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ABSTRACT 
Data visualization is one of the big issues of database research. 
OLAP as a decision support technology is highly related to the 
developments of data visualization area. In this paper we 
demonstrate how the Cube Presentation Model (CPM), a novel 
presentational model for OLAP screens, can be naturally mapped 
on the Table Lens, which is an advanced visualization technique 
from the Human-Computer Interaction area, particularly tailored 
for cross-tab reports. We consider how the user interacts with an 
OLAP screen and based on the particularities of Table Lens, we 
propose an automated proactive users support. Finally, we discuss 
the necessity and the applicability of advanced visualization 
techniques in the presence of recent technological developments. 

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design – data models.  
H.2.3 [Database Management]: Languages – report writers  
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – graphical user interfaces (GUI), user-centered 
design.  

General Terms 
Design, Human Factors. 

Keywords 
On-Line Analytical Processing, Visualization 

1. INTRODUCTION 
In the last years, On-Line Analytical Processing (OLAP) and data 
warehousing have become major research areas in the database 
community [3,7]. Although the modeling of data [16,17] has been 
extensively dealt with, an equally important issue of the OLAP 
domain, the visualization of data, has not been adequately 
investigated. In the context of OLAP, data visualization deals 
with the techniques and tools used for presenting OLAP specific 
information to end-users and decision makers. The database 

community expects visualization to be of significant importance 
in the area, during the next years [7], and although research has 
provided results dealing with the presentation of vast amounts of 
data [5,4,1,15], OLAP has not been part of advanced visualization 
techniques so far. 

In this paper, we start by adopting a newly introduced 
presentation model for OLAP called Cube Presentation Model - 
CPM [11] and demonstrate how it can be combined with non-
traditional visualization techniques. The CPM model 
distinguishes representation from data retrieval. It is separated in 
two layers: a logical that deals with data retrieval and 
representation and a presentational that provides a generic model 
for data representation. In this paper, we present a quick informal 
overview of the main characteristics of CPM and accompany 
them with its respective UML modeling for ease of 
understanding. Then, we proceed with the contributions of this 
paper, which can be listed as follows: 
 Initially, we present a mapping of the generic presentational 

scheme of CPM to the particularities of an advanced 
visualization technique coming from the field of Human 
Computer Interaction. The Table Lens technique [14,12] is 
particularly tailored for cross-tab reports, which are most 
commonly used for OLAP purposes and it is accompanied 
by a set of handy features for the exploration of data sets 
which are presented in this way. 

 Next, we provide algorithms for the automated proactive 
support of the user during his interaction with an OLAP 
screen, based on the particularities of Table Lens. 
Specifically, Table Lens employs a particular distortion of 
the presentation to highlight areas of increasing interest to 
the user. We provide a generic algorithm to support this task 
proactively. 

 Finally, we discuss the necessity and the applicability of 
such visualization techniques in the presence of current 
technological developments.  

The remainder of this paper is structured as follows. In Section 2, 
we summarize the logical and the presentation layers of CPM. 
Section 3 shows how CPM can be naturally combined with Table 
Lens. Moreover, Section 3 demonstrates the automate proactive 
support to the user. In Section 4, we discuss the necessity and 
applicability of the proposed ideas. Finally, Section 5 concludes 
our results and presents topics for future work. A longer version 
of this paper, with more details can be found in [8]. 
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2. THE CUBE PRESENTATION MODEL 
Although OLAP has been an active research area for the past few 
years, the efforts devoted to the visualization of OLAP screens are 
very scarce. To our knowledge, only two such efforts exist [10,1]. 
The first is from the industrial field, where Microsoft has issued a 
commercial standard for multidimensional databases and where 
the presentational issues form a major part [10]. In this approach, 
a powerful query language is used to provide the user with 
complex reports, created from several cubes (or actually subsets 
of existing cubes). The second is an academic approach, the Tape 
Model [1], based on the notion of “Tapes”, called so due to their 
look and feel. Tapes are infinite and can overlap (if they contain 
shared data dimensions), or intersect with each other. A two 
dimensional intersection is called a matrix and represents a kind 
of cross-tab between the corresponding dimensions. Each tape 
comprises of a variable number of tracks. The most important 
operations on tapes include: (a) insertion and deletion of tracks, 
(b) changing the sequence of tracks (i.e., sorting) and (c) scrolling 
on tracks. The Tape Model offers the possibility of defining 
hierarchical structures within a tape. 

