
Conceptual Modeling for ETL Processes
Panos Vassiliadis Alkis Simitsis Spiros Skiadopoulos

National Technical University of Athens,
Dept. of Electrical and Computer Eng.,

Iroon Polytechniou 9, 157 73, Athens, Greece,
Tel: +30-10-772-1602

pvassil@dbnet.ece.ntua.gr asimi@dbnet.ece.ntua.gr spiros@dbnet.ece.ntua.gr

ABSTRACT
Extraction-Transformation-Loading (ETL) tools are pieces of
software responsible for the extraction of data from several
sources, their cleansing, customization and insertion into a data
warehouse. In this paper, we focus on the problem of the
definition of ETL activities and provide formal foundations for
their conceptual representation. The proposed conceptual model is
(a) customized for the tracing of inter-attribute relationships and
the respective ETL activities in the early stages of a data
warehouse project; (b) enriched with a 'palette' of a set of
frequently used ETL activities, like the assignment of surrogate
keys, the check for null values, etc; and (c) constructed in a
customizable and extensible manner, so that the designer can
enrich it with his own re-occurring patterns for ETL activities.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical design - data models,
schema and subschema.

General Terms
Design
Keywords
Data warehousing, ETL, conceptual modeling

1. INTRODUCTION
Extraction-Transformation-Loading (ETL) tools is a category of
specialized tools with the task of dealing with data warehouse
homogeneity, cleaning and loading problems. [29] reports that
ETL and Data Cleaning tools are estimated to cost at least one
third of effort and expenses in the budget of the data warehouse
while [8] mentions that this number can rise up to 80% of the
development time in a data warehouse project. [14] mentions that
the ETL process costs 55% of the total costs of data warehouse
runtime. Still, due to the complexity and the long learning curve
of these tools, many organizations prefer to turn to in-house
development to perform ETL and data cleaning tasks. In fact,
while data warehouse expenses are expected to come up to 14
billion dollars worldwide, projected sales for ETL and data
cleaning tools are expected to rise to only (!) 300 million dollars.
Thus, it is apparent that the design, development and deployment

of ETL processes, which is currently performed in an ad-hoc, in
house fashion, needs modeling, design and methodological
foundations. Unfortunately, as we shall show in the sequel, the
research community has a lot of work to do to confront this
shortcoming. In the rest of the paper, we will not discriminate
between the tasks of ETL and Data Cleaning and adopt the name
ETL for both these kinds of activities.
In Fig. 1, we abstractly describe the general framework for ETL
processes. In the bottom layer we depict the data stores that are
involved in the overall process. On the left side, we can observe
the original data providers (typically, relational databases and
files). The data from these sources are extracted (as shown in the
upper left part of Fig. 1) by extraction routines, which provide
either complete snapshots or differentials of the data sources.
Then, these data are propagated to the Data Staging Area (DSA)
where they are transformed and cleaned before being loaded to the
data warehouse. The data warehouse is depicted in the right part
of Fig. 1 and comprises the target data stores, i.e., fact tables and
dimension tables. Eventually, the loading of the central warehouse
is performed through the loading activities depicted on the upper
right part of the figure.

Sources DSA DW

Extract Transform
& Clean

Load

Figure 1. The environment of ETL processes

In this paper, we focus on the conceptual part of the definition of
the ETL process. More specifically, we are dealing with the
earliest stages of the data warehouse design. During this period,
the data warehouse designer is concerned with two tasks which
are practically executed in parallel. The first of these tasks
involves the collection of requirements from the part of the users.
The second task, which is of equal importance for the success of
the data warehousing project, involves the analysis of the
structure and content of the existing data sources and their
intentional mapping to the common data warehouse model.
Related literature [19] and personal experience [33] suggest that
the design of an ETL process aims towards the production of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP’02, November 8, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-590-4/02/0011…$5.00.

crucial deliverable: the mapping of the attributes of the data
sources to the attributes of the data warehouse tables.

The production of this deliverable involves several interviews that
result in the revision and redefinition of original assumptions and
mappings; thus it is imperative that a simple conceptual model is
employed in order to (a) facilitate the smooth redefinition and
revision efforts and (b) serve as the means of communication with
the rest of the involved parties.

We believe that the formal modeling of the starting concepts of a
data warehouse design process has not been adequately dealt by
the research community. To this end, in this paper we propose a
conceptual model for this task, with a particular focus on (a) the
interrelationships of attributes and concepts and (b) the necessary
transformations that need to take place during the loading of the
warehouse. The latter part is directly captured in the proposed
metamodel as a first class citizen; we employ transformations as a
generic term for the restructuring of schema and values or for the
selection and even the transformation of data. Attribute
interrelationships are captured through provider relationships that
map data provider attributes at the sources to data consumers in
the warehouse. Apart from these fundamental relationships, the
proposed model is able to capture constraints and transformation
composition, too. Due to the nature of the design process, in this
paper, we present the features of the conceptual model in a set of
design steps, which lead to the basic target, i.e., the attribute
interrelationships. These steps constitute the methodology for the
design of the conceptual part of the overall ETL process.

