

CPM: A Cube Presentation Model for
OLAP

Andreas Maniatis1, Panos Vassiliadis2, Spiros Skiadopoulos1, Yannis Vassiliou1

1 National Technical Univ. of Athens,
Dept. of Elec. and Computer Eng.,

15780 Athens, Hellas
{andreas,spiros,yv}@ dblab.ece.ntua.gr

2 University of Ioannina,
Dept. of Computer Science

45110 Ioannina, Hellas
pvassil@cs.uoi.gr

Abstract. On-Line Analytical Processing (OLAP) is a trend in database
technology, based on the multidimensional view of data. In this paper we
introduce the Cube Presentation Model (CPM), a presentational model for
OLAP data which, to the best of our knowledge, is the only formal
presentational model for OLAP found in the literature until today. First, our
proposal extends a previous logical model for cubes, to handle more complex
cases. Then, we present a novel presentational model for OLAP screens,
intuitively based on the geometrical representation of a cube and its human
perception in the space. Moreover, we show how the logical and the
presentational models are integrated smoothly. Finally, we describe how typical
OLAP operations can be easily mapped to the CPM.

1. Introduction

In the last years, On-Line Analytical Processing (OLAP) and data warehousing has
become a major research area in the database community [1, 2]. An important issue
faced by vendors, researchers and - mainly - users of OLAP applications is the
visualization of data. Presentational models are not really a part of the classical
conceptual-logical-physical hierarchy of database models; nevertheless, since OLAP
is a technology facilitating decision-making, the presentation of data is of major
importance. Research-wise, data visualization is presently a quickly evolving field and
dealing with the presentation of vast amounts of data to the users [3, 4, 5].

In the OLAP field, though, we are aware of only two approaches towards a discrete
and autonomous presentation model for OLAP. In the industrial field Microsoft has
already issued a commercial standard for multidimensional databases, where the
presentational issues form a major part [6]. In this approach, a powerful query
language is used to provide the user with complex reports, created from several cubes
(or actually subsets of existing cubes). An example is depicted in Fig. 1. The
Microsoft standard, however, suffers from several problems, with two of them being
the most prominent ones: First, the logical and presentational models are mixed,
resulting in a complex language which is difficult to use (although powerful enough).

mailto:pvassil@cs.uoi.gr

Secondly, the model is formalized but not thoroughly: for instance, to our knowledge,
there is no definition for the schema of a multicube.

SELECT CROSSJOIN({Venk,Netz},{USA_N.Children,USA_S,Japan}) ON COLUMNS
{Qtr1.CHILDREN,Qtr2,Qtr3,Qtr4.CHILDREN} ON ROWS
FROM SalesCube
WHERE (Sales,[1991],Products.ALL)

Year = 1991 Venk Netz
Product = ALL USA Japan USA Japan

 USA_N USA_S USA_N USA_S
 Seattle Boston Seattle Boston
 Size(city)
R1 Qtr1 Jan
 Feb C1 C2 C3 C4 C5 C6
 Mar
R2 Qtr2
R3 Qtr3
R4 Qtr4 Jan
 Feb
 Mar

Fig. 1: Motivating example for the cube model (taken from [6]).

Apart from the industrial proposal of Microsoft, an academic approach has also
been proposed [5]. However, the proposed Tape model seems to be limited in its
expressive power (with respect to the Microsoft proposal) and its formal aspects are
not yet publicly available.

In this paper we introduce a cube presentation model (CPM). The main idea behind
CPM lies in the separation of logical data retrieval (which we encapsulate in the
logical layer of CPM) and data presentation (captured from the presentational layer of
CPM). The logical layer that we propose is based on an extension of a previous
proposal [8] to incorporate more complex cubes. Replacing the logical layer with any
other model compatible to classical OLAP notions (like dimensions, hierarchies and
cubes) can be easily performed. The presentational layer, at the same time, provides a
formal model for OLAP screens. To our knowledge, there is no such result in the
related literature. Finally, we show how typical OLAP operations like roll-up and drill
down are mapped to simple operations over the underlying presentational model.

The remainder of this paper is structured as follows. In Section 2, we present the
logical layer underlying CPM. In Section 3, we introduce the presentational layer of
the CPM model. In Section 4, we present a mapping from the logical to the
presentational model and finally, in Section 5 we conclude our results and present
topics for future work. Due to space limitations, we refer the interested reader to a
long version of this report for more intuition and rigorous definitions [7].

