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Abstract. On-Line Analytical Processing (OLAP) is a trend in database 
technology, based on the multidimensional view of data. In this paper we 
introduce the Cube Presentation Model (CPM), a presentational model for 
OLAP data which, to the best of our knowledge, is the only formal 
presentational model for OLAP found in the literature until today. First, our 
proposal extends a previous logical model for cubes, to handle more complex 
cases. Then, we present a novel presentational model for OLAP screens, 
intuitively based on the geometrical representation of a cube and its human 
perception in the space. Moreover, we show how the logical and the 
presentational models are integrated smoothly. Finally, we describe how typical 
OLAP operations can be easily mapped to the CPM. 

1. Introduction 

In the last years, On-Line Analytical Processing (OLAP) and data warehousing has 
become a major research area in the database community [1, 2]. An important issue 
faced by vendors, researchers and - mainly - users of OLAP applications is the 
visualization of data. Presentational models are not really a part of the classical 
conceptual-logical-physical hierarchy of database models; nevertheless, since OLAP 
is a technology facilitating decision-making, the presentation of data is of major 
importance. Research-wise, data visualization is presently a quickly evolving field and 
dealing with the presentation of vast amounts of data to the users [3, 4, 5].  

In the OLAP field, though, we are aware of only two approaches towards a discrete 
and autonomous presentation model for OLAP. In the industrial field Microsoft has 
already issued a commercial standard for multidimensional databases, where the 
presentational issues form a major part [6]. In this approach, a powerful query 
language is used to provide the user with complex reports, created from several cubes 
(or actually subsets of existing cubes). An example is depicted in Fig. 1. The 
Microsoft standard, however, suffers from several problems, with two of them being 
the most prominent ones: First, the logical and presentational models are mixed, 
resulting in a complex language which is difficult to use (although powerful enough). 
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Secondly, the model is formalized but not thoroughly: for instance, to our knowledge, 
there is no definition for the schema of a multicube. 

SELECT CROSSJOIN({Venk,Netz},{USA_N.Children,USA_S,Japan}) ON COLUMNS 
{Qtr1.CHILDREN,Qtr2,Qtr3,Qtr4.CHILDREN} ON ROWS 
FROM SalesCube 
WHERE (Sales,[1991],Products.ALL) 

Year = 1991  Venk    Netz    
Product = ALL  USA   Japan USA   Japan 

   USA_N  USA_S  USA_N  USA_S  
   Seattle Boston   Seattle Boston   
  Size(city)         
R1 Qtr1 Jan         
  Feb C1  C2 C3  C4 C5 C6 
  Mar         
R2 Qtr2          
R3 Qtr3          
R4 Qtr4 Jan         
  Feb         
  Mar         

  
Fig. 1: Motivating example for the cube model (taken from [6]). 

Apart from the industrial proposal of Microsoft, an academic approach has also 
been proposed [5]. However, the proposed Tape model seems to be limited in its 
expressive power (with respect to the Microsoft proposal) and its formal aspects are 
not yet publicly available. 

In this paper we introduce a cube presentation model (CPM). The main idea behind 
CPM lies in the separation of logical data retrieval (which we encapsulate in the 
logical layer of CPM) and data presentation (captured from the presentational layer of 
CPM). The logical layer that we propose is based on an extension of a previous 
proposal [8] to incorporate more complex cubes. Replacing the logical layer with any 
other model compatible to classical OLAP notions (like dimensions, hierarchies and 
cubes) can be easily performed. The presentational layer, at the same time, provides a 
formal model for OLAP screens. To our knowledge, there is no such result in the 
related literature. Finally, we show how typical OLAP operations like roll-up and drill 
down are mapped to simple operations over the underlying presentational model. 

The remainder of this paper is structured as follows. In Section 2, we present the 
logical layer underlying CPM. In Section 3, we introduce the presentational layer of 
the CPM model. In Section 4, we present a mapping from the logical to the 
presentational model and finally, in Section 5 we conclude our results and present 
topics for future work. Due to space limitations, we refer the interested reader to a 
long version of this report for more intuition and rigorous definitions [7]. 

