
Modeling ETL Activities as Graphs

Panos Vassiliadis, Alkis Simitsis, Spiros Skiadopoulos

National Technical University of Athens, Dept. of Electrical and Computer Eng.,
Computer Science Division, Iroon Polytechniou 9, 157 73, Athens, Greece
Email: {pvassil,asimi,spiros}@dbnet.ece.ntua.gr
Phone: +3010-772-1436, 1602
Fax: +3010-772-1442

1. INTRODUCTION.. 2
2. GENERIC MODEL OF ETL ACTIVITIES ... 6

2.1 PRELIMINARIES .. 6
2.2 ACTIVITIES AND RELATIONSHIPS ... 7
2.3 SCENARIOS... 11
2.4 MOTIVATING EXAMPLE .. 11

3 THE ARCHITECTURE GRAPH OF AN ETL SCENARIO................. 15
3.1 PRELIMINARIES .. 15
3.2 CONSTRUCTING THE ARCHITECTURE GRAPH.. 17

4. EXPLOITATION OF THE ARCHITECTURE GRAPH 22
4.1 GRAPH TRANSFORMATIONS ... 23
4.2 IMPORTANCE METRICS... 24

5. RELATED WORK... 28
6. CONCLUSIONS... 30
REFERENCES... 30

Page 1 of 32

Modeling ETL Activities as Graphs*

Panos Vassiliadis, Alkis Simitsis, Spiros Skiadopoulos

National Technical University of Athens, Dept. of Electrical and Computer Eng.,
Computer Science Division, Iroon Polytechniou 9, 157 73, Athens, Greece

{pvassil,asimi,spiros}@dbnet.ece.ntua.gr

Abstract. Extraction-Transformation-Loading (ETL) tools are pieces of
software responsible for the extraction of data from several sources, their
cleansing, customization and insertion into a data warehouse. In this paper, we
focus on the logical design of the ETL scenario of a data warehouse. We define
a formal logical model for ETL processes. The data stores, activities and their
constituent parts are formally introduced. An ETL scenario is defined as the
combination of ETL activities and data stores. Then, we show how this model is
reduced to a graph, which we call the Architecture Graph. We model all the
aforementioned entities as nodes and four different kinds of relationships
(instance-of, part-of, regulator and provider relationships) as edges. Also, we
provide simple graph transformations that reduce the complexity of the graph.
Finally, in order to support the engineering of the design and the evolution of
the warehouse, we introduce specific importance metrics, namely dependence
and responsibility, to measure the degree to which entities are bound to each
other.

1. Introduction

For quite a long time in the past, research has treated data warehouses as collections
of materialized views. Although this abstraction is elegant and possibly sufficient for
the purpose of examining alternative strategies for view maintenance, it is simply
insufficient to describe the structure and contents of a data warehouse. In [VQVJ01],
the authors bring up the issue of data warehouse operational processes and deduce
the definition of a table in the data warehouse as the outcome of the combination of
the processes that populate it. This new kind of definition complements existing
approaches, since it provides the operational semantics for the content of a data
warehouse table, whereas the existing ones give an abstraction of its intentional
semantics.

In order to facilitate and manage the data warehouse operational processes,
specialized tools are already available in the market, under the general title
Extraction-Transformation-Loading (ETL) tools. To give a general idea of the
functionality of these tools we mention their most prominent tasks, which include:

− the identification of relevant information at the source side;

* This research has been partially funded by the European Union's Information Society

Technologies Programme (IST) under project EDITH (IST-1999-20722).

Page 2 of 32

− the extraction of this information;
− the customization and integration of the information coming from multiple

sources into a common format;
− the cleaning of the resulting data set, on the basis of database and business

rules, and
− the propagation of the data to the data warehouse and/or data marts.
In the sequel, we will not discriminate between the tasks of ETL and Data

Cleaning and adopt the name ETL for both these kinds of activities.

Sources DSA DW

Extract Transform
& Clean

Load

Fig. 1.1 The environment of Extract-Transform-Load processes

In Fig. 1.1 we abstractly describe the general framework for ETL processes. In the

bottom layer we depict the data stores that are involved in the overall process. On the
left side, we can observe the original data providers. Typically, data providers are
relational databases and files. The data from these sources are extracted (as shown in
the upper left part of Fig. 1.1) by extraction routines, which provide either complete
snapshots or differentials of the data sources. Then, these data are propagated to the
Data Staging Area (DSA) where they are transformed and cleaned before being
loaded to the data warehouse. The data warehouse is depicted in the right part of the
data store layer and comprises the target data stores, i.e., fact tables for the storage of
information and dimension tables with the description and the multidimensional, roll-
up hierarchies of the stored facts. The loading of the central warehouse is performed
from the loading activities depicted on the upper right part of the figure.

Related literature has attributed several characteristics to ETL processes. First, we
can clearly characterize them as complex. As mentioned in [BoFM99] the data
warehouse refreshment process can consist of many different subprocesses, like data
cleaning, archiving, transformations and aggregations, interconnected through a
complex schedule. Second, data warehouse operational processes are costly and
critical for the success of a data warehouse project. Actually, their design and

Page 3 of 32

implementation has been characterized as a labor-intensive and lengthy procedure,
covering thirty to eighty percent of effort and expenses of the overall data warehouse
construction [Dema97, ShTy98, Vass00]. Third, these processes are important for the
correctness, completeness and freshness of data warehouse contents, since not only do
they facilitate the population of the warehouse with up-to-date data, but also they are
responsible for homogenizing their structure and blocking the propagation of
erroneous or inconsistent entries.

From the above, we believe that the research on ETL processes is a valid research
goal. The uttermost goal of our research is to facilitate, manage and optimize the
design and implementation of the ETL processes both during the initial design and
deployment stage and during the continuous evolution of the data warehouse.

To probe into the aforementioned problem, we have to clarify how the ETL

processes fit in the data warehouse lifecycle. As we can see in Fig. 1.2, the lifecycle
of a data warehouse begins with an initial Reverse Engineering and Requirements
Collection phase where the data sources are analyzed in order to comprehend their
structure and contents. At the same time, any requirements from the part of the users
(normally a few power users) are also collected. The deliverable of this stage is a
conceptual model for the data stores and the activities. In a second stage, namely the
Logical Design of the warehouse, the logical schema for the warehouse and the
activities is constructed. Third, the logical design of the schema and processes is
refined to the choice of specific physical structures in the warehouse (e.g., indexes)
and environment-specific execution parameters for the operational processes. We call
this stage Tuning and its deliverable, the physical model of the environment. In a
fourth stage, Software Construction, the software is constructed, tested, evaluated and
a first version of the warehouse is deployed. This process is guided through specific
software metrics. Then, the cycle starts again, since data sources, user requirements
and the data warehouse state are under continuous evolution. An extra feature that
comes into the scene after the deployment of the warehouse is the Administration
task, which also needs specific metrics for the maintenance and monitoring of the data
warehouse.

Page 4 of 32

Conceptual
Model for
DW, Sources
& Activities

Logical Design
Tuning –
Full Activity
Description

Software
Construction

Administration
of DW

Reverse Engineering
of Sources &
Requirements
Collection

Software &
SW Metrics

Physical
Model for
DW, Sources
& Activities

Logical
Model for
DW, Sources
& Activities

Metrics

Fig. 1.2 The lifecycle of a Data Warehouse and its ETL processes

The conceptual model for ETL processes along with a methodology for its

derivation is described in [VaSS02]. In this paper, we focus on the logical design of
the ETL scenario of a data warehouse. Our contributions can be listed as follows:
- First, we define a formal logical model as a logical abstraction of ETL

processes. The data stores, activities and their constituent parts are formally
defined. An activity is defined as an entity with (possibly more than one) input
schema(ta), an output schema, a rejection schema for the rows that do not pass
the criteria of the activity and a parameter schema, so that the activity is
populated each time with its proper parameter values. The flow of data from
producers towards their consumers is achieved through the usage of provider
relationships that map the attributes of the former to the respective attributes
of the latter. The serializable combination of ETL activities, provider
relationships and data stores constitutes an ETL scenario.