2. The logical layer of the Cube Presentation Model

The Cube Presentation Model (CPM) is composed of two parts: (a) a logical layer,
which involves the formulation of cubes and (b) a presentational layer that involves
the presentation of these cubes (normally, on a 2D screen). In this section, we present

the logical layer of CPM; to this end, we extend a logical model [8] in order to
compute more complex cubes. We briefly repeat the basic constructs of the logical
model and refer the interested reader to [8] for a detailed presentation of this part of
the model. The most basic constructs are:
− A dimension is a lattice of dimension levels (L,p), where p is a partial order

defined among the levels of L.
− A family of monotone, pairwise consistent ancestor functions ancL2L1 is defined,

such that for each pair of levels L1 and L2 with L1pL2, the function ancL2L1 maps each
element of dom(L1) to an element of dom(L2).

− A data set DS over a schema S=[L1,…,Ln,A1,…,Am] is a finite set of tuples over S
such that [L1,…,Ln] are levels, the rest of the attributes are measures and
[L1,…,Ln] is a primary key. A detailed data set DS0 is a data set where all levels
are at the bottom of their hierarchies.

− A selection condition φ is a formula involving atoms and the logical connectives ∧,
∨ and ¬. The atoms involve levels, values and ancestor functions, in clause of the
form x ∂ y. A detailed selection condition involves levels at the bottom of their
hierarchies.

− A primary cube c (over the schema [L1,…,Ln,M1,…,Mm]), is an expression of the
form c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M01),…,aggm(M0m)]), where:
DS0 is a detailed data set over the schema S=[L01,…,L0n,M01,…,M0k],m≤k.
φ is a detailed selection condition.
M1,…,Mm are measures.
L0i and Li are levels such that L0ipLi, 1≤i≤n.
aggi∈{sum,min,max,count}, 1≤i≤m.
The limitations of primary cubes is that, although they model accurately

SELECT-FROM-WHERE-GROUPBY queries, they fail to model (a) ordering, (b)
computation of values through functions and (c) selection over computed or
aggregate values (i.e., the HAVING clause of a SQL query). To compensate this
shortcoming, we extend the aforementioned model with the following entities:

− Let F be a set of functions mapping sets of attributes to attributes. We distinguish
the following major categories of functions: property functions, arithmetic
functions and control functions. For example, for the level Day, we can have the
property function holiday(Day) indicating whether a day is a holiday or not. An
arithmetic function is, for example Profit=(Price-Cost)*Sold_Items.

− A secondary selection condition ψ is a formula in disjunctive normal form. An
atom of the secondary selection condition is true, false or an expression of the
form x θ y, where x and y can be one of the following: (a) an attribute Ai
(including RANK), (b) a value l, an expression of the form fi(Ai), where Ai is a set
of attributes (levels and measures) and (c) θ is an operator from the set (>, <, =, ≥,
≤, ≠). With this kind of formulae, we can compute relationships between measures
(Cost>Price), ranking and range selections (ORDER BY...;STOP after 200,
RANK[20:30]), measure selections (sales>3000), property based selection
(Color(Product)='Green').

− Assume a data set DS over the schema [A1,A2,…,Az]. Without loss of generality,
suppose a non-empty subset of the schema S=A1,…,Ak,k≤z. Then, there is a set of
ordering operations OθS, used to sort the values of the data set, with respect to the
set of attributes participating to S. θ belongs to the set {<,>,∅} in order to denote
ascending, descending and no order, respectively. An ordering operation is applied
over a data set and returns another data set which obligatorily encompasses the
measure RANK.

− A secondary cube over the schema S=[L1,…,Ln,M1,…,Mm,Am+1,…,Am+p, RANK] is
an expression of the form: s=[c,[Am+1:fm+1(Am+1),…,Am+p:fm+p(Am+p)],OθA,ψ]
where c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M01),…,aggm(M0m)]) is a primary
cube, [Am+1,…,Am+p]⊆[L1,…,Ln,M1,…,Mm], A⊆S-{RANK}, fm+1,…,fm+p are
functions belonging to F and ψ is a secondary selection condition.

With these additions, primary cubes are extended to secondary cubes that incorpo-
rate: (a) computation of new attributes (Am+i) through the respective functions (fm+i),
(b) ordering (OθA) and (c) the HAVING clause, through the secondary selection condition
ψ.

3. The presentational layer of the Cube Presentation Model

In this section, we present the presentation layer of CPM. First, we will give an
intuitive, informal description of the model; then we will present its formal definition.
Throughout the paper, we will use the example of Fig. 1, as our reference example.

