
Information Systems 26 (2001) 205–236

Data warehouse process management

Panos Vassiliadisa,*, Christoph Quixb, Yannis Vassilioua, Matthias Jarkeb,c

aDepartment of Electrical and Computer Engineering, Computer Science Division, National Technical University of Athens,

Iroon Polytechniou 9, 157 73, Athens, Greece
b Informatik V (Information Systems), RWTH Aachen, 52056 Aachen, Germany

cGMD-FIT, 53754 Sankt Augustin, Germany

Abstract

Previous research has provided metadata models that enable the capturing of the static components of a data

warehouse architecture, along with information on different quality factors over these components. This paper
complements this work with the modeling of the dynamic parts of the data warehouse. The proposed metamodel of
data warehouse operational processes is capable of modeling complex activities, their interrelationships, and the
relationship of activities with data sources and execution details. Moreover, the metamodel complements the existing

architecture and quality models in a coherent fashion, resulting in a full framework for quality-oriented data warehouse
management, capable of supporting the design, administration and especially evolution of a data warehouse. Finally,
we exploit our framework to revert the widespread belief that data warehouses can be treated as collections of

materialized views. We have implemented this metamodel using the language Telos and the metadata repository system
ConceptBase. # 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Data warehousing; Process modeling; Evolution; Quality

1. Introduction

Data warehouses (DW) integrate data from
multiple heterogeneous information sources and
transform them into a multidimensional represen-
tation for decision support applications. Apart
from a complex architecture, involving data
sources, the data staging area, operational data
stores, the global data warehouse, the client data
marts, etc., a data warehouse is also characterized

by a complex lifecycle. In a permanent design
phase, the designer has to produce and maintain a
conceptual model and a usually voluminous
logical schema, accompanied by a detailed physi-
cal design for efficiency reasons. The designer must
also deal with data warehouse administrative
processes, which are complex in structure, large
in number and hard to code; deadlines must be
met for the population of the data warehouse and
contingency actions taken in the case of errors.
Finally, the evolution phase involves a combina-
tion of design and administration tasks: as time
passes, the business rules of an organization
change, new data are requested by the end users,

*Corresponding author. Tel.: +30-1-772-1402; fax: +30-1-

772-1442.

E-mail address: pvassil@dbnet.ece.ntua.gr (P. Vassiliadis).

0306-4379/01/$ - see front matter # 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 1) 0 0 0 1 8 - 7

new sources of information become available, and
the data warehouse architecture must evolve to
efficiently support the decision-making process
within the organization that owns the data ware-
house.

All the data warehouse components, processes
and data should be tracked and administered via a
metadata repository. In [1], we presented a
metadata modeling approach which enables the
capturing of the static parts of the architecture of a
data warehouse. The linkage of the architecture
model to quality parameters (in the form of a
quality model) and its implementation in the
metadata repository ConceptBase have been for-
mally described in [2]. Vassiliadis et al. [3] present a
methodology for the exploitation of the informa-
tion found in the metadata repository and the
quality-oriented evolution of a data warehouse
based on the architecture and quality model. In
this paper, we complement these results with
metamodels and support tools for the dynamic
part of the data warehouse environment: the
operational data warehouse processes. The combi-
nation of all the data warehouse viewpoints is
depicted in Fig. 1.

In the three phases of the data warehouse
lifecycle, the interested stakeholders need informa-
tion on various aspects of the examined processes:
what are they supposed to do, how are they
implemented, why are they necessary and how do
they affect other processes in the data warehouse
[4,1]. Like the data warehouse architecture and
quality metamodels, the process metamodel

assumes the clustering of their entities in logical,
physical and conceptual perspectives, each assigned
with the task of answering one of the aforemen-
tioned stakeholder questions. In the rest of this
section we briefly present the requirements faced in
each phase, our solutions and their expected
benefits.

The design and implementation of operational
data warehouse process is a labor-intensive and
lengthy procedure, covering 30–80% of effort
and expenses of the overall data warehouse
construction [5,6]. For a metamodel to be able
to efficiently support the design and implementa-
tion tasks, it is imperative to capture at least two
essential aspects of data warehouse processes,
complexity of structure and relationship with the
involved data. In our proposal, the logical perspec-
tive is capable of modeling the structure
of complex activities and capture all the entities
of the widely accepted Workflow Management
Coalition Standard [7]. The relationship of
data warehouse activities with their underlying
data stores is taken care of in terms of SQL
definitions.

This simple idea reverts the classical belief that
data warehouses are simply collections of materi-
alized views. In previous data warehouse research,
directly assigning a na.ıve view definition to a data
warehouse table has been the most common
practice. Although this abstraction is elegant and
sufficient for the purpose of examining alternative
strategies for view maintenance, it is incapable of
capturing real world processes within a data
warehouse environment. In our approach, we
can deduce the definition of a table in the data
warehouse as the outcome of the combination of
the processes that populate it. This new kind of
definition complements existing approaches, since
our approach provides the operational semantics
for the content of a data warehouse table, whereas
the existing ones give an abstraction of its
intentional semantics.

The conceptual process perspective traces the
reasons behind the structure of the data ware-
house. We extend the demand-oriented concept of
dependencies as in the Actor-Dependency model
[4], with the supply-oriented notion of suitability
that fits well with the redundancy found often in

Fig. 1. The different viewpoints for the metadata repository of

a data warehouse.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236206

data warehouses. As an another extension to the
Actor-Dependency model, we have generalized the
notion of role in order to uniformly trace any
person, program or data store participating in the
system.

By implementing the metamodel in an object
logic, we can exploit the query facilities of the
repository to provide the support for consistency
checking of the design. The deductive capabilities
of ConceptBase [8] provide the facilities to avoid
assigning manually all the interdependencies of
activity roles in the conceptual perspective. It is
sufficient to impose rules to deduce these inter-
dependencies from the structure of data stores and
activities.

While the design and implementation of the
warehouse are performed in a rather controlled
environment, the administration of the warehouse
has to deal with problems that evolve in an ad-hoc
fashion. For example, during the loading of the
warehouse contingency treatment is necessary for
the efficient administration of failures. In such
events, the knowledge of the structure of a process
is important; moreover, the specific traces of
executed processes are also required to be tracked
down}in an erroneous situation, not only the
causes of the failure, but also the progress of the
loading process by the time of the failure must be
detected, in order to efficiently resume its opera-
tion. Still, failures during the warehouse loading
are only the tip of the iceberg as far as problems in
a data warehouse environment are concerned. This
brings up the discussion on data warehouse quality
and the ability of a metadata repository to trace it
in an expressive and usable fashion. To face this
problem, the proposed process metamodel is
explicitly linked to our earlier quality metamodel
[2]. We complement this linkage by mentioning
specific quality factors for the quality dimensions
of the ISO 9126 standard for software implemen-
tation and evaluation.

Identifying erroneous situations or unsatisfac-
tory quality in the data warehouse environment is
not sufficient. The data warehouse stakeholders
should be supported in their efforts to react against
these phenomena. The above-mentioned suitability
notion in the conceptual perspective of the process
metamodel allows the definition of recovery actions

to potential errors or problems (e.g., alternative
paths for the population of the data warehouse) in
a straightforward way, during runtime.

Data warehouse evolution is unavoidable as new
sources and clients are integrated, business rules
change and user requests multiply. The effect of
evolving the structure of the warehouse can be
predicted by tracing the various interdependencies
among the components of the warehouse. We have
already mentioned how the conceptual perspective
of the metamodel traces interdependencies be-
tween all the participants in a data warehouse
environment, whether persons, programs or data
stores. The prediction of potential impacts
(whether of political, structural, or operational
nature) is supported by this feature in several
ways. To mention the simplest, the sheer existence
of dependency links forecasts a potential impact in
the architecture of the warehouse in the presence
of any changes. More elaborate techniques will
also be provided in this paper, by taking into
account the particular attributes that participate in
these interdependencies and the SQL definitions of
the involved processes and data stores. Naturally,
the existence of suitability links suggests alter-
natives for the new structure of the warehouse. We
do not claim that our approach is suitable for any
kind of process, but focus our attention to the
internals of data warehouse systems.

This paper is organized as follows: In Section 2
we present the background work and the motiva-
tion for this paper. In Section 3 we describe the
process metamodel and in Section 4 we present
its linkage to the quality model. In Section 5
we present how the metadata repository can be
used for the determination of the operational
semantics of the data warehouse tables and for
evolution purposes. In Section 6 we present related
work and Section 7 presents issues for future
research.

2. Background and motivation

In this section we will detail the background
work and the motivation behind the proposed
metamodel for data warehouse operational
processes.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 207

2.1. Background work for the metamodel: the quest
for formal models of quality

For decision support, a data warehouse must
provide high quality of data and service. Errors in
databases have been reported to be up to 10%
range and even higher in a variety of applications.
Wang et al. [9] report that more than $2 billion of
US federal loan money had been lost because of
poor data quality at a single agency; manufactur-
ing companies spend over 25% of their sales on
wasteful practices, service companies up to 40%.
In certain vertical markets (e.g., the public sector)
data quality is not an option but a constraint for
the proper operation of the data warehouse. Thus,
data quality problems seem to introduce even
more complexity and computational burden to the
loading of the data warehouse. In the DWQ
project (Foundations of Data Warehouse Quality
[10]), we have attacked the problem of quality-
oriented design and administration in a formal
way, without sacrificing optimization and practical
exploitation of our research results. In this
subsection we summarize our results as far as
needed for this paper.

In [1] a basic metamodel for data warehouse
architecture and quality has been presented as in

Fig. 2. The framework describes a data warehouse
in three perspectives: a conceptual, a logical and
a physical perspective. Each perspective is
partitioned into the three traditional data ware-
house levels: source, data warehouse and client
level.