The proposed model is characterized by different instantiation and
specialization layers. The generic metamodel that we propose
involves a small set of generic constructs that are powerful
enough to capture all cases. We call these entities the Metamodel
layer in our architecture. Moreover, we introduce a specialization
mechanism that allows the construction of a ‘palette’ of frequently
used ETL activities (e.g., transformations like the surrogate key
transformation or checks for null values, primary key violations,
etc.). This set of ETL-specific constructs, constitute a subset of
the larger metamodel layer, which we call the Template Layer.
The constructs in the Template layer are also meta-classes, but
they are quite customized for the regular cases of ETL processes.
All the entities (data stores, inter-attribute mappings,
transformations, etc.) that a designer uses in his particular
scenario are instances of the entities in the metamodel layer. For
the common ETL transformations, the employed instances
correspond to the entities of the template layer.

 More specifically, our contribution lies in:

1. The proposal of a novel conceptual model which is customized
for the tracing of inter-attribute relationships and the respective
ETL activities in the early stages of a data warehouse project.

2. The construction of the proposed model in a customizable and
extensible manner, so that the designer can enrich it with his
own re-occurring patterns for ETL activities.

3. The introduction of a ‘palette’ of a set of frequently used ETL
activities, like the assignment of surrogate keys, the check for
null values, etc.

This paper is organized as follows. In Section 2, we present
related work. Section 3 presents the conceptual model for ETL

processes. In Section 4, we introduce the instantiation and the
specialization layers for the representation of ETL processes.
Finally, in Section 5 we conclude our results.

2. RELATED WORK
In this section we will review related work in the fields of
conceptual modeling for data warehousing and ETL in general.
For lack of space, we refer the interested reader to [36] for an
extended discussion of the issues that we briefly present in this
section.
Conceptual models for data warehouses. The front end of the data
warehouse has monopolized the research on the conceptual part of
data warehouse modeling. In fact, most of the work on conceptual
modeling, in the field of data warehousing, has been dedicated to
the capturing of the conceptual characteristics of the star schema
of the warehouse and the subsequent data marts and aggregations
(see [32] for a broader discussion). Research efforts can be
grouped in four major trends, including: (a) dimensional modeling
[18, 19], (b) (extensions of) standard E/R modeling [5, 6, 13, 22,
28, 30] (c) UML modeling [24, 31] and (d) sui-generis models
[11, 12, 32] without a clear winner. The supporters of the
dimensional modeling method argue that the model is
characterized by its minimality, understandability (especially by
the end-users) and its direct mapping to logical structures. The
supporters of the E/R and UML methods models base their
arguments on the popularity of the respective models and the
available semantic foundations for the well-formedness of data
warehouse conceptual schemata. The sui-generis models are
empowered by their novelty and adaptation to the particularities
of the OLAP setting.

Conceptual models for ETL. There are few attempts around the
specific problem of this paper, although we are not aware of any
other approach that concretely deals with the specifics of ETL
activities in a conceptual setting. We can mention [2] as a first
attempt to clearly separate the data warehouse refreshment process
from its traditional treatment as a view maintenance or bulk
loading process. Still, the proposed model is informal and the
focus is on proving the complexity of the effort, rather than the
formal modeling of the activities themselves. [5, 6] introduce the
notion of intermodel assertions, in order to capture the mappings
between the sources and the data warehouse. However, any
transformation is dereferenced for the logical model where a
couple of generic operators are employed to perform this task. In
terms of industrial approaches, the model that stems from [19]
would be an informal documentation of the overall ETL process.
 Related work on ETL logical and physical aspects. Finally, apart
from the commercial ETL tools [1, 7, 9, 21, 25] there also exist
research efforts including [3, 10, 20, 23, 26, 27, 34, 35, 36]. The
management of quality in data warehouses is discussed
extensively in [15, 16, 17].
We would like to stress that, in this paper, we do not propose
another process/workflow model; thus, we do not intend to cover
the composite workflow of ETL activities for the population of
the warehouse. There are two basic reasons for this approach.
First, in the conceptual model for the ETL process, the focus is on
documenting/formalizing the particularities of the data sources
with respect to the data warehouse and not in providing a
technical solution for the implementation of the process.
Secondly, the ETL conceptual model is constructed in the early

stages of the data warehouse project during which, the time
constraints of the project require a quick documentation of the
involved data stores and their relationships, rather than an in-
depth description of a composite workflow (see also Section 5 for
this). In this sense, our approach is complementary to the
aforementioned logical models, since it involves an earlier stage
of the design process. We refer the interested reader to [34] for a
formal modeling of this workflow, which is beyond the scope of
this paper.

3. CONCEPTUAL MODEL
The purpose of this section is to present the conceptual model for
ETL activities. Our goal is to specify the high level, user-oriented
entities which are used to capture the semantics of the ETL
process. First, we will present the graphical notation and the
metamodel of our proposal. Then, we will detail and formally
define all the entities of the metamodel. Throughout all the
section, we will clarify the introduced concepts through their
application to a motivating example that will support the
discussion.

concept

active canditate

provider
1:1

part of

attribute

{XOR}

candidate1

candidaten

...

