Towards a logical model for patterns*

Stefano Rizzi', Elisa Bertino?, Barbara Catania®, Matteo Golfarelli', Maria
Halkidi*, Manolis Terrovitis®, Panos Vassiliadis®, Michalis Vazirgiannis*, and
Euripides Vrachnos*

! DEIS, Univ. of Bologna, Italy
2 DICO, Univ. of Milan, Italy
8 DISI, Univ. of Genoa, Italy
* Athens Univ. of Economics & Business, Greece
5 Dept. of Electrical and Computer Engineering, Nat. Tech. Univ. of Athens, Greece
6 Dept. of Computer Science, University of loannina, Greece

Abstract. Nowadays, the vast volume of collected digital data obliges
us to employ processing methods like pattern recognition and data min-
ing in order to reduce the complexity of data management. In this paper,
we present the architecture and the logical foundations for the manage-
ment of the produced knowledge artifacts, which we call patterns. To this
end, we first introduce the concept of Pattern-Base Management System;
then, we provide the logical foundations of a general framework based
on the notions of pattern types and pattern classes, which stand for the
intensional and extensional description of pattern instances, respectively.
The framework is general and extensible enough to cover a broad range
of real-world patterns, each of which is characterized by its structure, the
related underlying data, an expression that carries the semantics of the
pattern, and measurements of how successful the representation of raw
data is. Finally, some remarkable types of relationships between patterns
are discussed.

1 Introduction and motivation

The increasing opportunity of quickly collecting and cheaply storing large vol-
umes of data, and the need for extracting concise information to be efficiently
manipulated and intuitively analysed, are posing new requirements for DBMSs
in both industrial and scientific applications. In this direction, during the last
decade we witnessed the progressive spreading and success of data warehousing
systems; built on top of operational databases in order to provide managers and
knowledge workers with ready-at-hand summary data to be used for decision
support. In these systems, the transactional view of data is replaced by a mul-
tidimensional view, relying on an ad-hoc logical model (the multidimensional
model [17]) whose key concepts are made first-class citizens, meaning that they
can be directly stored, queried, and manipulated.

* This work was partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-33058 PANDA project

Table 1. Some examples of patterns.

Application Raw data Type of pattern
market-basket analysis sales transactions item association rules
signal processing complex signals recurrent waveforms
mobile objects monitoring| measured trajectories equations
information retrieval documents keyword frequencies
image recognition image database image features
market segmentation user profiles user clusters
music retrieval music scores, audio files| rhythm, melody, harmony
system monitoring system output stream failure patterns
financial brokerage trading records stock trends
click-stream analysis web-server logs sequences of clicks
epidemiology clinical records symptom-diagnosis correlations|
risk evaluation customer records decision trees |

On the other hand, the limited analysis power provided by OLAP interfaces
proved to be insufficient for advanced applications, in which the huge quantity of
data stored necessarily requires semi-automated processing techniques, and the
peculiarity of the user requirements calls for non-standard analysis techniques.
Thus, sophisticated data processing tools (based for instance on data mining,
pattern recognition, and knowledge extraction techniques) were devised in order
to reduce, as far as possible, the user intervention in the process of extracting
interesting knowledge artifacts (e.g., clusters, association rules, time series) from
raw data [8,11,13]. We claim that the term pattern is a good candidate to
generally denote these novel information types, characterized by a high degree
of diversity and complexity. Some examples of patterns in different application
domains are reported in Table 1.

Differently from the case of data warehousing systems, the problem of di-
rectly storing and querying pattern-bases has received very limited attention so
far in the commercial world, and probably no attention at all from the database
community. On the other hand, we claim that end-users from both industrial and
scientific domains would greatly benefit from adopting a Pattern-Base Manage-
ment System (PBMS) capable of modeling and storing patterns, for the following
main reasons:

— Abstraction. Within a PBMS, patterns would be made first-class citizens
thus providing the user with a meaningful abstraction of raw data to be
directly analyzed and manipulated.

— FEfficiency. Introducing an architectural separation between the PBMS and
the DBMS would improve the efficiency of both traditional transactions on
the DBMS and advanced processing on patterns.

— Querying. The PBMS would provide an expressive language for querying the
pattern-base in order to retrieve and compare patterns.