- Second, we show how this model is reduced to a graph, which we call the
Architecture Graph. We model all the aforementioned entities as nodes and
four different kinds of relationships as edges. These relationships involve (a)
type checking information (i.e., which type an entity corresponds to), (b) part-
of relationships (e.g., which activity does an attribute belong to), (c) regulator
relationships, covering the population of the parameters of the activities from
attributes or constant values and (d) provider relationships, covering the flow
of data from providers to consumers.

- Finally, we provide results on the exploitation of the Architecture Graph. First
we provide several simple graph transformations that reduce the complexity of
the graph. For example, we give a simple algorithm for zooming out the graph,
a transformation that can be very useful for the visualization of the graph.
Second, we measure the importance and vulnerability of the nodes of the
graph through specific importance metrics, namely dependence and
responsibility. Dependence stands for the degree to which a node is bound to
other entities that provide it with data and responsibility measures the degree

Page 5 of 32

up to which other nodes of the graph depend on the node under consideration.
Dependence and responsibility are crucial measures for the engineering of the
evolution of the ETL environment.

This paper is organized as follows. In Section 2 we present a generic model of ETL
activities. Section 3 presents how an ETL scenario can be modeled as a graph. Section
4 describes the exploitation of the architecture graph through several useful
transformations and treats the design quality of an ETL scenario via this graph. In
Section 5 we present related work. Finally, in Section 6 we conclude our results.

2. Generic Model of ETL Activities

The purpose of this section is to present a formal logical model for the activities of an
ETL environment. This model abstracts from the technicalities of monitoring,
scheduling, logging while it concentrates on the flow of data from the sources towards
the data warehouse through the composition of activities and data stores.

2.1 Preliminaries

In this subsection, we will introduce the formal modeling of data types, data stores
and functions, before proceeding to the modeling of ETL activities.

Elementary Entities. We assume the existence of a countable set of data types.

Each data type T is characterized by a name and a domain, i.e., a countable set of
values, called dom(T). The values of the domains are also referred to as constants.

We also assume the existence of a countable set of attributes, which constitute the
most elementary granules of the infrastructure of the information system. Attributes
are characterized by their name and data type. The domain of an attribute is a subset
of the domain of its data type. Attributes and constants are uniformly referred to as
terms.

A Schema is a finite list of attributes. Each entity that is characterized by one or
more schemata will be called Structured Entity1. Moreover, we assume the existence
of a special family of schemata, all under the general name of NULL Schema,
determined to act as placeholders for data which are not to be stored permanently in
some data store. We refer to a family instead of a single NULL schema, due to a
subtle technicality involving the number of attributes of such a schema (this will
become clear in the sequel).

RecordSets. We define a record as the instantiation of a schema to a list of values

belonging to the domains of the respective schema attributes. As mentioned in
[VQVJ01], we can treat any data structure as a “record set” provided that there are the

1 Αs opposed to unstructured or semi-structured data, which we do not consider in

the context of this paper.

Page 6 of 32

means to logically restructure it into a flat, typed record schema. Several physical
storage structures abide by this rule, such as relational databases, COBOL or simple
ASCII files, multidimensional cubes, etc. We will employ the general term RecordSet
in order to refer to this kind of structures. For example, the schema of
multidimensional cubes is of the form [D1,...,Dn,M1,...,Mm] where the Di represent
dimensions (forming the primary key of the cube) and the Mj measures [VaSk00].
COBOL files, as another example, are records with fields having two peculiarities:
nested records and alternative representations. One can easily unfold the nested
records and choose one of the alternative representations. Relational databases are
clearly recordsets, too. Formally, a recordset is characterized by its name, its (logical)
schema and its (physical) extension (i.e., a finite set of records under the recordset
schema). If we consider a schema S=[A1,…,Ak], for a certain recordset, its extension
is a mapping S=[A1,…,Ak]→dom(A1)×…×dom(Ak). Thus, the extension of the
recordset is a finite subset of dom(A1)×…×dom(Ak) and a record is the instance of a
mapping dom(A1)×…×dom(Ak)→[x1,…,xk], xi∈dom(Ai).

In the rest of this paper we will mainly deal with the two most popular types of
recordsets, namely relational tables and record files. A database is a finite set of
relational tables.

Functions. We assume the existence of a countable set of built-in system function

types. A function type comprises a name, a finite list of parameter data types, and a
single return data type. A function is an instance of a function type; consequently it is
also characterized by a name, a list of input parameters and a parameter for its return
value. The data types of the parameters of the generating function type define also (a)
the data types of the parameters of the function and (b) the legal candidates for the
function parameters (i.e., attributes or constants of a suitable data type).

2.2 Activities and Relationships

Activities are the backbone of the structure of any information system. We adopt the
WfMC terminology [WfMC98] for processes/programs and we will call them
activities in the sequel. An activity is an amount of "work which is processed by a
combination of resource and computer applications" [WfMC98]. In our framework,
activities are logical abstractions representing parts, or full modules of code.

The execution of an activity is performed from a particular program. Normally,
ETL activities will be either performed in a black-box manner by a dedicated tool, or
they will be expressed in some scripting language (e.g., PL/SQL, Perl, C, etc). Still,
we want to deal with the general case of ETL activities; thus we employ an
abstraction of the source code of an activity, in the form of an SQL statement, in order
to avoid dealing with the peculiarities of a particular programming language. Once
again, we want to stress that the presented SQL description is not intended to capture
the way these activities are actually implemented, but rather the semantics of each
activity.

An Elementary Activity is formally described by the following elements:
- Name: a unique identifier for the activity.

Page 7 of 32

- Input Schemata: a finite set of one or more input schemata that receive data
from the data providers of the activity.

- Output Schema: the schema that describes the placeholder for the rows that
pass the check performed by the elementary activity.

- Rejections Schema: a schema that describes the placeholder for the rows that
do not pass the check performed by the activity, or their values are not
appropriate for the performed transformation.

- Parameter List: a set of pairs which act as regulators for the functionality of
the activity (the target attribute of a foreign key check, for example). The first
component of the pair is a name and the second is a schema, an attribute, a
function or a constant.

- Output Operational Semantics: an SQL statement describing the content
passed to the output of the operation, with respect to its input. This SQL
statement defines (a) the operation performed on the rows that pass through
the activity and (b) an implicit mapping between the attributes of the input
schema(ta) and the respective attributes of the output schema.

- Rejection Operational Semantics: an SQL statement describing the rejected
records, in a sense similar to the Output Operational Semantics. This
statement is by default considered to be the negation of the Output
Operational Semantics, except if explicitly defined differently.

- Data Provider/Consumer Semantics: a modality of each schema which defines
(a) whether the data are simply read (default) or read and subsequently deleted
from the data provider and (b) whether the data are appended to the data
consumer (default) or the contents of the data consumer are overwritten from
the output of the operation. Thus, the domain of the Data Provider Semantics
attribute is {SELECT,DELETE} and the domain of the Data Consumer
Semantics attribute is {APPEND,OVERWRITE}.

Note that:
- The Data Provider/Consumer Semantics is a facility employed in order to

capture the cases of activities that delete or update tables in the data
warehouse. In the context of this paper, we will consider only cases where data
are simply read from the sources and appended to the targets, without any
further action; thus we will not deal with this attribute any more in our
discussion. Still, we conjecture that our results are not particularly altered in
the general case, where deletions and updates occur.

- Whenever we do not specify a data consumer for the output or rejection
schemata, the respective NULL schema (involving the correct number of
attributes) is implied. This practically means that the data targeted for this
schema will neither be stored to some persistent data store, nor will they be
propagated to another activity, but they will simply be ignored.

The flow of data from the data sources towards the data warehouse is performed

through the composition of activities in a larger scenario. In this context, the input for
an activity can be either a persistent data store, or another activity, i.e., any structured
entity under a specific schema. Usually, this applies for the output of an activity, too.

Page 8 of 32

We capture the passing of data from providers to consumers by a Provider
Relationship among the attributes of the involved schemata2.

Formally, a Provider Relationship is defined as follows:
- Name: a unique identifier for the provider relationship.
- Mapping: an ordered pair. The first part of the pair is a term (i.e., an attribute

or constant), acting as a provider and the second part is an attribute acting as
the consumer.