The most important entities of the logical layer of CPM include:
− Points: A point over an axis resembles the classical notion of points over axes in

mathematics. Still, since we are grouping more than one attribute per axis (in order
to make things presentable in a 2D screen), formally, a point is a pair comprising of
a set of attribute groups (with one of them acting as primary key) and a set of
equality selection conditions for each of the keys.

− Axis: An axis can be viewed as a set of points. We introduce two special purpose
axes, Invisible and Content. The Invisible axis is a placeholder for the
levels of the data set which are not found in the “normal” axis defining the
multicube. The Content axis has a more elaborate role: in the case where no
measure is found in any axis then the measure which will fill the content of the
multicube is placed there.

− Multicubes. A multicube is a set of axes, such that (a) all the levels of the same
dimensions are found in the same axis, (b) Invisible and Content axes are
taken into account, (c) all the measures involved are tagged with an aggregate
function and (d) all the dimensions of the underlying data set are present in the
multicube definition. In our motivating example, the multicube MC is defined as
MC={Rows,Columns,Sections,Invisible,Content}.

− 2D-slice: Consider a multicube MC, composed of K axes. A 2D-slice over MC is a set
of (K-2) points, each from a separate axis. Intuitively, a 2D-slice pins the axes of

the multicube to specific points, except for 2 axes, which will be presented on the
screen (or a printout). In Fig. 2, we depict such a 2D slice over a multicube.

− Tape: Consider a 2D-slice SL over a multicube MC, composed of K axes. A tape
over SL is a set of (K-1) points, where the (K-2) points are the points of SL. A tape
is always parallel to a specific axis: out of the two "free" axis of the 2D-slice, we
pin one of them to a specific point which distinguishes the tape from the 2D-slice.

− Cross-join: Consider a 2D-slice SL over a multicube MC, composed of K axes and
two tapes t1 and t2 which are not parallel to the same axis. A cross-join over t1
and t2 is a set of K points, where the (K-2) points are the points of SL and each of
the two remaining points is a point on a different axis of the remaining axes of the
slice.
The query of Fig. 1 is a 2D-Slice, say SL. In SL one can identify 4 horizontal tapes

denoted as R1, R2, R3 and R4 in Fig. 1) and 6 vertical tapes (numbered from C1 to
C6). The meaning of the horizontal tapes is straightforward: they represent the Quar-
ter dimension, expressed either as quarters or as months. The meaning of the vertical
tapes is somewhat more complex: they represent the combination of the dimensions
Salesman and Geography, with the latter expressed in City, Region and Country
level. Moreover, two constraints are superimposed over these tapes: the Year dimen-
sion is pinned to a specific value and the Product dimension is ignored. In this mul-
tidimensional world of 5 axes, the tapes C1 and R1 are defined as:
C1 = [(Salesman='Venk'∧ancregion

city (city)='USA_N'),(Year='1991'),
 (ancALL

item(Products)='all'),(Sales,sum(Sales))]
R1 = [(ancmonth

day (Month)='Qtr1'∧Year='1991'),(Year='1991'),
 (ancALL

item(Products)='all'),(Sales,sum(Sales))]
One can also consider the cross-join t1 defined by the common cells of the tapes

R1 and C1. Remember that City defines an attribute group along with
[Size(City)].
t1=([SalesCube,(Salesman='Venk'∧ancregion

city (city)='USA_N ∧
 ancmonth

day (Month)='Qtr1'∧Year='1991'∧ancALL
item(Products)='all'),

[Salesman,City,Month,Year,Products.ALL,Sales],sum],
[Size(City)],true)

In the rest of this section, we will describe the presentation layer of CPM in its

formality. First, we extend the notion of dimension to incorporate any kind of
attributes (i.e., results of functions, measures, etc.). Consequently, we consider every
attribute not already belonging to some dimension, to belong to a single-level
dimension (with the same name as the attribute), with no ancestor functions or
properties defined over it. We will distinguish between the dimensions comprising
levels and functionally dependent attributes through the terms level dimensions and
attribute dimensions, wherever necessary. The dimensions involving arithmetic
measures will be called measure dimensions.