In [11], we have presented the Cube Presentation Model (CPM), a 
novel proposal towards a presentation model for OLAP screens. 
CPM is composed of two parts: (a) a logical layer which involves 
the formulation of cubes and (b) a presentational layer that 
involves the presentation of these cubes (normally, on a 2D 
screen). The main idea behind CPM lies in the separation of 
logical data retrieval (which we encapsulate in the logical layer 
of CPM) and data presentation (captured from the presentational 
layer of CPM). This duality provides the flexibility of possibly 
replacing one of the two layers with an alternative proposal 
smoothly. The logical layer that we propose is based on an 
extension of a previous proposal [18] with additional functionality 
that allows us to incorporate more complex cubes. In a nutshell, 
the logical model involves (a) dimensions defined as lattices of 
dimension levels, (b) ancestor functions (in the form of ancL1L2) 
mapping values between related levels of a dimension, (c) 
detailed data sets, practically modeling fact tables at the lowest 
granule of information for all their dimensions and (d) cubes, 
defined as aggregations over detailed data sets. In this paper, we 
will not deal with the formal presentation of the underlying 
logical layer of CPM (the reader is referenced to [11] for a 
detailed and in depth presentation) but focus on the mapping of 
our presentation layer to alternative visualization techniques from 
the area of Human Computer Interaction. 
Following, we give an intuitive and informal description of the 
presentation layer of CPM that provides a formal model for 
OLAP screens.  
The most important entities – as far as display aspects are 
concerned – of the presentation layer of CPM include: 

− Points: A point over an axis resembles the classical notion of 
points over axes in mathematics. In the simple case, a point is 
characterized by an equality selection condition over a level 
(e.g., City=Seattle). Nevertheless, as we shall see, we can 
multiplex several logical dimensions to one presentational 
axis; therefore, a point will be formally defined to handle this 
kind of situations, too. 

− Axis: An axis can be viewed as a set of points. We introduce 
two special purpose kinds of axes, Invisible and 

Content. An Invisible axis is a placeholder for the 
levels of the data set which are to be presented to the user. The 
Content axis has a more elaborate role: it is a place holder 
for the content of the  multicube, as computed over the detailed 
data. 

− Multicubes. A multicube is defined over (a) a 
multidimensional space, comprising a set of axes, (b) an 
underlying data set providing all the data which will be filtered 
and aggregated before presented to the user and (c) a mapping 
among the multidimensional space and the underlying data set 
that shows the computation of the multicube contents. 

− 2D-slice: A 2D slice is a 2D layer of data that can be presented 
on the screen. Consider a multicube MC, composed of K axes. 
A 2D-slice over MC can be sufficiently defined by a set of (K-
2) points, each from a separate axis. Intuitively, a 2D-slice 
pins the axes of the multicube to specific points, except for 2 
axes, which will be presented on the screen (or a printout). In 
Fig. 2, we depict such a 2D slice over a multicube. //check 
whether it is the MS picture… 

− Tape: Intuitively, a tape is column or a row over a 2D-slice, 
i.e., a construct parallel to an axis. Again, if we consider a 2D-
slice SL over a multicube MC, composed of K axes, a tape is 
sufficiently defined by a set of (K-1) points, where the (K-2) 
points are the points of SL. A tape is always parallel to a 
specific axis: out of the two "free" axis of the 2D-slice, we pin 
one of them to a specific point which distinguishes the tape 
from the 2D-slice. 

− Cross-join: Intuitively, if we take one tape parallel to the 
horizontal axis and another parallel to the vertical axis, their 
intersection is a cell. In the most general case, as we shall see, 
it can be a set of cells. In both cases, the intersection of two 
non-parallel tapes is called a cross-join. Consider a 2D-slice 
SL over a multicube MC, composed of K axes and two tapes t1 
and t2 which are not parallel to the same axis. A cross-join 
over t1 and t2 is defined by a set of K points, where the (K-2) 
points are the points of SL and each of the two remaining 
points is a point on a different axis of the remaining axes of the 
slice. 

− Content Function: At the schema level, we assume a function 
assigning the computation of measures to the Content axis 
of the multicube, along with ordering and other restrictions. 
We also assume a function, mapping combinations of 
multicube coordinates, one from each of the coordinate axis of 
the multicube to the measure axis. Each such assignment is 
practically a row in the result set of one of the 
queries/expressions/… computing the multicube, which we 
call cell1. For brevity, in the sequel, we simply tag the 
Content axis with this information. 

