
Data Mapping Diagrams for Data Warehouse
Design with UML

Sergio Luján-Mora1, Panos Vassiliadis2, and Juan Trujillo1

1 Dept. of Software and Computing Systems
University of Alicante (Spain)

{slujan,jtrujillo}@dlsi.ua.es
2 Dept. of Computer Science

University of Ioannina (Hellas)
pvassil@cs.uoi.gr

Abstract. In Data Warehouse (DW) scenarios, ETL (Extraction, Trans-
formation, Loading) processes are responsible for the extraction of data
from heterogeneous operational data sources, their transformation (con-
version, cleaning, normalization, etc.) and their loading into the DW. In
this paper, we present a framework for the design of the DW back-stage
(and the respective ETL processes) based on the key observation that
this task fundamentally involves dealing with the specificities of infor-
mation at very low levels of granularity including transformation rules
at the attribute level. Specifically, we present a disciplined framework for
the modeling of the relationships between sources and targets in differ-
ent levels of granularity (including coarse mappings at the database and
table levels to detailed inter-attribute mappings at the attribute level).
In order to accomplish this goal, we extend UML (Unified Modeling
Language) to model attributes as first-class citizens. In our attempt to
provide complementary views of the design artifacts in different levels of
detail, our framework is based on a principled approach in the usage of
UML packages, to allow zooming in and out the design of a scenario.

Keywords: data mapping, ETL, data warehouse, UML

1 Introduction

In Data Warehouse (DW) scenarios, ETL (Extraction, Transformation, Loading)
processes are responsible for the extraction of data from heterogeneous opera-
tional data sources, their transformation (conversion, cleaning, normalization,
etc.) and their loading into the DW. DWs are usually populated with data from
different and heterogeneous operational data sources such as legacy systems, re-
lational databases, COBOL files, Internet (XML, web logs) and so on. It is well
recognized that the design and maintenance of these ETL processes (also called
DW back stage) is a key factor of success in DW projects for several reasons, the
most prominent of which is their critical mass; in fact, ETL development can
take up as much as 80% of the development time in a DW project [1,2].



Despite the importance of designing the mapping of the data sources to
the DW structures along with any necessary constraints and transformations,
unfortunately, there are few models that can be used by the designers to this end.
The front end of the DW has monopolized the research on the conceptual part
of DW modeling, while few attempts have been made towards the conceptual
modeling of the back stage [3,4]. Still, to this day, there is no model that can
combine (a) the desired detail of modeling data integration at the attribute
level and (b) a widely accepted modeling formalism such as the ER model or
UML. One particular reason for this, is that both these formalisms are simply
not designed for this task; on the contrary, they treat attributes as second-class,
weak entities, with a descriptive role. Of particular importance is the problem
that in both models attributes cannot serve as an end in an association or any
other relationship.

One might argue that the current way of modeling is sufficient and there is no
real need to extend it in order to capture mappings and transformations at the
attribute level. There are certain reasons that we can list against this argument:

– The design artifacts are acting as blueprints for the subsequent stages of the
DW project. If the important details of this design (e.g., attribute interre-
lationships) are not documented, the blueprint is problematic. Actually, one
of the current issues in DW research involves the efficient documentation of
the overall process. Since design artifacts are means of communicating ideas,
it is best if the formalism adopted is a widely used one (e.g., UML or ER).

– The design should reflect the architecture of the system in a way that is
formal, consistent and allows the what-if analysis of subsequent changes.
Capturing attributes and their interrelations as first-class modeling elements
(FCME, also known as first-class citizens) improves the design significantly
with respect to all these goals. At the same time, the way this issue is handled
now would involve a naive, informal documentation through UML notes.

– In previous lines of research [5], we have shown that by modeling attribute
interrelationships, we can treat the design artifact as a graph and actually
measure the aforementioned design goals. Again, this would be impossible
with the current modeling formalisms.

