
Advanced Visualization for OLAP
Andreas S. Maniatis1

Tel. +30-210-7721436

andreas@dblab.ntua.gr

Panos Vassiliadis2
Tel. +30-26510-98814

pvassil@cs.uoi.gr

Spiros Skiadopoulos1
Tel. +30-210-7721402

spiros@dblab.ntua.gr

Yannis Vassiliou1
Tel. +30-210-7722526

yv@cs.ntua.gr

1National Technical University of Athens
Dept. of Elec. and Computer Eng.

9, Iroon Polytechneiou St.
15780 Athens, Hellas

2University of Ioannina
Dept. of Computer Science

45110 Ioannina, Hellas

ABSTRACT
Data visualization is one of the big issues of database research.
OLAP as a decision support technology is highly related to the
developments of data visualization area. In this paper we
demonstrate how the Cube Presentation Model (CPM), a novel
presentational model for OLAP screens, can be naturally mapped
on the Table Lens, which is an advanced visualization technique
from the Human-Computer Interaction area, particularly tailored
for cross-tab reports. We consider how the user interacts with an
OLAP screen and based on the particularities of Table Lens, we
propose an automated proactive users support. Finally, we discuss
the necessity and the applicability of advanced visualization
techniques in the presence of recent technological developments.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – data models.
H.2.3 [Database Management]: Languages – report writers
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – graphical user interfaces (GUI), user-centered
design.

General Terms
Design, Human Factors.

Keywords
On-Line Analytical Processing, Visualization

1. INTRODUCTION
In the last years, On-Line Analytical Processing (OLAP) and data
warehousing have become major research areas in the database
community [3,7]. Although the modeling of data [16,17] has been
extensively dealt with, an equally important issue of the OLAP
domain, the visualization of data, has not been adequately
investigated. In the context of OLAP, data visualization deals
with the techniques and tools used for presenting OLAP specific
information to end-users and decision makers. The database

community expects visualization to be of significant importance
in the area, during the next years [7], and although research has
provided results dealing with the presentation of vast amounts of
data [5,4,1,15], OLAP has not been part of advanced visualization
techniques so far.

In this paper, we start by adopting a newly introduced
presentation model for OLAP called Cube Presentation Model -
CPM [11] and demonstrate how it can be combined with non-
traditional visualization techniques. The CPM model
distinguishes representation from data retrieval. It is separated in
two layers: a logical that deals with data retrieval and
representation and a presentational that provides a generic model
for data representation. In this paper, we present a quick informal
overview of the main characteristics of CPM and accompany
them with its respective UML modeling for ease of
understanding. Then, we proceed with the contributions of this
paper, which can be listed as follows:
 Initially, we present a mapping of the generic presentational

scheme of CPM to the particularities of an advanced
visualization technique coming from the field of Human
Computer Interaction. The Table Lens technique [14,12] is
particularly tailored for cross-tab reports, which are most
commonly used for OLAP purposes and it is accompanied
by a set of handy features for the exploration of data sets
which are presented in this way.

 Next, we provide algorithms for the automated proactive
support of the user during his interaction with an OLAP
screen, based on the particularities of Table Lens.
Specifically, Table Lens employs a particular distortion of
the presentation to highlight areas of increasing interest to
the user. We provide a generic algorithm to support this task
proactively.

 Finally, we discuss the necessity and the applicability of
such visualization techniques in the presence of current
technological developments.

The remainder of this paper is structured as follows. In Section 2,
we summarize the logical and the presentation layers of CPM.
Section 3 shows how CPM can be naturally combined with Table
Lens. Moreover, Section 3 demonstrates the automate proactive
support to the user. In Section 4, we discuss the necessity and
applicability of the proposed ideas. Finally, Section 5 concludes
our results and presents topics for future work. A longer version
of this paper, with more details can be found in [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP ’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-727-3/03/0011…$5.00.

2. THE CUBE PRESENTATION MODEL
Although OLAP has been an active research area for the past few
years, the efforts devoted to the visualization of OLAP screens are
very scarce. To our knowledge, only two such efforts exist [10,1].
The first is from the industrial field, where Microsoft has issued a
commercial standard for multidimensional databases and where
the presentational issues form a major part [10]. In this approach,
a powerful query language is used to provide the user with
complex reports, created from several cubes (or actually subsets
of existing cubes). The second is an academic approach, the Tape
Model [1], based on the notion of “Tapes”, called so due to their
look and feel. Tapes are infinite and can overlap (if they contain
shared data dimensions), or intersect with each other. A two
dimensional intersection is called a matrix and represents a kind
of cross-tab between the corresponding dimensions. Each tape
comprises of a variable number of tracks. The most important
operations on tapes include: (a) insertion and deletion of tracks,
(b) changing the sequence of tracks (i.e., sorting) and (c) scrolling
on tracks. The Tape Model offers the possibility of defining
hierarchical structures within a tape.