To make the discussion easier, we will use an example taken from 
[10], throughout the paper (Figure 1). In this example, we assume 
a cube SalesCube is defined over the dimensions Products, 
Salesman, Time, and Geography, each involving several 

                                                                 
1 The name cell stems from the regular terminology of OLAP, 

referring to points in the multidimensional space. Although in 
the classical tabular representation of data, cell is actually a 
successful name, for other representation techniques this does 
not apply (e.g., in the proposal of [4], a cell should be 
represented by a line). 



levels of aggregation. In this query, we restrict the Time 
dimension to the sales of Year 1991. We ignore the Products 
dimension (Products=ALL) in the subsequent aggregation of 
detailed data. Whenever we need to present a 2D screen and more 
than two dimensions are involved, we need to merge 
(CROSSJOIN in [10] terminology) as many dimensions as 
necessary in a single axis. In this case, we combine the 
dimensions Salesman (restricted on two salesmen) and 
Geography on the COLUMNS axis and leave the dimension 
Time on the ROWS axis. Note that the Geography dimension 
involves more than one levels of aggregation (both City and 
Region). The same applies for the Time dimension, where both 
Quarters and Months are employed. 

In terms of CPM terminology, the query of Figure 1 is a 2D-Slice, 
say SL (see also Figure 2). In SL one can identify 4 horizontal 
tapes denoted as R1, R2, R3 and R4 in Figure 1) and 6 vertical 
tapes (numbered from C1 to C6). The meaning of the horizontal 
tapes is straightforward: they represent the Quarter dimension, 
expressed either as quarters or as months. The meaning of the 
vertical tapes is somewhat more complex: they represent the 
combination of the dimensions Salesman and Geography, 
with the latter expressed in City, Region and Country level. 
Moreover, two constraints are superimposed over these tapes: the 
Year dimension is pinned to a specific value (i.e., Year=1991) 
and the Product dimension is ignored. One can also consider 
the cross-join t1 defined by the common cells of the tapes R1 
and C1. 

 
SELECT CROSSJOIN({Venk,Netz},{USA_N.Children,USA_S,Japan}) ON COLUMNS 
{Qtr1.CHILDREN,Qtr2,Qtr3,Qtr4.CHILDREN} ON ROWS 
FROM SalesCube 
WHERE (Sales,[1991],Products.ALL) 

Year = 1991  Venk    Netz    
Product = ALL  USA   Japan USA   Japan 

   USA_N  USA_S  USA_N  USA_S  
   Seattle Boston   Seattle Boston   
  Size(city)         
R1 Qtr1 Jan         
  Feb C1  C2 C3  C4 C5 C6 
  Mar         
R2 Qtr2          
R3 Qtr3          
R4 Qtr4 Oct         
  Nov         
  Dec         

 
Figure 1. Motivating example for the cube model [10,11]. 

 
Interpreting our motivating example in terms of CPM, we assume 
a detailed data set, named SalesCube, under the schema: 
S = [Quarter.Day, Salesman.Salesman, 

Geography.City, Time.Day, 
Product.Item, Sales, PercentChange, 
BudgetedSales]  

The following axis schemata can also be discerned in Figure 2: 
Row_S = {[Quarter], [Month,Quarter, Quarter, 

Month]} 

Column_S = {[Salesman×Geography],   
[Salesman]×[[City,Size(City)], 
Region,Country]} 

Section_S = {[Time],[Year]} 

Invisible_S = {[Product],[Product.ALL]} 

Content_S = {[Sales],[sum(Sales0)]} 

along with their respective axes: 
Rows =  {Row_S,[ancmonth

day (Month)=Qtr1, 
Quarter=Qtr2, Quarter=Qtr3,     
ancmonth

day (Month)=Qtr4]} 
Columns = {Column_S, {[Salesman='Venk', 

Salesman='Netz'],             
[ancregion

city (City)='USA_N', 
Region='USA_S', Country='Japan']} 

Sections = {Section_S,[Year=1991,Year=1992]} 
Invisible = {Invisible_S,[ALL='all']} 
Content = {Content_S} 

ancmonth
day (Month)= 
Qtr1 

(5) 
Salesman='Netz', 
Region='USA_S'  

Salesman='Netz', 
Country='Japan' 

(6) 
ancmonth

day (Month)= 
Qtr4 

Quarter 
= Qtr3 

Rows 

Salesman='Venk', 
Region='USA_S' 

(2) 

(3) 
Salesman='Venk', 
Country='Japan' 

(1) 
Salesman='Venk', 
ancregion

city (City) = 
'USA_N' 

Columns 

Quarter 
= Qtr2 

Salesman='Netz', 
ancregion

city (City) = 
'USA_N' 
(4) 

Year=1991

Year=1992 Sections 

+ 
Products.ALL 

= 
 'all' 

Invisible 

+ 
Sales, 

sum(Sales0), 
true 

Content 

 
 Figure 2. The 2D-Slice SL for the example of Figure 2 [11]. 