To address all the aforementioned issues, in this paper, we present an ap-
proach that enables the tracing of the DW back-stage (ETL processes) particu-
larities at various levels of detail, through a widely adopted formalism (UML).
This is enabled by an additional view of a DW, called the data mapping dia-
gram. In this new diagram, we treat attributes as FCME of the model. This gives
us the flexibility of defining models at various levels of detail. Naturally, since
UML is not initially prepared to support this behavior, we solve this problem
thanks to the extension mechanisms that it provides. Specifically, we employ a
formal, strict mechanism that maps attributes to proxy classes that represent
them. Once mapped to classes, attributes can participate in associations that de-
termine the inter-attribute mappings, along with any necessary transformations
and constraints. We adopt UML as our modeling language due to its wide accep-
tance and the possibility of using various complementary diagrams for modeling



different system aspects. Actually, from our point of view, one of the main ad-
vantages of the approach presented in this paper is that it is totally integrated
in a global approach that allows us to accomplish the conceptual, logical and the
corresponding physical design of all DW components by using the same notation
([6,7,8]).

The rest of the paper is structured as follows. In Section 2, we briefly describe
the general framework for our DW design approach and introduce a motivating
example that will be followed throughout the paper. In Section 3, we show how
attributes can be represented as FCME in UML. In Section 4, we present our
approach to model data mappings in ETL processes at the attribute level. In
Section 5, we review related work and finally, in Section 6 we present the main
conclusions and future work.

2 Framework and Motivation

In this section we discuss our general assumptions around the DW environment
to be modelled and briefly give the main terminology. Moreover, we define a
motivating example that we will consistently follow through the rest of the paper.

The architecture of a DW is usually depicted as various layers of data in which
data from one layer is derived from data of the previous layer [9]. Following this
consideration, we consider that the development of a DW can be structured into
an integrated framework with five stages and three levels that define different
diagrams for the DW model, as explained in Table 1.

– Phases: we distinguish five stages in the definition of a DW:
• Source: it defines the data sources of the DW, such as OLTP systems, external data sources

(syndicated data, census data), etc.
• Integration: it defines the mapping between the data sources and the DW.
• Data Warehouse: it defines the structure of the DW.
• Customization: it defines the mapping between the DW and the clients’ structures.
• Client: it defines special structures that are used by the clients to access the DW, such as

data marts or OLAP applications.
– Levels: each stage can be analyzed at three levels or perspectives:

• Conceptual: it defines the DW from a conceptual point of view.
• Logical: it addresses logical aspects of the DW design, such as the definition of the ETL

processes.
• Physical: it defines physical aspects of the DW, such as the storage of the logical structures

in different disks, or the configuration of the database servers that support the DW.
– Diagrams: each stage or level require different modeling formalisms. Therefore, our approach

is composed of 15 diagrams, but the DW designer does not need to define all the diagrams
in each DW project. In our approach, we use UML [10] as the modeling language, because its
expressive power is sufficient for the modeling of all the diagrams of the framework. But as
UML is a general modeling language, we need to use the UML extension mechanisms to adapt
UML to specific domains.

Table 1. Data warehouse development framework



In previous works, we have presented some of the diagrams (and the cor-
responding profiles), such as the Multidimensional Profile [6,7] and the ETL
Profile [4]. In this paper, we introduce the Data Mapping Profile.

To motivate our discussion we will introduce a running example where the
designer wants to build a DW from the retail system of a company. Naturally, we
consider only a small part of the DW, where the target fact table has to contain
only the quarterly sales of the products belonging to the computer category,
whereas the rest of the products are discarded.

In Fig. 1, we zoom-in the definition of the SCS (Source Conceptual Schema),
which represents the sources that feed the DW with data. In this example,
the data source is composed of four entities represented as UML classes: Cities,
Customers, Orders, and Products. The meaning of the classes and their attributes,
as depicted in Fig. 1 is straightforward. The “ ...” shown in this figure simply
indicates that other attributes of these classes exist, but they are not displayed
for the sake of simplicity (this use of “ ...” is not a UML notation).

Fig. 1. Source Conceptual Schema (SCS)

Fig. 2. Data Warehouse Conceptual Schema (DWCS)

Finally, the DWCS (Data Warehouse Conceptual Schema) of our motivating
example is shown in Fig. 2. The DW is composed of one fact (ComputerSales)
and two dimensions (Products and Time).