2. The logical layer of the Cube Presentation Model 

The Cube Presentation Model (CPM) is composed of two parts: (a) a logical layer, 
which involves the formulation of cubes and (b) a presentational layer that involves 
the presentation of these cubes (normally, on a 2D screen). In this section, we present 



 

the logical layer of CPM; to this end, we extend a logical model [8] in order to 
compute more complex cubes. We briefly repeat the basic constructs of the logical 
model and refer the interested reader to [8] for a detailed presentation of this part of 
the model. The most basic constructs are: 
− A dimension is a lattice of dimension levels (L,p), where p is a partial order 

defined among the levels of L. 
− A family of monotone, pairwise consistent ancestor functions ancL2L1 is defined, 

such that for each pair of levels L1 and L2 with L1pL2, the function ancL2L1 maps each 
element of dom(L1) to an element of dom(L2). 

− A data set DS over a schema S=[L1,…,Ln,A1,…,Am] is a finite set of tuples over S 
such that [L1,…,Ln] are levels, the rest of the attributes are measures and 
[L1,…,Ln] is a primary key. A detailed data set DS0 is a data set where all levels 
are at the bottom of their hierarchies. 

− A selection condition φ is a formula involving atoms and the logical connectives ∧, 
∨ and ¬. The atoms involve levels, values and ancestor functions, in clause of the 
form x ∂ y. A detailed selection condition involves levels at the bottom of their 
hierarchies.   

− A primary cube c (over the schema [L1,…,Ln,M1,…,Mm]), is an expression of the 
form c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M01),…,aggm(M0m)]), where: 
DS0 is a detailed data set over the schema S=[L01,…,L0n,M01,…,M0k],m≤k. 
φ is a detailed selection condition. 
M1,…,Mm are measures. 
L0i and Li are levels such that L0ipLi, 1≤i≤n. 
aggi∈{sum,min,max,count}, 1≤i≤m.  
The limitations of primary cubes is that, although they model accurately 

SELECT-FROM-WHERE-GROUPBY queries, they fail to model (a) ordering, (b) 
computation of values through functions and (c) selection over computed or 
aggregate values (i.e., the HAVING clause of a SQL query). To compensate this 
shortcoming, we extend the aforementioned model with the following entities: 

− Let F be a set of functions mapping sets of attributes to attributes. We distinguish 
the following major categories of functions: property functions, arithmetic 
functions and control functions. For example, for the level Day, we can have the 
property function holiday(Day) indicating whether a day is a holiday or not. An 
arithmetic function is, for example Profit=(Price-Cost)*Sold_Items. 

− A secondary selection condition ψ is a formula in disjunctive normal form. An 
atom of the secondary selection condition is true, false or an expression of the 
form x θ y, where x and y can be one of the following: (a) an attribute Ai 
(including RANK), (b) a value l, an expression of the form fi(Ai), where Ai is a set 
of attributes (levels and measures) and (c) θ is an operator from the set (>, <, =, ≥, 
≤, ≠). With this kind of formulae, we can compute relationships between measures 
(Cost>Price), ranking and range selections (ORDER BY...;STOP after 200, 
RANK[20:30]), measure selections (sales>3000), property based selection 
(Color(Product)='Green'). 



 

− Assume a data set DS over the schema [A1,A2,…,Az]. Without loss of generality, 
suppose a non-empty subset of the schema S=A1,…,Ak,k≤z. Then, there is a set of 
ordering operations OθS, used to sort the values of the data set, with respect to the 
set of attributes participating to S. θ belongs to the set {<,>,∅} in order to denote 
ascending, descending and no order, respectively. An ordering operation is applied 
over a data set and returns another data set which obligatorily encompasses the 
measure RANK. 

− A secondary cube over the schema S=[L1,…,Ln,M1,…,Mm,Am+1,…,Am+p, RANK] is 
an expression of the form: s=[c,[Am+1:fm+1(Am+1),…,Am+p:fm+p(Am+p)],OθA,ψ] 
where c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M01),…,aggm(M0m)]) is a primary 
cube, [Am+1,…,Am+p]⊆[L1,…,Ln,M1,…,Mm], A⊆S-{RANK}, fm+1,…,fm+p are 
functions belonging to F and ψ is a secondary selection condition. 

With these additions, primary cubes are extended to secondary cubes that incorpo-
rate: (a) computation of new attributes (Am+i) through the respective functions (fm+i), 
(b) ordering (OθA) and (c) the HAVING clause, through the secondary selection condition 
ψ. 