The mapping need not necessarily be 1:1 from provider to consumer attributes,
since an input attribute can be mapped to more than one consumer attributes. Still,
this does not hold the other way around. Note that a consumer attribute can also be
populated by a constant, in certain cases.

In order to achieve the flow of data from the providers of an activity towards its

consumers, we need the following three groups of provider relationships:
1. A mapping between the input schemata of the activity and the (output) schema of

their data providers. In other words, for each attribute of an input schema of an
activity, there must exist an attribute of the data provider, or a constant, which is
mapped to the former attribute.

2. A mapping between the attributes of the activity input schemata and the activity
output (or rejection, respectively) schema.

3. A mapping between the output (rejection) schema of the activity and the (input)
schema of its data consumer.
The mappings of the second type are internal to the activity. Basically, they can be

derived from the SQL statement for each of the output/rejection schemata. As far as
the first and the third types of provider relationships are concerned, the mappings
must be provided during the construction of the ETL scenario. This means that they
are either (a) by default assumed by the order of the attributes of the involved
schemata or (b) hard-coded by the user.

2 By abuse of terminology, we will also apply the term both for the involved schemata and the

respective structured entities.

Page 9 of 32

R

A1

A2

A3

A4

A1

A2

A3

A4

IN.A1

A1

A2

A3

A4

A1

A2

A3

A4

IN OUT

POPULATED_FIELD

IN

SELECT IN.A1 AS OUT.A1, IN.A2 AS OUT.A2,

 IN.A3 AS OUT.A3, IN.A4 AS OUT.A4

FROM NOTNULL_A1.IN

WHERE IN.A1 NOT NULL

NotNull_A1

 R

NotNull_A1

OUT OPERATIONAL
SEMANTICS

SK_A2

…

Legend:

Fig. 2.1 Schemata and data flow for a small scenario

Observe the legend for the example of Fig. 2.1, where (a) we read data from the
source table R, and pass them through a check for NULL values on attribute A1; (b) we
propagate the qualifying data to a second transformation where a surrogate key is
attributed to attribute A2 (see Section 2.4 for more on surrogate keys) and (c) we pass
the control to some other activity not depicted in Fig. 2.1. On the upper part of Fig.
2.1, where the (a) part of the scenario is depicted in more detail, we can observe:

(a) the fact that the recordset R comprises the attributes A1,A2,A3,A4;
(b) the provider relationships between the schema of R and the input schema IN of

the activity NotNull_A1;
(c) the provider relationships between the input schema IN and the output schema

OUT of the activity NotNull_A1;
(d) the provider relationships between the output schema OUT of the activity

NotNull_A1 and the input schema IN of the activity SK_A2;
(e) the Output Operational Semantics of the activity NotNull_A1 in the form of

an SQL statement;
(f) the population of the parameter POPULATED_FIELD that denotes the attribute

over which the NOT NULL check is performed, by the attribute IN.A1.
All provider relationships are depicted as directed edges from the provider towards

the consumer. For reasons of simplicity, we do not consider the rejection schemata for
the aforementioned activities.

Page 10 of 32

2.3 Scenarios

A Scenario is an enumeration of activities along with their source/target recordsets
and the respective provider relationships for each activity. Formally, a Scenario
consists of:

- Name: a unique identifier for the scenario.
- Activities: A finite list of activities. Note that by employing a list (instead of

e.g., a set) of activities, we impose a total ordering on the execution of the
scenario.

- Recordsets: A finite set of recordsets.
- Targets: A special-purpose subset of the recordsets of the scenario, which

includes the final destinations of the overall process (i.e., the data warehouse
tables that must be populated by the activities of the scenario).

- Provider Relationships: A finite list of provider relationships among activities
and recordsets of the scenario.

Intuitively, a scenario is a set of activities, deployed along a graph in an execution
sequence that can be linearly serialized. For the moment we do not consider the
different alternatives for the ordering of the execution; we simply require that a total
order for this execution is present (i.e., each activity has a discrete execution priority).

Moreover, we assume the following Integrity Constraints for a scenario:
Static Constraints:

- All the weak entities of a scenario (i.e., attributes or parameters) should be
defined within a part-of relationship (i.e., they should have a container
object).

- All the mappings in provider relationships should be defined among terms
(i.e., attributes or constants) of the same data type.

Data Flow Constraints:
- All the attributes of the input schema(ta) of an activity should have a

provider.
- Resulting from the previous requirement, if some attribute is a parameter in

an activity A, the container of the attribute (i.e., recordset or activity) should
precede A in the scenario.

- All the attributes of the schemata of the target recordsets should have a data
provider.

2.4 Motivating example

To motivate our discussion we will present a motivating example based on the TPC-
R/TPC-H standards [TPC00]. We assume the existence of two source databases S1
and S2 as well as a central data warehouse under the schemata of Fig. 2.2. Moreover,
we assume the existence of a Data Staging Area (DSA), where all the transformations
take place.

Page 11 of 32

Source Recordset Name Recordset Schema
S1 S1.PARTSUPP PKEY, DATE, QTY, COST

S2 S2.PARTSUPP PKEY, QTY, COST

DSA DS.PS_NEW1 PKEY, DATE, QTY, COST

 DS.PS_OLD1 PKEY, DATE, QTY, COST

 DS.PS1 PKEY, DATE, QTY, COST

 DS.PS_NEW2 PKEY, QTY, COST

 DS.PS_OLD2 PKEY, QTY, COST

 DS.PS2 PKEY, QTY, COST

DW DW.PARTSUPP PKEY, SUPPKEY, DATE, QTY, COST

 LOOKUP_PS PKEY, SOURCE, SKEY

 V1 PKEY, DAY, MIN_COST

 V2 PKEY, MONTH, AVG_COST

 TIME DAY, MONTH, YEAR

Fig. 2.2 The schemata of the source databases and of the data warehouse

The scenario involves the propagation of data from the table PARTSUPP of source
S1 as well as from the table PARTSUPP of source S2 to the data warehouse. Table
DW.PARTSUPP stores information for the available quantity(QTY) and cost(COST) of
parts(PKEY) per supplier(SUPPKEY). Practically, the two data sources S1 and S2
stand for the two suppliers of the data warehouse. We assume that the first supplier is
American and the second is European, thus the data coming from the first source need
to be converted to European values and formats. Once the table PARTSUPP has been
populated, data are further aggregated to populate two data marts V1 and V2 in the data
warehouse. All the attributes, except for the dates are instances of the Integer type.
The data mart V1 stores information on the minimum cost of each part per day and the
data mart V2 stores information on the average cost of parts per month. The date
attributes for tables S1.PARTSUPP, DS.PS_NEW1, DS.PS_OLD1, DS.PS1, are of type
US_DATE and all the other date attributes are of type EU_DATE. The scenario is
graphically depicted in Fig. 2.3 and involves the following transformations.

1. First, we transfer via ftp the snapshots from the sources S1.PARTSUPP and

S2.PARTSUPP to the files DS.PS_NEW1 and DS.PS_NEW2 of the DSA.
2. In the DSA we maintain locally two copies of the snapshot for each source. The

recordset DS.PS_NEW1 stands for the last transferred snapshot of S1.PARTSUPP
and the recordset DS.PS_OLD1 stands for the penultimate transferred snapshot. By
detecting the difference of these snapshots we can derive the newly inserted rows
in source S1.PARTSUPP. We store these rows in the file DS.PS1. Note that the
difference activity that we employ, namely Diff1, checks for differences only on
the primary key of the recordsets; thus we ignore any possible deletions or updates
for the attributes COST, QTY of existing rows. The data coming from source S2 are
treated similarly.

3. Next we start two flows, one for the rows of DS.PS1 and another one for the rows
of DS.PS2. For both flows, in order to keep track of the supplier of each row, we

Page 12 of 32

need to add a ‘flag’ attribute, namely SUPPKEY, indicating 1 or 2 for the respective
supplier. This is achieved through the activities Add_SPK1 and Add_SPK2
respectively.