In this paper, we present an additional view of a DW, called the Data Map-
ping that shows the relationships between the data sources and the DW and be-
tween the DW and the clients’ structures. In this new diagram, we need to treat
attributes as FCME of the models, since we need to depict their relationships
at attribute level. Therefore, we also propose a UML extension to accomplish



this goal in this paper. To the best of our knowledge, this is the first proposal of
representing attributes as FCME in UML diagrams.

3 Attributes as First-Class Modeling Elements in UML

Both in the Entity-Relationship (ER) model and in UML, attributes are em-
bedded in the definition of their comprising “element” (an entity in the ER or
a class in UML), and it is not possible to create a relationship between two
attributes. As we have already explained in the introduction, in some situations
(e.g., data integration, constraints over attributes, etc.) it is desirable to repre-
sent attributes as FCME. Therefore, in this section we will present an extension
of UML to accommodate attributes as FCME. We have chosen UML instead of
ER on the grounds of its higher flexibility in terms of employing complementary
diagrams for the design of a certain system.

Throughout this paper, we frequently use the term first-class modeling el-
ements or first-class citizens for elements of our modeling languages. Concep-
tually, FCME refer to fundamental modeling concepts, on the basis of which
our models are built. Technically, FCME involve an identity of their own, and
they are possibly governed by integrity constraints (e.g., relationships must have
at least two ends refering to classes.). In a UML class diagram, two kinds of
modeling elements are treated as FCME. Classes, as abstract representations of
real-world entities are naturally found in the center of the modeling effort. Be-
ing FCME, classes stand-alone entities also acting as attribute containers. The
relationships between classes are captured by associations. Associations can be
also FCME, called association classes. Even though an association class is drawn
as an association and a class, it is really just a single model element [10]. An
association class can contain attributes or can be connected to other classes.
However, the same is not possible with attributes.

Naturally, in order to allow attributes to play the same role in certain cases,
we propose the representation of attributes as FCME in UML. In our approach,
classes and attributes are defined as normally in UML. However, in those cases
where it is necessary to treat attributes as FCME, classes are imported to the at-
tribute/class diagram, where attributes are automatically represented as classes;
in this way, the user only has to define the classes and the attributes once. In
the importing process from the class diagram to the attribute/class diagram, we
refer to the class that contains the attributes as the container class and to the
class that represents an attribute as the attribute class. In Table 2, we formally
define attribute/class diagrams, along with the new stereotypes, �Attribute�
and �Contain�.

4 The Data Mapping Diagram

Once we have introduced the extension mechanism that enables UML to treat
attributes as FCME, we can proceed in defining a framework on its usage. In



Definition 1 Attribute classes are materializations of the �Attribute� stereotype, introduced
specifically for representing the attributes of a class. The following constraints apply for the
correct definition of an attribute class as a materialization of an �Attribute� stereotype:

– Naming convention: the name of the attribute class is the name of the corresponding
container class, followed by a dot and the name of the attribute.

– No features: an attribute class can contain neither attributes nor methods.
– Tag definitions: an attribute class contains the following tag definitions that represent

the properties of an attribute model element (according to the UML Specification [10]):
changeability, initialValue, multiplicty, ordering, ownerScope, property-string, stereotype, type,
and visibility.

Definition 2 A contain relationship is a composite aggregation between a container class and its
corresponding attribute classes, originated at the end near the container class and highlighted
with the �Contain� stereotype.

Definition 3 An attribute/class diagram is a regular UML class diagram extended with
�Attribute� classes and �Contain� relationships.

Table 2. Definitions

this section, we will introduce the data mapping diagram, which is a new kind
of diagram, particularly customized for the tracing of the data flow, at various
degrees of detail, in a DW environment. Data mapping diagrams are comple-
mentary to the typical class and interaction diagrams of UML and focus on the
particularities of the data flow and the interconnections of the involved data
stores. A special characteristic of data mapping diagrams is that a certain DW
scenario is practically described by a set of complementary data mapping dia-
grams, each defined at a different level of detail. In this section, we will introduce
a principled approach to deal with such complementary data mapping diagrams.

