli,
M. Halkidi, M. Terrovitis, P. Vassiliadis, M. Vazirgian-
nis, and E. Vrachnos. Towards a logical model for pat-
terns. In Proceedings of ER 2003, 2003.

[16] A. Siblerschatz and A. Tuzhillin. What makes pat-
terns interesting in knowledge discovery systems. IEEE
TKDE, 8(6):970–974, 1996.

[17] D. Suciu. Domain-independent queries on databases
with external functions. In Proceedings ICDT, volume
893, pages 177–190, 1995.

[18] M. Terrovitis, P. Vassiliadis, S. Skadopoulos, E. Bertino,
B. Catania, and A. Maddalena. Modeling and
language support for the management of pattern-
bases. Technical Report TR-2004-2, National Tech-
nical University of Athens, 2004. Available at
http://www.dblab.ece.ntua.gr/pubs.