4. Again, in both rows, we assign a surrogate key on PKEY, for data of both sources.
In the data warehouse context, it is common tactics to replace the keys of the
production systems with a uniform key, which we call a surrogate key [KRRT98].
The basic reasons for this replacement are performance and semantic homogeneity.
Textual attributes are not the best candidates for indexed keys and thus need to be
replaced by integer keys. At the same time, different production systems might use
different keys for the same object, or the same key for different objects, resulting in
the need for a global replacement of these values in the data warehouse. This
replacement is performed through a lookup table of the form L(PRODKEY,SOURCE,
SKEY). The SOURCE column is due to the fact that there can be synonyms in the
different sources, which are mapped to different objects in the data warehouse. In
our case, the two activities that perform the surrogate key assignment for the
attribute PKEY are SK1 and SK2 for each of the two flows. They both use the lookup
table LOOKUP_PS.

5. In the flow for the data of S1, we need to we apply a function to the attribute COST
that converts currency values from US Dollars to Euros. Also, we need to convert
the American dates (attribute DATE) to the European format. These transformations
are performed from activities $2€1 and A2Edate, respectively.

6. Simultaneously, for the data coming from S2 we need to perform (a) a test for
NULL values for the attribute COST (activity NotNULL); (b) addition of a DATE
attribute with the value of system’s date, since source S2 does not contain date
information (activity AddDate); and (c) select only the records for which an
available quantity exists (QTY>0), using activity CheckQTY.

7. Then, the two flows are consolidated through a union activity, namely U, that also
populates table DW.PARTSUPP.

8. Next, we need to populate the two data marts of the warehouse. For the data mart
V1 we simply group-by DAY and PKEY for the calculation of the minimum value per
part through the activity AGGREGATE1.

9. As far as the data mart is concerned, we need to join the data from table
DW.PARTSUPP with table TIME (activity) and then aggregate the result by MONTH
and PKEY for the calculation of the average value per part (activity AGGREGATE2).

Page 13 of 32

S

S

DS.PS_OLD1

DS.PS_NEW2

DS.PS_OLD2

 1_PARTSUPP

DS.PS_NEW2.PKEY,
DS.PS OLD2.PKEY

DIFF2

 FTP2 2_PARTSUPP

FTP1

DW.PARTSUPP.DATE,
DAY

 TIME

V1

V2

PKEY, MONTH
AVG(COST)

 Aggregate2

PKEY, DAY
MIN(COST)

Aggregate1DW.PARTSUPP

DS.PS_NEW1

DS.PS_NEW1.PKEY,
DS.PS OLD1.PKEY

 DIFF1

rejected

Log

rejected

Log

rejected

Log

NotNULL

rejected

Log

rejected

Log

DS.PS1
 U

QTY>0

CheckQTYAddDate

DATE=SYSDATECOST

DS.PS2.PKEY,
LOOKUP_PS.SKEY,

SUPPKEY

SK2

SUPPKEY=2

Add_SPK2DS.PS2

DATE

 A2EDate

COST

 $2€

DS.PS1.PKEY,
LOOKUP_PS.SKEY,

SUPPKEY

 SK1

SUPPKEY=1

 Add_SPK1

Figure 2.3: Motivating example
Page 14 of 32

Note also, that for several of the aforementioned activities (i.e., SK1,2, NotNULL,
$2€, A2EDate), we need to trace the rows that do not pass the check or
transformation performed. In this case, we employ the rejection schema of the activity
to send these rows to their respective Log file.

3 The Architecture Graph of an ETL Scenario

In the previous sections, we have given a formal definition of activities, recordsets
and other constituents of an ETL scenario. The full layout of an ETL scenario,
involving activities, recordsets and functions can be modeled by a graph, which we
call the Architecture Graph. The uniform, graph-modeling framework that we employ
both for the modeling of the internal structure of activities and for the modeling of the
ETL scenario at large, enables the treatment of the ETL environment from different
viewpoints. First, the architecture graph comprises all the activities and data stores of
a scenario, along with their components. Second, the architecture graph captures the
data flow within the ETL environment. Finally, the information on the typing of the
involved entities and the regulation of the execution of a scenario, through specific
parameters are also covered.

3.1 Preliminaries

We assume the infinitely countable, mutually disjoint sets of names (i.e., the values of
which respect the unique name assumption) of column Model-specific in Fig. 3.1. As
far as a specific scenario is concerned, we assume their respective finite subsets,
depicted in column Scenario-Specific in Fig. 3.1. Data types, function types and
constants are considered Built-in’s of the system, whereas the rest of the entities are
provided by the user (User Provided).

 Entity Model-
specific

Scenario-
specific

Data Types DI D

Function Types FI F

Built-in
Constants CI C
Attributes ΩI Ω
Functions ΦI Φ
Schemata SI S
RecordSets RSI RS
Activities AI A
Provider Relationships PrI Pr
Part-Of Relationships PoI Po
Instance-Of Relationships IoI Io
Regulator Relationships RrI Rr

User-provided

Derived Provider Relationships DrI Dr

Fig. 3.1 Formal definition of domains and notation

Page 15 of 32

Being a graph, the Architecture Graph of an ETL scenario comprises nodes and
edges. The involved data types, function types, constants, attributes, activities,
recordsets and functions constitute the nodes of the graph. To fully capture the
characteristics and interactions of the entities that have been mentioned in Section 2,
we model the different kinds of their relationships as the edges of the graph. Here, we
list these types of relationships along with the related terminology that we will
employ for the rest of the paper.
- Part-of relationships. These relationships involve attributes and parameters

and relate them to the respective activity, recordset or function to which they
belong.

- Instance-of relationships. These relationships are defined among a
data/function type and its instances.

- Provider relationships. These are relationships that involve attributes with a
provider-consumer relationship, exactly in the sense of Section 2.2.

- Regulator relationships. These relationships are defined among the parameters
of activities and the terms that populate these activities.

- Derived provider relationships. A special case of provider relationships that
occurs whenever output attributes are computed through the composition of
input attributes and parameters. Derived provider relationships can be deduced
from a simple rule and do not originally constitute a part of the graph.

Data Types Black ellipsis

RecordSets Cylinders

Function
Types Black squares

Functions Gray squares

Constants Black cycles

Parameters White squares

Attributes Hollow
ellipsoid nodes

Activities Triangles

Part-Of
Relationships

Simple edges
annotated with
diamond*

 Provider
Relationships

Bold solid rrows
(from provider
to consumer)

Instance-Of
Relationships

Dotted arrows
(from instance
towards the
type)

 Derived
Provider
Relationships

Bold dotted
arrows (from
provider to
consumer)

Regulator
Relationships Dotted edges

 * We annotate the part-of relationship among a
function and its return type with a directed edge, to
distinguish it from the rest of the parameters.

Integer
R

$2€ my$2€

rate 1

SK PKEY

Fig. 3.2 Graphical notation for the Architecture Graph.

Formally, let G(V,E) be the Architecture Graph of an ETL scenario. Then,
- V = D∪F∪C∪Ω∪Φ∪S∪RS∪A
- E = Pr∪Po∪Io∪Rr∪Dr

Page 16 of 32

The graphical notation for the Architecture Graph is depicted in Fig. 3.2.

3.2 Constructing the Architecture graph

In this subsection we will describe how we can construct the architecture graph, based
on the theoretical foundations and the graphical notation of the previous sections.
Clearly, we do not anticipate a manual construction of the graph by the designer;
rather, we employ this section to clarify how the graph will look like once
constructed. In general, the construction can be performed by a graphical tool,
provided that the construction rules that we will present in this section are obeyed. In
the sequel, we will employ a concrete example that involves a small part of the
scenario of the motivating example, including the activities Add_SPK1 and SK1.

DS.PS1

PKEY

COST

DATE

 QTY

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

SUPPKEY

SKEY

AddSPK1 SK1
IN INOUT OUT

Add_
const1

in out PKEY SK SOURCE

LOOKUP_
PS

LU_PKEY

LU_SKEY

PKEY

SOURCE

PAR

PAR

LU_SOURCE

Fig. 3.3 Part-of relationships of the architecture graph

Attributes and part-of relationships. The first thing to incorporate in the
architecture graph is the structured entities (activities and recordsets) along with all
the attributes of their schemata. We choose to avoid overloading the notation by
incorporating the schemata per se; instead we apply a direct part-of relationship
between an activity node and the respective attributes. We annotate each such
relationship with the name of the schema (by default, we assume a IN, OUT, PAR, REJ
tag to denote whether the attribute belongs to the input, output, parameter or rejection

Page 17 of 32

schema of the activity). Naturally, if the activity involves more than one input
schemata, the relationship is tagged with an INi tag for the i-th input schema.