 
In Figure 2, we can also observe an exemplary point over an axis, 
incorporating equality conditions for each of the involved 
dimensions of the axis: 

p1 = ([Salesman,[City,Size(City)]], 
[Salesman='Venk',ancregion

city (City)='USA_N']) 

Thus, a multicube MC can be defined as: 
MC = {Rows, Columns, Sections, Invisible, 

Content}  
 
Finally, in Figure 3, we present some more comprehensive 
visualization representations of multicubes, axes, points, 2D slices 
and cross-joins on a 3D and 2D layout. 
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Figure 3. Mapping CPM objects to 3D and 2D Cross Tabular 

layouts. 



3. MAPPING CPM TO VISUALIZATION 
TECHNIQUES 
In this section, we will demonstrate how CPM can be combined 
with Table Lens (TL) [14,12], a traditional cross-tabular 
presentation model from the Human Computer Interaction area. 
This model is widely used in applications and platforms for the 
visualization of tabular, multivariate and multidimensional data 
and appears to be quite appropriate for OLAP purposes. Table 
Lens is based on the “focus plus context” technique that allows 
visualizing and manipulating large 2-D tables [14]. Using Table 
Lens, we can easily examine patterns and correlations in large 
tables and effectively zoom in without losing the global picture of 
our data. We have chosen Table Lens as an advanced 
visualization technique due to the fact that it is based on a cross-
tabular paradigm for the presentation of information; a paradigm 
quite popular in OLAP screens, too. 

 

 

 

DOI 

Transfer 
function 

 

Figure 4. A Table Lens example: (a) a 2x4 focus window is 
defined over a space of 8x8 points; (b) Table Lens distortion of 

the Columns axis 

3.1 Mapping CPM to Table Lens 
In this subsection, we will present the main features of Table 
Lens, and then we will link it to the CPM model. The main 
constructs of the Table Lens technique involve: 

 Axes: The Table Lens model assumes two axes. For clarity, 
we will use Rows and Columns to denote these two axes. 

 2D space: The 2D space is constructed from the Cartesian 
product of the two Table Lens axes. It is a (finite) matrix of 
cells. 

 Degree of Interest Function (DOI): DOI is a function that 
maps each axis point to a value that indicates the level of 
interest for that point. For each axis a different DOI function 
is prescribed. 

 Transfer Function: A transfer function maps each cell to its 
physical locations, indicating the level of zoom for each cell. 
Practically, the transfer function is the translation of the 
respective DOI function (operating at the “interest” space) to 
the ”pixel” space. 

One of the basic ideas behind the Table Lens technique is that not 
all cells are considered equal. In fact, certain cells comprising a 
concrete region of the 2D space are assigned to occupy more 
surface of the screen than the rest of the cells. This is the essence 
of zooming into the particular region of the 2D space. To 
implement this, in the simplest setting of Table Lens, each DOI 

function is a simple “pulse” function, meaning that it has a 
standard value for all points, except for the points of a certain 
interval that are mapped to a higher value. Remember that each 
axis has its own DOI function, thus a 2D space is characterized by 
2D windows of focus. In Figure 4a, we depict an 8x8 space with a 
2x4 focus window. In Figure 4b we show (i) how the originally 
equally important cells of the Columns axis are assigned 
importance values by the DOI function: notice the pulse on two 
particular cells that assigns them greater importance than the rest 
of the cells and (ii) how the Transfer function, defined as a 
weighted integral of the DOI function maps the points to pixel 
areas. For reasons of efficient representation [14], in Figure 4b, 
the produced axis is rotated by 90o.Finally, another interesting 
feature of Table Lens is the ability to define more than one 
windows of focus. This is quite helpful in situations where two 
areas can be contrasted and compared. As we shall see in the next 
section, this feature is particularly useful in the case of OLAP. 
There is an easy way to map the underlying constructs of the 
CPM to the ones of the Table Lens. The axis points of CPM are 
mapped to axis points of Table Lens and a 2D slice in CPM is 
implemented as a 2D space in Table Lens. The contents function 
provides the values of the cells of the 2D space. Naturally, CPM 
is generic enough to lack the particularities of the axis distortion 
due to the DOI function. The naïve way to overcome the 
limitation is simply to ask the user to define a certain window of 
focus over the presented 2D slice, specifying both its size and 
position. Still, we can automate the process on the basis of the 
structure and the contents of a 2D slice. 