In [11], we have presented the Cube Presentation Model (CPM), a
novel proposal towards a presentation model for OLAP screens.
CPM is composed of two parts: (a) a logical layer which involves
the formulation of cubes and (b) a presentational layer that
involves the presentation of these cubes (normally, on a 2D
screen). The main idea behind CPM lies in the separation of
logical data retrieval (which we encapsulate in the logical layer
of CPM) and data presentation (captured from the presentational
layer of CPM). This duality provides the flexibility of possibly
replacing one of the two layers with an alternative proposal
smoothly. The logical layer that we propose is based on an
extension of a previous proposal [18] with additional functionality
that allows us to incorporate more complex cubes. In a nutshell,
the logical model involves (a) dimensions defined as lattices of
dimension levels, (b) ancestor functions (in the form of ancL1L2)
mapping values between related levels of a dimension, (c)
detailed data sets, practically modeling fact tables at the lowest
granule of information for all their dimensions and (d) cubes,
defined as aggregations over detailed data sets. In this paper, we
will not deal with the formal presentation of the underlying
logical layer of CPM (the reader is referenced to [11] for a
detailed and in depth presentation) but focus on the mapping of
our presentation layer to alternative visualization techniques from
the area of Human Computer Interaction.
Following, we give an intuitive and informal description of the
presentation layer of CPM that provides a formal model for
OLAP screens.
The most important entities – as far as display aspects are
concerned – of the presentation layer of CPM include:

− Points: A point over an axis resembles the classical notion of
points over axes in mathematics. In the simple case, a point is
characterized by an equality selection condition over a level
(e.g., City=Seattle). Nevertheless, as we shall see, we can
multiplex several logical dimensions to one presentational
axis; therefore, a point will be formally defined to handle this
kind of situations, too.

− Axis: An axis can be viewed as a set of points. We introduce
two special purpose kinds of axes, Invisible and

Content. An Invisible axis is a placeholder for the
levels of the data set which are to be presented to the user. The
Content axis has a more elaborate role: it is a place holder
for the content of the multicube, as computed over the detailed
data.

− Multicubes. A multicube is defined over (a) a
multidimensional space, comprising a set of axes, (b) an
underlying data set providing all the data which will be filtered
and aggregated before presented to the user and (c) a mapping
among the multidimensional space and the underlying data set
that shows the computation of the multicube contents.

− 2D-slice: A 2D slice is a 2D layer of data that can be presented
on the screen. Consider a multicube MC, composed of K axes.
A 2D-slice over MC can be sufficiently defined by a set of (K-
2) points, each from a separate axis. Intuitively, a 2D-slice
pins the axes of the multicube to specific points, except for 2
axes, which will be presented on the screen (or a printout). In
Fig. 2, we depict such a 2D slice over a multicube. //check
whether it is the MS picture…

− Tape: Intuitively, a tape is column or a row over a 2D-slice,
i.e., a construct parallel to an axis. Again, if we consider a 2D-
slice SL over a multicube MC, composed of K axes, a tape is
sufficiently defined by a set of (K-1) points, where the (K-2)
points are the points of SL. A tape is always parallel to a
specific axis: out of the two "free" axis of the 2D-slice, we pin
one of them to a specific point which distinguishes the tape
from the 2D-slice.

− Cross-join: Intuitively, if we take one tape parallel to the
horizontal axis and another parallel to the vertical axis, their
intersection is a cell. In the most general case, as we shall see,
it can be a set of cells. In both cases, the intersection of two
non-parallel tapes is called a cross-join. Consider a 2D-slice
SL over a multicube MC, composed of K axes and two tapes t1
and t2 which are not parallel to the same axis. A cross-join
over t1 and t2 is defined by a set of K points, where the (K-2)
points are the points of SL and each of the two remaining
points is a point on a different axis of the remaining axes of the
slice.

− Content Function: At the schema level, we assume a function
assigning the computation of measures to the Content axis
of the multicube, along with ordering and other restrictions.
We also assume a function, mapping combinations of
multicube coordinates, one from each of the coordinate axis of
the multicube to the measure axis. Each such assignment is
practically a row in the result set of one of the
queries/expressions/… computing the multicube, which we
call cell1. For brevity, in the sequel, we simply tag the
Content axis with this information.

To make the discussion easier, we will use an example taken from
[10], throughout the paper (Figure 1). In this example, we assume
a cube SalesCube is defined over the dimensions Products,
Salesman, Time, and Geography, each involving several

1 The name cell stems from the regular terminology of OLAP,

referring to points in the multidimensional space. Although in
the classical tabular representation of data, cell is actually a
successful name, for other representation techniques this does
not apply (e.g., in the proposal of [4], a cell should be
represented by a line).

levels of aggregation. In this query, we restrict the Time
dimension to the sales of Year 1991. We ignore the Products
dimension (Products=ALL) in the subsequent aggregation of
detailed data. Whenever we need to present a 2D screen and more
than two dimensions are involved, we need to merge
(CROSSJOIN in [10] terminology) as many dimensions as
necessary in a single axis. In this case, we combine the
dimensions Salesman (restricted on two salesmen) and
Geography on the COLUMNS axis and leave the dimension
Time on the ROWS axis. Note that the Geography dimension
involves more than one levels of aggregation (both City and
Region). The same applies for the Time dimension, where both
Quarters and Months are employed.