Note

provider
N:M

target

ETL_constraint

transformation

serial
composition

Figure 2. Notation for the conceptual modeling of ETL

activities
In Fig. 2 we graphically depict the different entities of the
proposed model. We do not employ standard UML notation for
concepts and attributes, for the simple reason that we need to treat
attributes as first class citizens of our model. Thus, we do not
embed attributes in the definition of their encompassing entity,
like for example, a UML class or a relational table. We try to be
orthogonal to the conceptual models which are available for the
modeling of data warehouse star schemata; in fact, any of the
proposals for the data warehouse front end can be combined with
our approach, which is specifically tailored for the back end of the
warehouse.

Figure 3. The proposed metamodel as a UML diagram

In Fig. 3 we depict the basic entities of the proposed metamodel in
a UML diagram. All the constructs of our conceptual model
which are introduced in the rest of this section refer to the entities
of Fig. 3.
To motivate the discussion we will introduce an example
involving two source databases S1 and S2 as well as a central data
warehouse DW. The available concepts for these databases are
listed in Fig. 4, along with their attributes. The scenario involves
the propagation of data from the concept PARTSUPP of source S1
as well as from the concept PARTSUPP of source S2 to the data
warehouse. Table DW.PARTSUPP stores daily(DATE)
information for the available quantity(QTY) and cost(COST) of
parts(PKEY) per supplier(SUPPKEY). We assume that the first
supplier is European and the second is American, thus the data
coming from the second source need to be converted to European
values and formats.
In Fig. 5 we depict the full fledged diagram of our motivating
example. In the rest of this section, we will explain each part of it.

Concept Attributes
S1.PARTSUPP PKEY, SUPPKEY, QTY, COST

S2.PARTSUPP PKEY, SUPPKEY, DEPARTMENT, DATE, QTY, COST

DW.PARTSUPP PKEY, SUPPKEY, DATE, QTY, COST

Figure 4. Source database and data warehouse schemata

3.1 Concepts and Attributes
Attributes. A granular module of information. The role of
attributes is the same as in the standard ER/dimensional models.
As in standard ER modeling, attributes are depicted with oval
shapes.
Concepts. A concept represents an entity in the source databases
or in the data warehouse. Concept instances are the files in the
source databases, the data warehouse fact and dimension tables
and so on. A concept is formally defined by a name and a finite
set of attributes. In terms of the ER model, a concept is a
generalization of entities and relationships; depending on the
employed model (dimensional model or ER extension) all entities
composed of a set of attributes are generally instances of class
Concept.

As mentioned in [35], we can treat several physical storage
structures as finite lists of fields, including relational databases,
COBOL or simple ASCII files, multidimensional cubes and
dimensions. Concepts are fully capable of modeling this kind of
structures, possibly through a generalization (ISA) mechanism.
Let us take OLAP structures as an example. We should note that
the interdependencies of levels and values, which are the core of
all the approaches mentioned in Section 2, are not relevant for the
case of ETL; thus, employing simply concepts is sufficient for the
problem of ETL modeling. Still, we can refine the generic
Concept structure to subclasses pertaining to the characteristics
of any of the aforementioned approaches (e.g., classes Fact
Table and Dimension), achieving thus a homogeneous way to
treat OLAP and ETL modeling. In our motivating example one
can observe several concepts. The concepts S1.PARTSUPP,
S2.PARTSUPP and DW.PARTSUPP are depicted in Fig. 5.,
along with their respective attributes.

3.2 Transformations, Constraints and
Notes
Transformations. In our framework, transformations are
abstractions that represent parts, or full modules of code,
executing a single task. Two large categories of transformations
include (a) filtering or data cleaning operations, like the check for
primary or foreign key violations and (b) transformation
operations, during which the schema of the incoming data is
transformed (e.g., aggregation). Formally, a transformation is
defined by (a) a finite set of input attributes; (b) a finite set of
output attributes and (c) a symbol that graphically characterizes
the nature of the transformation. A transformation is graphically
depicted as a hexagon tagged with its corresponding symbol.
In our motivating example of Fig. 5, one can observe several
transformations. Note the ones pertinent to the mapping of
S1.PARTSUPP to DW.PARTSUPP. One can observe a surrogate
key assignment transformation (SK), a function application
calculating the system date (f) and a Not Null (NN) check for
attribute Cost. We will elaborate more on the functionality of
transformations once provider relationships (that actually employ
them) are introduced.
ETL Constraints. There are several occasions when the designer
wants to express the fact that the data of a certain concept fulfill
several requirements. For example, the designer might wish to
impose a primary key or null value constraint over a (set of)
attribute(s). This is achieved through the application of ETL
constraints, which are formally defined as follows: (a) a finite set
of attributes, over which the constraint is imposed and (b) a single
transformation, which implements the enforcement of the
constraint. Note, that despite the similarity in the name, ETL
constraints are different modeling elements from the well known
UML constraints. An ETL constraint is graphically depicted as a
set of solid edges starting from the involved attributes and
targeting the facilitator transformation. In our motivating example,
observe that we apply a Primary Key ETL constraint to
DW.PARTSUPP for the attributes PKey, SuppKey, Date.