   C1 C2 C3 C4 C5 C6 
   Venk    Netz    
   USA   Japan USA   Japan 
   USA_N  USA_S  USA_N  USA_S  
   Seattle Boston   Seattle Boston   

 QTR1 Jan 20 32 62 97 23 40 75 12 

R1  Feb 25 40 74 121 18 32 51 20 

  Mar 18 12 36 110 42 48 65 3 

R2 QRT2  56 63 150 253 50 70 280 50 

R3 QTR3  52 65 147 200 53 64 270 50 

 QTR4 Oct 25 24 64 98 32 12 64 76 

R4  Nov 28 28 76 102 40 21 83 69 

  Dec 23 30 68 150 42 29 99 77  
 
Figure 5. Instantiation of the motivating example with values; 

different shading determine different cross-joins and thick 
borders highlight the cross-joins with the highest, lowest and 

closest to average values. 

3.2 Which Window of Interest to Choose? 
In this subsection, we will deal with the problem of providing the 
user with proactive automated support for the exploration of an 
OLAP report. Our main tool towards this end is the window of 
interest as determined by the DOI functions and the basic idea is 
to provide an algorithm to proactively determine the window of 
interest over a 2D slice. We want to define an algorithm that 
automatically determines this window whenever a user invokes an 
OLAP report. It appears that we can come up with a generic 
algorithm, where the stopping conditions, error range and other 
parameters can be tuned by the user. Actually, we can even treat 
as a parameter a choice on whether the user is simply interested of 



having a window of a certain surface or he is actually interested to 
see a focus on a range of cells satisfying certain statistical 
properties (e.g., minimum/maximum/closest to average set of 
values). Having determined algorithmically the window of 
interest, the two involved DOI functions, which are independent 
from each other, are directly derived. 

3.3 Motivation and Assumptions 
Before providing the generic algorithm, let us clarify our 
contribution through a specific example. We instantiate the 
example of Figure 2 with the values of Figure 5. Let us assume 
that when the user activates this OLAP screen, he would like to be 
informed on three particular cross-joins: one involving the 
maximum sales, another involving the lowest and a third 
involving the cross-join with behavior closest to the average of 
the whole screen. Practically, this involves three windows of 
focus, which we depict through a thick border around the 
involved cross-joins. In this particular case, the cross-join R1/C6 
is the one with the lowest summary of values, the cross-join 
R4/C4 the one with the highest sum and the cross-join R2/C3 is 
the one closest to the average sales per cross-join (which amounts 
to 240.5 sales per cross-join).  
A vanilla algorithm to compute the aforementioned quantities 
proceeds as follows: (a) summarizes all cells per cross-join; (b) 
sorts cross-joins and computes the average cross-join value and 
(c) pinpoints the three regions of interest. This algorithm has 
linear (precisely, one-pass) complexity on the number of cells and 
nlogn (due to sorting) complexity on the number of cross-joins.  
Actually, if we are simply to keep the max, min or 
closest-to-avg cross-join, a linear single pass from all the 
cells is sufficient, without any sorting. In the case of avg, each 
time that we summarize the cells from a cross-join we can 
compute the average of the individual cross-join summaries and 
compute the closest cross-join to the current value of this average.  
Assumptions: Underlying this proactive notification to the user, 
we have made the following assumptions: 
 Cross-joins constitute homogeneous pieces of information. 

This means that we can assume a certain level of semantic 
cohesion among the cells of a certain cross-join. Moreover, 
we can assume that each cross-join can be considered as a 
distinct semantic unit and that cross-joins are comparable to 
each other. For example, we assume that it makes sense to 
compare sales from Japan to the sales of Southern USA. 
Naturally, the user choices for the axes points (and the 
produced cross-joins) may severely affect this assumption. 

 Statistically speaking, we are allowed to perform certain 
aggregate operations over our data. Specifically, we assume 
that the underlying detailed data set has been summarized by 
a distributive aggregate function. 

In [6] aggregation functions are categorized as (a) distributive 
functions, like max, min, sum or count, meaning that there is a 
way to compute the result of the application of the aggregation 
function to the overall data set by composing the individual 
results of its application to subsets of the dataset; (b) algebraic 
functions that are expressed as finite algebraic expressions over 
distributive functions, like avg; and (c) holistic functions for all 
other functions. 