To capture the interconnections between design elements, in terms of data,
we employ the notion of mapping. Broadly speaking, when two design elements
(e.g., two tables, or two attributes) share the same piece of information, possibly
through some kind of filtering or transformation, this constitutes a semantic
relationship between them. In the DW context, this relationship, involves three
logical parties: (a) the provider entity (schema, table, or attribute), responsible
for generating the data to be further propagated, (b) the consumer, that receives
the data from the provider and (c) their intermediate matching that involves the
way the mapping is done, along with any transformation and filtering.

Since a data mapping diagram can be very complex, our approach offers the
possibility to organize it in different levels thanks to the use of UML packages.
Our layered proposal consists of four levels (see Fig. 3), as it is explained in
Table 3.

At the leftmost part of Fig. 3, a simple relationship among the DWCS and
the SCS exists: this is captured by a single Data Mapping package and these three
design elements constitute the data mapping diagram of the database level (or
Level 0). Assuming that there are three particular tables in the DW that we
would like to populate, this particular Data Mapping package abstracts the fact
that there are three main scenarios for the population of the DW, one for each
of this tables. In the dataflow level (or Level 1) of our framework, the data



Database Level (or Level 0). In this level, each schema of the DW environment (e.g., data sources
at the conceptual level in the SCS, conceptual schema of the DW in the DWCS, etc.) is rep-
resented as a package [8]. The mappings among the different schemata are modeled in a single
mapping package, encapsulating all the lower-level mappings among different schemata.

Dataflow Level (or Level 1). This level describes the data relationship among the individual
source tables of the involved schemata towards the respective targets in the DW. Practically, a
data mapping diagram at the database level is zoomed-in to a set of more detailed data mapping
diagrams, each capturing how a target table is related to source tables in terms of data.

Table Level (or Level 2).Whereas the mapping diagram of the dataflow level describes the data
relationships among sources and targets using a single package, the data mapping diagram at
the table level, details all the intermediate transformations and checks that take place during
this flow. Practically, if a data mapping is simple, a single package that represents the data
mapping can be used at this level; otherwise, a set of packages is used to segment complex data
mappings in sequential steps.

Attribute Level (or Level 3). In this level, the data mapping diagram involves the capturing of
inter-attribute mappings. Practically, this means that the diagram of the table is zoomed-in
and the mapping of provider to consumer attributes is traced, along with any intermediate
transformation and cleaning. As we shall describe later, we provide two variants for this level.

Table 3. Data mapping levels

relationships among the sources and the targets in the context of each of the
scenarios, is practically modeled by the respective package. If we zoom in one of
these scenarios, e.g., Mapping 1, we can observe its particularities in terms of data
transformation and cleaning: the data of Source 1 are transformed in two steps
(i.e., they have undergone two different transformations), as shown in Fig. 3.
Observe also that there is an Intermediate data store employed, to hold the output
of the first transformation (Step 1), before passed on to the second one (Step
2). Finally, at the right lower part of Fig. 3, the way the attributes are mapped
to each other for the data stores Source 1 and Intermediate is depicted. Let us
point out that in case we are modeling a complex and huge DW, the attribute
transformation modelled at level 3 is hidden within a package definition, thereby
avoiding the use of cluttered diagrams.

The constructs that we employ for the data mapping diagrams at different
levels are as follows:

– The database and dataflow diagrams (Levels 0 and 1) use traditional UML
structures for their purpose. Specifically, in these diagrams we employ (a)
packages for the modeling of data relationships and (b) simple dependen-
cies among the involved entities. The dependencies state that the mapping
packages are dependent upon the changes of the employed data stores.

– The table level (Level 2) diagram extends UML with three stereotypes: (a)
�Mapping�, used as a package that encapsulates the data interrelationships
among data stores, (b) �Input� and �Output� which explain the roles of
providers and consumers for the �Mapping�.

– The diagram at the attribute level (Level 3) is also using several newly intro-
duced stereotypes, namely �Map�, �MapObj�, �Domain�, �Range�,



Fig. 3. Data mapping levels

�Input�, �Output�, and �Intermediate� for the definition of data map-
pings.