Then, we incorporate the functions along with their respective parameters and the
part-of relationships among the former and the latter. We annotate the part-of
relationship with the return type with a directed edge, to distinguish it from the rest of
the parameters.

Fig. 3.3 depicts a part of the motivating example, where we can see the

decomposition of (a) the recordsets DS.PS1, LOOKUP_PS; (b) the activities Add_SPK1
and SK1 into the attributes of their input and output schemata. Note the tagging of the
schemata of the involved activities. We do not consider the rejection schemata in
order to avoid crowding the picture. At the same time, the function Add_const1 is
decomposed into its parameters. This function belongs to the function type
ADD_CONST and comprises two parameters: in and out. The former receives an
integer as input and the latter returns this integer. As we will see in the sequel, this
value will be propagated towards the SUPPKEY attribute, in order to trace the fact that
the propagated rows come from source S1.

Note also, how the parameters of the two activities are also incorporated in the
architecture graph. For the case of activity Add_SPK1 the involved parameters are the
parameters in and out of the employed function. For the case of activity SK1 we have
five parameters: (a) PKEY, which stands for the production key to be replaced; (b)
SOURCE, which stands for an integer value that characterizes which source’s data are
processed; (c) LU_PKEY, which stands for the attribute of the lookup table which
contains the production keys; (d) LU_SOURCE, which stands for the attribute of the
lookup table which contains the source value (corresponding to the aforementioned
SOURCE parameter); (e) LU_SKEY, which stands for the attribute of the lookup table
which contains the surrogate keys.

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

SUPPKEY

SKEY

AddSPK1 SK1IN INOUT OUT

Integer

US Date

ADD_
CONST

PAR

Add_
const1

Fig. 3.4 Instance-of relationships of the architecture graph

Page 18 of 32

Data types and instance-of relationships. Next, we incorporate data and function
types. Instantiation relationships are depicted as dotted arrows that stem from the
instances and head towards the data/function types. In Fig. 3.4, we observe the
attributes of the two activities of our example and their correspondence to two data
types, namely Integer and US_Date. For reasons of presentation, we merge several
instantiation edges so that the figure does not become too crowded. At the bottom of
Fig. 3.4, we can also see the fact that function Add_const1 is an instance of the
function type ADD_CONST.

Parameters and regulator relationships. Once the part-of and instantiation

relationships have been established, it is time to establish the regulator relationships
of the scenario. In this case, we link the parameters of the activities to the terms
(attributes or constants) that populate them. We depict regulator relationships with
simple dotted edges.

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

SUPPKEY

SKEY

AddSPK1 SK1IN INOUT OUT

Add_
const1

in out

PKEY

SK

SOURCELOOKUP_
PS

LU_PKEY

LU_SKEY

PKEY

SOURCE

PAR

PAR

LU_SOURCE

1

Fig. 3.5 Regulator relationships of the architecture graph

In the example of Fig. 3.5 we can observe how the parameters of the two activities
are populated. First, we can see that activity Add_SPK1 receives an integer (1) as its
input and uses the function Add_const1 to populate its attribute SUPPKEY. The
parameters in and out are mapped to the respective terms through regulator
relationships. The same applies also for activity SK1. All its parameters, namely PKEY,

Page 19 of 32

SOURCE, LU_PKEY, LU_SOURCE and LU_SKEY, are mapped to the respective attributes
of either the activity’s input schema or the employed lookup table LOOKUP_PS.

The parameter LU_SKEY deserves particular attention. This parameter is (a)
populated from the attribute SKEY of the lookup table and (b) used to populate the
attribute SKEY of the output schema of the activity. Thus, two regulator relationships
are related with parameter LU_SKEY, one for each of the aforementioned attributes.
The existence of a regulator relationship among a parameter and an output attribute of
an activity, normally denotes that some external data provider is employed in order to
derive a new attribute through the activity, through the respective parameter.

Provider relationships. The last thing to add in the architecture graph is the

provider relationships that capture the data flow from the sources towards the target
recordsets in the data warehouse. Provider relationships are depicted with bold solid
arrows that stem from the provider and end in the consumer attribute.

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

PKEY

DATE

QTY

COST

SUPPKEY

PKEY

DATE

QTY

COST

SUPPKEY

SKEY

AddSPK1 SK1IN INOUT OUT

Add_
const1

in out

PKEY

SK

SOURCELOOKUP_
PS

LU_PKEY

LU_SKEY

PKEY

SOURCE

PAR PAR

LU_SOURCE

1

DS.PS1

PKEY

COST

DATE

QTY

Fig. 3.6 Provider relationships of the architecture graph

Observe Fig. 3.6. The flow starts from table DS.PS1 of the data staging area. Each
of the attributes of this table is mapped to an attribute of the input schema of activity
Add_SPK1. The attributes of the input schema of the latter are subsequently mapped to
the attributes of the output schema of the activity. The flow continues from activity
Add_SPK1 towards the activity SK1 in a similar manner. Note that, for the moment, we

Page 20 of 32

have not covered how the output of function Add_Const1 populates the output
attribute SUPPKEY for the activity AddSPK1, or how the parameters of activity SK1
populate the output attribute SKEY. This shortcoming is compensated through the
usage of derived provider relationships, which we will introduce in the sequel.

Another interesting thing is that during the data flow, new attributes are generated,
resulting on new ‘streams’ of data, whereas the flow seems to stop for other attributes.
Observe the rightmost part of Fig. 3.6 where the values of attribute PKEY are not
further propagated (remember that the reason for the application of a surrogate key
transformation is to replace the production keys of the source data to a homogeneous
surrogate for the records of the data warehouse, which is independent of the source
they have been collected from). Instead of the values of the production key, the values
from the attribute SKEY will be used to denote the unique identifier for a part in the
rest of the flow.

Derived provider relationships. As we have already mentioned, there are certain

output attributes that are computed through the composition of input attributes and
parameters. A derived provider relationship is another form of provider relationship
that captures the flow from the input to the respective output attributes.

PKEY

SUPPKEY

PKEY PKEY

SUPPKEY

PKEY

SUPPKEY

SKEY

AddSPK1 SK1
IN INOUT OUT

PKEY

SK

SOURCELOOKUP_
PS

LU_PKEY

LU_SKEY

PKEY

SOURCE

PAR

LU_SOURCE PKEY

SK

SOURCE LOOKUP_
PS

PKEY

SUPPKEY

SKEY

SK1
IN OUT

Legend

Fig. 3.7 Derived provider relationships of the architecture graph

Formally, assume that source is a term in the architecture graph, target is an
attribute of the output schema of an activity A and x,y are parameters in the
parameter list of A. The parameters x and y need not necessarily be different with
each other. Then, a derived provider relationship pr(source,target) exists iff the

Page 21 of 32

following regulator relationships (i.e., edges) exist: rr1(source,x) and
rr2(y,target).

Intuitively, the case of derived relationships models the situation where the activity
computes a new attribute in its output. In this case, the produced output depends on all
the attributes that populate the parameters of the activity, resulting in the definition of
the corresponding derived relationship.

Observe Fig. 3.7, where we depict a small part of our running example. The legend

in the left side of Fig. 3.7 depicts how the attributes that populate the parameters of
the activity are related through derived provider relationships with the computed
output attribute SKEY. The meaning of these five relationships is that SK1.OUT.SKEY
is not computed only from attribute LOOKUP_PS.SKEY, but from the combination of
all the attributes that populate the parameters.

As far as the parameters of activity AddSPK1 are concerned, we can also detect a
derived provider relationship, between the constant 1 and the output attribute
SUPPKEY. Again, in this case, the constant is the only term that applies for the
parameters of the activity and the output attribute is linked to the parameter schema
through a regulator relationship.