In this context, the purposes of the PANDA (PAtterns for Next-generation
DAtabase systems [4]) project of the European Community are: (1) to lay the

foundations for pattern modeling; (2) to investigate the main issues involved in
managing and querying a pattern-base; and (3) to outline the requirements for
building a PBMS.

In this paper we propose a logical framework for modeling patterns, aimed
at satisfying three basic requirements:

— Generality. The model must be general enough to meet the specific require-
ments posed in different application domains for different kinds of patterns.

— FExtensibility. The model must be extensible to accomodate new kinds of
patterns introduced by novel and challenging applications.

— Reusability. The model must include constructs encouraging the reuse of
what has already been defined.

Informally, a pattern can be thought of as a compact and rich in semantics rep-
resentation of raw data. In our approach, a pattern is modeled by its structure,
measure, source, and expression. The structure component qualifies the pattern
by locating it within a pattern space. The measure component quantifies the
pattern by measuring the quality of the raw data representation achieved by
the pattern itself. The source component describes the raw data which the pat-
tern relates to. The expression component describes the (approximate) mapping
between the raw data space and the pattern space.

The paper is structured as follows. In Section 2 we deliver an informal def-
inition of patterns and outline a reference architecture in which a PBMS could
be framed. In Section 3 we formally describe our proposal of a logical frame-
work for modeling patterns, while Section 4 discusses some remarkable types of
relationships between patterns. In Section 5 we survey some related approaches.
Finally, in Section 6 the conclusions are drawn and the future work is outlined.

2 From DBMSs to PBMSs

2.1 Raw data vs. patterns

Raw data are recorded from various sources in the real world, often by collecting
measurements from various instruments or devices (e.g., cellular phones, envi-
ronment measurements, monitoring of computer systems, etc.). The determining
property of raw data is the vastness of their volume; moreover, a significant de-
gree of heterogeneity may be present.

Clearly, data in such huge volumes do not constitute knowledge per se, i.e.
little useful information can be deduced simply by their observation, so they
hardly can be directly exploited by human beings. Thus, more elaborate tech-
niques are required in order to extract the hidden knowledge and make these
data valuable for end-users. The common characteristic of all these techniques
is that large portions of the available data are abstracted and effectively repre-
sented by a small number of knowledge-carrying representatives, which we call
patterns. Thus, in general, one pattern is related to many data items; on the
other hand, several patterns (possibly of different types) can be associated to
the same data item (e.g., due to the application of different algorithms).

1. beer, potato chips, soft drink, napkins
2. whisky, beer, soft drink
3. detergent, broom, beer, potato chips «
P 4. milk, potato chips, diapers, carrots
5. cigarettes, meat, soft drinks
1 6. milk, toys, beer, potato chips 4« |

| > beer — potato chips

customers
with children.

pattern (cluster) raw data pattern (association rule)

Fig. 1. Patterns and raw data in the supermarket example.

Ezample 1. Consider a supermarket database which records the items purchased
by each customer within each sales transaction. While this large volume of data is
not providing the supermarket management with any clear indication about the
buying habits of customers, some knowledge discovery algorithm can be applied
to come up with relevant knowledge. In Figure 1 both a clustering technique
[15] and an algorithm for extracting association rules [7] have been applied. In
the first case, patterns are clusters of customers which share some categories of
products. In the second, patterns come in the form of association rules which
relate sets of items frequently bought together by customers; the relevance of
each rule is typically expressed by statistical measures which quantify its support
and confidence. Note that each pattern, besides providing the end-user with some
hidden knowledge over the underlying data, can be mapped to the subset of data
it 1s related to.

Patterns, thus, can be regarded as artifacts which effectively describe sub-
sets of raw data (thus, they are compact) by isolating and emphasizing some
interesting properties (thus, they are rich in semantics). While in most cases a
pattern is interesting to the end-users because it describes a recurrent behaviour
(e.g., in market segmentation, stock exchange analysis, etc.), sometimes it is
relevant just because it is related to some singular, unexpected event (e.g., in
failure monitoring). Note that all the kinds of patterns, besides being somehow
related to raw data, also imply some processing in order to either generate them
through some learning algorithm or to check/map them against raw data.

We are now ready to give a preliminary, informal, definition for patterns; a
formal definition will be given in Section 3.1.