An attribute group AG over a data set DS is a pair [A,DA], where A is a list of
attributes belonging to DS (called the key of the group) and DA is a list of attributes
dependent on the attributes of A. With the term dependent we mean (a) measures
dependent over the respective levels of the data set and (b) function results depending

on the arguments of the function. One can consider examples of the attribute groups
such as ag1=([City],[Size(City)]),ag2=([Sales,Expenses],[Profit]).

ancmonth
day (Month)=

Qtr1

(5)
Salesman='Netz',
Region='USA_S'

Salesman='Netz',
Country='Japan'

(6)
ancmonth

day (Month)=
Qtr4

Quarter
= Qtr3

Rows

Salesman='Venk',
Region='USA_S'

(2)

(3)
Salesman='Venk',
Country='Japan'

(1)
Salesman='Venk',
ancregion

city (City) =
'USA_N'

Columns

Quarter
= Qtr2

Salesman='Netz',
ancregion

city (City) =
'USA_N'

(4)

Year=1991

Year=1992 Sections

+
Products.ALL

=
 'all'

Invisible

+
Sales,

sum(Sales0),
true

Content

Fig. 2: The 2D-Slice SL for the example of Fig. 1.

A dimension group DG over a data set DS is a pair [D,DD], where D is a list of

dimensions over DS (called the key of the dimension group) and DD is a list of
dimensions dependent on the dimensions of D. With the term dependent we simply
extend the respective definition of attribute groups, to cover also the respective
dimensions. For reasons of brevity, wherever possible, we will denote an
attribute/dimension group comprising only of its key simply by the respective
attribute/dimension.

An axis schema is a pair [DG,AG], where DG is a list of K dimension groups and AG
is an ordered list of K finite ordered lists of attribute groups, where the keys of each
(inner) list belong to the same dimension, found in the same position in DG, where
K>0. The members of each ordered list are not necessarily different. We denote an
axis schema as a pair ASK=([DG1×DG2×…×DGK],[[ag11,ag21,…,agk11]×[ag12,ag22
,…,agk22]×…×[ag1k,ag2k,…,agkkk])}.

In other words, one can consider an axis schema as the Cartesian product of the
respective dimension groups, instantiated at a finite number of attribute groups. For
instance, in the example of Fig. 1, we can observe two axes schemata, having the
following definitions:
Row_S = {[Quarter],[Month,Quarter,Quarter,Month]}
Column_S = {[Salesman×Geography], [Salesman]×[[City,Size(City)],
Region, Country]}

Consider a detailed data set DS. An axis over DS is a pair comprising of an axis
schema over K dimension groups, where all the keys of its attribute groups belong to
DS, and an ordered list of K finite ordered lists of selection conditions (primary or
secondary), where each member of the inner lists, involves only the respective key of
the attribute group.
a = (ASK,[φ1,φ2,...,φK]),K≤N or
a={[DG1×DG2×…×DGK],[[ag1

1,ag2
1,…,agk1

1]×[ag1
2,ag2

2,…,agk2
2]×…×[ag1

k,ag2
k,…,agkk

k
]], [[φ1

1,φ2
1,…,φk1

1]×[φ1
2,φ2

2,…,φk2
2]×...×[φ1

k,φ2
k,…,φkk

k]]}

Practically, an axis is a restriction of an axis schema to specific values, through the
introduction of specific constraints for each occurrence of a level. In our motivating
example, we have two axes:
Rows = {Row_S,[ancmonth

day (Month)=Qtr1,Quarter=Qtr2,
 Quarter=Qtr3,ancmonth

day (Month)=Qtr4]}
Columns = {Column_S,{[Salesman='Venk',Salesman='Netz'],

[ancregion
city (City)='USA_N', Region='USA_S', Country='Japan']}

We will denote the set of dimension groups of each axis a by dim(a).
A point over an axis is a pair comprising of a set of attribute groups and a set of

equality selection conditions for each one of their keys.
p1=([Salesman,[City,Size(City)]], [Salesman='Venk',ancregion

city (City)=
 'USA_N'])

An axis can be reduced to a set of points, if one calculates the Cartesian products of
the attribute groups and their respective selection conditions. In other words,

a=([DG1×DG2×...×DGK],[[p1,p2,…,pl]), l=k1×k2×…×kkk.
Two axes schemata are joinable over a data set if their key dimensions (a) belong

to the set of dimensions of the data set and (b) are disjoint. For instance, Rows_S and
Columns_S are joinable.