One can also assume different variations of derived provider relationships such as

(a) relationships that do not involve constants (remember that we have defined
source as a term); (b) relationships involving only attributes of the same/different
activity (as a measure of internal complexity or external dependencies); (c)
relationships relating attributes that populate only the same parameter (e.g., only the
attributes LOOKUP_PS.SKEY and SK1.OUT.SKEY).

4. Exploitation of the Architecture Graph

In this section, we provide results on the exploitation of the Architecture Graph for
several tasks. The architecture graph is a powerful, but complex, tool; thus, we
discuss several simple transformations that reduce the complexity of the graph.
Specifically, in Section 4.1, we give a simple algorithm for zooming out the graph, a
transformation that can be very useful for its visualization. Also, we give a simple
algorithm that returns a subgraph involving only the critical entities for the population
of the target recordsets of the scenario. Then, in Section 4.2, we measure the
importance and vulnerability of the nodes of the graph through specific importance
metrics, namely dependence and responsibility. Dependence stands for the degree to
which an entity is bound to other entities that provide it with data and responsibility
measures the degree up to which other nodes of the graph depend on the node under
consideration. Dependence and responsibility are crucial measures for the engineering
of the evolution of the ETL environment.

Page 22 of 32

4.1 Graph Transformations

In this subsection, we will show how we can employ trivial transformations in order
to eliminate the detailed information on the attributes involved in an ETL scenario.
Each transformation that we discuss is providing a ‘view’ on the graph. These views
are simply subgraphs with a specific purpose. As we have shown in Section 3, the
simplest view we can offer is by restricting the subgraph to only one of the four major
types of relationships (provider, part-of, instance-of, regulator). We consider this as
trivial, and we proceed to present two transformations, involving (a) how we can
zoom out the architecture graph, in order to eliminate the information overflow,
which can be caused by the vast number of involved attributes in a scenario and (b)
how we can obtain a critical subgraph of the Architecture Graph that includes only the
entities necessary for the population of the target recordsets of the scenario.

Transformation Zoom_Out
Input: the architecture graph G(V,E) and a structured entity A
Output: a new architecture graph G’(V’,E’)
Begin

G’ = G;
∀ node t∈V’, s.t. ¬∃ edge (A,t)∈Po’ ∧ ∃ edge (A,x)∈Po’
{

∀ edge (t,x)∈Pr’: Pr’ = Pr’ ∪(t,A)-(t,x);
∀ edge (x,t)∈Pr’: Pr’ = Pr’ ∪(A,t)-(x,t);
∀ edge (t,x)∈Rr’: Rr’ = Rr’ ∪(t,A)-(t,x);

 }
∀ node t∈V’, s.t. ∃ edges (A,t)∈Po’, (A,x)∈Po’
{

∀ edge (t,x)∈Pr’: Pr’ = Pr’ -(t,x);
∀ edge (x,t)∈Pr’: Pr’ = Pr’ -(x,t);
∀ edge (t,x)∈Rr’: Rr’ = Rr’ -(t,x);
remove t;

 }
End

Fig. 4.1 Zoom_Out transformation

Zooming In and Out the Architecture Graph. We give a practical zoom out
transformation that involves provider and regulator relationships. We constraint the
algorithm of Fig. 4.1 to a local transformation, i.e., we consider zooming out only a
single activity or recordset. This can easily be generalized for the whole scenario, too.
Assume a given structured entity (activity or recordset) A. The transformation
Zoom_Out of Fig. 4.1, detects all the edges of its attributes. Then all these edges are
transferred to link the structured entity A (instead of its attributes) with the
corresponding nodes. We consider only edges that link an attribute of A to some node
external to A, in order avoid local cycles in the graph. Finally, we remove the attribute
nodes of A and the remaining internal edges. Note that there is no loss of information
due to this relationship, in terms of interdependencies between objects. Moreover, we

Page 23 of 32

can apply this local transformation to the full extent of the graph, involving the
attributes of all the recordsets and activities of the scenario.

Major Flow. In a different kind of zooming, we can follow the major flow of data

from sources to the targets. We follow a backward technique. Assume the set of
recordsets T, containing a set of target recordsets. Then, by recursively following the
provider and regulator edges we can deduce the critical subgraph that models the flow
of data from sources towards the critical part of the data warehouse. We incorporate
the part-of relationships too, but we choose to ignore instantiation information. The
transformation Major_Flow is shown in Fig. 4.2.

Transformation Major_Flow
Input: the architecture graph G(V,E) and the set of target recordsets T.
Output: a sub graph G’(V’,E’) containing information for the major flow
of data from sources to targets.
Begin

Let TΩ be the set of attributes of all the recordsets of T;
V’=T∪TΩ;
do {

V"=∅;
∀t∈V",a∈V,e(a,t)∈Pr:{ V"=V"∪{t};E’=E’∪{e} };
∀t∈V",a∈V,e(a,t)∈Po:{ V"=V"∪{t};E’=E’∪{e} };
∀t∈V",a∈V,e(t,a)∈Po:{ V"=V"∪{t};E’=E’∪{e} };
∀t∈V",a∈V,e(a,t)∈Rr:{ V"=V"∪{t};E’=E’∪{e} };
V’=V’∪V";

} while V"≠∅;
End

Fig. 4.2 Major_Flow transformation

4.2 Importance Metrics

One of the major contributions that our graph-modeling approach offers is the ability
to treat the scenario as the skeleton of the overall environment. If we treat the problem
from its software engineering perspective, the interesting problem is how to design
the scenario in order to achieve effectiveness, efficiency and tolerance of the impacts
of evolution. In this subsection, we will assign simple importance metrics to the nodes
of the graph, in order to measure how crucial their existence is for the successful
execution of the scenario.

Consider the subgraph G’(V’,E’) that includes only the part-of, provider and

derived provider relationships among attributes. In the rest of this subsection, we will
not discriminate between provider and derived provider relationships and will use the
term ‘provider’ for both. For each node A, we can define the following measures:

Page 24 of 32

- Local dependency: the in-degree of the node with respect to the provider
edges;

- Local responsibility: the out-degree of the node with respect to the provider
edges;

- Local degree: the degree of the node with respect to the provider edges (i.e.,
the sum of the previous two entries).

Intuitively, the local dependency characterizes the number of nodes that have to be
‘activated’ in order to populate a certain node. The local responsibility has the reverse
meaning, i.e., how many nodes wait for the node under consideration to be activated,
in order to receive data. The sum of the aforementioned quantities characterizes the
total involvement of the node in the scenario.

PKEY PKEY PKEY

SUPPKEY

PKEY

DATE

QTY

COST

A2EDate UIN IN1OUT OUT

IN2

DW.PART
SUPP

PKEY

COST

DATE

QTY

SUPPKEY

PKEY

SUPPKEY

DATE

QTY

COST

SUPPKEY

DATE

QTY

COST

SUPPKEY

QTY

COST

SUPPKEY

QTY

COST

DATEDATE

PKEY PKEY

Check
Qty

IN OUT

SUPPKEY

QTY

COST

SUPPKEY

QTY

COST

DATEDATE

Fig. 4.3 Dependencies on the architecture graph

Consider the example of Fig. 4.3, where we depict three of the activities of our

example. Specifically, we consider the activity A2Edate that converts the dates for
the data of source S1 to European format, the activity CheckQty that discards any
rows with a non-positive quantity and the Union activity that consolidates the two
flows towards the data warehouse table DW.PARTSUPP. Observe the node

Page 25 of 32

UNION.OUT.PKEY of Fig. 4.3. Its local dependency is 2, its local responsibility is 1
and its local degree is 3.

Except for the local interrelationships we can always consider what happens with

the transitive closure of relationships. Assume the set (Pr∪Dr)+, which contains the
transitive closure of provider edges. We define the following measures:
- Transitive dependency: the in-degree of the node with respect to the provider

edges;
- Transitive responsibility: the out-degree of the node with respect to the

provider edges;
- Transitive degree: the degree of the node with respect to the provider edges.
- Total dependency: the sum of local and transitive dependency measures;
- Total responsibility: the sum of local and transitive responsibility measures;
- Total degree: the sum of local and transitive degrees.
Consider the example of Fig. 4.4, where we have computed the transitive closure

of provider edges for the example of Fig. 3.7. We use standard notation for provider
and derived provider edges and depict the edges of transitive relationships with
simple dotted arrows. Figure 4.5 depicts the aforementioned metrics for the attributes
of Fig. 3.7.