Notes. Exactly as in UML modeling, notes are informal tags to
capture extra comments that the designer wishes to make during
the design phase or render UML constraints attached to an
element or set of elements [4]. As in UML, notes are depicted as
rectangles with a dog-eared corner. In our framework, notes are
used for:

− Simple comments explaining design decisions.

− Explanations of the semantics of the applied transformations.
For example, in the case of relational selections/joins this
involves the specification of the respective selection/join
condition, whereas in the case of functions this would involve
the specification of the function signatures.

− Tracing of runtime constraints that range over different aspects
of the ETL process, such as the time/event based scheduling,
monitoring, logging, error handling, crash recovery etc.

For example, in the upper part of Fig. 5 we can observe a runtime
constraint specifying that the overall execution time for the
loading of DW.PARTSUPP (that involves the loading of
S1.PARTSUPP and S2.PARTSUPP) cannot take longer than 4
hours.

3.3 Part-Of and Candidate Relationships
Part-of Relationships. We bring up part-of relationships in order
to emphasize the fact that a concept is composed of a set of
attributes. In general, standard ER modeling does not treat this
kind of relationship as a first-class citizen of the model; UML
modeling on the other hand, hides attributes inside classes and
treats part-of relationships with a much broader meaning. We do
not wish to redefine UML part-of relationships, but rather to
emphasize the relationship of a concept with its attributes (since
we need attributes as first class citizens in the inter-attribute
mappings). Naturally, we do not preclude the usage of the part-of
relationship for other purposes, as in standard UML modeling. As
usually, a part-of relationship is denoted by an edge with a small
diamond at the side of the container object.
Candidate relationships. In the case of data warehousing, it is
most common a phenomenon, especially in the early stages of the
project, to have more than one candidate source files/tables that
could populate a target, data warehouse table. Thus, a set of
candidate relationships captures the fact that a certain data
warehouse concept can be populated by more than one candidate
source concepts. Formally, a candidate relationship comprises (a)
a single candidate concept and (b) a single target concept.
Candidate relationships are depicted with bold dotted lines
between the candidates and the target concepts. Whenever exactly
one of them can be selected, we annotate the set of candidate
relationships for the same concept with a UML {XOR} constraint.

Active candidate relationships. An active candidate relationship
denotes the fact that out of a set of candidates, a certain one has
been selected for the population of the target concept. Thus, an
active candidate relationship is a specialization of candidate
relationships, with the same structure and refined semantics. We
denote an active candidate relationship with a directed bold dotted
arrow from the provider towards the target concept.
For the purpose of our motivating example, let us assume that
source S2 has more than one production systems (e.g., COBOL
files), which are candidates for S2.PARTSUPP. Assume that the
available candidates (depicted in the left upper part of Fig. 5) are:

− A concept AnnualPartSupp’s (practically representing a
file F1), that contains the full annual history about part
suppliers; it is used basically for reporting purposes and
contains a superset of fields than the ones required for the
purpose of the data warehouse.

− A concept RecentPartSupp’s (practically representing a
file F2), containing only the data of the last month; it used on-
line by end-users for the insertion or update of data as well as
for some reporting applications. The diagram also shows that
RecentPartSupp’s was eventually selected as the active
candidate; a note captures the details of this design choice.

3.4 Provider Relationships and Serial
Composition of Transformations
Provider relationships. A provider relationship maps a set of
input attributes to a set of output attributes through a relevant
transformation. In the simple 1:1 case, provider relationships

Figure 5. The diagram of the conceptual model for our motivating example
capture the fact that an input attribute in the source side populates
an output attribute in the data warehouse side.
If the attributes are semantically and physically compatible, no
transformation is required. If this is not the case though, we pass
this mapping through the appropriate transformation (e.g.,
European to American data format, not null check, etc.). In
general, it is possible that some form of schema restructuring
takes place; thus, the formal definition of provider relationships
comprises (a) a finite set of input attributes; (b) a finite set of
output attributes; (c) an appropriate transformation (i.e., one
whose input and output attributes can be mapped one to one to the
respective attributes of the relationship). In the case of N:M
relationships the graphical representation obscures the linkage
between provider and target attributes. To compensate for this
shortcoming, we annotate the link of a provider relationship with
each of the involved attributes with a tag, so that there is no
disambiguity for the actual provider of a target attribute.
In the 1:1 case, a provider relationship is depicted with a solid
bold directed arrow from the input towards the output attribute,
tagged with the participating transformation. In the general N:M
case, a provider relationship is graphically depicted as a set of
solid arrows starting from the providers and targeting the
consumers, all passing through the facilitator transformation.
Finally, we should also mention a syntactic sugar add-on of our
model. It can be the case where a certain provider relationship
involves all the attributes of a set of concepts. For example, in the
case of a relational union operation, all the attributes of the input
and the output concepts would participate in the transformation.
To avoid overloading the diagram with too many relationships, we
employ a syntactic sugar notation mapping the input to the output
concepts (instead of attributes). This can also be treated as a zoom
in/out operation on the diagram per se: at the coarse level, only
concepts are depicted and an overview of the model is given; at
the detailed level, the inter-concept relationships are expanded to
the respective inter-attribute relationships, presenting the designer
with all the available detail.