Definition 1 (Pattern). A patiern is a compact and rich in semantics repre-
sentation of raw data.

2.2 Architecture

Patterns can be managed by using a Pattern-Base Management System exactly
as database records are managed by a database management system. A Pattern-
Base Management System is thus defined as follows.

Definition 2 (PBMS). A Pattern-Base Management System (PBMS) is a
system for handling (storing/processing/retrieving) patterns defined over raw

my clusters

class layer
supermarket rules

cluster type

dec. tree type,
member-of =
PBMS ¢:> ass mule type type layer
Vil A0S !instance-of
queriesTlresults 'y - T .
| . pattern layer

~ M‘

queries results

:J

data mining,
pattern recognition,
rules, ...

- raw data
layer

LI L]
04 8=

Fig.2. The PBMS architecture.

data in order to efficiently support pattern matching and to exploit pattern-related
operations generating intensional information. The set of patterns managed by
a PBMS 1s called pattern-base.

The reference architecture for a PBMS is depicted in Figure 2. On the bottom
layer, a set of devices produce data, which are then organized and stored within
databases or files to be typically, but not necessarily, managed by a DBMS.
Knowledge discovery algorithms are applied over these data and generate pat-
terns to be fed into the PBMS; note that, in our approach, these algorithms are
loosely coupled with the PBMS. Within the PBMS, it is worth to distinguish
three different layers:

1. The pattern layer 1s populated with patterns.
2. The type layer holds built-in and user-defined types for patterns. Patterns
of the same type share similar structural characteristics.

3. The class layer holds definitions of pattern classes, i.e., collections of seman-
tically related patterns. Classes play the role of collections in the object-
oriented context and are the key concept in the definition of a pattern query
language.

Besides using the DBMS, end-users may directly interact with the PBMS:
to this end, the PBMS adopts ad-hoc techniques not only for representing and
storing patterns, but also for posing and processing queries and for efficiently
retrieving patterns.

3 The logical modeling framework

In this section we formalize our proposal of a logical framework for modeling
patterns by characterizing pattern types, their instances, and the classes which
collect them.

3.1 Pattern types

Though our approach i1s parametric on the typing system adopted, the examples
provided in this paper will be based on a specific, very common typing system.
Assuming there is a set of base types (including the root type L) and a set of
type constructors, the set T of types includes all the base types together with
all the types recursively defined by applying a type constructor to one or more
other types. Types are applied to attributes.

Let base types include integers, reals, Booleans, strings, and timestamps;
let type constructors include list, set, bag, array, and tuple. Using an obvious
syntax, some examples of type declarations are (we use uppercase for base types
and type constructors, lowercase for attributes):

— salary: REAL

— SET(INTEGER)

TUPLE(x: INTEGER, y: INTEGER)

personnel: LIST(TUPLE(age: INTEGER, salary: INTEGER))

A pattern type represents the intensional form of patterns, giving a formal
description of their structure and relationship with source data. Thus, pattern
types play the same role of abstract data types in the object-oriented model.

Definition 3 (Pattern type). A pattern type pt is a quintuple pt = (n, ss, ds,
ms, f) where n is the name of the pattern type; ss, ds, and ms (called respectively
structure schema, source schema, and measure schema) are types in T; [is a
formula, written in a given language, which refers to attributes appearing in the
source and in the structure schemas.

The first component of a pattern type has an obvious meaning; the remaining
four have the following roles:

— The structure schema ss defines the pattern space by describing the structure
of the patterns instances of the pattern type. The achievable complexity of
the pattern space (hence, the flexibility of pattern representation) depends
on the expressivity of the typing system.

— The source schema ds defines the related source space by describing the
dataset from which patterns, instances of the pattern type being defined,
are constructed. Characterizing the source schema is fundamental for every
operation which involves both the pattern space and the source space (e.g.,
when applying some technique to extract patterns from raw data or when
checking for the validity of a pattern on a dataset).

— The measure schema ms describes the measures which quantify the quality
of the source data representation achieved by the pattern. The role of this
component 1s to enable the user to evaluate how accurate and significant
for a given application each pattern is. Besides, the different semantics of
the measure component with reference to the structure can be exploited in
order to define more effective functions for evaluating the distance between
two patterns [12].