On the metamodel layer, the framework gives a
notation for data warehouse architectures by
specifying meta-classes for the usual data ware-
house objects like data store, relation, view, etc.
On the metadata layer, the metamodel is instan-
tiated with the concrete architecture of a data
warehouse, involving its schema definition, in-
dexes, table spaces, etc. The lowest layer in Fig. 2
represents the actual processes and data.

The quality metamodel accompanying the ar-
chitecture metamodel [2] involves an extension of
the Goal-Question-Metric approach [11]. The
metamodel introduces the basic entities around
quality (including Quality Goals, Quality Queries
and Quality Factors), the metadata layer is
customized per warehouse with quality scenarios,
and the instance layer captures concrete measure-
ments of the quality of a given data warehouse.

The static description of the architecture (left
part of Fig. 2) is complemented in this paper with
a metamodel of the dynamic data warehouse

Fig. 2. Framework for Data Warehouse Architecture [1].

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236208

operational processes. As one can notice in the
middle of Fig. 2. we follow again a three-level
instantiation: a Process Metamodel deals with
generic entities involved in all data warehouse
processes (operating on entities found at the data
warehouse metamodel level), the Process Model
covers the processes of a specific data warehouse
by employing instances of the metamodel entities,
and the Process Traces capture the execution of
the actual data warehouse processes happening in
the real world.

In [3], the Goal–Question–Metric (GQM) meth-
odology has been extended in order (a) to capture
the interrelationships between different quality
factors with respect to a specific quality goal,
and (b) to define an appropriate lifecycle that deals
with quality goal evaluation and improvement.
The methodology comprises a set of steps, invol-
ving the design of the quality goal, the evaluation
of the current status, the analysis and improvement
of this situation, and finally, the re-evaluation of
the achieved plan. The metadata repository
together with this quality goal definition metho-
dology constitutes a decision support system
which helps data warehouse designers and admin-
istrators to take relevant decisions, in order to
achieve a reasonable quality level which fits the
best user requirements.

Throughout our models, we encourage the
use of templates for process, quality and architec-
ture objects. This is especially apparent in
the metadata layer where an abstract specification
of architecture, process or quality objects, origin-
ally coming from the designers of the data
warehouse, can be properly specialized by the
data warehouse administrator at runtime. For
example, a high-level specification of a chain of
activities involving extraction, checking for pri-
mary and foreign keys and final loading in the
warehouse, can be customized to specific pro-
grams, later in the construction of the warehouse.
Practical experience has shown that this kind of
templates can be reoccurring in a data warehouse
architecture, i.e., several tables can be populated
through very similar programs (especially if the
data are coming from the same source). The
interested reader is referred to [12,13] for examples
of such templates.

2.2. The 3 perspectives for the process model

Our process model (cf. Fig. 3) follows the same
three perspectives as the architecture model, since
the perspectives of the process model operate on
objects of the respective perspective of the
architecture model. As mentioned in [4], there
are different ways to view a process: what steps it
consists of (logical perspective), how they are to be
performed (physical perspective) and why these
steps exist (conceptual perspective). Thus, we view
a data warehouse process from three perspectives:
a central logical part of the model, which captures
the basic structure and data characteristics of a
process, its physical counterpart which provides
specific details over the actual components that
execute the process and a conceptual perspective
which abstractly represents the basic interrelation-
ships between data warehouse stakeholders and
processes in a formal way.

Typically, the information about how a process
is executed concerns stakeholders who are in-
volved in the everyday use of the process. The
information about the structure of the process
concerns stakeholders that manage it while the
information relevant to the reasons behind this
structure concerns process engineers who are
involved in the monitoring or evolution of the

Fig. 3. The reasoning behind the 3 perspectives of the process

metamodel.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 209

process environment. Often, all these roles are
covered by the data warehouse administration
team, although one could also encounter different
schemes.

Another important issue shown in Fig. 3 is that
we can observe a data flow in each of the three
perspectives. In the logical perspective, the model-
ing is concerned with the functionality of an
activity, describing what this particular activity is
about in terms of consumption and production of
information. In the physical perspective, the
details of the execution of the process are the
center of the modeling. The most intriguing part,
though, is the conceptual perspective covering why
a process exists. This can be either due to necessity
reasons (in which case, the receiver of information
depends on the process to deliver the data) and/or
suitability reasons (in which case the information
provider is capable of providing the requested
information).

2.3. Complexity and traces

Data warehouse operational processes are quite
complex, in terms of tasks executed within a single
process, execution coherence, contingency treat-
ment, etc. A process metamodel should be able to
capture this kind of complexity. In Fig. 4 the data
warehouse refreshment process is depicted, as
described in [14]. The refreshment process is
composed of activities, such as Data Extraction,
History Management, Data Cleaning, Data Inte-
gration, History Management, Update Propagation
and Customization. Each of these activities could
be executed on a different site. The activities are
interlinked through rules, denoted by arrows; in a
real-world case study in banking, no less than 17
kinds of knowledge sources determined this
process [15]. The gray background in Fig. 4 implies
that there is a composition hierarchy in the set of
data warehouse operational processes. In fact, the
need to isolate only a small subset of the overall
processes of the warehouse is common. Any
metamodel must be suitable to support zooming
in and out of the process structure, in order to
achieve this functionality.

The most common reason for this kind of
inspection is to avoid or recover erroneous

execution during runtime. The structure of a
process is important; moreover the specific traces
of executed processes should be tracked down,
too. If the repository is able to capture this kind of
information, it gains added value since: ex ante the
data warehouse stakeholders can use it for design
purposes (e.g., to select the data warehouse objects
necessary for the performance of a task) and ex
post, people can relate the data warehouse objects
to decisions, tools and the facts which have
happened in the real world [16].

2.4. The data oriented nature of operational data
warehouse processes

Data warehouse activities are of data-intensive
nature in their attempt to push data from the
sources to the tables of the data warehouse or the
client data marts. We can justify this claim by
listing the most common operational processes:

* data extraction processes, which are used for the
extraction of information from the legacy
systems;

Fig. 4. The Data Warehouse Refreshment process [14].

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236210

* data transfer (and loading) processes, used for
the instantiation of higher levels of aggregation
in the data warehouse with data coming from
the sources or lower levels of aggregation;

* data transformation processes, used for the
transformation of the propagated data to the
desired format;

* data cleaning processes, used to ensure the
consistency of the data warehouse data (i.e.,
the fact that these data respect the database
constraints and the business rules);

* computation processes, which are used for the
derivation of new information from the stored
data (e.g., further aggregation, querying, busi-
ness logic, etc.).

To deal with the complexity of the data ware-
house loading process, specialized Extraction-
Transformation-Loading (ETL) tools are available
in the market. Their most prominent tasks include:

* the identification of relevant information at the
source side,

* the extraction of this information,
* the customization and integration of the in-

formation coming from multiple sources into a
common format,

* the cleaning of the resulting data set, on the
basis of database and business rules, and

* the propagation of the data to the data ware-
house and/or data marts.

According to a study for Merrill Lynch [5], ETL
and Data Cleaning tools cover a labor-intensive
and complex part of the data warehouse processes,
estimated to cost at least one third of effort and
expenses in the budget of the data warehouse.
Demarest [6] mentions that this number can rise
up to 80% of the development time in a data
warehouse project. Still, due to the complexity and
long learning curve of these tools, many organiza-
tions turn to in-house development to perform
ETL and data cleaning tasks.

2.5. Case study example

To motivate the discussion, we use a part of one
of our real-world case studies [17]. The organiza-
tion collects various data about the annual

activities of all the hospitals of a particular region.
The source of data, for our example, is a COBOL
file, dealing with the annual information by class
of beds and hospital (here we use only three
classes, namely A, B and C). It yields a specific
attribute for each type of class of beds. Periodi-
cally, the COBOL file is transferred from the
production system to the data warehouse and
stored in a ‘‘buffer’’ table of the data warehouse,
acting as mirror of the file.

Then, the tuples of the buffer table are used by
computation procedures to further populate a
‘‘fact’’ table inside the data warehouse. Finally,
several materialized views are populated with
aggregate information and used by client tools
for querying.

The entity Type denotes the logical schema for
all kinds of data stores. Each Type is characterized
by a name and a set of Fields. In our example, we
assume the following four Types: CBL, Buffer,
Class info and V1. The schemata of these types are
depicted in Fig. 5. There are four atomic Activities
in the data warehouse: Loading, Cleaning, Compu-
tation and Aggregation. The Loading activity
simply copies the data from the CBL Cobol file
to the Buffer type. H ID is an identifier for the
hospital and the three last attributes hold the
number of beds per class. The Cleaning activity
deletes all entries violating the primary key
constraint. The Computation activity transforms
the imported data to a different schema; the date is
converted from American to European format and
the rest of the attributes are converted to a
combination (Class id, #Beds). For example, if
(03,12/31/1999,30,0,50) is a tuple in the Buffer
table, the respective tuples in the Class Info
table are {(03,31/Dec/1999,A,30), (03,31/Dec/
1999,C,50)}. The Aggregation activity produces
the sum of beds by hospital and year. The
combination of all the aforementioned activities
is captured by the composite activity Populate V1.

3. The metamodel of data warehouse operational

processes

We start the presentation of the metamodel for
data warehouse operational processes from the

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 211

logical perspective, to show how the metamodel
deals with the requirements of structure complex-
ity and capturing of data semantics in the next two
sections. Then, in Sections 3.3 and 3.4 we present
the physical and the conceptual perspectives. In
the former, the requirement of trace logging will be
fulfilled too. The full metamodel is presented in
Fig. 6.