In terms of CPM terminology, the query of Figure 1 is a 2D-Slice,
say SL (see also Figure 2). In SL one can identify 4 horizontal
tapes denoted as R1, R2, R3 and R4 in Figure 1) and 6 vertical
tapes (numbered from C1 to C6). The meaning of the horizontal
tapes is straightforward: they represent the Quarter dimension,
expressed either as quarters or as months. The meaning of the
vertical tapes is somewhat more complex: they represent the
combination of the dimensions Salesman and Geography,
with the latter expressed in City, Region and Country level.
Moreover, two constraints are superimposed over these tapes: the
Year dimension is pinned to a specific value (i.e., Year=1991)
and the Product dimension is ignored. One can also consider
the cross-join t1 defined by the common cells of the tapes R1
and C1.

SELECT CROSSJOIN({Venk,Netz},{USA_N.Children,USA_S,Japan}) ON COLUMNS
{Qtr1.CHILDREN,Qtr2,Qtr3,Qtr4.CHILDREN} ON ROWS
FROM SalesCube
WHERE (Sales,[1991],Products.ALL)

Year = 1991 Venk Netz
Product = ALL USA Japan USA Japan

 USA_N USA_S USA_N USA_S
 Seattle Boston Seattle Boston
 Size(city)
R1 Qtr1 Jan
 Feb C1 C2 C3 C4 C5 C6
 Mar
R2 Qtr2
R3 Qtr3
R4 Qtr4 Oct
 Nov
 Dec

Figure 1. Motivating example for the cube model [10,11].

Interpreting our motivating example in terms of CPM, we assume
a detailed data set, named SalesCube, under the schema:
S = [Quarter.Day, Salesman.Salesman,

Geography.City, Time.Day,
Product.Item, Sales, PercentChange,
BudgetedSales]

The following axis schemata can also be discerned in Figure 2:
Row_S = {[Quarter], [Month,Quarter, Quarter,

Month]}

Column_S = {[Salesman×Geography],
[Salesman]×[[City,Size(City)],
Region,Country]}

Section_S = {[Time],[Year]}

Invisible_S = {[Product],[Product.ALL]}

Content_S = {[Sales],[sum(Sales0)]}

along with their respective axes:
Rows = {Row_S,[ancmonth

day (Month)=Qtr1,
Quarter=Qtr2, Quarter=Qtr3,
ancmonth

day (Month)=Qtr4]}
Columns = {Column_S, {[Salesman='Venk',

Salesman='Netz'],
[ancregion

city (City)='USA_N',
Region='USA_S', Country='Japan']}

Sections = {Section_S,[Year=1991,Year=1992]}
Invisible = {Invisible_S,[ALL='all']}
Content = {Content_S}

ancmonth
day (Month)=
Qtr1

(5)
Salesman='Netz',
Region='USA_S'

Salesman='Netz',
Country='Japan'

(6)
ancmonth

day (Month)=
Qtr4

Quarter
= Qtr3

Rows

Salesman='Venk',
Region='USA_S'

(2)

(3)
Salesman='Venk',
Country='Japan'

(1)
Salesman='Venk',
ancregion

city (City) =
'USA_N'

Columns

Quarter
= Qtr2

Salesman='Netz',
ancregion

city (City) =
'USA_N'
(4)

Year=1991

Year=1992 Sections

+
Products.ALL

=
 'all'

Invisible

+
Sales,

sum(Sales0),
true

Content

 Figure 2. The 2D-Slice SL for the example of Figure 2 [11].

In Figure 2, we can also observe an exemplary point over an axis,
incorporating equality conditions for each of the involved
dimensions of the axis:

p1 = ([Salesman,[City,Size(City)]],
[Salesman='Venk',ancregion

city (City)='USA_N'])

Thus, a multicube MC can be defined as:
MC = {Rows, Columns, Sections, Invisible,

Content}

Finally, in Figure 3, we present some more comprehensive
visualization representations of multicubes, axes, points, 2D slices
and cross-joins on a 3D and 2D layout.

Store

Product

Time

Customer

Cell

Multicube (MC)

Store

Product

Time

Customer

Cell

Multicube (MC)

Store

Product

Time

Cell

2D Slice

Store

Product

Time

Cell

2D Slice

2D Slice on a screen

Axis 1

Axis 2

2D Slice on a screen

Axis 1

Axis 2

Axis 1

Axis 2

Cell

Ta
pe

 1

Tape 2

Cross Join

Tapes & Cross JoinsAxis 1

Axis 2

Cell

Ta
pe

 1

Tape 2

Cross Join

Tapes & Cross Joins

Figure 3. Mapping CPM objects to 3D and 2D Cross Tabular

layouts.