We will detail the stereotypes of the table level in the next section and defer
the discussion for the stereotypes of the attribute level to subsection 4.2.

4.1 The Data Mapping Diagram at the Table Level

During the integration process from data sources into the DW, source data
may undergo a series of transformations, which may vary from simple alge-
braic operations or aggregations to complex procedures. In our approach, the
designer can segment a long and complex transformation process into simple
and small parts represented by means of UML packages that are materialization
of a �Mapping� stereotype and contain an attribute/class diagram. Moreover,
�Mapping� packages are linked by �Input� and �Output� dependencies
that represent the flow of data. During this process, the designer can create in-
termediate classes, represented by the �Intermediate� stereotype, in order to
simplify or clarify the models. These classes represent intermediate storage that
may or may not exist actually, but they help to understand the mappings.

In Fig. 4, a schematic representation of a data mapping diagram at the table
level is shown. This level specifies data sources and target sources, to which
these data are directed. At this level, the classes are represented as usually in
UML with the attributes depicted inside the container class. Since all the classes
are imported from other packages, the legend (from ...) appears below the name
of each class. The mapping diagram is shown as a package decorated with the
�Mapping� stereotype and hides the complexity of the mapping, because a vast
number of attributes can be involved in a data mapping. This package presents
two kinds of stereotyped dependencies:�Input� to the data providers (i.e., the
data sources) and�Output� to the data consumers (i.e., the tables of the DW).



4.2 The Data Mapping Diagram at the Attribute Level

As already mentioned, in the attribute level, the diagram includes the relation-
ships between the attributes of the classes involved in a data mapping. At this
level, we offer two design variants:

– Compact variant: the relationship between the attributes is represented as
an association, and the semantic of the mapping is described in a UML note
attached to the target attribute of the mapping.

– Formal variant: the relationship between the attributes is represented by
means of a mapping object, and the semantic of the mapping is described in
a tag definition of the mapping object.

With the first variant, the data mapping diagrams are less cluttered, with
less modeling elements, but the data mapping semantics are expressed as UML
notes that are simple comments that have no semantic impact. On the other
hand, the size of the data mapping diagrams obtained with the second variant
is larger, with more modeling elements and relationships, but the semantics are
better defined as tag definitions. Due to the lack of space, in this paper we
will only focus on the compact variant. In this variant, the relationship between
the attributes is represented as an association decorated with the stereotype
�Map�, and the semantic of the mapping is described in a UML note attached
to the target attribute of the mapping.

Fig. 4. Level 2 of a data mapping diagram

The content of the package Mapping diagram from Fig. 4 is defined in the fol-
lowing way (recall that Mapping diagram is a�Mapping� package that contains
an attribute/class diagram):

– The classes DS1, DS2, . . . , and Dim1 are imported in Mapping diagram.
– The attributes of these classes are suppressed because they are shown as
�Attribute� classes in this package.



– The�Attribute� classes are connected by means of association relationships
and we use the navigability property to specify the flow of data from the data
sources to the DW.

– The association relationships are adorned with the stereotype �Map� to
highlight the meaning of this relationship.

– A UML note can be attached to each one of the target attributes to specify
how the target attribute is obtained from the source attributes. The language
for the expression is a choice of the designer (e.g., a LAV vs. a GAV approach
[11] can be equally followed).

4.3 Motivating Example Revisited

From the DW example shown in Fig.s 1 and 2, we define the corresponding data
mapping diagram shown in Fig. 5. The goal of this data mapping is to calculate
the quarterly sales of the products belonging to the computer category. The
result of this transformation is stored in ComputerSales from the DWCS. The
transformation process has been segmented in three parts: Dividing, Filtering, and
Aggregating; moreover, DividedOrders and FilteredOrders, two �Intermediate�
classes, have been defined.