Let us examine now, the relationship between the attributes of
concepts S1.PARTSUPP, S2.PARTSUPP and DW.PARTSUPP,
as depicted in Fig. 5. For starters, we will ignore the aggregation
that takes place for the rows of source S2 and focus on the
elementary transformations.

− Attribute PKey is directly populated from its homonymous
attribute in S1 and S2, through a surrogate key (SK)
transformation. Surrogate Key assignment is common tactics
in data warehousing, employed in order to replace the keys of
the production systems with a uniform key. For example, it
could be the case that the part ‘Steering Wheel’ has
PKEY=30 for source S1, PKEY=40 for source S2, while at
the same time source S2 has PKEY=30 for part
‘Automobile Door’. These conflicts can be easily resolved
by a global replacement mechanism through the assignment of
a uniform surrogate key.

− Attribute SuppKey is populated from the homonymous
attributes in the sources.

− Attribute Date is directly populated from its homonymous
attribute in S2, through an American-To-European
Date transformation function. At the same time, the date for
the rows coming from source S1, is determined through the
application of a Sysdate() function (since S1.PARTSUPP
does not have a corresponding attribute). Observe the function
applied for the rows coming from source S1: it uses as input
all the attributes of S1.PARTSUPP (in order to determine that
the produced value is a new attribute of the row), passes
through a function application transformation calculating the
system date, which, in turns, is directed to attribute DW.Date.

− Attribute Qty is directly populated from its homonymous
attributes in the two sources, without the need for any
transformation.

− Attribute Cost is populated from its homonymous attributes
in the two sources. As far as source S2 is concerned, we need a
$2€ transformation in order to convert the cost to European
values. As far as source S1 is concerned, we apply a Not
Null (NN) check, to avoid loading the data warehouse with
rows having no cost for their parts.

Note also that there can be input attributes, like for example
S2.PARTSUPP.Department, which are ignored during the
ETL process.
Transformation Serial Composition. It is possible that we need to
combine several transformations in a single provider relationship.
For example, we would possibly like to group incoming data with
respect to a set of attributes, having ensured at the same time that
no null values are involved in this operation. In this case, we
would need to perform a not null check for each of the attributes
and propagate only the correct rows to the aggregation. In order to
model this setting, we employ a serial composition of the involved
transformations. The problem would be the requirement that a
transformation has a set of attributes as inputs and attributes; thus,
simply connecting two transformations would be inconsistent. To
compensate this shortcoming, we employ a serial transformation
composition. Formally, a serial transformation composition
comprises (a) a single initiating transformation and (b) a single
subsequent transformation. Serial transformation compositions are
depicted as solid bold lines connecting the two involved
transformations.
A rather complex part of the motivating example is the
aggregation that takes place for the rows of source S2. Practically,
source S2 captures information for part suppliers according to the
particular department of the supplier organization. Loading this
data to the data warehouse that ignores this kind of detail requires
the aggregation of data per PKey, SuppKey, Date and the
summation of Cost and Qty. This is performed from the
aggregation transformation γ. Still, all the aforementioned
elementary transformations are not ignored or banished; on the
contrary, they are linked to the aggregation transformation
through the appropriate serial composition relationships. Note
also the tags on the output of the aggregation transformation,
determining their providers (e.g., S2.PARTSUPP.PKey for
DW.PARTSUPP.PKey and SUM[S2.PARTSUPP.Qty] for
DW.PARTSUPP.Qty).

4. INSTANTIATION AND
SPECIALIZATION LAYERS
We believe that the key issue in the conceptual representation of
ETL activities lies (a) on the identification of a small set of
generic constructs that are powerful enough to capture all cases
and (b) on an extensibility mechanism that allows the construction
of a ‘palette’ of frequently used types (e.g., for data stores and
activities).
Our metamodeling framework is depicted in Fig. 6. The lower
layer of Fig. 6, namely Schema Layer, involves a specific ETL
scenario. All the entities of the Schema layer are instances of the
classes Concept, Attribute, Transformation, ETL
Constraint and Relationship. Thus, as one can see on the
upper part of Fig. 6, we introduce a meta-class layer, namely
Metamodel Layer involving the aforementioned classes. The
linkage between the Metamodel and the Schema layers is
achieved through instantiation (“instanceOf”) relationships.
The Metamodel layer implements the aforementioned genericity
desideratum: the five classes which are involved in the Metamodel
layer are generic enough to model any ETL scenario, through the
appropriate instantiation.