3. MAPPING CPM TO VISUALIZATION
TECHNIQUES
In this section, we will demonstrate how CPM can be combined
with Table Lens (TL) [14,12], a traditional cross-tabular
presentation model from the Human Computer Interaction area.
This model is widely used in applications and platforms for the
visualization of tabular, multivariate and multidimensional data
and appears to be quite appropriate for OLAP purposes. Table
Lens is based on the “focus plus context” technique that allows
visualizing and manipulating large 2-D tables [14]. Using Table
Lens, we can easily examine patterns and correlations in large
tables and effectively zoom in without losing the global picture of
our data. We have chosen Table Lens as an advanced
visualization technique due to the fact that it is based on a cross-
tabular paradigm for the presentation of information; a paradigm
quite popular in OLAP screens, too.

DOI

Transfer
function

Figure 4. A Table Lens example: (a) a 2x4 focus window is
defined over a space of 8x8 points; (b) Table Lens distortion of

the Columns axis

3.1 Mapping CPM to Table Lens
In this subsection, we will present the main features of Table
Lens, and then we will link it to the CPM model. The main
constructs of the Table Lens technique involve:

 Axes: The Table Lens model assumes two axes. For clarity,
we will use Rows and Columns to denote these two axes.

 2D space: The 2D space is constructed from the Cartesian
product of the two Table Lens axes. It is a (finite) matrix of
cells.

 Degree of Interest Function (DOI): DOI is a function that
maps each axis point to a value that indicates the level of
interest for that point. For each axis a different DOI function
is prescribed.

 Transfer Function: A transfer function maps each cell to its
physical locations, indicating the level of zoom for each cell.
Practically, the transfer function is the translation of the
respective DOI function (operating at the “interest” space) to
the ”pixel” space.

One of the basic ideas behind the Table Lens technique is that not
all cells are considered equal. In fact, certain cells comprising a
concrete region of the 2D space are assigned to occupy more
surface of the screen than the rest of the cells. This is the essence
of zooming into the particular region of the 2D space. To
implement this, in the simplest setting of Table Lens, each DOI

function is a simple “pulse” function, meaning that it has a
standard value for all points, except for the points of a certain
interval that are mapped to a higher value. Remember that each
axis has its own DOI function, thus a 2D space is characterized by
2D windows of focus. In Figure 4a, we depict an 8x8 space with a
2x4 focus window. In Figure 4b we show (i) how the originally
equally important cells of the Columns axis are assigned
importance values by the DOI function: notice the pulse on two
particular cells that assigns them greater importance than the rest
of the cells and (ii) how the Transfer function, defined as a
weighted integral of the DOI function maps the points to pixel
areas. For reasons of efficient representation [14], in Figure 4b,
the produced axis is rotated by 90o.Finally, another interesting
feature of Table Lens is the ability to define more than one
windows of focus. This is quite helpful in situations where two
areas can be contrasted and compared. As we shall see in the next
section, this feature is particularly useful in the case of OLAP.
There is an easy way to map the underlying constructs of the
CPM to the ones of the Table Lens. The axis points of CPM are
mapped to axis points of Table Lens and a 2D slice in CPM is
implemented as a 2D space in Table Lens. The contents function
provides the values of the cells of the 2D space. Naturally, CPM
is generic enough to lack the particularities of the axis distortion
due to the DOI function. The naïve way to overcome the
limitation is simply to ask the user to define a certain window of
focus over the presented 2D slice, specifying both its size and
position. Still, we can automate the process on the basis of the
structure and the contents of a 2D slice.

 C1 C2 C3 C4 C5 C6
 Venk Netz
 USA Japan USA Japan
 USA_N USA_S USA_N USA_S
 Seattle Boston Seattle Boston

 QTR1 Jan 20 32 62 97 23 40 75 12

R1 Feb 25 40 74 121 18 32 51 20

 Mar 18 12 36 110 42 48 65 3

R2 QRT2 56 63 150 253 50 70 280 50

R3 QTR3 52 65 147 200 53 64 270 50

 QTR4 Oct 25 24 64 98 32 12 64 76

R4 Nov 28 28 76 102 40 21 83 69

 Dec 23 30 68 150 42 29 99 77

Figure 5. Instantiation of the motivating example with values;

different shading determine different cross-joins and thick
borders highlight the cross-joins with the highest, lowest and

closest to average values.