Fig. 5. Level 2 of a data mapping diagram

Following with the data mapping example shown in Fig. 5, attribute prod_list
from Orders table contains the list of ordered products with product ID and
(parenthesized) quantity for each. Therefore, Dividing splits each input order
according to its prod_list into multiple orders, each with a single ordered prod-
uct (prod_id) and quantity (quantity), as shown in Fig. 6. Note that in a data
mapping diagram the designer does not specify the processes, but only the data
relationships. We use the one-to-many cardinality in the association relationships
between Orders.prod_list and DividedOrders.prod_id and DividedOrders.quantity
to indicate that one input order produces multiple output orders. We do not
attach any note in this diagram because the data are not transformed, so the
mapping is direct.



Fig. 6. Dividing Mapping

Filtering (Fig. 7) filters out products not belonging to the computer category.
We indicate this action with a UML note attached to the prod_id mapping,
because it is supposed that this attribute is going to be used in the filtering
process.

Fig. 7. Filtering Mapping

Finally, Aggregating (Fig. 8) computes the quarterly sales for each prod-
uct. We use the many-to-one cardinality to indicate that many input items
are needed to calculate a single output item. Moreover, a UML note indicates
how the ComputerSales.sales attribute is calculated from FilteredOrders.quantity
and Products.price. The cardinality of the association relationship between Prod-
ucts.price and ComputerSales.sales is one-to-many because the same price is used
in different quarters, but to calculate the total sales of a particular product in



a quarter we only need one price (we consider that the price of a product never
changes along time).

Fig. 8. Aggregating Mapping

5 Related Work

There is a relatively small body of research efforts around the issue of conceptual
modeling of the DW back-stage.

In [12,13], the model management, a framework for supporting meta-data
related applications where models and mappings are manipulated is proposed.
In [13], two scenarios related to loading DWs are presented as case studies: on the
one hand, the mapping between the data sources and the DW, on the other hand,
the mapping between the DW and a data mart. In this approach, a mapping is
a model that relates the objects (attributes) of two other models; each object
in a mapping is called a mapping object and has three properties: domain and
range, which point to objects in the source and the target respectively, and expr,
which is an expression that defines the semantics of that mapping object. This is
an isolated approach in which authors propose their own graphical notation for
representing data mappings. Therefore, from our point of view, there is a lack
of integration with the design of other parts of a DW.

In [3] the authors attempt to provide a first model towards the conceptual
modeling of the DW back-stage. The notion of provider mapping among at-
tributes is introduced. In order to avoid the problems caused by the specific



nature of ER and UML, the authors adopt a generic approach. The static con-
ceptual model of [3] is complemented in [5] with the logical design of ETL pro-
cesses as data-centric workflows. ETL processes are modeled as graphs composed
of activities that include attributes as FCME. Moreover, different kinds of rela-
tionships capture the data flow between the sources and the targets.

Regarding data mapping, in [14] authors discuss issues related to the data
mapping in the integration of data. A set of mapping operators is introduced
and a classification of possible mapping cases is presented. However, no graphical
representation of data mapping scenarios is provided, thereby making difficult
using it in real world projects.

The issue of treating attributes as FCME has generated several debates from
the beginning of the conceptual modeling field [15]. More recently, some object-
oriented modeling approaches such as OSM (Object Oriented System Model)
[16] or ORM (Object Role Modeling) [17] reject the use of attributes (attribute-
free models) mainly because of their inherent instability. In these approaches,
attributes are represented with entities (objects) and relationships. Although
an ORM diagram can be transformed into a UML diagram, our data mapping
diagram is coherently integrated in a global approach for the modeling of DW’s
[6,7], and particularly, of ETL processes [4]. In this approach, we have used the
extension mechanisms provided by UML to adapt it to our particular needs for
the modeling of DW’s. In this case, we always use formal extensions of the UML
for modeling all parts of DWs.