By comparing the individual values with the average ones, one can clearly see that

attribute SK1.OUT.SKEY, for example, is the most ‘vulnerable’ attribute of all, since it
depends directly on several provider attributes.

PKEY

SUPPKEY

PKEY PKEY

SUPPKEY

PKEY

SUPPKEY

SKEY

AddSPK1 SK1
IN INOUT OUT

PKEY

SK

SOURCE LOOKUP_
PS

Fig. 4.4 Transitive closure for the entities of Fig. 3.7

Other interesting usages of the aforementioned measures include:
- Detection of inconsistencies for attribute population. For example, if some

output attribute in a union activity is not populated by two input attributes, or,
more importantly, if an integrity constraint is violated with regards to the

Page 26 of 32

population of an attribute of a target data store (i.e., having in-degree equal to
zero).

- Detection of important data stores. Clearly, data stores whose attributes have a
positive out-degree are used for data propagation. Data stores with attributes
having positive both in and out degrees, are transitive recordsets, which we use
during the flow.

- Detection of useless (source) attributes. Any attribute having total
responsibility equal to zero is useless for the cause of data propagation towards
the sources.

- Observations after zooming out the whole scenario. Assume we have applied
the zoom out transformation to the whole scenario. Again we can detect
inconsistencies for activity/recordset population (as we did before for the case
of attributes), or data stores with in-degree greater than one, which means that
the impact of their evolution is critical since they are related with more than
one applications.

LOCAL TRANSITIVE TOTAL

 IN OUT DEGREE IN OUT DEGREE IN OUT DEGREE

AddSPK1
IN.PKEY 0 1 1 0 3 3 0 4 4

OUT.PKEY 1 1 2 0 2 2 1 3 4

OUT.SUPPKEY 0 1 1 0 2 2 0 3 3

SK1
IN.PKEY 1 2 3 1 0 1 2 2 4

IN.SUPPKEY 1 2 3 0 0 0 1 2 3

OUT.PKEY 1 0 1 2 0 2 3 0 3

OUT.SUPPKEY 1 0 1 1 0 1 2 0 2

OUT.SKEY 5 0 5 3 0 3 8 0 8

LOOKUP_PS
PKEY 0 1 1 0 0 0 0 1 1

SOURCE 0 1 1 0 0 0 0 1 1

SK 0 1 1 0 0 0 0 1 1
SUM 10 10 20 7 7 14 17 17 34
AVG 1.67 1.67 3.33 1.17 1.17 2.33 2.83 2.83 5.67

Fig. 4.5 Importance metrics for the attributes of Fig. 4.4

We believe it is important to stress that the measures we have introduced in this

section are not only applicable to attributes. The zoom-out transformation that we
have defined in the previous subsection allows us to generalize these definitions to
activities and recordsets, too. Moreover, we can define similar importance metrics for
data/function types, to determine how useful and/or critical they are for the prompt
execution of the ETL scenario. The only difference in this case, is that instead of

Page 27 of 32

provider, we employ instantiation relationships. In Fig. 4.6 we can see the aggregated
importance metrics of the structured entities that we have employed in our example.

Finally, we would like to comment on the usefulness of the introduced metrics. It is

clear that the engineering of complex data flows is not a clearly resolved issue. The
overloading of attributes, activities and recordsets can be a burden for the optimal
execution of the scenario. The optimization of the overall process is an interesting
problem, which our modeling facilitates gracefully (we already have some
preliminary results on the issue). Most importantly, though, we find that the
importance of these metrics lies in the evolution of the ETL scenario. As we
mentioned before, we understand the Architecture Graph as the skeleton of the overall
environment, around which the applications are built. By measuring the importance of
each entity, we can predict the impact of modifying it.

LOCAL TRANSITIVE TOTAL

 IN OUT DEGREE IN OUT DEGREE IN OUT DEGREE

AddSPK1

SUM 1 3 4 0 7 7 1 10 11

AVG/attribute 0.33 1.00 1.33 0.00 2.33 2.33 0.33 3.33 3.67

SK1

SUM 9 4 13 7 0 7 16 4 20

AVG/attribute 1.8 0.8 2.6 1.4 0 1.4 3.2 0.8 4

LOOKUP_PS

SUM 0 3 3 0 0 0 0 3 3

AVG/attribute 0 1 1 0 0 0 0 1 1

SUM 10 10 20 7 7 14 17 17 34

AVG/entity 3.33 3.33 6.67 2.33 2.33 4.67 5.67 5.67 11.33

Fig. 4.6 Importance metrics for the structured entities of Fig. 4.4

5. Related Work

In this section we discuss the state of art and practice for research efforts, commercial
tools and standards in the field of ETL tools, along with any related technologies.

Commercial tools and Standards. Basically, commercial ETL tools are responsible
for the implementation of the data flow in a data warehouse environment, which is
only one (albeit important) of the data warehouse processes. Most ETL tools are of
two flavors: engine-based, or code-generation based. The former assumes that all
data have to go through an engine for transformation and processing. In code-
generating tools all processing takes place only at the target or source systems. There
is a variety of such tools in the market; we mention three engine-based tools, from
Ardent [Arde01], DataMirror [Data01] and Microsoft [Micr01], and one code-

Page 28 of 32

generation based from ETI [ETI01]. The Open Information Model (OIM) [MeCo99]
is a proposal (led by Microsoft) for the core metadata types found in the operational
and data warehousing environment of enterprises.

Research focused specifically on ETL. The AJAX data cleaning tool developed at
INRIA [GFSS00] deals with typical data quality problems, such as the object identity
problem, errors due to mistyping and data inconsistencies between matching records.
AJAX provides a framework wherein the logic of a data cleaning program is modeled
as a directed graph of data transformations (mapping, matching, clustering and
merging transformations) that start from some input source data. AJAX also provides
a declarative language for specifying data cleaning programs, which consists of SQL
statements enriched with a set of specific primitives to express mapping, matching,
clustering and merging transformations. [RaHe00, RaHe01] present the Potter’s
Wheel system, which is targeted to provide interactive data cleaning to its users. The
system offers the possibility of performing several algebraic operations over an
underlying data set, including format (application of a function), drop, copy, add a
column, merge delimited columns, split a column on the basis of a regular expression
or a position in a string, divide a column on the basis of a predicate (resulting in two
columns, the first involving the rows satisfying the condition of the predicate and the
second involving the rest), selection of rows on the basis of a condition, folding
columns (where a set of attributes of a record is split into several rows) and unfolding.
Optimization algorithms are also provided for the CPU usage for certain classes of
operators. The general idea behind Potter’s Wheel is that users build data
transformations in iterative and interactive way. In the background, Potter’s Wheel
automatically infers structures for data values in terms of user-defined domains, and
accordingly checks for constraint violations. Moreover, in previous lines of research
[VQVJ01, VVS+01] there was a first effort to cover the design aspects by trying (a)
to show how data warehouse processes can be linked to a metadata repository; (b) to
construct a running tool and (c) to cover some quality aspects of the data warehouse
process. Still, these approaches were not considering the inner structure of the activies
and were not tailored specifically for ETL processes.

Research on Data Cleaning. Data cleaning is another step in the ETL process,
which unfortunately has not caught the attention of the research community. Still,
[RaDo00] provide an extensive overview of the field, along with research issues and a
review of some commercial tools. [Mong00] discusses a special case of the data
cleaning process, namely the detection of duplicate records and extends previous
algorithms on the issue. [BoDS00] focuses on another subproblem, namely the one of
breaking address fields into different elements and suggest the training of a Hidden
Markov Model to solve the problem.

Data Quality and Quality Management. There has been a lot of research on the
definition and measurement of data quality dimensions [Wang98, WaKM93,
WaSF95, WaWa96]. A very good review of research literature is found in [WaSF95].
[JJQV99] give an extensive list of quality dimensions for data warehouses, and in
particular data warehouse relations and data.