To forestall any possible criticism, we want to point out that the 
exact result of aggregation operations over a 2D slice is handled 
by the logical layer. In the case of the [18] model, all operations 
are formally defined as operations over the detailed data set; 
optimization results for the obvious cases are also provided. 
Nevertheless, in the case of this paper, we want a quick 
approximation of the statistical measures under consideration, to 
be used for the determination of the focus window and not of the 
values of the report. Thus, problems like the Simpson’s paradox 
or the non invariance property [6] are considered as out of the 
scope of this paper. Finally, as a general comment, since it is 
quite cumbersome to ask the user each time to characterize the 
statistical nature of his underlying data, we employ the idea that 
one can have an indication of the statistical nature of the 
information of screen by observing the aggregate function that has 
been applied to compute them. Thus, since in our case we are 
starting with a sum aggregate function, we conclude that we can 
apply further distributive operations to the measure Sales in 
order to obtain our indicative approximations. 

3.4 A Generic Algorithm for Determining the 
Window of Focus 
Naturally, we can do better than the aforementioned vanilla 
algorithm by adding extra criteria to the proactive selection of the 
starting window of focus. We propose a guided greedy generic 
algorithm, GenericFocusWindow (Figure 6), to deal with the 
issue. The simple idea underlying the algorithm is that there are 
certain conditions to be met for the focus window. For example, 
one could require that the focus window occupies at most/least a 
certain percentage of the screen size, or of a certain size of cells. 
Moreover, the selected window optimizes an objective function. 
The property Determining Quality of the algorithms captures 
exactly this requirement in the form of a certain function. Since 
our algorithm is greedy, we need an Original Pick routine to start 
the processing; in general this is closely related to the 
Determining Quality function and we require that it starts with a 
smallest value. Moreover, a Guard Condition checks for the 
satisfaction of the desired property (meaning that we can possibly 
allow a certain approximation error ε to out obtained solution). 
Finally, a function Pick provides the necessary details for working 
from the original small-in-value solution towards the final result, 
practically picking the next cross-join to enlarge the current 
window of focus. 
One implicit assumption that our algorithm makes is that the 
Original Pick fits inside the allowed window. This constraint can 
easily be relaxed by an extension of the algorithm picking 
subparts of a cross-join in a similar fashion with the proposed 
algorithm, if we consider that we pick subparts of a 2Dslice. For 
lack of space we do not incorporate this extension too. 
We will give two examples for the instantiation of the 
aforementioned generic algorithm. In the first case (Algorithm 
FocusWindow_Min_3x3 in Figure 7), we are interested in a focus 
window which (a) includes the window with the minimum 
summary of values and (b) is not bigger than 3x3 (with a 
tolerance of the surface ε=1). We can observe that the guided 
greedy algorithm picks the window of minimum value as its 
starting point. The first constraint is met by the original pick and 
the second by the stop condition of the algorithm. During the 
expansion phase, each time we choose a cross-join such that (a) it 



is neighbouring with the current solution; (b) if merged with the 
current solution, it comprises a rectangle (easily determined by 
comparing the lengths of the opposite sides of the new solution 
and (c) has the smallest surface.  
If we execute the algorithm on the data of Figure 5, the result will 
be Q={R1/C6,R2/C6,R3/C6,R4/C6} which is practically 
the tape C6. If instead of the minimum value, in function Pick 
we had chosen the maximum, then the result would be 
Q={R1/C6,R1/C5}. Another obvious extension would be to 
employ a 2-greedy algorithm: in this case the small cross-joins 
R2/C5 and R2/C6, each comprising a single cell, could have 
been incorporated in the solution too. 

Algorithm GenericFocusWindow 
Input:  
 A set of cross-joins GJ and a display grid of cells Grid 

related to GJ.  
 Each cell belonging to Grid is characterized by coordinates 

(x,y) and each CJ belonging to GJ is characterized by the 
coordinates of its upper left and lower right cell. Each cross-
join has a surface, determined by its coordinates. 

Parameters:  
 OriginalPick(GJ): a routine to determine the starting 

cross-join of the algorithm 
 GuardCondition: a routine to determine whether the 

algorithm should stop 
 ε: a tolerance, or error range for the acceptance of a solution 

or not 
 Qualifies: a Boolean function that determines whether a 

solution satisfies a set of constraints 
 DeterminingQuality: a property of a cross-join like 

surface, sum of values, … 
 Pick(GJ,Q): a routine picking a cross-join to enlarge the 

produced solution 
Output:  
 A set of cross-joins, Q that satisfies the conditions set by the 

user. 
Begin 
 Q = {} 
 C = OriginalPick(GJ) 
 Add C to Q. 
 While (GuardCondition) { 
  CJ = Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 
End. 