Still, we can do better than the simple provision of a meta- and an
instance layer. In order to make our metamodel truly useful for
practical cases of ETL processes, we enrich it with a set of ETL-
specific constructs, which constitute a subset of the larger
metamodel layer, namely the Template Layer. The constructs in
the Template layer are also meta-classes, but they are quite
customized for the regular cases of ETL processes. Thus, the
classes of the Template layer as specializations (i.e., subclasses) of
the generic classes of the Metamodel layer (depicted as “IsA”
relationships in Fig. 6). Through this customization mechanism,
the designer can pick the instances of the Schema layer from a
much richer palette of constructs; in this setting, the entities of the
Schema layer are instantiations, not only of the respective classes
of the Metamodel layer, but also of their subclasses in the
Template layer.

Figure 6. The framework for the modeling of ETL activities

In the example of Fig. 6 the concept DW.PARTSUPP must be
populated from a certain source S2. Several operations must
intervene during the propagation: for example, a surrogate key
assignment and an aggregation take place in the scenario.
Moreover, there are two candidates suitable for the concept
S2.PARTSUPP; out of them, exactly one (Candidate2) is
eventually selected for the task. As one can observe, the concepts
that take part in this scenario are instances of class Concept
(belonging to the metamodel layer) and specifically of its subclass
ER Entity (assuming that we adopt an ER model extension).
Instances and encompassing classes are related through links of
type instanceOf. The same mechanism applies to all the
transformations of the scenario, which are (a) instances of class
Transformation and (b) instances of one of its subclasses,
depicted in Fig. 6. Relationships do not escape the rule either:
observe how the provider links from the concept S2.PARTSUPP
towards the concept DW.PARTSUPP are related to class
Provider Relationship through the appropriate
instanceOf links.

As far as the class Concept is concerned, in the Template layer
we can specialize it to several subclasses, depending on the
employed model. In the case of the ER model, we have the
subclasses ER Entity, and ER Relationship, whereas in
the case of the Dimensional Model, we can have subclasses as
Fact Table or Dimension.

Following the same framework, class Transformation is
further specialized to an extensible set of reoccurring patterns of
ETL activities, depicted in Fig. 7.

Filters
Selection (σ)
Not null (NN)
Primary key violation (PK)
Foreign key violation (FK)
Unique value (UN)
Domain mismatch (DM)

Transfer operations
Ftp (FTP)
Compress/Decompress (Z/dZ)
Encrypt/Decrypt (Cr/dCr)

Unary transformations
Push
Aggregation (γ)
Projection (π)
Function application (f)
Surrogate key assignment (SK)
Tuple normalization (N)
Tuple denormalization (DN)

File operations
EBCDIC to ASCII conversion (EB2AS)
Sort file (Sort)

Binary transformations
Union (U)
Join (��)
Diff (∆)
Update Detection (∆UPD)

Composite transformations
Slowly changing dimension (Type 1,2,3)(SDC-1/2/3)
Format mismatch (FM)
Data type conversion (DTC)
Switch (σ*)
Extended union (U)

Figure 7. Template transformations, along with their symbols, grouped by category

We now present each of the aforementioned classes in more
detail1. As one can see on the top side of Fig. 7, we group the
template activities in six major logical groups. We do not depict
the grouping of activities in subclasses in Fig. 6, in order to avoid
overloading the figure; instead, we depict the specialization of
class Transformation to three of its subclasses whose
instances appear in the employed scenario of the Schema layer.
We can coarsely refer to four groups of logical transformations
and two groups of physical transformations. The first logical
group, named Filters, provides checks for the respect of a certain
condition. The semantics of these filters are the obvious (starting
from a generic selection condition and proceeding to the
check for null values, primary or foreign key
violation, etc.). Other logical groups of transformations are
Unary and Binary Transformations. The former consists of the
most generic push activity (which simply propagates data from
the provider to the consumer), as well as the classical
aggregation and function application operations
along with three data warehouse specific transformations
(surrogate key assignment, normalization and
denormalization). The latter group consists of classical
binary operations, such as union, join and difference of
concepts as well as with a special case of difference involving the
detection of updates. A set of advanced, composite
transformations involving the combination of simple
transformations (with particular care to data warehouse specific
tasks, such as slowly changing dimensions, format
mismatches, etc.) completes the set of logical groups of
transformations. Moreover, we can also consider the application
of physical transformations to whole files/tables. Mainly, we
discuss inter-concept physical operations like Transfer Operations
(ftp, compress/decompress, encrypt/decrypt) and
File Operations (EBCDIC to ASCII, sort file).

Summarizing, the Metamodel layer is a set of generic entities, able
to represent any ETL scenario. At the same time, the genericity of
the Metamodel layer is complemented with the extensibility of the
Template layer, which is a set of “built-in” specializations of the
entities of the Template layer, specifically tailored for the most
frequent elements of ETL scenarios. Moreover, apart from this
“built-in”, ETL-specific extension of the generic metamodel, if the
designer decides that several ‘patterns’ occur repeatedly in his

1 We believe that the provided set of templates corresponds to the

most popular ones in ETL scenarios. Naturally, we do not claim
completeness; thus, we also introduce the presented
extensibility mechanism.

data warehousing projects, he/she can easily fit them into the
customizable Template layer through a specialization mechanism.