— The formula f describes the relationship between the source space and the
pattern space, thus carrying the semantics of the pattern. Inside f, attributes
are interpreted as free variables ranging over the components of either the
source or the pattern space. Note that, though in some particular domains
f may exactly express the inter-space relationship (at most, by allowing all
raw data related to the pattern to be enumerated), in most cases it will
describe it only approximatively.

Though our approach to pattern modeling is parametric on the language
adopted for formulas, the achievable semantics for patterns strongly depends on
its expressivity. For the examples reported in this paper, we try a constraint
calculus based on polynomial constraints which seems suitable for several types
of patterns [16]; still, a full exploration of the most suitable language is outside
the scope of the paper.

Ezrample 2. Given a domain D of values and a set of transactions, each including
a subset of D, an association rule takes the form A — B where AC D, B C D,
AN B = §. A is often called the head of the rule, while B is its body [13]. A
possible pattern type for modeling association rules over strings representing
products is the following:

n : AssociationRule

ss : TUPLE(head: SET(STRING), body: SET(STRING))
ds : BAG(transaction: SET(STRING))
ms : TUPLE(confidence: REAL, support: REAL)

f:Va(x € head V z € body = x € transaction)

The structure schema is a tuple modeling the head and the body. The source
schema specifies that association rules are constructed from a bag of transactions,

each defined as a set of products. The measure schema includes two common
measures used to assess the relevance of a rule: its confidence (what percentage
of the transactions including the head also include the body) and its support
(what percentage of the whole set of transactions include both the head and the
body). Finally, the formula of the constraint calculus represents (exactly, in this
case) the pattern/dataset relationship by associating each rule with the set of
transactions which support it.

Ezrample 3. An example of a mathematical pattern is a straight line which in-
terpolates a set of samples. In this case, the source schema models the samples,
the structure schema includes the two coefficients necessary to determine a line,
while the measure schema includes, for instance, a fitting quantifier. The formula
which establishes the approximate correspondence between the pattern and the
source data is the equation of the line.

n : Interpolatingline

ss : TUPLE(a: REAL, b:REAL)

ds : SET(sample: TUPLE(x: REAL, y: REAL))
ms :fitting: REAL

fiy=a-x+b

3.2 Patterns

Let raw data be stored in a number of databases and/or files. A dataset is any
subset of these data, which we assume to be wrapped under a type of our typing
system (dataset type).

Definition 4 (Pattern). Let pt = (n, ss,ds, ms, f) be a pattern type. A pattern
p instance of pt is a quintuple p = (pid, s, d, m, e) where pid (pattern identifier)
is a unique identifier for p; s (structure) is a value for type ss; d (source) is a
dataset whose type conforms to type ds; m (measure) is a value for type ms; e
1s an expression denoting the region of the source space that is related to p.

According to this definition, a pattern is characterized by (1) a pattern iden-
tifier (which plays the same role of OIDs in the object model), (2) a structure
that positions the pattern within the pattern space defined by its pattern type,
(3) a source that identifies the specific dataset the pattern relates to, (4) a mea-
sure that estimates the quality of the raw data representation achieved by the
pattern, (5) an expression which relates the pattern to the source data. In par-
ticular, the expression is obtained by the formula f in the pattern type by (1)
instantiating each attribute appearing in ss with the corresponding value spec-
ified in s, and (2) letting the attributes appearing in ds range over the source
space. Note that further information could be associated to each pattern, spec-
ifying for instance the mining session which produced it, which algorithm was
used, which parameter values rule the algorithm, etc.

Ezample 4. Consider again pattern type AssociationRule defined in Example 2,
and suppose that raw data include a relational database containing a table
sales which stores data related to the sales transactions in a sport shop: sales
(transactionld, article, quantity). Using an extended SQL syntax to denote the
dataset, an example of an instance of AssociationRule 1s:

pid : 512
s : (head = {'Boots'}, body = {'Socks’, 'Hat'})
d :'SELECT SETOF(article) AS transaction
FROM sales GROUP BY transactionld’
m : (confidence = 0.75, support = 0.55)
e : {transaction : Yz (z € {'Boots’, ‘Socks', 'Hat'} = x € transaction)}

In the expression, transaction ranges over the source space; the values given to
head and body within the structure are used to bind variables head and body in
the formula of pattern type AssociationRule.