Figure 6. Algorithm GenericFocusWindow 
In a different example (Figure 8), we also demonstrate an 
algorithm producing a focus window which (a) includes the 
window with the maximum summary of values and (b) is not 
bigger than 3x3 (with a tolerance of the surface ε=0) and (c) 
optimizes a combined formula over surface and value. Each time 
we pick the cross-joins that brings us closest to the 3x3 
desideratum, while having the highest summary value. In the case 
of our motivating example, the solution is Q={R4/C3,R4/C4} 
with an exact 3x3 surface. 

Algorithm FocusWindow_Min_3x3 
Input:  
 A set of cross-joins GJ and a display grid of cells Grid 

related to GJ.  
 Each cell belonging to Grid is characterized by coordinates 

(x,y) and each CJ belonging to GJ is characterized by the 
coordinates of its upper left and lower right cell. Each cross-
join has a surface, determined by its coordinates. 

Parameters:  
 OriginalPick(GJ): start with cross-join having the 

minimum summary 
 GuardCondition (Q,ε): the surface is closest to 3x3 
 ε: 1 cell2 
 Qualifies: a Boolean function that determines whether a 

solution satisfies a set of constraints 
  DeterminingQuality(Q): distance from the ideal 3x3 

surface  
 Pick(GJ,Q): a routine picking the cross-join with minimum 

distance from the ideal 3x3 surface 
Output:  
 A set of cross-joins, Q that satisfies the conditions set by the 

user. 
Begin 
 Q = {} 
 C = OriginalPick(GJ) 
 Add C to Q. 
 While (GuardCondition){ 
  CJ=Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 
End. 
OriginalPick(GJ){ 
 Let the cross-join Cr s.t., |sum(Cr) | is the minimum; 
 Among equals pick the upper and left-wise; 
 Return (Cr);  
} 
DeterminingQuality(Q) { 
 Return surface(Q)-surface(3x3);  
} 
GuardCondition (Q,1){ 
 If  surface(Q)-surface(3x3) <1 Then Return true; 
 Else Return false  
} 
Pick(CJ,Q){ 
 Let V be the subset of the cross-joins of CJ, s.t., for each  
  v∈V: Qualifies(v,CJ,Q) 
 Let vP∈V be a cross-join s.t., |DeterminingQuality(Q)|  
  is minimum, if vP is added to Q. 
 Return vP;  
} 
Qualifies(v,CJ,Q){ 
 If    (v is adjacent to a cross-join CJ∈CJ) && 
  (v ∪ Q  forms a rectangle) 
 Then Return true; 
 Else Return false 
} 

Figure 7. Algorithm FocusWindow_Min_3x3 



Algorithm FocusWindow_Max_Weighted 
Input:  
 Same as in Algorithm FocusWindow_Min_3x3 
Parameters:  
  OriginalPick(GJ): start with cross-join having the 

maximum summary 
 GuardCondition (Q,ε): the surface is closest to 3x3 
 ε: 0 cell2 
  Qualifies: a Boolean function that determines whether 

a solution satisfies a set of constraints 
  DeterminingQuality(Q): a combined formula each 

time picking the cross-join that brings us closest to the 
3x3 desideratum, while having the highest summary 
value. 

 Pick(GJ,Q): a routine picking the cross-join with 
maximum Determining Quality 

Output:  
 A set of cross-joins, Q that satisfies the conditions set by 
the user. 
Begin 

 Q = {} 
 C = OriginalPick(GJ) 

 Add C to Q. 
 While (GuardCondition){ 
  CJ=Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 

End. 
OriginalPick(GJ){ 
 Let the cross-join Cr s.t., |sum(Cr) | is the maximum; 
 Among equals pick the upper and left-wise; 
 Return (Cr); 
} 
DeterminingQuality(Q) { 
 Return (1 - [surface(3x3)-surface(Q)] / 9 )*  
  [sum(Q)-sum(OriginalPick(CJ))]; 
} 
GuardCondition (Q,0){ 
 If  surface(Q)-surface(3x3) < 0 Then  
  Return true; 
 Else Return false; 
} 
Pick(CJ,Q){ 
 Let V be the subset of the cross-joins of CJ, s.t., for each  

v∈V: Qualifies(v,CJ,Q) 
 Let vP ∈V be a cross-join s.t., 

|DeterminingQuality(v ∪ Q)|  is maximum  
 Return vP; 
} 
Qualifies(v,CJ,Q){ 
 If  (v is adjacent to a cross-join CJ∈CJ) && 
  (v ∪ Q  forms a rectangle) && 
  (surface(v∪Q)-surface(3x3) ) < 0 
 Then Return true; 
 Else Return false 
} 