3. The presentational layer of the Cube Presentation Model 

In this section, we present the presentation layer of CPM. First, we will give an 
intuitive, informal description of the model; then we will present its formal definition. 
Throughout the paper, we will use the example of Fig. 1, as our reference example. 

The most important entities of the logical layer of CPM include: 
− Points: A point over an axis resembles the classical notion of points over axes in 

mathematics. Still, since we are grouping more than one attribute per axis (in order 
to make things presentable in a 2D screen), formally, a point is a pair comprising of 
a set of attribute groups (with one of them acting as primary key) and a set of 
equality selection conditions for each of the keys. 

− Axis: An axis can be viewed as a set of points. We introduce two special purpose 
axes, Invisible and Content. The Invisible axis is a placeholder for the 
levels of the data set which are not found in the “normal” axis defining the 
multicube. The Content axis has a more elaborate role: in the case where no 
measure is found in any axis then the measure which will fill the content of the 
multicube is placed there.  

− Multicubes. A multicube is a set of axes, such that (a) all the levels of the same 
dimensions are found in the same axis, (b) Invisible and Content axes are 
taken into account, (c) all the measures involved are tagged with an aggregate 
function and (d) all the dimensions of the underlying data set are present in the 
multicube definition. In our motivating example, the multicube MC is defined as 
MC={Rows,Columns,Sections,Invisible,Content}. 

− 2D-slice: Consider a multicube MC, composed of K axes. A 2D-slice over MC is a set 
of (K-2) points, each from a separate axis. Intuitively, a 2D-slice pins the axes of 



 

the multicube to specific points, except for 2 axes, which will be presented on the 
screen (or a printout). In Fig. 2, we depict such a 2D slice over a multicube. 

− Tape: Consider a 2D-slice SL over a multicube MC, composed of K axes. A tape 
over SL is a set of (K-1) points, where the (K-2) points are the points of SL. A tape 
is always parallel to a specific axis: out of the two "free" axis of the 2D-slice, we 
pin one of them to a specific point which distinguishes the tape from the 2D-slice. 

− Cross-join: Consider a 2D-slice SL over a multicube MC, composed of K axes and 
two tapes t1 and t2 which are not parallel to the same axis. A cross-join over t1 
and t2 is a set of K points, where the (K-2) points are the points of SL and each of 
the two remaining points is a point on a different axis of the remaining axes of the 
slice. 
The query of Fig. 1 is a 2D-Slice, say SL. In SL one can identify 4 horizontal tapes 

denoted as R1, R2, R3 and R4 in Fig. 1) and 6 vertical tapes (numbered from C1 to 
C6). The meaning of the horizontal tapes is straightforward: they represent the Quar-
ter dimension, expressed either as quarters or as months. The meaning of the vertical 
tapes is somewhat more complex: they represent the combination of the dimensions 
Salesman and Geography, with the latter expressed in City, Region and Country 
level. Moreover, two constraints are superimposed over these tapes: the Year dimen-
sion is pinned to a specific value and the Product dimension is ignored. In this mul-
tidimensional world of 5 axes, the tapes C1 and R1 are defined as: 
C1 = [(Salesman='Venk'∧ancregion

city (city)='USA_N'),(Year='1991'), 
 (ancALL

item(Products)='all'),(Sales,sum(Sales))] 
R1 = [(ancmonth

day (Month)='Qtr1'∧Year='1991'),(Year='1991'), 
 (ancALL

item(Products)='all'),(Sales,sum(Sales))] 
One can also consider the cross-join t1 defined by the common cells of the tapes 

R1 and C1. Remember that City defines an attribute group along with 
[Size(City)]. 
t1=([SalesCube,(Salesman='Venk'∧ancregion

city (city)='USA_N ∧  
 ancmonth

day (Month)='Qtr1'∧Year='1991'∧ancALL
item(Products)='all'), 

[Salesman,City,Month,Year,Products.ALL,Sales],sum], 
[Size(City)],true) 

 
In the rest of this section, we will describe the presentation layer of CPM in its 

formality. First, we extend the notion of dimension to incorporate any kind of 
attributes (i.e., results of functions, measures, etc.). Consequently, we consider every 
attribute not already belonging to some dimension, to belong to a single-level 
dimension (with the same name as the attribute), with no ancestor functions or 
properties defined over it. We will distinguish between the dimensions comprising 
levels and functionally dependent attributes through the terms level dimensions and 
attribute dimensions, wherever necessary. The dimensions involving arithmetic 
measures will be called measure dimensions. 