Ezrample 5. Let raw data be an array of real values corresponding to samples
periodically taken from a signal, and let each pattern represent a recurrent wave-
shape together with the position where it appears within the dataset and its
amplitude shift and gain:

n : TimeSeries
ss : TUPLE(curve: ARRAY[1..5](REAL), position: INTEGER,
shift: REAL, gain: REAL)
ds :samples: ARRAY[1..100](REAL)
ms :similarity: REAL
| :samples[position + i — 1] = shift + gain X curve][i],
Viil<i<5h

Measure similarity expresses how well waveshape curve approximates the source
signal in that position. The formula approximatively maps curve onto the data
space in position. A possible pattern, extracted from a dataset which records the
hourly-detected levels of the Colorado river, is as follows:

pid : 456
s:(curve =(y=0,y=0.8,y=1,y=0.8,y=0),
position = 12, shift = 2.0, gain = 1.5)
d : ‘colorado.txt’
m : similarity = 0.83
e : {samples[12] = 2.0, samples[13] = 3.2, samples[14] = 3.5,
samples[15] = 3.2, samples[16] = 2.0}

3.3 Classes

A class 1s a set of semantically related patterns and constitutes the key concept
in defining a pattern query language. A class is defined for a given pattern type
and contains only patterns of that type. Moreover, each pattern must belong to
at least one class. Formally, a class is defined as follows.

Definition 5 (Class). A class ¢ is a triple ¢ = (cid, pt, pc) where cid (class
identifier) is a unique identifier for ¢, pt is a pattern type, and pe is a collection

of patterns of type pt.

Ezample 6. The Apriori algorithm described in [7] could be used to generate
relevant association rules from the dataset presented in Example 4. All the gen-
erated patterns could be inserted in a class called SaleRules for pattern type
AssociationRule defined in Example 2. The collection of patterns associated with
the class can be later extended to include rules generated from a different dataset,
representing for instance the sales transaction recorded in a different store.

4 Relationships between patterns

In this section we introduce some interesting relationships between patterns
aimed at increasing the modeling expressivity of our logical framework, but which
also improve reusability and extensibility and impact the querying flexibility. For
space reasons we will propose here an informal presentation; see [9] for formal
details.

4.1 Specialization

Abstraction by specialization (the so-called I5-A relationship) is widely used in
most modeling approaches, and the associated inheritance mechanism significa-
tively addresses the extensibility and reusability issues by allowing new entities
to be cheaply derived from existing ones.

Specialization between pattern types can be defined by first introducing a
standard notion of subtyping between base types (e.g., integer is a subtype of
real). Subtyping can then be inductively extended to deal with types containing
type constructors: t; specializes t5 if the outermost constructors in ¢; and i
coincide and each component in 5 is specialized by one component in ¢;. Finally,
pattern type pt; specializes pattern type pt, if the structure schema, the source
schema, and the measure schema of pt; specialize the structure schema, the
source schema, and the measure schema of pt,.

Note that, if pt| specializes pts and class ¢ is defined for pto, also the instances
of pty can be part of c.

Ezrample 7. Given a set S of points, a clustering is a set of clusters, each being
a subset of S, such that the points in a cluster are more similar to each other

than points in different clusters [13]. The components for pattern type Cluster,
representing circular clusters defined on a 2-dimensional space, are:

n : Cluster

ss : TUPLE(radius: L, center: TUPLE(cex: L, cy: L))
ds :SET(x: L,y: 1)
ms :

filx—cx)?+(y—cy)? < radius”

where f gives an approximate evaluation of the region of the source space rep-
resented by each cluster. While in Cluster the 2-dimensional source schema is
generically defined, clusters on any specific source space will be easily defined by
specialization. Thus, Cluster could be for instance specialized into a new pattern
type ClusterOflntegers where cx, cy, x, and y are specialized to integers, radius
is specialized to reals, and a new measure avglntraClusterDistance of type real is

added.

4.2 Composition and refinement

A nice feature of the object model is the possibility of creating complex objects,
i.e. objects which consist of other objects. In our pattern framework, this can
be achieved by extending the set of base types with pattern types, thus giving
the user the possibility of declaring complex types. This technique may have two
different impacts on modeling.