Figure 8. Algorithm FocusWindow_Max_Weighted 

4. DISCUSSION 
At this point, we would like to take the time to discuss the larger 
framework of the contribution of this paper. First, as the Lowell 
report [7] mentions, visualization is one of the big issues of 
database research for the next years. To copy from the Lowell 
report, “The original Laguna-Beach report lamented that there 
was little research on user interfaces to DBMSs. … There have 
not been comparable advances in the last 15 years. There is a 
crying need for better ideas in this area”. We claim that of all 
fields of database research, decision support and OLAP are the 
ones to be affected most out of this phenomenon. 
Someone could possibly question the need for a new model. For 
us it is clear that one of the main reasons for the research 
community not dealing with visualization issues so far, is the 
heritage of the computing paradigm of the past three decades. 
This paradigm silently made the assumption that the user sitting 
in front of a console makes one query and retrieves one answer 
(as would have happened in a UNIX terminal thirty years ago). 
This is not the case with modern user interfaces for datasets, 
especially in the context of OLAP. The user makes 
simultaneously many queries, combined in one or more screens; 
nevertheless, all our modeling techniques and languages so far 
(from the relational model, to SQL and the OLAP modeling 
efforts proposed in the academia) simply ignore this fact. Our 
effort tries to formalize the simultaneous presence of more than 
one queries and this is done in two layers. In the presentational 
layer we provide a uniform and generic model for the user 
interface, which hides the complexity of answer retrieval, 
detached in the logical layer. As a second interesting difference, 
note that the users work in sessions of queries, as opposed to 
sequences of unrelated queries. OLAP is a typical, but not the 
only, case for this behavior. 
As a first attempt towards the issue, we have carefully selected a 
visualization technique from the fields of Human-Computer 
Interaction and Information Visualization with the particularity of 
being crafted specifically for tabular data and we have customized 
it for OLAP. Naturally, we do not claim that this is the ultimate 
solution to the problem, but rather we wish to indicate that there is 
quite an interesting research field in this area and a supportive 
body of knowledge from other disciplines, such as Human-
Computer Interaction and Information Visualization. 
At the same time, new hardware developments pose new 
requirements for our visualization techniques. One of our goals is 
to implement OLAP visualization techniques for particularly 
small devices such mobile phones and palmtops. Although the 
processing power of these gadgets is no more negligible (actually, 
the buzzword ‘thin client’ seems to disappear from the standard 
vocabulary of the area) their screen sizes shrink over time. To 
make OLAP screens presentable to such devices one can follow 
several paths, such as: (a) show only high level summaries which 
involve small 2D slices or (b) show simply pie- or bar-charts. We 
choose an alternative approach where (a) the contents of the 
screen do not have to be squeezed in size in order to fit in the 
screen, and most importantly (b) the report does not have to be 
rewritten neither do we have to check for the aggregation level of 
the presented data. On the contrary, a certain part of the report is 
presented depending on the particularities of the device. Here, we 
make the reasonable assumption that either the device has the 
computational power to determine the amount of cells that can be 



presented to the user or, if this is not an option, the device can at 
least piggy-back its characteristics to the OLAP server and let the 
server decide on the focus window. 
Third, making the discussion a little broader, we bring up the 
Table Lens technique to highlight the possibility of making 
proactive user decision support in the presence of large datasets 
(in our case, the value axis is quite larger than the size that 
someone can handle efficiently).  Clearly, as report screens are 
limited not only due to hardware constraints, but also due to the 
particularities of human nature (e.g., the classical discussion on 
the limited capacity of persons in processing information [9]), it 
comes quite natural that automated proactive support to the users 
is thus one of the new requirements that decision support tools 
have to provide. Thus, this end of our contribution is related to a 
broader line of research [2,13]. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated how the Cube Presentation 
Model, a novel presentation model for OLAP data can be 
naturally mapped into an advanced visualization technique, the 
Table Lens. Initially, we have defined the mapping scheme from 
the Cube Presentation Model to Table Lens entities and objects. 
Then, we have introduced suitable algorithms for proactive 
automated support of the user towards the highlighting of 
interesting areas of a report. Finally, we have discussed on the 
usefulness and applicability of the proposed techniques to modern 
technological developments. 
Next steps in our research include the introduction of suitable, 
CPM specific, visualization techniques that comply to current 
standards and recommendations as far as usability and user 
interface design is concerned and its extension to address the 
specific visualization requirements of mobile and wireless OLAP, 
as this notion can be supported and implemented on mobile 
devices and palmtops. 
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