3.2 Which Window of Interest to Choose?
In this subsection, we will deal with the problem of providing the
user with proactive automated support for the exploration of an
OLAP report. Our main tool towards this end is the window of
interest as determined by the DOI functions and the basic idea is
to provide an algorithm to proactively determine the window of
interest over a 2D slice. We want to define an algorithm that
automatically determines this window whenever a user invokes an
OLAP report. It appears that we can come up with a generic
algorithm, where the stopping conditions, error range and other
parameters can be tuned by the user. Actually, we can even treat
as a parameter a choice on whether the user is simply interested of

having a window of a certain surface or he is actually interested to
see a focus on a range of cells satisfying certain statistical
properties (e.g., minimum/maximum/closest to average set of
values). Having determined algorithmically the window of
interest, the two involved DOI functions, which are independent
from each other, are directly derived.

3.3 Motivation and Assumptions
Before providing the generic algorithm, let us clarify our
contribution through a specific example. We instantiate the
example of Figure 2 with the values of Figure 5. Let us assume
that when the user activates this OLAP screen, he would like to be
informed on three particular cross-joins: one involving the
maximum sales, another involving the lowest and a third
involving the cross-join with behavior closest to the average of
the whole screen. Practically, this involves three windows of
focus, which we depict through a thick border around the
involved cross-joins. In this particular case, the cross-join R1/C6
is the one with the lowest summary of values, the cross-join
R4/C4 the one with the highest sum and the cross-join R2/C3 is
the one closest to the average sales per cross-join (which amounts
to 240.5 sales per cross-join).
A vanilla algorithm to compute the aforementioned quantities
proceeds as follows: (a) summarizes all cells per cross-join; (b)
sorts cross-joins and computes the average cross-join value and
(c) pinpoints the three regions of interest. This algorithm has
linear (precisely, one-pass) complexity on the number of cells and
nlogn (due to sorting) complexity on the number of cross-joins.
Actually, if we are simply to keep the max, min or
closest-to-avg cross-join, a linear single pass from all the
cells is sufficient, without any sorting. In the case of avg, each
time that we summarize the cells from a cross-join we can
compute the average of the individual cross-join summaries and
compute the closest cross-join to the current value of this average.
Assumptions: Underlying this proactive notification to the user,
we have made the following assumptions:
 Cross-joins constitute homogeneous pieces of information.

This means that we can assume a certain level of semantic
cohesion among the cells of a certain cross-join. Moreover,
we can assume that each cross-join can be considered as a
distinct semantic unit and that cross-joins are comparable to
each other. For example, we assume that it makes sense to
compare sales from Japan to the sales of Southern USA.
Naturally, the user choices for the axes points (and the
produced cross-joins) may severely affect this assumption.

 Statistically speaking, we are allowed to perform certain
aggregate operations over our data. Specifically, we assume
that the underlying detailed data set has been summarized by
a distributive aggregate function.

In [6] aggregation functions are categorized as (a) distributive
functions, like max, min, sum or count, meaning that there is a
way to compute the result of the application of the aggregation
function to the overall data set by composing the individual
results of its application to subsets of the dataset; (b) algebraic
functions that are expressed as finite algebraic expressions over
distributive functions, like avg; and (c) holistic functions for all
other functions.

To forestall any possible criticism, we want to point out that the
exact result of aggregation operations over a 2D slice is handled
by the logical layer. In the case of the [18] model, all operations
are formally defined as operations over the detailed data set;
optimization results for the obvious cases are also provided.
Nevertheless, in the case of this paper, we want a quick
approximation of the statistical measures under consideration, to
be used for the determination of the focus window and not of the
values of the report. Thus, problems like the Simpson’s paradox
or the non invariance property [6] are considered as out of the
scope of this paper. Finally, as a general comment, since it is
quite cumbersome to ask the user each time to characterize the
statistical nature of his underlying data, we employ the idea that
one can have an indication of the statistical nature of the
information of screen by observing the aggregate function that has
been applied to compute them. Thus, since in our case we are
starting with a sum aggregate function, we conclude that we can
apply further distributive operations to the measure Sales in
order to obtain our indicative approximations.

3.4 A Generic Algorithm for Determining the
Window of Focus
Naturally, we can do better than the aforementioned vanilla
algorithm by adding extra criteria to the proactive selection of the
starting window of focus. We propose a guided greedy generic
algorithm, GenericFocusWindow (Figure 6), to deal with the
issue. The simple idea underlying the algorithm is that there are
certain conditions to be met for the focus window. For example,
one could require that the focus window occupies at most/least a
certain percentage of the screen size, or of a certain size of cells.
Moreover, the selected window optimizes an objective function.
The property Determining Quality of the algorithms captures
exactly this requirement in the form of a certain function. Since
our algorithm is greedy, we need an Original Pick routine to start
the processing; in general this is closely related to the
Determining Quality function and we require that it starts with a
smallest value. Moreover, a Guard Condition checks for the
satisfaction of the desired property (meaning that we can possibly
allow a certain approximation error ε to out obtained solution).
Finally, a function Pick provides the necessary details for working
from the original small-in-value solution towards the final result,
practically picking the next cross-join to enlarge the current
window of focus.
One implicit assumption that our algorithm makes is that the
Original Pick fits inside the allowed window. This constraint can
easily be relaxed by an extension of the algorithm picking
subparts of a cross-join in a similar fashion with the proposed
algorithm, if we consider that we pick subparts of a 2Dslice. For
lack of space we do not incorporate this extension too.
We will give two examples for the instantiation of the
aforementioned generic algorithm. In the first case (Algorithm
FocusWindow_Min_3x3 in Figure 7), we are interested in a focus
window which (a) includes the window with the minimum
summary of values and (b) is not bigger than 3x3 (with a
tolerance of the surface ε=1). We can observe that the guided
greedy algorithm picks the window of minimum value as its
starting point. The first constraint is met by the original pick and
the second by the stop condition of the algorithm. During the
expansion phase, each time we choose a cross-join such that (a) it