A multicube schema over a detailed data set is a finite set of axes schemata
fulfilling the following constraints:
1. All the axes schemata are pair-wise joinable over the data set.
2. The key of each dimension group belongs only to one axis.
3. Similarly, from the definition of the axis schema, the attributes belonging to a

dimension group are all found in the same axis.
4. Two special purpose axes called Invisible and Content exist. The Content

axis can take only measure dimensions.
5. All the measure dimensions of the multicube are found in the same axis. If more

than one measure exist, they cannot be found in the Content axis.
6. If no measure is found in any of the "normal" axes, then a single measure must be

found in the axis Content.
7. Each key measure is tagged with an aggregate function over a measure of the data

set.
8. For each attribute participating in a group, all the members of the group are found

in the same axis.
9. All the level dimensions of the data set are found in the union of the axis

schemata (if some dimensions are not found in the "normal" axes, they must be
found in the Invisible axis).

The role of the Invisible axis follows: it is a placeholder for the levels of the
data set which are not to be taken into account in the multicube. The Content axis
has a more elaborate role: in the case where no measure is found in any axis (like in
the example of Fig. 1) then the measure which will fill the content of the multicube is
placed there. If more than one measures are found, then they must be placed in the
same axis (not Content), as this would cause a problem of presentation on a
two-dimensional space.

A multicube over a data set is defined as a finite set of axes, whose schemata can
define a multicube schema. The following constraints must be met:

1. Each point from a level dimension, not in the Invisible axis, must have an
equality selection condition, returning a finite number of values.

2. The rest of the points can have arbitrary selection conditions (including "true" -
for the measure dimensions, for example).

For example, suppose a detailed data set SalesCube under the schema
S = [Quarter.Day, Salesman.Salesman, Geography.City, Time.Day,
 Product.Item, Sales, PercentChange, BudgetedSales]

Suppose also the following axes schemata over DS0
Row_S = {[Quarter],[Month,Quarter,Quarter,Month]}
Column_S = {[Salesman×Geography], [Salesman]×[[City,Size(City)],
 Region, Country]}
Section_S = {[Time],[Year]}
Invisible_S = {[Product],[Product.ALL]}
Content_S = {[Sales],[sum(Sales0)]}

and their respective axes
Rows={Row_S,[ancmonth

day (Month)=Qtr1,Quarter=Qtr2,Quarter=Qtr3,
 ancmonth

day (Month)=Qtr4]}
Columns = {Column_S,{[Salesman='Venk',Salesman='Netz'],

[ancregion
city (City)='USA_N', Region='USA_S', Country='Japan']}

Sections = {Section_S,[Year=1991,Year=1992]}
Invisible = {Invisible_S,[ALL='all']}
Content_S = {Content_S,[true]}

Then, a multicube MC can be defined as
MC = {Rows, Columns, Sections, Invisible, Content}

Consider a multicube MC, composed of K axes. A 2D-slice over MC is a set of (K-2)

points, each from a separate axis, where the points of the Invisible and the
Content axis are comprised within the points of the 2D-slice. Intuitively, a 2D-slice
pins the axes of the multicube to specific points, except for 2 axes, which will be
presented on a screen (or a printout).

Consider a 2D-slice SL over a multicube MC, composed of K axes. A tape over SL is
a set of (K-1) points, where the (K-2) points are the points of SL. A tape is always
parallel to a specific axis: out of the two "free" axis of the 2D-slice, we pin one of
them to a specific point which distinguishes the tape from the 2D-slice. A tape is more
restrictively defined with respect to the 2D-slice by a single point: we will call this
point the key of the tape with respect to its 2D-slice. Moreover if a 2D-slice has two
axes a1,a2 with size(a1) and size(a2) points each, then one can define
size(a1)*size(a2) tapes over this 2D-slice.

Consider a 2D-slice SL over a multicube MC, composed of K axes. Consider also
two tapes t1 and t2 which are not parallel to the same axis. A cross-join over t1 and
t2 is a set of K points, where the (K-2) points are the points of SL and each of the two
remaining points is a point on a different axis of the remaining axes of the slice.

Two tapes are joinable if they can produce a cross-join.

4. Bridging the presentation and the logical layers of CPM

Cross-joins form the bridge between the logical and the presentational model. In this
section we provide a theorem proving that a cross-join is a secondary cube. Then, we
show how common OLAP operations can be performed on the basis of our model.
The proofs can be found at [7].

Theorem 1. Α cross-join is equivalent to a secondary cube.

The only difference between a tape and a cross-join is that the cross-join restricts

all of its dimensions with equality constraints, whereas the tape constraints only a
subset of them. Moreover, from the definition of the joinable tapes it follows that a
2D-slice contains as many cross-joins as the number of pairs of joinable tapes
belonging to this particular slice. This observation also helps us to understand why a
tape can also be viewed as a collection of cross-joins (or cubes). Each of this
cross-joins is defined from the k-1 points of the tape and one point from all its
joinable tapes. This point belongs to the points of the axis the tape is parallel to.
Consequently, we are allowed to treat a tape as a set of cubes: t=[c1,…,ck]. Thus we
have the following lemma.