An attribute group AG over a data set DS is a pair [A,DA], where A is a list of 
attributes belonging to DS (called the key of the group) and DA is a list of attributes 
dependent on the attributes of A. With the term dependent we mean (a) measures 
dependent over the respective levels of the data set and (b) function results depending 



 

on the arguments of the function. One can consider examples of the attribute groups 
such as ag1=([City],[Size(City)]),ag2=([Sales,Expenses],[Profit]). 

 

ancmonth
day (Month)= 

Qtr1 

(5) 
Salesman='Netz', 
Region='USA_S'  

Salesman='Netz', 
Country='Japan' 

(6) 
ancmonth

day (Month)= 
Qtr4 

Quarter 
= Qtr3 

Rows 

Salesman='Venk', 
Region='USA_S' 

(2) 

(3) 
Salesman='Venk', 
Country='Japan' 

(1) 
Salesman='Venk', 
ancregion

city (City) = 
'USA_N' 

Columns 

Quarter 
= Qtr2 

Salesman='Netz', 
ancregion

city (City) = 
'USA_N' 

(4) 

Year=1991 

Year=1992 Sections 

+ 
Products.ALL 

= 
 'all' 

Invisible 

+ 
Sales, 

sum(Sales0), 
true 

Content 

 
Fig. 2: The 2D-Slice SL for the example of Fig. 1. 
 
A dimension group DG over a data set DS is a pair [D,DD], where D is a list of 

dimensions over DS (called the key of the dimension group) and DD is a list of 
dimensions dependent on the dimensions of D. With the term dependent we simply 
extend the respective definition of attribute groups, to cover also the respective 
dimensions. For reasons of brevity, wherever possible, we will denote an 
attribute/dimension group comprising only of its key simply by the respective 
attribute/dimension. 

An axis schema is a pair [DG,AG], where DG is a list of K dimension groups and AG 
is an ordered list of K finite ordered lists of attribute groups, where the keys of each 
(inner) list belong to the same dimension, found in the same position in DG, where 
K>0. The members of each ordered list are not necessarily different. We denote an 
axis schema as a pair ASK=([DG1×DG2×…×DGK],[[ag11,ag21,…,agk11 ]×[ag12,ag22
,…,agk22 ]×…×[ag1k,ag2k,…,agkkk ])}. 

In other words, one can consider an axis schema as the Cartesian product of the 
respective dimension groups, instantiated at a finite number of attribute groups. For 
instance, in the example of Fig. 1, we can observe two axes schemata, having the 
following definitions: 
Row_S = {[Quarter],[Month,Quarter,Quarter,Month]} 
Column_S = {[Salesman×Geography], [Salesman]×[[City,Size(City)], 
Region, Country]} 

Consider a detailed data set DS. An axis over DS is a pair comprising of an axis 
schema over K dimension groups, where all the keys of its attribute groups belong to 
DS, and an ordered list of K finite ordered lists of selection conditions (primary or 
secondary), where each member of the inner lists, involves only the respective key of 
the attribute group. 
a = (ASK,[φ1,φ2,...,φK]),K≤N or 
a={[DG1×DG2×…×DGK],[[ag1

1,ag2
1,…,agk1

1 ]×[ag1
2,ag2

2,…,agk2
2 ]×…×[ag1

k,ag2
k,…,agkk

k
]], [[φ1

1,φ2
1,…,φk1

1 ]×[φ1
2,φ2

2,…,φk2
2 ]×...×[φ1

k,φ2
k,…,φkk

k ]]} 



 

Practically, an axis is a restriction of an axis schema to specific values, through the 
introduction of specific constraints for each occurrence of a level. In our motivating 
example, we have two axes: 
Rows = {Row_S,[ancmonth

day (Month)=Qtr1,Quarter=Qtr2, 
  Quarter=Qtr3,ancmonth

day (Month)=Qtr4]} 
Columns = {Column_S,{[Salesman='Venk',Salesman='Netz'], 

[ancregion
city (City)='USA_N', Region='USA_S', Country='Japan']} 

We will denote the set of dimension groups of each axis a by dim(a). 
A point over an axis is a pair comprising of a set of attribute groups and a set of 

equality selection conditions for each one of their keys. 
p1=([Salesman,[City,Size(City)]], [Salesman='Venk',ancregion

city (City)= 
 'USA_N']) 

An axis can be reduced to a set of points, if one calculates the Cartesian products of 
the attribute groups and their respective selection conditions. In other words,  

a=([DG1×DG2×...×DGK],[[p1,p2,…,pl]), l=k1×k2×…×kkk. 
Two axes schemata are joinable over a data set if their key dimensions (a) belong 

to the set of dimensions of the data set and (b) are disjoint. For instance, Rows_S and 
Columns_S are joinable. 