5. CONCLUSIONS
Extraction-Transformation-Loading (ETL) tools are pieces of
software responsible for the extraction of data from several
sources, their cleansing, customization and insertion into a data
warehouse. In this paper, we have focused on the problem of the
definition of ETL activities and provided foundations for their
conceptual representation. More specifically, we have proposed a
novel conceptual model, which is customized for the tracing of
inter-attribute relationships and the respective ETL activities in
the early stages of a data warehouse project. The proposed model
is constructed in a customizable and extensible manner, so that the
designer can enrich it with his own re-occurring patterns for ETL
activities, while, at the same time, we also offer a 'palette' of a set
of frequently used ETL activities, like the assignment of surrogate
keys, the check for null values, etc.
As far as future work is concerned, the first objective is the
linkage of the proposed conceptual model to its logical and
physical counterparts, with particular focus (a) on the relationship
of the ETL activities to the underlying data stores; (b) the
capturing of the composite workflow of the ETL scenario and (c)
the optimization of its execution [34].

6. ACKNOWLEDGMENTS
This research has been partially funded by the European Union's
Information Society Technologies Programme (IST) under project
EDITH (IST-1999-20722).

7. REFERENCES
[1] Ardent Software. DataStage Suite.

http://www.ardentsoftware.com/
[2] M. Bouzeghoub, F. Fabret, M. Matulovic. Modeling Data

Warehouse Refreshment Process as a Workflow
Application. In Proc. DMDW’99 (Heidelberg, Germany,
1999).

[3] V. Borkar, K. Deshmuk, S. Sarawagi. Automatically
Extracting Structure from Free Text Addresses. Bulletin
of the Technical Committee on Data Engineering, 23, 4,
2000.

[4] G. Booch, I. Jacobson, J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley Pub
Co. (1998)

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. Information integration: Conceptual

modeling and reasoning support. In Proc. COOPIS, (New
York, USA, 1998) pp. 280-291.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,
R. Rosati. A principled approach to data integration and
reconciliation in data warehousing. In Proc. DMDW’99,
(Heidelberg, Germany, 1999).

[7] DataMirror Corporation. Transformation Server.
http://www.datamirror.com

[8] M. Demarest. The politics of data warehousing.
http://www.hevanet.com/demarest/marc/dwpol.html

[9] Evolutionary Technologies Intl. ETI*EXTRACT.
http://www.eti.com/

[10] H. Galhardas, D. Florescu, D. Shasha and E. Simon.
Ajax: An Extensible Data Cleaning Tool. In Proc. ACM
SIGMOD (Dallas, Texas, 2000), pp. 590.

[11] M. Golfarelli, D. Maio, S. Rizzi. The Dimensional Fact
Model: a Conceptual Model for Data Warehouses.
Invited Paper, International Journal of Cooperative
Information Systems, 7, 2&3, 1998.

[12] M. Golfarelli, S. Rizzi: Methodological Framework for
Data Warehouse Design. In Proc. DOLAP, (Bethesda,
Maryland, USA, 1998) pp. 3-9.

[13] B. Husemann, J. Lechtenborger, G. Vossen. Conceptual
data warehouse modeling. In Proc. DMDW (Stockholm,
Sweden, 2000), pp. 6.1 –6.11.

[14] B. Inmon. The Data Warehouse Budget. DM Review
Magazine, January 1997.
www.dmreview.com/master.cfm?NavID=55&EdID=131
5

[15] M.A. Jeusfeld, C. Quix, M. Jarke: Design and Analysis of
Quality Information for Data Warehouses. In Proc.
ER’98 (Singapore 1998), pp. 349-362.

[16] M. Jarke, M.A. Jeusfeld, C. Quix, P. Vassiliadis:
Architecture and quality in data warehouses: An extended
repository approach. Information Systems, 24, 3, 1999,
pp. 229-253.

[17] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis
(eds.). Fundamentals of Data Warehouses. Springer,
(2000).

[18] R. Kimball. A Dimensional Modeling Manifesto. DBMS
Magazine. August 1997.

[19] R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite. The
Data Warehouse Lifecycle Toolkit: Expert Methods for
Designing, Developing, and Deploying Data
Warehouses. John Wiley & Sons, February 1998.

[20] W. Labio, J.L. Wiener, H. Garcia-Molina, V. Gorelik.
Efficient Resumption of Interrupted Warehouse Loads. In
Proc. SIGMOD (Dallas, Texas, USA, 2000), pp. 46-57.

[21] Microsoft Corp. MS Data Transformation Services.
www.microsoft.com/sq

[22] D.L. Moody, M.A.R. Kortink: From enterprise models to
dimensional models: a methodology for data warehouse
and data mart design. In Proc. DMDW (Stockholm,
Sweden, June 2000).

[23] A. Monge. Matching Algorithms Within a Duplicate
Detection System. Bulletin of the Technical Committee
on Data Engineering, 23, 4, 2000.

[24] T. B. Nguyen, A Min Tjoa, R. R. Wagner. An Object
Oriented Multidimensional Data Model for OLAP. In
Proc. WAIM (Shanghai, China, June 2000).