For the implementation, we have used a meta-
database as a repository for meta-information of
the data warehouse components. The architecture,
quality and process models are represented in
Telos [18], a conceptual modeling language for
representing knowledge about information sys-
tems. A prototype was implemented in the object-
oriented deductive database system ConceptBase
[16], that provides query facilities, and a language
for constraints and deductive rules. The imple-
mentation of the process metamodel in Concept-
Base is straightforward. Thus we choose to follow
an informal, bird’s-eye view of the model, for
reasons of presentation.

3.1. Complexity of the process structure

Following the Workflow Coalition [7], the main
entity of the logical perspective is Activity. An
activity represents a unit of ‘‘work which is
processed by a combination of resource and
computer applications’’. Activities can be com-
plex, as captured by the specialization of Activity,
namely CompositeActivity. This gives the possibi-

lity of Zooming in and out of the repository. The
components of composite activities are Process
Elements. Class ProcessElement is a generalization
of the entities Activity and TransitionElement. A
transition element is employed for the interconnec-
tion of activities participating in a complex
activity. The attribute Next captures the sequence
of events. Formally, a Process Element is char-
acterized by the following attributes:

* Name: to uniquely identify the ProcessElement
within the extension of its class.

* Next: a ProcessElement which is next in the
sequence of a composite activity, characterized
by:
* Context: Since two activities can be inter-

related in more than one complex DW
process, the context of this interrelationship
is captured by the relevant CompositeActivity
instance.

* Semantics: denotes whether the next activity
in a schedule happens upon successful
termination of the previous activity (COM-
MIT) or if a contingency action is required
(ABORT).

A TransitionElement is a specialization of
ProcessElement, used to support scheduling of
the control flow within a composite activity. This
extra functionality is supported by two mechan-
isms. First, we enrich the Next link with more
meaning, by adding a Condition attribute to it. A
Condition is a logical expression in Telos denoting

Fig. 5. Motivating example.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236212

that the firing of the next activity is performed
when the Condition is met. Second, we specialize
the class TransitionElement to four subclasses
(not shown in Fig. 6), capturing the basic connect-
ives of activities [7]: Split AND, Split XOR, Join-
AND, Join XOR. The semantics of these entities

are the same as the ones of the WfMC proposal.
For example, the Next activity of a Join XOR
instance is fired when (a) the Join XOR has at least
two activities ‘‘pointing’’ to it through the Next
attribute and only one Next Activity (well-
formedness constraint), (b) the Condition of the
Join XOR is met and (c) at least one of the
‘‘incoming’’ activities has COMMIT semantics in
the Next attribute. This behavior can be expressed
in Telos with appropriate rules. Similarly,
Split AND denotes a point in the process chain
where more than one concurrent execution threads
are initiated, Split XOR denotes a point where
exactly one execution thread is to be initiated (out
of many different alternatives) and JOIN XOR

acts as a rendezvous point for several concurrent
threads, where the execution of the process flow is
paused until all incoming activities have completed
their execution.

The WfMC proposes two more ways of transi-
tion between Activities. Dummy activities perform
routing based on condition checking, they are
modeled as simple Transition Elements. LOOP
activities are captured as instances of Composi-
teActivity, with an extra attribute: the for condi-
tion. Fig. 7 shows the modeling of a composite
activity, composed of two sub-activities, where the
second is fired when the first activity commits and
a Boolean condition is fulfilled. P1 Commited? is a
transition element.

3.2. Relationship with data

A Type denotes the schema for all kinds of data
stores. Formally, a Type is defined as a specializa-
tion of LogicalObject with the following attributes:

Fig. 6. The metamodel for data warehouse operational processes.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 213

* Name: a single name denoting a unique Type
instance.

* Fields: a multi-value attribute. In other words,
each Type has a name and a set of Fields,
exactly like a relation in the relational model.

* Stored: a DataStore, a physical object repre-
senting software used to manipulate stored data
(e.g., a DBMS). This attribute will be detailed in
the description of the physical perspective.

* ModeledFrom: a Concept, an object in the
conceptual perspective, providing a description
of the type in a more user-friendly manner. A
Concept is the generalization of Entities and
Relationships in the Entity-Relationship model
(not depicted in Fig. 6).

Any kind of physical data store (multidimen-
sional arrays, COBOL files, even reports) can be
represented by a Type in the logical perspective.
For example, the schema of multidimensional
cubes is of the form [D1; . . . ;Dn;M1; . . . ;Mm]
where the Di represent dimensions (forming the
primary key of the cube) and the Mj measures [27].
Cobol files, as another example, are records with
fields having two peculiarities: nested records and
alternative representations. One can easily unfold
the nested records and choose one of the
alternative representations.

Each Activity in a data warehouse environment
is linked to a set of incoming and outgoing types.
We capture the relationship of activities to data

by expressing the outcome of a data warehouse
process as a function over its input data
stores. This function is captured through SQL
queries, extended with functions. An Activity
is formally characterized by the following
attributes:

* Name, Next: inherited from Process Element.
* Input: multi-valued Type attribute modeling all

data stores used by the activity to acquire data.
* Output: single-valued Type attribute. This attri-

bute models the data store or report where the
activity outputs data. The Output attribute is
further explained by two attributes:

* Semantics: a single value belonging to the set
{Insert, Update, Delete, Select} (captured as
the domain of class ActivityOutSemantics). A
process can either add, delete, or update the
data in a data store. Also it can output some
messages to the user (captured by using a
‘‘Message’’ Type and Select semantics).

* Expression: a single SQL query (instance of
class SQLQuery) to denote the relationship
of the output and the input types, possibly
with functions.

* ExecutedBy: a physical Agent (i.e., an applica-
tion program) executing the Activity. More
information on agents will be provided in the
description of the physical perspective.

Fig. 7. Example of a composite activity: ON COMMIT(P1), IF hconditioni START.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236214

* HasRole: a conceptual description of the
activity. This attribute will be properly
explained in the description of the conceptual
perspective.

Fig. 8 shows how various types of processes can
be modeled in our approach.

To gain more insight in the proposed modeling
approach, consider the example of Fig. 5. The
expressions and semantics for each activity are
listed in Fig. 9. All activities append data to the
involved types, so they have INS semantics, except
for the cleaning process, which deletes data, and
thus has DEL semantics. We do not imply that
everything should actually be implemented using

the employed queries, but rather that the relation-
ship of the input and the output of an activity is
expressed as a function, through a declarative
language such as SQL.

3.3. The physical perspective

While the logical perspective covers the struc-
ture (‘‘what’’) of a process, the physical perspective
covers the details of its execution (‘‘how’’). Each
process is executed by an Agent application
program. Each Type is assigned to a DataStore
(providing information for issues like table spaces,
indexes, etc.). An Agent can be formally described

Fig. 8. Examples of Output attribute for particular kinds of activities.

Fig. 9. Expressions and semantics for the activities of the example.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 215

as follows:

* Name: to uniquely identify the Agent within the
extension of its class.

* Execution parameters: a multi-value string at-
tribute capturing any extra information about
the execution of an agent.

* In, Out: physical DataStores communicating
with the Agent. The types used by the respective
logical activity must be stored within these data
stores.

* HasTraces: a multi-value attribute capturing all
the execution traces of the Agent.

An Execution Trace is an entity capturing details
of activity execution from the proper Agent:

* TraceID: a unique identification number to
uniquely identify each Execution Trace.

* State: a single value belonging to the domain of
class AgentStateDomain={In Progress, Com-
mit, Abort}.

* Init time, Abort time, Commit time: timestamps
denoting the Timepoints when the respective
events have occurred.

* Context: another Execution Trace. This attri-
bute is used in the case where a script (Agent) is
simply the coordinator script for the execution
of several other Agents, i.e., in Composite
Activities. In this case, the Execution Trace of
the Agent of the Composite Activity defines the
context for the execution of the coordinated
agents.

The information of the physical perspective can
be used to trace and monitor the execution of data
warehouse processes. Fig. 10 sketches the trace
information after a successful execution of the
process described in Fig. 5. We show the relation-
ship between the logical and the physical perspec-
tive by linking each logical activity to a physical
application program. Each agent has a set of
execution traces. We can see that the trace of
composite activity Populate V1 has as Init time the
time of the execution of the first sub-activity and
Commit time the completion time of the last
activity. Also, this composite activity defines the
context of the execution of its sub-activities: this is
captured by properly populating the attribute
Context.

3.4. The conceptual perspective

A major purpose behind the introduction of the
conceptual perspective is to help stakeholders
understand the reasoning behind decisions on the
architecture and physical characteristics of data
warehouse processes. Our modeling approach
captures dependency and suitability relationships
among the basic conceptual entities to facilitate
the design, administration and evolution of the
data warehouse.

Each Type in the logical perspective is the
counterpart of a Concept in the conceptual
perspective. A concept represents a class of

Fig. 10. Trace information after a successful execution of the process of the example.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236216

real-world objects, in terms of a conceptual
metamodel, e.g., the Entity-Relationship or
UML notation. Both Types and Concepts are
constructed from Fields (representing their attri-
butes), through the attribute fields. We consider
Field to be a subtype both of LogicalObject and
ConceptualObject. The central conceptual entity is
the Role which generalizes the conceptual counter-
parts of activities, stakeholders and data stores.
The class Role is used to express the interdepen-
dencies of these entities, though the attribute
RelatesTo. Activity Role, Stakeholder and Concept
are specializations of Roles for processes, persons
and concepts in the conceptual perspective. For-
mally, a Role is defined as follows:

* RelatesTo: another Role.
* As: a single value belonging to the domain of

class RelationshipDomain={suitable, depen-
dent}.

* Wrt: a multi-valued attribute including in-
stances of class ConceptualObject.

* dueTo: text string attribute, documenting
extra information on the relationship of
two roles.