A multicube schema over a detailed data set  is a finite set of axes schemata 
fulfilling the following constraints: 
1. All the axes schemata are pair-wise joinable over the data set. 
2. The key of each dimension group belongs only to one axis. 
3. Similarly, from the definition of the axis schema, the attributes belonging to a 

dimension group are all found in the same axis. 
4. Two special purpose axes called Invisible and Content exist. The Content 

axis can take only measure dimensions. 
5. All the measure dimensions of the multicube are found in the same axis. If more 

than one measure exist, they cannot be found in the Content axis. 
6. If no measure is found in any of the "normal" axes, then a single measure must be 

found in the axis Content. 
7. Each key measure is tagged with an aggregate function over a measure of the data 

set. 
8. For each attribute participating in a group, all the members of the group are found 

in the same axis. 
9. All the level dimensions of the data set are found in the union of the axis 

schemata (if some dimensions are not found in the "normal" axes, they must be 
found in the Invisible axis). 

The role of the Invisible axis follows: it is a placeholder for the levels of the 
data set which are not to be taken into account in the multicube. The Content axis 
has a more elaborate role: in the case where no measure is found in any axis (like in 
the example of Fig. 1) then the measure which will fill the content of the multicube is 
placed there. If more than one measures are found, then they must be placed in the 
same axis (not Content), as this would cause a problem of presentation on a 
two-dimensional space. 

A multicube over a data set is defined as a finite set of axes, whose schemata can 
define a multicube schema. The following constraints must be met: 



 

1. Each point from a level dimension, not in the Invisible axis, must have an 
equality selection condition, returning a finite number of values. 

2. The rest of the points can have arbitrary selection conditions (including "true" -
for the measure dimensions, for example). 

For example, suppose a detailed data set SalesCube under the schema 
S = [Quarter.Day, Salesman.Salesman, Geography.City, Time.Day, 
 Product.Item, Sales, PercentChange, BudgetedSales] 

Suppose also the following axes schemata over DS0 
Row_S = {[Quarter],[Month,Quarter,Quarter,Month]} 
Column_S = {[Salesman×Geography], [Salesman]×[[City,Size(City)], 
  Region, Country]} 
Section_S = {[Time],[Year]} 
Invisible_S = {[Product],[Product.ALL]} 
Content_S = {[Sales],[sum(Sales0)]} 

and their respective axes 
Rows={Row_S,[ancmonth

day (Month)=Qtr1,Quarter=Qtr2,Quarter=Qtr3, 
 ancmonth

day (Month)=Qtr4]} 
Columns = {Column_S,{[Salesman='Venk',Salesman='Netz'], 

[ancregion
city (City)='USA_N', Region='USA_S', Country='Japan']} 

Sections = {Section_S,[Year=1991,Year=1992]} 
Invisible = {Invisible_S,[ALL='all']} 
Content_S = {Content_S,[true]} 

Then, a multicube MC can be defined as 
MC = {Rows, Columns, Sections, Invisible, Content} 

 
Consider a multicube MC, composed of K axes. A 2D-slice over MC is a set of (K-2) 

points, each from a separate axis, where the points of the Invisible and the 
Content axis are comprised within the points of the 2D-slice.  Intuitively, a 2D-slice 
pins the axes of the multicube to specific points, except for 2 axes, which will be 
presented on a screen (or a printout). 

Consider a 2D-slice SL over a multicube MC, composed of K axes. A tape over SL is 
a set of (K-1) points, where the (K-2) points are the points of SL.  A tape is always 
parallel to a specific axis: out of the two "free" axis of the 2D-slice, we pin one of 
them to a specific point which distinguishes the tape from the 2D-slice. A tape is more 
restrictively defined with respect to the 2D-slice by a single point: we will call this 
point the key of the tape with respect to its 2D-slice. Moreover if a 2D-slice has two 
axes a1,a2 with size(a1) and size(a2) points each, then one can define 
size(a1)*size(a2) tapes over this 2D-slice. 