is neighbouring with the current solution; (b) if merged with the
current solution, it comprises a rectangle (easily determined by
comparing the lengths of the opposite sides of the new solution
and (c) has the smallest surface.
If we execute the algorithm on the data of Figure 5, the result will
be Q={R1/C6,R2/C6,R3/C6,R4/C6} which is practically
the tape C6. If instead of the minimum value, in function Pick
we had chosen the maximum, then the result would be
Q={R1/C6,R1/C5}. Another obvious extension would be to
employ a 2-greedy algorithm: in this case the small cross-joins
R2/C5 and R2/C6, each comprising a single cell, could have
been incorporated in the solution too.

Algorithm GenericFocusWindow
Input:
 A set of cross-joins GJ and a display grid of cells Grid

related to GJ.
 Each cell belonging to Grid is characterized by coordinates

(x,y) and each CJ belonging to GJ is characterized by the
coordinates of its upper left and lower right cell. Each cross-
join has a surface, determined by its coordinates.

Parameters:
 OriginalPick(GJ): a routine to determine the starting

cross-join of the algorithm
 GuardCondition: a routine to determine whether the

algorithm should stop
 ε: a tolerance, or error range for the acceptance of a solution

or not
 Qualifies: a Boolean function that determines whether a

solution satisfies a set of constraints
 DeterminingQuality: a property of a cross-join like

surface, sum of values, …
 Pick(GJ,Q): a routine picking a cross-join to enlarge the

produced solution
Output:
 A set of cross-joins, Q that satisfies the conditions set by the

user.
Begin
 Q = {}
 C = OriginalPick(GJ)
 Add C to Q.
 While (GuardCondition) {
 CJ = Pick(GJ,Q);
 If CJ≠NULL Then add CJ to Q Else exit the loop
 }
 Return Q
End.

Figure 6. Algorithm GenericFocusWindow
In a different example (Figure 8), we also demonstrate an
algorithm producing a focus window which (a) includes the
window with the maximum summary of values and (b) is not
bigger than 3x3 (with a tolerance of the surface ε=0) and (c)
optimizes a combined formula over surface and value. Each time
we pick the cross-joins that brings us closest to the 3x3
desideratum, while having the highest summary value. In the case
of our motivating example, the solution is Q={R4/C3,R4/C4}
with an exact 3x3 surface.

Algorithm FocusWindow_Min_3x3
Input:
 A set of cross-joins GJ and a display grid of cells Grid

related to GJ.
 Each cell belonging to Grid is characterized by coordinates

(x,y) and each CJ belonging to GJ is characterized by the
coordinates of its upper left and lower right cell. Each cross-
join has a surface, determined by its coordinates.

Parameters:
 OriginalPick(GJ): start with cross-join having the

minimum summary
 GuardCondition (Q,ε): the surface is closest to 3x3
 ε: 1 cell2
 Qualifies: a Boolean function that determines whether a

solution satisfies a set of constraints
 DeterminingQuality(Q): distance from the ideal 3x3

surface
 Pick(GJ,Q): a routine picking the cross-join with minimum

distance from the ideal 3x3 surface
Output:
 A set of cross-joins, Q that satisfies the conditions set by the

user.
Begin
 Q = {}
 C = OriginalPick(GJ)
 Add C to Q.
 While (GuardCondition){
 CJ=Pick(GJ,Q);
 If CJ≠NULL Then add CJ to Q Else exit the loop
 }
 Return Q
End.
OriginalPick(GJ){
 Let the cross-join Cr s.t., |sum(Cr) | is the minimum;
 Among equals pick the upper and left-wise;
 Return (Cr);
}
DeterminingQuality(Q) {
 Return surface(Q)-surface(3x3);
}
GuardCondition (Q,1){
 If surface(Q)-surface(3x3) <1 Then Return true;
 Else Return false
}
Pick(CJ,Q){
 Let V be the subset of the cross-joins of CJ, s.t., for each
 v∈V: Qualifies(v,CJ,Q)
 Let vP∈V be a cross-join s.t., |DeterminingQuality(Q)|
 is minimum, if vP is added to Q.
 Return vP;
}
Qualifies(v,CJ,Q){
 If (v is adjacent to a cross-join CJ∈CJ) &&
 (v ∪ Q forms a rectangle)
 Then Return true;
 Else Return false
}