Each Role represents a person, program or data
store participating in the environment of a process,
changed with a specific task and/or responsibility.
An instance of the RelatesTo relationship is a
statement about the interrelationship between two
roles in the real world, such as ‘View V1 relates to
table Class Info with respect to the attributes
H ID, EDate and #Beds as dependent due to
loading reasons’. Note that, since both data and
processes can be characterized by SQL statements,
their interrelationship can be traced in terms of
attributes.

The conceptual perspective is influenced by the
Actor Dependency model [4]. In this model, actors
depend on each other for the accomplishment of
goals and the delivery of products. The dependency
notion is powerful enough to capture the relation-
ships in the context of a data flow, where a data
consumer (person, data store or program) depends
on the proper function of its data providers, to
achieve its mission. Our extension can capture
suitability as well (e.g., in the case where more than
one concepts can apply for the population of the

aggregation, one concept is suitable to replace the
other).

In the process of understanding the occurring
errors or the design decisions on the architecture
of a data warehouse, the conceptual perspective
can be exploited in various ways.

1. The design of the data warehouse is supported,
since the conceptual model serves as a doc-
umentation repository for the reasons behind
the structure of the data warehouse. The model
allows the tracing of the relationships between
any pair of persons, programs or data stores.
With minimum query facilities of the metadata
repository, these interdependencies do not have
to be directly stored in all the cases, but can also
be computed incrementally, due to their tran-
sitivity.

2. The administration of the data warehouse is
facilitated in several ways. The conceptual
model is a good roadmap for the quality
management of the warehouse and can act as
an entry-point to the logical perspective, since it
can enable the user to pass from the abstract
relationships of roles to the structure of the
system. During runtime, the suitability notion
can be used to obtain solutions to potential
errors or problems (e.g., alternative paths for
the population of the data warehouse) in a
straightforward way.

3. Data warehouse evolution is supported at two
levels. At the entity level, the impact of any
changes in the architecture of the warehouse
can be detected through the sheer existence of
dependency links. At the same time, the
existence of suitability links suggests alterna-
tives for the new structure of the warehouse. At
the attribute level, on the other hand, internal
changes in the schema of data stores or the
interface of software agents can be detected, by
using the details of the relationships of the data
warehouse roles. For example, the previous
statement for the relationship of view V1 and
table Class Info could be interpreted as ‘View
V1 is affected by any changes to table Class Info
and especially the attributes H ID, EDate and
#Beds’.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 217

We detail all the aforementioned features and
benefits through our example. As we can see in
Fig. 11 our conceptual model consists of several
entities, including:

* Aggregation Process is an Activity Role, corre-
sponding to the logical activity Aggregation;

* Information By Class and Date (for brevity,
‘‘Info By Class’’ in Fig. 11) is a Concept
corresponding to the Type ‘‘Class Info’’;

* Hospital Information By Date (for brevity,
‘‘Hospital Info’’ in Fig. 11) is also a Concept
corresponding to the Type ‘‘V1’’;

* Administrator 1, Administrator 2 (for brevity,
‘‘Admin 1 and 2’’ in Fig. 11) as well as End User
are the involved Stakeholders with obvious roles
in the system.

Clearly, Hospital Information By Date is an
aggregation over Information By Class and Date
and actually, what the conceptual schema tells us
is that it is the Aggregation Process that performs
the aggregation in practice. Due to the data flow,
there exists a strong dependency between the
aforementioned roles. Hospital Information By
Date depends on Aggregation since the latter acts
as a data pump for the former. Hospital Informa-
tion By Date transitively depends on Information
By Class. Administrator 1 depends also on
Information By Class. Although not depicted in
Fig. 11 to avoid overloading the figure, this
relationship relies on the idea of political depen-
dency; up to now, it was the Administrator 1 that

provided the data for this kind of information and
in fact, he still does within the data warehouse
environment.

Another interesting point shown in Fig. 11 is the
idea of suitability: according to the stated needs of
the users, the concept Hospital Information By
Date represents information which is suitable for
the End User. It is worth stressing the fact that
although some of the entities correspond to
processes, other than stakeholders and other than
data stores, this does not affect the uniformity and
the simplicity of the representation. Also, notice
that we do not delve into the fields of conceptual
multidimensional aggregation (for example, see
[19]) or requirements engineering: the specific
approach one can adopt is orthogonal to our
modeling.

The notion of suitability helps to support data
warehouse evolution. As already mentioned, it is
the redundancy in the data warehouse that makes
suitability so attractive. Consider the following
real-world case, where the information in the final
view V1, was not 100% consistent. Simple
measurements of quality (cf. Section 4) indicated
that the COBOL file CBL was responsible for this
quality problem (upper part of Fig. 12). Thus the
original data provider was flawed. Out of the
many different choices one could possibly have to
resolve the problem, the most suitable one proved
to be the exploitation of redundancy. An alter-
native population scheme for view V1 used the
source file CBL’ as initial input. CBL’ is the
corresponding data store of the Concept Informa-
tion By Department and Date (‘‘Info By Dept’’ in
Fig. 12) and captures the number of beds by
department of hospital (instead of class of beds).

Sometimes, suitability in the conceptual model
of a data warehouse can be automatically derived
from aggregate reasoners and algorithms proposed
by previous research on view containment [20–23].
Again, we would like to stress that suitability in
our proposal is not restricted to either persons or
resources but can uniquely cover all the entities in
a conceptual model of a data warehouse.

Apart from the support for evolution of the data
warehouse at the entity level, the proposed model
is also capable of supporting evolution at the
attribute level. As mentioned, the relationshipFig. 11. The conceptual perspective for the example.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236218

between two roles is normally expressed in terms
of fields. In our example, Aggregation depends on
a subset of the attributes of Info By Class, namely
H ID, DATE and #Beds. If the attribute Class ID
changes, e.g., due to change of type, removal, or
renaming, the final information of the Concept
‘‘Hospital Info’’ is not affected at all. On the other
hand, changes in any of the attributes depicted in
Fig. 11 clearly affect the information delivered to
end users.

It is interesting to note the political conflict that
takes place due to the proposed change. As we can
see, removing Info By Class from the data flow,
automatically affects the Stakeholder Administra-
tor 1, who depends on Info By Class. A simple
query in the metadata repository for the depen-
dents of the entity Info By Class could give a
warning for the political vibrations coming from
such a decision1. Finally, we should also mention
that hidden within the short story that
we have just summarized is the idea of
quality measurement, which will be detailed in
Section 4.

3.5. Facilitating data warehouse design through
consistency checking in the metadata repository

To ensure the validity of the representation in
the metadata repository, consistency checks can be
performed during the design of the data ware-
house, by defining constraints, rules and views in
the language Telos. The following view finds out
whether the types used as inputs of an activity are
stored in the respective data stores used as inputs
of the agent, executed by the activity.

QueryClass InconsistentInTypes isA Type

with constraint

c: $ exists d/DataStore ac/Activity ag/

Agent

(ac input this) and (ac executedBy ag)

and

(ag input d) and not (this storedIn d) $
end

Other simple constraints involve the local
structure of the process elements. For example,
split transition elements must have at least one
incoming edge and more than one outgoing edge.
The timestamps of the agent should also be
consistent with its state. The repository can also
be used by external programs to support the

Fig. 12. Data warehouse evolution. Upper part: original problematic configuration. Lower part: the new configuration.

1 We take the opportunity to stress the huge importance of

politics in the development lifecycle of a data warehouse. See

[6,17] for more details.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 219

execution of consistency checking algorithms as
proposed in [24,25].

3.6. Repository support for the automatic
derivation of role interdependencies

The Roles of the conceptual perspective can be
directly assigned by the data warehouse adminis-
trator, or other interested stakeholders. Still, one
could argue that this is too much of an adminis-
trative burden, based on the number of relation-
ships that should be traced in the repository. By
deductive reasoning in the metadata repository, we
can impose simple rules to deduce these inter-
dependencies from the structure of data stores and
activities. For example, we can derive dependency
relationships by exploiting the structure of the
logical perspective of the metadata repository.
Also, interdependencies do not have to be directly
stored in all the cases, but can also be computed
incrementally, due to the transitivity of their
nature. In Fig. 13 we show three simple rules
which can be used to derive the production of role
interdependencies. They can also be implemented
in the metadata repository.

4. Process quality

In this section we present how the process
metamodel is linked to the metamodel for data
warehouse quality proposed in [2]. Moreover, we
complement this quality metamodel with specific
dimensions for data warehouse operational
processes.

4.1. Terminology for quality management

The quality metamodel in [2] customizes the
GQM approach of [11] for data warehouse

environments. In this section, we adopt the same
metamodel for the operational processes of the
data warehouse.

Each object in the data warehouse is linked to a
set of quality goals and a set of quality factors
(Fig. 15). A quality goal is an abstract requirement,
defined on data warehouse objects, and documen-
ted by a purpose and the stakeholder interested in
it, e.g., ‘improve the availability of source S1 until
the end of the month in the viewpoint of the data
warehouse administrator’. Quality dimensions
(e.g., ‘availability’) are used to group quality goals
and factors into different categories. A Quality
Factor represents a quantitative assessment of a
particular aspect of a data warehouse object, i.e., it
relates quality aspects both to actual measure-
ments and expected ranges for these quality values.
Finally, the method of measurement is attached to
a quality factor through a measuring agent.

The bridge between the abstract, subjective
quality goals and the specific, objective quality
factors is determined through a set of quality
queries, to which quality factor values are provided
as possible answers. Such queries are the outcome
of the methodological approach described in [3]
which offers template quality factors and dimen-
sions, defined at the metadata level and instanti-
ates them, for the specific data warehouse
architecture under examination. As a result of
the goal evaluation process, a set of improvements
(i.e., design decisions) can be proposed, in order to
achieve the expected quality.