6 Conclusions and future work

In this paper, we have presented a framework for the design of the DW back-
stage (and the respective ETL processes) based on the key observation that
this task fundamentally involves dealing with the specificities of information
at very low levels of granularity. Specifically, we have presented a disciplined
framework for the modeling of the relationships between sources and targets in
different levels of granularity (i.e., from coarse mappings at the database level to
detailed inter-attribute mappings at the attribute level). Unfortunately, standard
modeling languages like the ER model or UML are fundamentally handicapped
in treating low granule entities (i.e., attributes) as FCME. Therefore, in order to
formally accomplish the aforementioned goal, we have extended UML to model
attributes as FCME. In our attempt to provide complementary views of the
design artifacts in different levels of detail, we have based our framework on a
principled approach in the usage of UML packages, to allow zooming in and out
the design of a scenario.

Although we have developed the representation of attributes as FCME in
UML in the context of DW, we believe that our solution can be applied in
other application domains as well, e.g., definition of indexes and materialized
views in databases, modeling of XML documents, specification of web services,
etc. Currently, we are extending our proposal in order to represent attribute
constraints such as uniqueness or disjunctive values.



References

1. SQL Power Group: How do I ensure the success of my DW? Internet:
http://www.sqlpower.ca/page/dw_best_practices (2002)

2. Strange, K.: ETL Was the Key to this Data Warehouse’s Success. Technical Report
CS-15-3143, Gartner (2002)

3. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual Modeling for ETL Pro-
cesses. In: Proc. of 5th Intl. Workshop on Data Warehousing and OLAP (DOLAP
2002), McLean, USA (2002) 14–21

4. Trujillo, J., Luján-Mora, S.: A UML Based Approach for Modeling ETL Processes
in Data Warehouses. In: Proc. of the 22nd Intl. Conf. on Conceptual Modeling
(ER’03). Volume 2813 of LNCS., Chicago, USA (2003) 307–320

5. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL Activities as Graphs.
In: Proc. of 4th Intl. Workshop on the Design and Management of Data Warehouses
(DMDW’02), Toronto, Canada (2002) 52–61

6. Luján-Mora, S., Trujillo, J., Song, I.: Extending UML for Multidimensional Mod-
eling. In: Proc. of the 5th Intl. Conf. on the Unified Modeling Language (UML’02).
Volume 2460 of LNCS., Dresden, Germany (2002) 290–304

7. Luján-Mora, S., Trujillo, J., Song, I.: Multidimensional Modeling with UML Pack-
age Diagrams. In: Proc. of the 21st Intl. Conf. on Conceptual Modeling (ER’02).
Volume 2503 of LNCS., Tampere, Finland (2002) 199–213

8. Luján-Mora, S., Trujillo, J.: A Comprehensive Method for Data Warehouse Design.
In: Proc. of the 5th Intl. Workshop on Design and Management of Data Warehouses
(DMDW’03), Berlin, Germany (2003) 1.1–1.14

9. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data
Warehouses. 2 edn. Springer-Verlag (2003)

10. Object Management Group (OMG): Unified Modeling Language Specification 1.4.
Internet: http://www.omg.org/cgi-bin/doc?formal/01-09-67 (2001)

11. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of
the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Madison, Wisconsin, USA (2002) 233–246

12. Bernstein, P., Levy, A., Pottinger, R.: A Vision for Management of Complex
Models. Technical Report MSR-TR-2000-53, Microsoft Research (2000)

13. Bernstein, P., Rahm, E.: Data Warehouse Scenarios for Model Management. In:
Proc. of the 19th Intl. Conf. on Conceptual Modeling (ER’00). Volume 1920 of
LNCS., Salt Lake City, USA (2000) 1–15

14. Dobre, A., Hakimpour, F., Dittrich, K.R.: Operators and Classification for Data
Mapping in Semantic Integration. In: Proc. of the 22nd Intl. Conf. on Conceptual
Modeling (ER’03). Volume 2813 of LNCS., Chicago, USA (2003) 534–547

15. Falkenberg, E.: Concepts for modelling information. In: Proc. of the IFIP Con-
ference on Modelling in Data Base Management Systems, Amsterdam, Holland
(1976) 95–109

16. Embley, D., Kurtz, B., Woodfield, S.: Object-oriented Systems Analysis: A Model-
Driven Approach. Prentice-Hall (1992)

17. Halpin, T., Bloesch, A.: Data modeling in UML and ORM: a comparison. Journal
of Database Management 10 (1999) 4–13