Figure 7. Algorithm FocusWindow_Min_3x3

Algorithm FocusWindow_Max_Weighted
Input:
 Same as in Algorithm FocusWindow_Min_3x3
Parameters:
 OriginalPick(GJ): start with cross-join having the

maximum summary
 GuardCondition (Q,ε): the surface is closest to 3x3
 ε: 0 cell2
 Qualifies: a Boolean function that determines whether

a solution satisfies a set of constraints
 DeterminingQuality(Q): a combined formula each

time picking the cross-join that brings us closest to the
3x3 desideratum, while having the highest summary
value.

 Pick(GJ,Q): a routine picking the cross-join with
maximum Determining Quality

Output:
 A set of cross-joins, Q that satisfies the conditions set by
the user.
Begin

 Q = {}
 C = OriginalPick(GJ)

 Add C to Q.
 While (GuardCondition){
 CJ=Pick(GJ,Q);
 If CJ≠NULL Then add CJ to Q Else exit the loop
 }
 Return Q

End.
OriginalPick(GJ){
 Let the cross-join Cr s.t., |sum(Cr) | is the maximum;
 Among equals pick the upper and left-wise;
 Return (Cr);
}
DeterminingQuality(Q) {
 Return (1 - [surface(3x3)-surface(Q)] / 9)*
 [sum(Q)-sum(OriginalPick(CJ))];
}
GuardCondition (Q,0){
 If surface(Q)-surface(3x3) < 0 Then
 Return true;
 Else Return false;
}
Pick(CJ,Q){
 Let V be the subset of the cross-joins of CJ, s.t., for each

v∈V: Qualifies(v,CJ,Q)
 Let vP ∈V be a cross-join s.t.,

|DeterminingQuality(v ∪ Q)| is maximum
 Return vP;
}
Qualifies(v,CJ,Q){
 If (v is adjacent to a cross-join CJ∈CJ) &&
 (v ∪ Q forms a rectangle) &&
 (surface(v∪Q)-surface(3x3)) < 0
 Then Return true;
 Else Return false
}

Figure 8. Algorithm FocusWindow_Max_Weighted

4. DISCUSSION
At this point, we would like to take the time to discuss the larger
framework of the contribution of this paper. First, as the Lowell
report [7] mentions, visualization is one of the big issues of
database research for the next years. To copy from the Lowell
report, “The original Laguna-Beach report lamented that there
was little research on user interfaces to DBMSs. … There have
not been comparable advances in the last 15 years. There is a
crying need for better ideas in this area”. We claim that of all
fields of database research, decision support and OLAP are the
ones to be affected most out of this phenomenon.
Someone could possibly question the need for a new model. For
us it is clear that one of the main reasons for the research
community not dealing with visualization issues so far, is the
heritage of the computing paradigm of the past three decades.
This paradigm silently made the assumption that the user sitting
in front of a console makes one query and retrieves one answer
(as would have happened in a UNIX terminal thirty years ago).
This is not the case with modern user interfaces for datasets,
especially in the context of OLAP. The user makes
simultaneously many queries, combined in one or more screens;
nevertheless, all our modeling techniques and languages so far
(from the relational model, to SQL and the OLAP modeling
efforts proposed in the academia) simply ignore this fact. Our
effort tries to formalize the simultaneous presence of more than
one queries and this is done in two layers. In the presentational
layer we provide a uniform and generic model for the user
interface, which hides the complexity of answer retrieval,
detached in the logical layer. As a second interesting difference,
note that the users work in sessions of queries, as opposed to
sequences of unrelated queries. OLAP is a typical, but not the
only, case for this behavior.
As a first attempt towards the issue, we have carefully selected a
visualization technique from the fields of Human-Computer
Interaction and Information Visualization with the particularity of
being crafted specifically for tabular data and we have customized
it for OLAP. Naturally, we do not claim that this is the ultimate
solution to the problem, but rather we wish to indicate that there is
quite an interesting research field in this area and a supportive
body of knowledge from other disciplines, such as Human-
Computer Interaction and Information Visualization.
At the same time, new hardware developments pose new
requirements for our visualization techniques. One of our goals is
to implement OLAP visualization techniques for particularly
small devices such mobile phones and palmtops. Although the
processing power of these gadgets is no more negligible (actually,
the buzzword ‘thin client’ seems to disappear from the standard
vocabulary of the area) their screen sizes shrink over time. To
make OLAP screens presentable to such devices one can follow
several paths, such as: (a) show only high level summaries which
involve small 2D slices or (b) show simply pie- or bar-charts. We
choose an alternative approach where (a) the contents of the
screen do not have to be squeezed in size in order to fit in the
screen, and most importantly (b) the report does not have to be
rewritten neither do we have to check for the aggregation level of
the presented data. On the contrary, a certain part of the report is
presented depending on the particularities of the device. Here, we
make the reasonable assumption that either the device has the
computational power to determine the amount of cells that can be