Firstly, it is possible to declare the structure schema as a complex type, in
order to create patterns recursively containing other patterns thus defining, from
the conceptual point of view, a part-of hierarchy. We will call composition this
relationship.

Secondly, a complex type may appear within the source schema: this allows
for supporting the modeling of patterns obtained by mining other existing pat-
terns. Since in general a pattern is a compact representation of its source data,
we may call refinement this relationship in order to emphasize that moving from
a pattern type to the pattern type(s) that appear in its source entails increasing
the level of detail in representing knowledge.

Example 8. Let pattern type ClusterOfRules describe a mono-dimensional cluster
of association rules: the source schema here represents the space of association
rules, and the structure models one cluster-representative rule. Assuming that
each cluster trivially includes all the rules sharing the same head, it is:

n : ClusterOfRules
ss : representative: AssociationRule
ds : SET(rule: AssociationRule)
ms : TUPLE(deviationOnConfidence: REAL, deviationOnSupport: REAL)

f :rule.ss.head = representative.ss.head

where a standard dot notation is adopted to address the components of pat-
tern types. Thus, there is a refinement relationship between ClusterOfRules and
AssociationRule. Consider now that a clustering is a set of clusters: intuitively,
also clustering is a pattern, whose structure 1s modeled by a complex type which
aggregates a set of clusters. Thus, there would be a composition relationship
between pattern types Clustering and ClusterOfRules.

5 Related approaches

The most popular efforts for modeling patterns is the Predictive Model Markup
Language [6], that uses XML to represent data mining models. Though PMML
enables the exchange of patterns between heterogeneous pattern-bases, it does
not provide any general model for the representation of different pattern types;
besides, the problem of mapping patterns against raw data is not considered.

Among the other approaches, we mention the SQL/MM standard [2]; here,
the supported mining models are represented as SQL types and made accessible
through the SQL:1999 base syntax. A framework for metadata representation is
proposed by the Common Warehouse Model [1], whose main purpose is to en-
able easy interchange of warehouse and business intelligence metadata between
various heterogeneous repositories, and not the effective manipulation of these
metadata. The Java Data Mining API [5] addresses the need for procedural sup-
port of all the existing and evolving data mining standards; in particular, it
supports the building of data mining models as well as the creation, storage, ac-
cess, and maintenance of data and metadata that represent data mining results.
Finally, the Pattern Query Language is an SQL-like query language for patterns
[3], assumed to be stored like traditional data in relational tables.

Overall, the listed approaches seem inadequate to represent and handle dif-
ferent classes of patterns in a flexible, effective, and coherent way: in fact, a given
list of predefined pattern types is considered and no general approach to pattern
modeling is proposed. In contrast, in our framework, the definition of a general
model and the possibility of constructing new pattern types by inheritance from
a root type allow uniform manipulation of all patterns.

A specific mention i1s deserved by inductive databases, where data and pat-
terns, in the form of rules inducted by data, are represented together to be uni-
formly retrieved and manipulated [14]. Our approach differs from the inductive
database one in different ways:

— While only association rules and string patterns are usually considered there
and no attempt is made towards a general pattern model, in our approach no
predefined pattern types are considered and the main focus lies in devising
a general and extensible model for patterns.

— Patterns are far more complex than the raw data they represent and, we
argue, cannot be effectively stored in a relational manner.

— The difference in semantics between patterns and raw data discourage from
adopting the same query language for both, rather call for defining a pattern

query language capable of capitalizing on the peculiar semantics of each
pattern component.

— Differently from [14], we claim that the peculiarities of patterns in terms
of structure and behaviour, together with the characteristic of the expected
workload on them, call for a logical separation between the database and
the pattern-base in order to ensure efficient handling of both raw data and
patterns through dedicated management systems.

We close this section by observing that, though our approach shares some
similarities with the object-oriented model, there are several specific require-
ments calling for an ad-hoc model and for a dedicated management system:

— In terms of the logical framework, the discriminating feature is the require-
ment for a semantically rich representation of patterns, achieved by separat-
ing structure and measure on the one hand, by introducing the expression
component on the other.