4.2. Quality dimensions and factors for data
warehouse operational processes

ISO 9126 standard [ISO97] on software imple-
mentation and evaluation provides a general
understanding of how to measure the quality of
software systems. Data warehouses do not stray

Fig. 13. Simple rules for the production of role interdependencies.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236220

from these general guidelines; thus we adopt the
standard as a starting point. ISO 9126 is based on
six high level quality dimensions (Functionality,
Reliability, Usability, Efficiency, Maintainability,
Portability). Time and budget constraints in the
development of a data warehouse cause the
addition of Implementation Effectiveness. The
dimensions are analyzed to several sub-dimensions
(Fig. 14).

ISO 9126 does not provide specific quality
factors. To deal with this shortcoming, Appendix
A gives a set of quality factors customized for the
case of data warehouse operational processes. It
does not detail the whole set of possible factors for
all operational data warehouse processes, but
rather, we intend to come up with a minimal
representative set. This set of quality factors can be

refined and enriched by the data warehouse
stakeholders with customized factors. Once again,
we encourage the use of ‘‘templates’’ in a way that
fits naturally with the overall metadata framework
that we propose.

4.3. Relationships between processes and quality

Quality goals describe intentions of data ware-
house users with respect to the status of the data
warehouse. In contrast, our process model de-
scribes facts about the current and previous status
of the data warehouse and what activities are
performed in the data warehouse. However, the
reason behind the existence of a process is a
quality goal. For example, a data cleaning process
is executed in the data staging area in order to

Fig. 14. Software quality dimensions [26] and proposed quality factors in data warehouse environments.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 221

improve the accuracy of the data warehouse. We
have represented this interdependency between
processes and quality goals by establishing a
relationship between roles and data warehouse
objects in the conceptual perspective of the process
model (relationship Imposed On). This is shown in
the upper part of Fig. 15.

Our model is capable of capturing all depen-
dency types mentioned in [4]. Task dependencies,
where the dependum is an activity, are captured by
assigning the appropriate role to the attribute Wrt
of the relationship. Resource dependencies, where
the dependum is the availability of a resource, are
modeled when fields or concepts populate this
attribute. The relationship ExpressedFor relates a
role to a high-level quality goal; thus Goal
dependencies, dealing with the possibility of mak-
ing a condition true in the real world, are captured
from the model, too. Soft-goal dependencies are a
specialization of goal dependencies, where evalua-
tion cannot be done in terms of concrete quality
factors.

The lower part of Fig. 15 represents the relation-
ship between processes and quality on a more
operational level. The actions of an agent in the
data warehouse affect the expected or measured
quality factors of some data warehouse objects.
For example, a data cleaning process affects the
availability of a source: it decreases the amount of
time during which it can be used for regular
operations. Consequently, this process will affect
the quality factors Average Load, CPU state,
Available Memory defined on a Source. All these
quality factors are concrete representations of the
abstract notion Availability}the relevant quality

dimension. The effect of a data warehouse process
must always be confirmed by new measurements
of the quality factors. Unexpected effects of data
warehouse processes can be detected by comparing
the measurements with the expected behavior of
the process. The measurement of the quality of the
particular agents through their own quality factors
is analyzed in [1].

A Quality Query provides the methodological
bridge to link the high-level, user-oriented, sub-
jective quality goals to the low-level, objective,
component-oriented quality factors. The vocabu-
lary (or domain) of quality queries with respect to
the process model is the set of data warehouse
activities, which can be mapped to reasons (roles)
and conditions (of agents) of a specific situation.

Let us return to our hospital example to clarify
how the process and the quality metamodels
interplay, and how the different perspectives
gracefully map to each other. More than one of
our experiences in the public sector indicated a
need of total quality of data, were no errors were
allowed and no information was missing. Thus,
the quality goal is ‘100% quality of data delivered
to the end users’.

For the purpose of our example, we narrow this
high level goal to the subgoal, 100% consistency of
the produced information. There are two objects
involved in this quality goal, namely the quality
dimension consistency and the role end user. Both
entities, as well as the quality goal itself, belong to
the conceptual perspective and can be used to
explain why the chain of processes exists: to bring
clean, consistent information to the involved
stakeholders.

According to the GQM paradigm, a good start
to examine a situation would be to find out its
current status. With respect to the elements of the
process model, the basic question over process
status is naturally over the correctness dimension:
are all activities performing as they should? The
question, itself belonging to the logical perspective,
involves an object of the logical part of the process
metamodel: activities. If one applies the methodol-
ogy of [3], this question would directly be analyzed
to five consequent questions, each involving one of
the activities Loading, Cleaning, Computation,
Aggregation, and Populate V1.Fig. 15. Relationships between processes and quality.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236222

The actual quality evaluation of the produced
software is done in terms of concrete measure-
ments. On the physical perspective (where the
quality factors that provide the measurements
belong) the measurements involve specific software
agents. In our case, the quality factor Correctness
though White Box Software Testing (WBCorrect-
ness in the sequel) performs this kind of measure-
ments.

The discrimination of logical, conceptual and
physical perspectives is proven useful once more,
in the quality management of the data warehouse:
the quality goals can express ‘‘why’’ things have
happened (or should happen) in the data ware-
house, the quality questions try to discover ‘‘what’’
actually happens and finally, the quality factors
express ‘‘how’’ this reality is measured (Fig. 16).
On top of this, we have organized a seamless
integration of the process and quality models, by
mapping the objects of the same perspectives to
each other.

In Fig. 17 we can also see the assignment of
quality factors to the various objects at the
physical perspective. We assign the quality factor
WBCorrectness to the software agents and the
quality factors Consistency and Completeness to
the data stores. A simple formula derives the
quality of the data stores in the latest steps of the
data flow from the quality of the previous data
stores and software agents. Let us take Consistency

for example:

consistencyðdsÞ

¼
Y

correctnessðaÞ
Y

consistencyðds0Þ;

ð1Þ

where ds is the data store under consideration, a
denotes the agents having ds as their output and
COMMIT semantics and ds0 is any data store
different from ds, serving as input to the agents a.

Clearly, the consistency of the final view V1
depends on the consistency of all the previous data
stores and the correctness of all the involved
software agents. Although arguably naive, the
formula fitted perfectly in our real world scenario.

Fig. 16. Perspectives and interrelationships for the process and

quality metamodels.

Fig. 17. Application of quality factors to the entities of the example.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 223

4.4. Exploitation of quality modeling in the
repository for data warehouse administration

The different instantiations of the quality model
can be exploited to assist both the design and the
administration of the data warehouse. In [27], it
has been shown how the classification of quality
dimensions, factors and goals can be combined
with existing algorithms to address the data
warehouse design problem (i.e., the selection of
the set of materialized views with the minimum
overall ‘‘cost’’ that fulfill all the quality goals set by
the involved stakeholders). As far as the adminis-
tration of the warehouse is concerned, the
information stored in the repository may be used
to find deficiencies in a data warehouse.

To show how the quality model is exploited, we
take the following query. It returns all data
cleaning activities which have decreased the avail-
ability of a data store according to the stored
measurements. The significance of the query is that
it can show that the implementation of the data
cleaning process has become inefficient.

GenericQueryClass DecreasedAccuracy isA

DWCleaningAgent with parameter

ds: DataStore

constraint

c: $ exists qf1, qf2/DataStoreAccuracy

t1, t2, t3/Commit Time v1, v2/Integer

(qf1 onObject ds) and (qf2 onObject ds)

and

(this affects qf1) and (this affects

qf2) and

(this executedOn t3) and (qf1 when t1)

and (qf2 when t2) and

(t15t2) and (t15t3) and (t35t2) and

(qf1 achieved v1) and (qf2 achieved v2)

and (v1>v2) $
end

The query has a data store as parameter, i.e., it
will return only cleaning processes that are related
to the specified data store. The query returns the
agents which have worked on the specified data
store and which were executed between the
measurements of quality factors qf 1 and q f 2,
and the measured value of the newer quality factor

is lower than the value of the older quality factor.
The attribute executedOn of an agent represents
the time when this agent was executed.

5. Repository support for data warehouse

description and evolution

Summarizing the discussion so far, during the
design phase, the user can check the consistency of
his/her design, to determine any violations of the
business logic of the data warehouse, or the respect
of simple rules over the structure of the data
warehouse schema. During the administration
phase, we can use the repository to discover
quality problems.

In this section, we continue to show how the
metadata repository can be exploited in different
ways. First, we complement the perception of data
warehouses as collections of materialized views
with a precise operational description of the
content of data warehouse tables. Second, a
particular task in the data warehouse lifecycle,
data warehouse evolution, is examined separately,
in order to determine possible impacts, when the
schema of a particular table in the data warehouse
changes.

5.1. Why data warehouses are not (just) collections
of materialized views

Many database researchers have considered
data warehouses to be collections of materialized
views, organized in strata where the views of a
particular stratum are populated from the views of
a lower stratum. For example, in [17] where the
papers of three major database conferences related
to data warehousing, between the years 1995 and
1999, are classified into different categories, almost
half of the papers (around 46%) deal with view
maintenance and integration issues. The papers on
view maintenance have focused on algorithms for
updating the contents of a view in the presence of
changes in the sources. Papers related to integra-
tion have targeted the production of a single
interface for the processing of distributed hetero-
geneous data, along with query processing
techniques for that cause and resolution of

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236224

conflicts at the schema level. One can observe,
thus, that most of the performed research has been
dedicated to what should be extracted and loaded,
instead of how this process is actually performed.
Practical aspects of extraction, loading and con-
version processes, such as scheduling, declarative
process definition, or data peculiarities (source
format, errors, conversions) are clearly neglected
(see [17] for a broader discussion).

In summary, although the abstraction of
treating data warehouses as strata of materialized
views, has efficiently served the purpose of
investigating the issues of (incremental)
view maintenance, it lacks the ability to accurately
describe the real content of data warehouse
tables, due to the fact that all the intermediate
processing, transformation and reorganization of
the information is systematically absent from most
research efforts.