Consider a 2D-slice SL over a multicube MC, composed of K axes. Consider also 
two tapes t1 and t2 which are not parallel to the same axis. A cross-join over t1 and 
t2 is a set of K points, where the (K-2) points are the points of SL and each of the two 
remaining points is a point on a different axis of the remaining axes of the slice. 

Two tapes are joinable if they can produce a cross-join. 



 

4. Bridging the presentation and the logical layers of CPM 

Cross-joins form the bridge between the logical and the presentational model. In this 
section we provide a theorem proving that a cross-join is a secondary cube. Then, we 
show how common OLAP operations can be performed on the basis of our model. 
The proofs can be found at [7]. 
 
Theorem 1. Α cross-join is equivalent to a secondary cube. 

 
The only difference between a tape and a cross-join is that the cross-join restricts 

all of its dimensions with equality constraints, whereas the tape constraints only a 
subset of them. Moreover, from the definition of the joinable tapes it follows that a 
2D-slice contains as many cross-joins as the number of pairs of joinable tapes 
belonging to this particular slice. This observation also helps us to understand why a 
tape can also be viewed as a collection of cross-joins (or cubes). Each of this 
cross-joins is defined from the k-1 points of the tape and one point from all its 
joinable tapes. This point belongs to the points of the axis the tape is parallel to. 
Consequently, we are allowed to treat a tape as a set of cubes: t=[c1,…,ck]. Thus we 
have the following lemma. 
 
Lemma 1. A tape is a finite set of secondary cubes. 
 
We briefly describe how usual operations of the OLAP tools, such as roll-up, drill 
down, pivot etc can be mapped to operations over 2D-slices and tapes. 
− Roll-up. Roll-up is performed over a set of tapes. Initially key points of these tapes 

are eliminated and replaced by their ancestor values. Then tapes are also eliminated 
and replaced by tapes defined by the respective keys of these ancestor values. The 
cross-joins that emerge can be computed through the appropriate aggregation of the 
underlying data. 

− Drill-down. Drill down is exactly the opposite of the roll-up operation. The only 
difference is that normally, the existing tapes are not removed, but rather 
complemented by the tapes of the lower level values. 

− Pivot. Pivot means moving one dimension from an axis to another. The contents of 
the 2D-slice over which pivot is performed are not recomputed, instead they are 
just reorganized in their presentation. 

− Selection. A selection condition (primary or secondary) is evaluated against the 
points of the axes, or the content of the 2D-slice. In every case, the calculation of 
the new 2D-slice is based on the propagation of the selection to the already 
computed cubes. 

− Slice. Slice is a special form of roll-up, where a dimension is rolled up to the level 
ALL. In other words, the dimension is not taken into account any more in the 
groupings over the underlying data set. Slicing can also mean the reconstruction of 
the multicube by moving the sliced dimension to the Invisible axis. 

− ROLLUP [9]. In the relational context, the ROLLUP operator takes all combination 
of attributes participating in the grouping of a fact table and produces all the 



 

possible tables, with these marginal aggregations, out of the original query. In our 
context, this can be done by producing all combinations of Slice operations over 
the levels of the underlying data set. One can even go further by combining roll-ups 
to all the combinations of levels in a hierarchy. 

5. Conclusions and Future Work 

In this paper we have introduced the Cube Presentation Model, a presentation model 
for OLAP data which formalizes previously proposed standards for a presentation 
layer and which, to the best of our knowledge, is the only formal presentational model 
for OLAP in the literature. Our contributions can be listed as follows: (a) we have 
presented an extension of a previous logical model for cubes, to handle more complex 
cases; (b) we have introduced a novel presentational model for OLAP screens, 
intuitively based on the geometrical representation of a cube and its human perception 
in the space; (c) we have discussed how these two models can be smoothly integrated; 
and (d) we have suggested how typical OLAP operations can be easily mapped to the 
proposed presentational model. 

Next steps in our research include the introduction of suitable visualization 
techniques for CPM, complying with current standards and recommendation as far as 
usability and user interface design is concerned and its extension to address the 
specific visualization requirements of mobile devices. 
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