presented to the user or, if this is not an option, the device can at
least piggy-back its characteristics to the OLAP server and let the
server decide on the focus window.
Third, making the discussion a little broader, we bring up the
Table Lens technique to highlight the possibility of making
proactive user decision support in the presence of large datasets
(in our case, the value axis is quite larger than the size that
someone can handle efficiently). Clearly, as report screens are
limited not only due to hardware constraints, but also due to the
particularities of human nature (e.g., the classical discussion on
the limited capacity of persons in processing information [9]), it
comes quite natural that automated proactive support to the users
is thus one of the new requirements that decision support tools
have to provide. Thus, this end of our contribution is related to a
broader line of research [2,13].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated how the Cube Presentation
Model, a novel presentation model for OLAP data can be
naturally mapped into an advanced visualization technique, the
Table Lens. Initially, we have defined the mapping scheme from
the Cube Presentation Model to Table Lens entities and objects.
Then, we have introduced suitable algorithms for proactive
automated support of the user towards the highlighting of
interesting areas of a report. Finally, we have discussed on the
usefulness and applicability of the proposed techniques to modern
technological developments.
Next steps in our research include the introduction of suitable,
CPM specific, visualization techniques that comply to current
standards and recommendations as far as usability and user
interface design is concerned and its extension to address the
specific visualization requirements of mobile and wireless OLAP,
as this notion can be supported and implemented on mobile
devices and palmtops.

6. REFERENCES
[1] M. Gebhardt, M. Jarke, S. Jacobs: A Toolkit for Negotiation

Support Interfaces to Multi-Dimensional Data. ACM
SIGMOD 1997, pp. 348 – 356.

[2] J. Han. Towards On-Line Analytical Mining in Large
Databases. SIGMOD Record, 27(1): 97-107, 1998.

[3] W.H. Inmon: Building the Data Warehouse. John Wiley &
Sons, 1996.

[4] Alfred Inselberg: Visualization and Knowledge Discovery for
High Dimensional Data. 2nd Workshop Proceedings UIDIS,
IEEE, 2001.

[5] D.A. Keim. Visual Data Mining. Tutorials of the 23rd
International Conference on Very Large Data Bases, Athens,
Greece, 1997.

[6] Hans-J. Lenz, Bernhard Thalheim. OLAP Databases and
Aggregation Functions. In Proc. of the 13th International
Conference on Scientific and Statistical Database
Management (SSDBM’01), 2001.

[7] Various Authors: The Lowell Database Research Self
Assessment. Lowell, Massachusetts USA, May 4-6, 2003.
Available at: http://research.microsoft.com/~Gray/lowell/.

[8] Andreas Maniatis, Panos Vassiliadis, Spiros Skiadopoulos,
Yannis Vassiliou: Advanced Visualization for OLAP (long
version).

[9] George A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, 63, 81-97 (1956).

[10] Microsoft Corp. OLEDB for OLAP February 1998.
Available at: http://www.microsoft.com/data/oledb/olap/.

[11] Andreas Maniatis, Panos Vassiliadis, Spiros Skiadopoulos,
Yannis Vassiliou: CPM: A Cube Presentation Model for
OLAP. DaWaK 2003, Prague, Czech Republic, September 3
– 5 2003.

[12] Peter Pirollo, Ramana Rao: Table Lens as a Tool for Making
Sense of Data. Proceedings of the AVI ’96 Workshop,
Gubbio, Italy, June 1996.

[13] S. Sarawagi, R. Agrawal, N. Megiddo: Discovery-Driven
Exploration of OLAP data Cubes, Proceedings of the 6th
International Conference on Extending Database Technology
(EDBT’98), Valencia, Spain, March 1998.

[14] Ramana Rao, Stuart K. Card: The Table Lens: Merging
Graphical and Symbolic Representations in an effective
Focus + Context Visualization for Tabular Information.
Proceedings of the ACM SIGCHI (CHI ’94), Boston,
Massachusetts USA, April 24-28, 1994.

[15] Thomas Ruf, Juergen Georlich, Ingo Reinfells: Dealing with
Complex Reports in OLAP Applications. DaWaK ‘99,
Florence, Italy, August 30th – September 1st 1999.

[16] Aris Tsois, Nikos Karayannidis, Timos Sellis: MAC:
Conceptual Data Modeling for OLAP. Proc. of the
International Workshop on DMDW 2001.

[17] P. Vassiliadis, T. Sellis: A Survey on Logical Models for
OLAP Databases. SIGMOD Record, vol. 28, no. 4,
December 1999.

[18] Panos Vassiliadis, Spiros Skiadopoulos: Modeling and
Optimization Issues for Multidimensional Databases. Proc.
of CAiSE’00, Stockholm, Sweden, 2000.