Our modeling approach follows a different path,
by treating data warehouse processes as first class
citizens. The semantic definitions for data ware-
house views are not assigned directly by the
designer but result from combining the respective
definitions of the data warehouse processes. Thus,
we can argue that there are two ways to define the
semantics of a table in the data warehouse:

* A Type can be defined as a materialized view
over its previous Types in the data flow. This is
the definition of what the Type should contain
ideally, i.e., in a situation where no physical
transformations or cleaning exists.

* A Type can be defined as a view again, resulting
from the adoption of our modeling approach.
In this case, the resulting definition explains
how the contents of the Type are actually
produced, due to schema heterogeneity and
bad quality of data.

Of course, both kinds of definition are useful but
only the former has been taken into consideration
in previous research. To complement this short-
coming, the rest of this subsection is dedicated to
showing how we can derive view definitions from
the definitions of their populating processes.

To give an intuition of the difference between
the two approaches, consider the example of
Fig. 5. Ideally, we would like to express the view

VI in terms of the input file CBL (or its relational
counterpart, table Buffer). A simple formula
suffices to give this intentional semantics:

SELECT H ID, EUROPEAN(DATE) AS EDATE,

CLASS A+CLASS B+Class c AS SUM BEDS FROM CBL

On the other hand, reality is clearly different. It
involves the identification of multiple rows for the
same hospital at the same time period, and the
restructuring of the information to a normalized
format before the loading of data in view V1. The
full expression capturing this operational seman-
tics is definitely more complex than the simple
SQL query denoting the intentional semantics.

To construct expressions for data warehouse
tables with respect to their operational semantics,
we constrain ourselves to the case where we are
able to construct an acyclic, partially ordered
graph of activities (produced by proper queries in
ConceptBase). Thus, we can treat the whole set of
data warehouse activities as an ordered list.
Mutually exclusive, concurrent paths in the
partially ordered graph are treated as different
lists (the execution trace determines which list is
considered each time).

Furthermore, a set of types belonging to the set
SourceSchema, denoting all the types found in the
data sources, are treated as source nodes of a
graph. For the rest of the types, we can derive an
SQL expression by using existing view reduction
algorithms, such as [28] (corrected with the results
of [29–31], to which we shall refer to as [28þ]),
[32–36]. Our algorithm is applicable to graphs of
activities that do not involve updates. In most
cases, an update operation can be considered as
the combination of insertions and deletions or as
the application of the appropriate function to the
relevant attributes.

The results of the application of this algorithm
to our example are shown in Fig. 18. For
convenience, we break composite definitions of
table expressions into the different lines of Fig. 19.
For example, when the third iteration (i=3) refers
to the definition of table Buffer, it does so with
respect to the definition of line 2 (i=2). The
expression of a single type can also be computed
locally.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 225

5.2. Repository support for data warehouse
evolution

The data warehouse is constantly evolving. New
sources are integrated in the overall architecture

from time to time. New enterprise and client data
stores are built in order to cover novel user
requests for information. As time passes by, users
seem more demanding for extra detailed informa-
tion. Due to these reasons, not only the structure

Fig. 18. Algorithm for extracting the definition of a type in the repository.

Fig. 19. SQL expressions of the types of the example.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236226

but also the processes of the data warehouse
evolve.

The problem arises to keep the data warehouse
objects and processes consistent in the presence of
changes. For example, changing the definition of a
materialized view in the data warehouse triggers a
chain reaction: the update process must evolve
(both the refreshment and the cleaning steps), and
the old, historical data must be migrated to the
new schema (possibly with respect to new selection
conditions). All data stores of the data warehouse
and client level which are populated from this
particular view must be examined with respect to
their schema, content and population processes.

In our approach, we distinguish two kinds of
impact of a hypothetical change:

* Direct impact: the change in the data warehouse
object imposes that some action must be taken
against an affected object. For example, if an
attribute is deleted from a materialized view,
then the activity which populates it must also be
changed accordingly.

* Implicit impact: the change in the data ware-
house object might change the semantics of
another object, without obligatorily changing
the structure of the latter.

Our model enables us to construct a partially
ordered graph: for each Type instance, say t, there
is a set of types and activities, used for the
population of t (‘‘before’’ t), denoted as BðtÞ. Also,
there is another set of objects using t for their
population (‘‘after’’ t), denoted as AðtÞ. We can
recursively compute the two sets from queries on
the metadata repository of process definitions.
Queries for the successor and after relationships
can be defined in a similar way.

Suppose that the final SQL expression of a type
t, say e, changes into e0. In the sprit of [38], we can
use the following rules for schema evolution in a
data warehouse environment (we consider that the
changes abide by the SQL syntax and the new
expression is valid):

* If the select clause of e0 has an extra attribute
from e, then propagate the extra attribute to the
base relations: there must be at least one path
from one type belonging to a SourceSchema to

an activity whose out expression involves the
extra attribute. If we delete an attribute from
the select clause of a type, it must not appear in
the select clause of the processes that directly
populate the respective type, as well as in the
following types and the processes that use
this type. In the case of attribute addition, the
impact is direct for the previous objects BðtÞ
and implicit for the successor objects AðtÞ.
For deletion the impact is direct for both
categories.

* If the where clause of e0 is more strict than the
one of e, the where clause of at least one process
belonging to BðtÞ must change identically. If
this is not possible, a new process can be added
before t simply deleting the respective tuples
through the expression e0 � e. If the where
clause of e0 is less strict than the one of e,
subsumption techniques [20–22,39] determine
which types can be used to calculate the
new expression e0 of t. The having clause is
treated in the same fashion. The impact is direct
for the previous and implicit for the successor
objects.

* If an attribute is deleted from the group by
clause of e, at least the last activity performing
a group-by query should be adjusted accord-
ingly. All consequent activities in the popula-
tion chain of t must change too (as if
an attribute has been deleted). If this is not
feasible we can add an aggregating process
performing this task exactly before t. If an extra
attribute is added to the group by clause of e,
then at least the last activity performing a
group-by query should be adjusted accordingly.
The check is performed recursively for the types
populating this particular type, too. If this fails,
the subsumption techniques mentioned for the
where-clause can be used for the same purpose
again. The impact is direct for both previous
and successor objects. Only in the case of
attribute addition it is implicit for the successor
objects.

Returning to our example, suppose that we
decide to remove attribute CLASS C from the
table BUFFER. This change has the following
impacts:

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 227

* The activities belonging to Previous(BUFFER),
namely Loading and Cleaning, must change
accordingly, to remove CLASS C from their
select clause.

* The activities belonging to Next(BUFFER),
namely Cleaning and Computation must also
change to remove any appearance of CLASS C
in their query expression.

Note that Cleaning participates both in the
Previous and in the Next list. Fig. 20 shows
the impact of these changes. Attribute CLASS C
is removed from the select list of the Previous
activities and from the body of the queries of the
Next list.

Due to the existence of implicit impacts, we
do not provide a fully automated algorithmic
solution to the problem, but rather, we
sketch a methodological set of steps, in the
form of suggested actions to perform this kind
of evolution. Similar algorithms for the evolution
of views in data warehouses can be found in
[38,40]. A tool could easily visualize this
evolution plan and allow the user to react
to it.

6. Related work

In this section we discuss the state of art and
practice for research efforts, commercial tools and
standards in the fields of process and workflow

modeling, with particular focus on data ware-
housing.

6.1. Standards

The standard [7] proposed by the Workflow
Management Coalition (WfMC) includes a
metamodel for the description of a workflow
process specification and a textual grammar
for the interchange of process definitions. A
workflow process comprises a network of
activities, their interrelationships, criteria for
starting/ending a process and other information
about participants, invoked applications and rele-
vant data. Also, several other entities external to
the workflow, such as system and environmental
data or the organizational model are roughly
described.

The MetaData Coalition (MDC), is an
industrial, non-profit consortium which aims to
provide a standard definition for enterprise meta-
data shared between databases, CASE tools and
similar applications. The Open Information Model
(OIM) [41] is a proposal (led by Microsoft) for
the core metadata types found in the operati-
onal and data warehousing environment of en-
terprises. The OIM uses UML both as a modeling
language and as the basis for its core model.
The OIM is divided in packages extend UML in
order to address different areas of information
management. The Database and Warehousing
Model is composed from the Database Schema
Elements package, the Data Transformations

Fig. 20. Impact of the removal of attribute CLASS C from table BUFFER to the definitions of the affected activities.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236228

Elements package, the OLAP Schema Elements
package and the Record Oriented Legacy
Databases package. The Database Schema
Elements package contains three other packages:
a Schema Elements package (covering the
classes modeling tables, views, queries, indexes,
etc.), a Catalog and Connections package (covering
physical properties of a database and the
administration of database connections) and a
Data Types package, standardizing a core set
of database data types. The Data Transformations
Elements package covers basic transformations
for relational-to-relational translations. It does
not deal with data warehouse process modeling
(i.e., it does not cover data propagation, clean-
ing rules, or querying), but covers in detail
the sequence of steps, the functions and
mappings employed and the execution traces of
data transformations in a data warehouse
environment.

6.2. Commercial tools

Basically, commercial ETL tools are responsible
for the implementation of the data flow in a data
warehouse environment which is only one (albeit
important) of the data warehouse processes. Most
ETL tools are of two flavors: engine-based,
or code-generation-based. The former assumes that
all data have to go through an engine for
transformation and processing. In code-generating
tools all processing takes place only at the target
or source systems. There is a variety of such tools
in the market; we mention three engine-based
tools, from Ardent [42], DataMirror [43] and
Microsoft [37,44], and one code-generation-based
from ETI [45].