[25] Oracle Corp. Oracle9i™ Warehouse Builder User’s
Guide, Release 9.0.2. November 2001.

[26] E. Rahm, H. Do. Data Cleaning: Problems and Current
Approaches. Bulletin of the Technical Committee on
Data Engineering, 23, 4, 2000.

[27] V. Raman, J. Hellerstein. Potter's Wheel: An Interactive
Data Cleaning System. In Proc. VLDB (Roma, Italy,
2001), pp. 381-390.

[28] C. Sapia, M. Blaschka, G. Höfling, B. Dinter: Extending
the E/R Model for the Multidimensional Paradigm. In ER
Workshops 1998, pp. 105-116. LNCS 1552, Springer
1999.

[29] C. Shilakes, J. Tylman. Enterprise Information Portals.
Enterprise Software Team.
http://www.sagemaker.com/company/downloads/eip/
indepth.pdf

[30] N. Tryfona, F. Busborg, J.G.B. Christiansen. starER: A
Conceptual Model for Data Warehouse Design. In
DOLAP (Kansas City, Missouri, USA, November 1999),
pp. 3-8.

[31] J.C. Trujillo, M. Palomar, J. Gómez: Applying Object-
Oriented Conceptual Modeling Techniques to the Design
of Multidimensional Databases and OLAP Applications.
In Proc. WAIM (Shanghai, China, June 2000), pp. 83-94.

[32] A. Tsois. MAC: Conceptual data modeling for OLAP. In
Proc. DMDW (Interlaken, Switzerland, 2001

[33] P. Vassiliadis. Gulliver in the land of data warehousing:
practical experiences and observations of a researcher. In
Proc. DMDW (Stockholm, Sweden, 2000), pp. 12.1 –
12.16.

[34] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling
ETL activities as graphs. In Proc. DMDW (Toronto,
Canada, May 2002), pp. 52-61.

[35] P. Vassiliadis, C. Quix, Y. Vassiliou, M. Jarke. Data
Warehouse Process Management. Information Systems,
26, 3, 2001, pp. 205-236.

[36] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N.
Karayannidis, T. Sellis. ARKTOS: Towards the
modeling, design, control and execution of ETL
processes. Information Systems, 26, 8, pp. 537-561,
(2001).

	INTRODUCTION
	RELATED WORK
	CONCEPTUAL MODEL
	Concepts and Attributes
	Transformations, Constraints and Notes
	Part-Of and Candidate Relationships
	Provider Relationships and Serial Composition of Transformations

	INSTANTIATION AND SPECIALIZATION LAYERS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite. The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses. John Wiley & Sons, February 1998.
	W. Labio, J.L. Wiener, H. Garcia-Molina, V. Gorelik. Efficient Resumption of Interrupted Warehouse Loads. In Proc. SIGMOD (Dallas, Texas, USA, 2000), pp. 46-57.
	Microsoft Corp. MS Data Transformation Services. www.microsoft.com/sq
	D.L. Moody, M.A.R. Kortink: From enterprise models to dimensional models: a methodology for data warehouse and data mart design. In Proc. DMDW (Stockholm, Sweden, June 2000).
	A. Monge. Matching Algorithms Within a Duplicate Detection System. Bulletin of the Technical Committee on Data Engineering, 23, 4, 2000.
	T. B. Nguyen, A Min Tjoa, R. R. Wagner. An Object Oriented Multidimensional Data Model for OLAP. In Proc. WAIM (Shanghai, China, June 2000).
	Oracle Corp. Oracle9i™ Warehouse Builder User’s Guide, Release 9.0.2. November 2001.
	E. Rahm, H. Do. Data Cleaning: Problems and Current Approaches. Bulletin of the Technical Committee on Data Engineering, 23, 4, 2000.
	V. Raman, J. Hellerstein. Potter's Wheel: An Interactive Data Cleaning System. In Proc. VLDB (Roma, Italy, 2001), pp. 381-390.
	C. Sapia, M. Blaschka, G. Hofling, B. Dinter: Extending the E/R Model for the Multidimensional Paradigm. In ER Workshops 1998, pp. 105-116. LNCS 1552, Springer 1999.
	C. Shilakes, J. Tylman. Enterprise Information Portals. Enterprise Software Team.
	N. Tryfona, F. Busborg, J.G.B. Christiansen. starER: A Conceptual Model for Data Warehouse Design. In DOLAP (Kansas City, Missouri, USA, November 1999), pp. 3-8.
	J.C. Trujillo, M. Palomar, J. Gomez: Applying Object-Oriented Conceptual Modeling Techniques to the Design of Multidimensional Databases and OLAP Applications. In Proc. WAIM (Shanghai, China, June 2000), pp. 83-94.
	A. Tsois. MAC: Conceptual data modeling for OLAP. In Proc. DMDW (Interlaken, Switzerland, 2001
	P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling ETL activities as graphs. In Proc. DMDW (Toronto, Canada, May 2002), pp. 52-61.
	P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, T. Sellis. ARKTOS: Towards the modeling, design, control and execution of ETL processes. Information Systems, 26, 8, pp. 537-561, (2001).