Workflow and Process Modeling. Modeling ETL scenarios can be considered as a
special case of the general problem of workflow and process modeling. There is a
widely accepted standard proposed by the Workflow Management Coalition (WfMC)
[WfMC98]. As far as process modeling is concerned, we reference the interested

Page 29 of 32

reader to [Roll98] for a recent overview of the field. Many ideas about the
organization of data warehouse activities in logical, conceptual and physical entities
stem from [JaPo92], [JaJR90]. In another line of research, [BoFM99] is the first
attempt to clearly separate the data warehouse refreshment process from its traditional
treatment as a view maintenance or bulk loading process. The authors provide a
conceptual model of the process, which is treated as a composite workflow.

6. Conclusions

In this paper, we have focused on the logical design of the ETL scenario of a data
warehouse. We have defined a formal logical model for ETL processes. The data
stores, activities and their constituent parts have been formally introduced. An ETL
scenario has been defined as the combination of ETL activities and data stores. Then,
we have shown how this model is reduced to a graph, which we call the Architecture
Graph. We model all the aforementioned entities as nodes and four different kinds of
relationships as edges. These relationships involve (a) type checking information (i.e.,
which type an entity corresponds to), (b) part-of relationships (e.g., which activity
does an attribute belong to), (c) regulator relationships, covering the population of
activity parameters from attributes or constant values and (d) provider relationships,
covering the flow of data from providers to consumers. Finally, we have shown how
we can exploit the Architecture Graph for several tasks. First we have provided
several simple graph transformations that reduce the complexity of the graph. Second,
we have introduced specific importance metrics, namely dependence and
responsibility, to measure the degree to which an entity is bound to other entities that
provide it with data and the degree up to which other nodes of the graph depend on
the node under consideration.

As future work, we already have preliminary results for the optimization of ETL
scenario under certain time and throughput constraints. A set of loosely coupled tools
is also under construction for the purposes of visualization of the ETL scenarios and
optimization of their execution.

References

[Arde01] Ardent Software. DataStage Suite. Available at
http://www.ardentsoftware.com/

[BoDS00] V. Borkar, K. Deshmuk, S. Sarawagi. Automatically Extracting Structure from
Free Text Addresses. Bulletin of the Technical Committee on Data
Engineering, 23(4), (2000).

[BoFM99] M. Bouzeghoub, F. Fabret, M. Matulovic. Modeling Data Warehouse
Refreshment Process as a Workflow Application. In Proc. Intl. Workshop on
Design and Management of Data Warehouses (DMDW’99), Heidelberg,
Germany, (1999).

[Data01] DataMirror Corporation. Transformation Server. Available at
http://www.datamirror.com

[Dema97] M. Demarest. The politics of data warehousing.

Page 30 of 32

http://www.datamirror.com/

http://www.hevanet.com/demarest/marc/dwpol.html (1997).
[ETI01] Evolutionary Technologies Intl. ETI*EXTRACT. Available at

http://www.eti.com/
[GFSS00] H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible Data

Cleaning Tool. In Proc. ACM SIGMOD Intl. Conf. On the Management of
Data, pp. 590, Dallas, Texas, (2000).

[JaJR90] M. Jarke, M.A. Jeusfeld, T. Rose: A software process data model for
knowledge engineering in information systems. Information Systems 15(1):
85-116 (1990).

[JaPo92] M. Jarke, K. Pohl. Information systems quality and quality information
systems. In Kendall/Lyytinen/DeGross (eds.): Proc. IFIP 8.2 Working Conf.
The Impact of Computer-Supported Technologies on Information Systems
Development, pp. 345-375, Minneapolis (1992).

[JJQV99] M. Jarke, M.A. Jeusfeld, C. Quix, P. Vassiliadis: Architecture and quality in
data warehouses: An extended repository approach. Information Systems,
24(3): 229-253 (1999). A previous version appeared in Proc. 10th Conf. of
Advanced Information Systems Engineering (CAiSE ’98), Pisa, Italy (1998).

[KRRT98] R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite. The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying
Data Warehouses. John Wiley & Sons, February 1998.

[MeCo99] MetaData Coalition. Open Information Model, version 1.0, 1999. Available at
www.MDCinfo.com

[Micr01] Microsoft Corp. MS Data Transformation Services. Available at
http://www.microsoft.com/sql/bizsol/comanddts.htm

[Mong00] A. Monge. Matching Algorithms Within a Duplicate Detection System.
Bulletin of the Technical Committee on Data Engineering, 23(4), (2000).

[RaDo00] E. Rahm, H. Do. Data Cleaning: Problems and Current Approaches. Bulletin
of the Technical Committee on Data Engineering, 23(4), (2000).

[RaHe00] V. Raman, J. Hellerstein. Potters Wheel: An Interactive Framework for Data
Cleaning and Transformation. Technical Report University of California at
Berkeley, Computer Science Division, 2000. Available at
http://www.cs.berkeley.edu/~rshankar/papers/pwheel.pdf

[RaHe01] V. Raman, J. Hellerstein. Potter's Wheel: An Interactive Data Cleaning
System. Proceedings of 27th International Conference on Very Large Data
Bases (VLDB), pp. 381-390, Roma, Italy (2001).

[Roll98] C. Rolland: A comprehensive view of process engineering. In Proc. 10th Intl.
Conf. Advanced Information Systems Engineering, (CAiSE’98), pp. 1-25,
Pisa, Italy (1998).

[ShTy98] C. Shilakes, J. Tylman. Enterprise Information Portals. Enterprise Software
Team. Available at
http://www.sagemaker.com/company/downloads/eip/indepth.pdf (1998).

[TPC00] Transaction Processing Performance Council. TPC-H and TPC-R, 2000.
Available at www.tcp.org

[VaSk00] P. Vassiliadis, S. Skiadopoulos. Modelling and Optimization Issues for
Multidimensional Databases. In Proc. 12th Conference on Advanced
Information Systems Engineering (CAiSE '00), pp. 482-497, Stockholm,
Sweden, 5-9 June 2000. Lecture Notes in Computer Science, Vol. 1789,
Springer, 2000.

[Vass00] P. Vassiliadis. Gulliver in the land of data warehousing: practical experiences
and observations of a researcher. In Proc. 2nd Intl. Workshop on Design and
Management of Data Warehouses (DMDW), pp. 12.1 –12.16, Stockholm,
Sweden (2000).

Page 31 of 32

http://www.hevanet.com/demarest/marc/dwpol.html
http://www.eti.com/
http://www.mdcinfo.com/
http://www.sagemaker.com/company/downloads/eip/indepth.pdf
http://www.tcp.org/

[VaSS02] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Conceptual Modeling for ETL
Processes. Submitted to ER2002.

[VQVJ01] P. Vassiliadis, C. Quix, Y. Vassiliou, M. Jarke. Data Warehouse Process
Management. Information Systems, vol. 26, no.3, pp. 205-236, June 2001.

[VVS+01] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, T. Sellis.
ARKTOS: Towards the modeling, design, control and execution of ETL
processes. Information Systems, 26(8), pp. 537-561, December 2001, Elsevier
Science Ltd.

[WaKM93] R.Y. Wang, H.B. Kon, S.E. Madnick. Data Quality Requirements Analysis and
Modeling. In Proc. of 9th Intl. Conf. On Data Engineering, pp. 670-677, IEEE
Computer Society, Vienna, Austria (1993).

[Wang98] R. Y. Wang. A product perspective on total data quality management. Comm.
of the ACM, 41(2): 58-65 (1998).

[WaSF95] R.Y. Wang, V.C. Storey, C.P. Firth. A Framework for Analysis of Data
Quality Research. IEEE Transactions on Knowledge and Data Engineering,
7(4): 623-640 (1995).

[WaWa96] Y. Wand, R.Y. Wang. Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, 39(11): 86-95 (1996).

[WfMC98] Workflow Management Coalition. Interface 1: Process Definition Interchange
Process Model. Document number WfMC TC-1016-P (1998). Available at
www.wfmc.org

Page 32 of 32

http://www.wfmc.org/