6.3. Research efforts

Workflow modeling: There is a growing research
interest in the field of workflow management.
Sadiq and Orlowska [24] use a simplified workflow
model, based on [7], using tasks and control flows
as its building elements. The authors present an
algorithm for identifying structural conflicts in a
control flow specification. The algorithm uses a set
of graph reduction rules to test the correctness

criteria of deadlock freedom and lack-of-synchroni-
zation freedom. In [25] the model is enriched with
modeling constructs and algorithms for checking
the consistency of workflow temporal constraints.
In [46], the authors propose a conceptual model
and language for workflows. The model gives the
basic entities of a workflow engine and semantics
about the execution of a workflow. The proposed
model captures the mapping from workflow
specification to workflow execution (in particular
concerning exception handling). Importance is
paid to task interaction, the relationship of work-
flows to external agents and the access to
databases. Other aspects of workflow management
are explored in [47,48]. In [49] a general model for
transactional workflows is presented. A transac-
tional workflow is defined to consist of several
tasks, composed by constructs like ordering,
contingency, alternative, conditional and
iteration. Nested workflows are also introduced.
Furthermore, correctness and acceptable termina-
tion schedules are defined over the proposed
model. In [50] several interesting research r
esults on workflow management are presented in
the field of electronic commerce, distributed
execution and adaptive workflows. A widely used
web server for workflow literature is maintained
by [51].

Process modeling. Process and workflow model-
ing have been applied in numerous disciplines.
In [16] the authors propose a software process
data model to support software information
systems with emphasis on the control, documenta-
tion and support of decision making for
software design and tool integration. Among other
features, the model captures the representation
of design objects (‘‘what’’), design decisions
(‘‘why’’) and design tools (‘‘how’’). A recent
overview on process modeling is given in [52],
where a categorization of the different issues
involved in the process engineering field is
provided. The proposed framework consists of
four different but complementary viewpoints
(expressed as ‘‘words’’): the subject world,
concerning the definition of the process with
respect to the real world objects, the usage
world, concerning the rationale for the process
with respect to the way the system is used, the

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 229

system world, concerning the representation of
the processes and the capturing of the specifica-
tions of the system functionality and finally, the
development world, capturing the engineering
meta-process of constructing process models. Each
world is characterized by a set of facets, i.e.,
attributes describing the properties of a process
belonging to it.

Data quality and quality management. There has
been a lot of research on the definition and
measurement of data quality dimensions [53–56].
A very good review of research literature is found
in [9]. Jarke et al., [1] give an extensive list of
quality dimensions for data warehouses, and in
particular data warehouse relations and data.
Several goal hierarchies of quality factors have
been proposed for software quality. For example,
the GE Model [57] suggests 11 criteria of software
quality, while Boehm [58] suggests 19 quality
factors. ISO 9126 [26] suggests six basic factors
which are further refined to an overall 21 quality
factors. In [59] a comparative presentation of these
three models is offered and the SATC software
quality model is proposed, along with metrics for
all their software quality dimensions. In [60] a set
of four basic quality dimensions for workflows is
suggested also. Variants of the Goal-Question-
Metric (GQM) approach are widely adopted in
software quality management [11]. A structured
overview of the issues and strategies, embedded in
a repository framework, can be found in [61].
Jarke et al. [1,10] provide extensive reviews of
methodologies employed for quality management,
too.

Research focused specifically on ETL. The
AJAX data cleaning tool developed at INRIA
[62] deals with typical data quality problems,
such as the object identity problem, errors due
to mistyping and data inconsistencies between
matching records. AJAX provides a framework
wherein the logic of a data cleaning program
is modeled as a directed graph of data transforma-
tions (mapping, matching, clustering and
merging transformations) that start from some
input source data. AJAX also provides a declara-
tive language for specifying data cleaning pro-
grams, which consists of SQL statements enriched
with a set of specific primitives to express

mapping, matching, clustering and merging trans-
formations.

6.4. Relationship of our proposal to state-of-the-art
research and practice

Our approach has been influenced by ideas on
dependency and workflow modeling stemming
from [4,7,16,24,46,63,64]. As far as the standards
are concerned, we found both the Workflow
Reference Model and the Open Information
Model too abstract for the purpose of a repository
serving well focused processes like the ones in a
data warehouse environment. First, the relation-
ship of an activity with the data it involves is not
really covered, although this would provide
extensive information of the data flow in the data
warehouse. Second, the separation of perspectives
is not clear, since the standards focus only on the
structure of the workflows. To compensate this
shortcoming, we employ the basic idea of the
Actor-Dependency model [4] to add a conceptual
perspective to the definition of a process, capturing
the reasons behind its structure. Moreover, we
extend [4] with the notion of suitability. As far as
data quality and quality engineering are con-
cerned, we have taken into account most of the
previous research for our proposed quality dimen-
sions and factors.

7. Conclusions

In this paper we have described a metamodel
for data warehouse operational processes
and techniques to design, administrate and
facilitate the evolution of the data warehouse
through the exploitation of the entities of
this metamodel. This metamodel takes advantage
of the clustering of its entities in logical,
physical and conceptual perspectives, involving
a high-level conceptual description, which can
be linked to the actual structural and physical
aspects of the data warehouse architecture.
This approach is integrated with the results of
previous research, where data warehouse architec-
ture and quality metamodels have been proposed
assuming the same categorization.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236230

The physical perspective of the proposed
metamodel covers the execution details of
data warehouse processes. At the same time, the
logical perspective is capable of modeling the
structure of complex activities and capture all the
entities of the Workflow Management Coalition
Standard. Due to the data oriented nature of the
data warehouse activities, their relationship with
data stores is particularly taken care of, through
clear and expressive semantics in terms of SQL
definitions. This simple idea reverts the classical
belief that data warehouses are simply collections
of materialized views. Instead of directly assigning
a na.ıve view definition to a data warehouse table,
we can deduce its definition as the outcome of the
combination of the processes that populate it. This
new kind of definition does not necessarily refute
the existing approaches, but rather complements
them, since the former provide the operational
semantics for the content of a data warehouse
table, whereas the latter give an abstraction of its
intentional semantics. The conceptual perspective
is a key part of our approach as in the Actor
Dependency model [4]. Also, we generalize the
notion of role to uniformly capture any person,
program or data store participating in the system.
Furthermore, the process metamodel is linked to a
quality metamodel, thereby facilitating the mon-
itoring of the quality of data warehouse processes
and a quality-oriented evolution of the data
warehouse.

In the process of taking design decisions or
understanding the occurring errors over the
architecture of a data warehouse, the proposed
metamodel can be exploited in various ways. As
far as the design of the data warehouse is
concerned, simple query facilities of the metadata
repository are sufficient to provide the support for
consistency checking of the design. Moreover, the
entities of the conceptual perspective serve as a
documentation repository for the reasons behind
the structure of the data warehouse. Second, the
administration of the data warehouse is also
facilitated in several ways. The measurement of
data warehouse quality, through the linkage to a
quality model, is crucial in terms of enabling the
desired functionality during the everyday use of
the warehouse.

Evolution is supported by the role interdepen-
dencies with two ways. As the entity level, the
impact of any changes in the architecture of the
warehouse can be detected through the existence of
dependency links. At the same time, the existence
of suitability links suggestes alternatives for the
new structure of the warehouse. At the attribute
level, on the other hand, internal changes in the
schema of data stores or the interface of software
agents can also be detected by using the details of
the relationships of the data warehouse roles.

We have used our experiences from real world
cases as a guide for the proposed metamodel. As far
as the practical application of our ideas in the real
world is concerned, we find that field of ETL and
data warehouse design tools is the most relevant to
our research. As a partial evaluation of our ideas
and to demonstrate the efficiency of our approach,
we have developed a prototype ETL tool.

Research can follow our results in various ways.
First, it would be interesting to explore automated
ways to assist the involved stakeholders (data
warehouse designers and administrators) to popu-
late the metadata repository with the relevant
information. An example for how this can be
achieved is explained in Section 3.4 for the
suitability interrelationships. Specialized tools
and algorithms could assist in extending this kind
of support for more aspects of the proposed
metamodel. Also, in this paper we have dealt only
with the operational processes of a data warehouse
environment. Design processes in such an environ-
ment may not fit this model so smoothly. It would
be worth trying to investigate the modeling of the
design processes and to capture the trace of their
evolution in a data warehouse. Finally, we have
used the global-as-view approach for the defini-
tions of the data warehouse processes, i.e., we
reduce these definitions in terms of the sources in
the warehouse architecture. We plan to investigate
the possibility of using the local-as-view approach,
which means reducing both the process definitions
and the data sources to a global enterprise model.
The local-as-view approach appears to be more
suitable to environments where a global, corporate
view of data is present and thus, provides several
benefits that the global-as-view approach lacks
[65].

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 231

Acknowledgements

This research is sponsored in part (a) by the
European Esprit Projects ‘‘DWQ: Foundations of
Data Warehouse Quality’’, No. 22469, and ‘‘MEMO:
Mediating and Monitoring Electronic Commerce’’,
No. 26895, (b) by the Deutsche Forschungsge-
meinsschaft (DFG) under the Collaborative Research
Center IMPROVE (SFB 476) and (c) by the Greek
General Secretariat of Research and Technology in
the context of the project ‘‘Data Quality in Decision
Support Systems’’ of the French–Greek Cooperation
Programme ‘‘Plato’’, 2000. We would like to thank
our DWQ partners qwho contributed to the progress
of this work, especially Mokrane Bouzeghoub,
Manfred Jeusfeld, Maurizio Lenzerini, and Timos
Sellis. Many thanks are also due to the anonymous
reviewers for their useful comments and the interest-
ing issues they have raised.

Appendix A

In this Appendix, we list quality factors for the
software involved a data warehouse environment.