— From a conceptual point of view, the modeling framework adopted entails the
refinement relationship between patterns, not directly supported by object-
oriented models.

— From the functional point of view, instead of pointer-chasing object-oriented
queries, novel querying requirements will presumably arise, including (a) ad
hoc operations over the source and pattern spaces and their mapping; (b)
pattern matching tests, strengthened by the separation of structure and mea-
sure; (c) reasoning facilities based on the expression component of patterns.

— In terms of system architecture, the relevance of queries aimed at evaluating
similarity between patterns and the request for efficiency call for alternative
storage and query optimization techniques.

6 Conclusions and future work

In this paper, we have dealt with the introduction of the architecture and the
logical foundations for pattern management. First, we introduced Pattern-Base
Management Systems and their architecture. Then, we provided the logical foun-
dations of a general framework, as the basis for PBMS management. Our logical
framework is based on the principles of generality, extensibility and reusability.
To address the generality goal we introduced a simple yet powerful modeling
framework, able to cover a broad range of real-world patterns. Thus, the most
general definition of a pattern specifies its structure, the underlying data that
correspond to it, an expression which is rich in semantics so as to characterize
what the pattern stands for, and measurements of how successful the raw data
abstraction is. To address the extensibility and usability goals, we introduced
type hierarchies, that provide the PBMS with the flexibility of smoothly incor-
porating novel pattern types, as well as mechanisms for constructing composite
patterns and for refining patterns.

Though the fundamentals of pattern modeling have been addressed, several
important i1ssues still need to be investigated. Future research includes both the-
oretical aspects as well as implementation-specific issues. Implementation issues

involve primarily the construction of ad-hoc storage management and query pro-
cessing modules for the efficient management of patterns. The theoretical aspects
include the evaluation and comparison of the expressivity of different languages
to express formulas, and the study of a flexible query language for retrieving and
comparing complex patterns. In particular, as to query languages, a basic oper-
ation is that of comparison: two patterns of the same type can be compared to
compute a score assessing their mutual similarity as a function of the similarity
between both the structure and the measure components. Particularly challeng-
ing is the comparison between complex patterns: in this case, the similarity score
is computed starting from the similarity between component patterns, then the
obtained scores are aggregated, using an aggregation logic, to determine the
overall similarity [10].

References

1. Common Warehouse Metamodel (CWM). http://www.omg.org/cum, 2001.
2. 1SO SQL/MM Part 6. http://www.sql-99.0rg/SC32/WG4/Progression Documents/
FCD/fcd-datamining-2001-05.pdf, 2001.

3. Information Discovery Data Mining Suite. http://wwu.patternwarehouse.com/
dmsuite.htm, 2002.

4. The PANDA Project. http://dke.cti.gr/panda/, 2002.

Java Data Mining API. http://www.jcp.org/jsr/detail/73.prt, 2003.

6. Predictive Model Markup Language (PMML). http://wuw.dng.org/
punlspecs v2/puml v2_0.html, 2003.

7. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th VL.DB, 1994.

8. M. Berry and G. Linoff. Data mining techniques: for marketing, sales, and customer
support. John Wiley, 1996.

9. E. Bertino et al. A preliminary proposal for the PANDA logical model. Technical
Report TR-2003-02, PANDA, 2003.

10. 1. Bartolini et al. PAtterns for Next-generation DAtabase systems: preliminary
results of the PANDA project. In Proc. 11th SEBD, Cetraro, Italy, 2003.

11. U. Fayyad, G. Piatesky-Shapiro, and P. Smyth. From data mining to knowledge
discovery: an overview. In Advances in Knowledge Discovery and Data Mining,
pages 1-34. AAAI Press and the MIT Press, 1996.

12. V. Ganti, R. Ramakrishnan, J. Gehrke, and W.-Y. Loh. A framework for measuring
distances in data characteristics. PODS, 1999.

13. J. Han and M. Kamber. Data mining: concepts and techniques. Academic Press,
2001.

14. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58-64, 1996.

15. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a survey. ACM
Computing Surveys, 31:264-323, 1999.

16. P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Journal of
Computer and System Sciences, 51(1):25-52, 1995.

17. P. Vassiliadis and T. Sellis. A survey of logical models for OLAP databases. SIG-
MOD Record, 28(4):64-69, 1999.

(e