Lemma 1. A tape is a finite set of secondary cubes.

We briefly describe how usual operations of the OLAP tools, such as roll-up, drill
down, pivot etc can be mapped to operations over 2D-slices and tapes.
− Roll-up. Roll-up is performed over a set of tapes. Initially key points of these tapes

are eliminated and replaced by their ancestor values. Then tapes are also eliminated
and replaced by tapes defined by the respective keys of these ancestor values. The
cross-joins that emerge can be computed through the appropriate aggregation of the
underlying data.

− Drill-down. Drill down is exactly the opposite of the roll-up operation. The only
difference is that normally, the existing tapes are not removed, but rather
complemented by the tapes of the lower level values.

− Pivot. Pivot means moving one dimension from an axis to another. The contents of
the 2D-slice over which pivot is performed are not recomputed, instead they are
just reorganized in their presentation.

− Selection. A selection condition (primary or secondary) is evaluated against the
points of the axes, or the content of the 2D-slice. In every case, the calculation of
the new 2D-slice is based on the propagation of the selection to the already
computed cubes.

− Slice. Slice is a special form of roll-up, where a dimension is rolled up to the level
ALL. In other words, the dimension is not taken into account any more in the
groupings over the underlying data set. Slicing can also mean the reconstruction of
the multicube by moving the sliced dimension to the Invisible axis.

− ROLLUP [9]. In the relational context, the ROLLUP operator takes all combination
of attributes participating in the grouping of a fact table and produces all the

possible tables, with these marginal aggregations, out of the original query. In our
context, this can be done by producing all combinations of Slice operations over
the levels of the underlying data set. One can even go further by combining roll-ups
to all the combinations of levels in a hierarchy.

5. Conclusions and Future Work

In this paper we have introduced the Cube Presentation Model, a presentation model
for OLAP data which formalizes previously proposed standards for a presentation
layer and which, to the best of our knowledge, is the only formal presentational model
for OLAP in the literature. Our contributions can be listed as follows: (a) we have
presented an extension of a previous logical model for cubes, to handle more complex
cases; (b) we have introduced a novel presentational model for OLAP screens,
intuitively based on the geometrical representation of a cube and its human perception
in the space; (c) we have discussed how these two models can be smoothly integrated;
and (d) we have suggested how typical OLAP operations can be easily mapped to the
proposed presentational model.

Next steps in our research include the introduction of suitable visualization
techniques for CPM, complying with current standards and recommendation as far as
usability and user interface design is concerned and its extension to address the
specific visualization requirements of mobile devices.

References

[1]S. Chaudhuri, U. Dayal: An overview of Data Warehousing and OLAP technology. ACM
SIGMOD Record, 26(1), March 1997.

[2] P. Vassiliadis, T. Sellis: A Survey of Logical Models for OLAP Databases. SIGMOD
Record 28(4), Dec. 1999.

[3] D.A. Keim. Visual Data Mining. Tutorials of the 23rd International Conference on Very
Large Data Bases, Athens, Greece, 1997.

[4] Alfred Inselberg. Visualization and Knowledge Discovery for High Dimensional Data . 2nd
Workshop Proceedings UIDIS, IEEE, 2001.

[5] M. Gebhardt, M. Jarke, S. Jacobs: A Toolkit for Negotiation Support Interfaces to Multi-
Dimensional Data. ACM SIGMOD 1997, pp. 348 – 356.

[6]Microsoft Corp. OLEDB for OLAP February 1998. Available at:
http://www.microsoft.com/data/oledb/olap/.

[7]A. Maniatis, P. Vassiliadis, S. Skiadopoulos, Y. Vassiliou. CPM: A Cube Presentation
Model. http://www.dblab.ece.ntua.gr/~andreas/publications/CPM_dawak03.pdf (Long
Version).

[8]Panos Vassiliadis, Spiros Skiadopoulos: Modeling and Optimization Issues for
Multidimensional Databases. Proc. of CAiSE-00, Stockholm, Sweden, 2000.

[9] J. Gray et al.: Data Cube: A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab and Sub-Totals . Proc. of the ICDE 1996.

http://www.microsoft.com/data/oledb/olap/
http://www.dblab.ece.ntua.gr/~andreas/publications/CPM_dawak03.pdf