We organize the presentation of these quality
factors around the lifecycle stage during which
they are introduced. The examined lifecycle
stages are requirements analysis, system design,
implementation and testing (including the quality
of the software module itself), management and
administration. For each of these stages, we list
the involved stakeholder and its products
(depicted in the header of each table). Each of
the following tables comprises three columns:
the leftmost describes a high level quality dimen-
sion, the middle column shows the related
quality factors of the dimension and the rightmost
column suggests measurement methods for
each quality factor. We make a full presentation,
including both generic quality factors, applicable
to any kind of software module and data
warehouse specific quality factors. The former
are presented in gray background. To provide the
list of these quality factors we have relied on
existing research and practitioner publica-
tions, market tools and personal experiences
[59,67,66,3,1].

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236232

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 233

References

[1] M. Jarke, M.A. Jeusfeld, C. Quix, P. Vassiliadis, Archi-

tecture and quality in data warehouses: an extended

repository approach, Inform. Systems 24 (3) (1999)

229–253 (A previous version appeared in the Proceedings

of the 10th Conference of Advanced lnformation Systems

Engineering (CAiSE’98), Pisa, Italy (1998)).

[2] M.A. Jeusfeld, C. Quix, M. Jarke, Design and analysis of

quality information for data warehouses, Proceedings of

the 17th International Conference on Conceptual Model-

ing (ER’98), Singapore, 1998, pp. 349–362.

[3] P. Vassiliadis, M. Bouzeghoub, C. Quix, Towards quality-

oriented data warehouse usage and evolution. Inform.

System 25 (2) (2000) 89–115 (A previous version appeared

in the Proceedings of the 11th Conference of Advanced

Information Systems Engineering (CAiSE’99), Heidelberg,

Germany, 1999, pp. 164–179.

[4] E. Yu, J. Mylopoulos, Understanding ‘why’ in software

process modelling, analysis and design, Proceedings of the

16th International Conference on Software Engineering

(ICSE), Sorrento, Italy, 1994, pp. 159–168.

[5] C. Shilakes, J. Tylman, Enterprise Information Portals,

Enterprise Software Team, 1998, Available at http://

www.sagemaker.com/company/downloads/eip/in-

depth.pdf.

[6] M. Demarest, The politics of data warehousing, 1997,

http://www.hevanet.com/demarest/marc/dwpol.html.

[7] Workflow Management Coalition, Interface I: process

definition interchange process model, Document Number

WfMC TC-1016-P, 1998, Available at wmw.wfmc.org.

[8] M. Jarke, R. Gallersd.orfer, M.A. Jeusfield, M. Staudt, S.

Eherer, ConceptBase}a deductive objectbase for meta

data management, J. Intell. Information Systems (Special

Issue on Advances in Deductive Object-Oriented Data-

bases) 4 (2) (1995) 167–192.

[9] R.Y. Wang, V.C. Storey, C.P. Firth, A framework for

analysis of data quality research, IEEE Trans., Knowledge

Data Eng. 7 (4) (1995) 623–640.

[10] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis (Eds.),

Fundamentals of Data Warehouses, Springer, Berlin, 2000.

[11] M. Oivo, V. Basili, Representing software engineering

models: the TAME goal-oriented approach, IEEE Trans.

Software Eng. 18 (10) (1992) 886–898.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236234

[12] C. Quix, M. Jarke, M. Jeusfeld, P. Vassiliadis, M.

Lenzerini, D. Calvanese, M. Bouzeghoub, Data warehouse

architecture and quality model, DWQ Technical Report

DWQ-RWTH-002, 1997, Available at http://www.dbne-

t.ece.ntua.gr/	dwq.

[13] P. Vassiliadis, Data warehouse modeling and quality

issues, Ph.D. Thesis, 2000.

[14] M. Bouzeghoub, F. Fabret, M. Matulovic, Modeling data

warehouse refreshment process as a workflow application,

Proceedings of the Workshop on Design and Management

of Data Warehouses (DMDW’99), Heidelberg, Germany,

1999.

[15] E. Sch.afer, J.-D. Becker, M. Jarke, DB-PRISM}inte-

grated data warehouses and knowledge networks for bank

controlling. Proceedings of the 26th International Con-

ference on Very Large DataBases (VLDB), Cairo, Egypt,

2000, pp. 715–718.

[16] M. Jarke, M.A. Jeusfeld, T. Rose, A software process data

model for knowledge engineering in information systems.

Inform. Systems 15 (l) (1990) 85–116.

[17] P. Vassiliadis, Gulliver in the land of data warehousing:

practical experiences and observations of a researcher,

Proceedings of the Second International Workshop on

Design and Management of Data Warehouses (DMDW),

Stockholm, Sweden, 2000, pp. 12.1–12.16.

[18] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis,

Telos}a language for representing knowledge about

information systems, ACM Trans. Inform. Systems 8 (4)

(1990) 325–362.

[19] F. Baader, U. Sattler, Description logics with concrete

domains and aggregation, Proceedings of the 13th

European Conf. on Artificial Intelligence (ECAI-98),

Brighton, UK, 1998, pp. 336–340.

[20] D. Srivastava, S. Dar, H.V. Jagadish, A.Y. Levy,

Answering queries with aggregation using views, Proceed-

ings of the 22nd International Conference on Very Large

Data Bases (VLDB), Bombay, India, 1996, pp. 318–329.

[21] A. Gupta, V. Harinarayan, Dallan Quass: aggregate-query

processing in data warehousing environments, Proceedings

of the 21st Conference on Very Large Data Bases (VLDB),

Zurich, Switzerland, 1995, pp. 358–369.

[22] W. Nutt, Y. Sagiv, S. Shurin, Deciding equivalences

among aggregate queries, Proceedings of the 17th ACM

SIGACT-SIGMOD-SIGART Symposium, Principles of

Database Systems (PODS’98), Seattle, 1998, pp. 214–223.

[23] S. Chaudhuri, S. Krishnamurthy, S. Potamianos, K. Shim,

Optimizing queries with materialized views, Proceedings of

the 11th International Conference on Data Engineering

(ICDE), Taipei, 1995, pp. 190–200.

[24] W. Sadiq, M. Orlowska, Applying graph reduction

techniques for identifying structural conflicts in process

models, Proceedings of the 11th Conference on Advanced

Information Systems Engineering, (CAiSE’99),

Heidelberg, Germany, 1999, pp. 195–209.

[25] O. Marjanovic, M. Orlowska, On modeling and verifica-

tion of temporal constraints in production workflows,

Knowledge Inform. Systems 1 (2) (1999) 157–192.

[26] ISO, International Organization for Standardization, ISO/

IEC 9126:1991 Information Technology}Software pro-

duct evaluation}Quality characteristics and guidelines for

their use, 1991.

[27] P. Vassiliadis, Modeling multidimensional databases,

cubes and cube operations, Proceedings of the 10th

International Conference on Statistical and Scientific

Database Management (SSDBM), Capri, Italy, 1998,

pp. 53–62.

[28] W. Kim, On optimizing an SQL-like nested query, ACM

Trans. Database Systems 7 (3) (1982) 443–469.

[29] R.A. Ganski, H.K.T. Wong, Optimization of nested SQL

queries revisited, Proceedings of ACM SIGMOD Interna-

tional Conference on the Management of Data, San

Francisco, CA, 1987, pp. 23–33.

[30] M. Muralikrishna, Optimization and dataflow algorithms

for nested tree queries, Proceedings of the 15th Interna-

tional Conference on Very Large Data Bases (VLDB),

Amsterdam, The Netherlands, 1989, pp. 77–85.

[31] M. Muralikrishna, Improved unnesting algorithms for join

aggregate SQL queries, Proceedings of the 18th Interna-

tional Conference on Very Large Data Bases (VLDB),

Vancouver, Canada, 1992, pp. 91–102.

[32] U. Dayal, Of nests and trees: a unified approach to

processing queries that contain nested subqueries, aggre-

gates and quantifiers, Proceedings of the 13th International

Conference on Very Large Data Bases (VLDB), Brighton,

UK, 1987, pp. 197–208.

[33] S. Chaudhuri, K. Shim, Optimizing queries with aggregate

views, Proceedings of the Fifth International Conference

on Extending Database Technology (EDBT), Avignon,

France 1996, pp. 167–182.

[34] I. Mumick, S. Finkelstein, H. Pirahesh, R. Ramakrishnan,

Magic is relevant, Proceedings of the ACM SIGMOD

International Conference on the Management of Data,

Atlantic City, NJ, 1990, pp. 247–258.

[35] H. Pirahesh, J. Hellerstein, W. Hasan, Extensible/rule

based query rewrite optimization in starburst, Proceedings

of the ACM SIGMOD International Conference on the

Management of Data, San Diego, CA, 1992, pp. 39–48.

[36] A. Levy, I. Mumick, Y. Sagiv, Query optimization by

predicate move-around, Proceedings of the 20th Interna-

tional Conference on Very Large Data Bases (VLDB),

Chile, 1994, pp. 96–107.

[37] Microsoft Corp, MS Data Transformation Services,

Available at ww.microsoft.com/sq.

[38] A. Gupta, I. Memick, K. Ross, Adapting materialized

views after redefinitions, Proceedings of the ACM SIG-

MOD International Conference on the Management of

Data, pp. 211–222, San Jose, CA, 1995.

[39] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. Srivastava,

Answering queries using views, Proceedings of the 14th

ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems (PODS), San Jose, CA,

1995, pp. 95–104.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236 235

[40] Z. Bellahs"ene, Structural view maintenance in data ware-

housing systems, Journ!ees Bases de Donn!ees Avanc!ees

(BDA’98), Tunis, 1998.

[41] MetaData Coalition, Open Information Model, version

1.0, 1999, Available at www.MDCinfo.com.

[42] Ardent Software, DataStage Suite, Available at http://

www.ardentsoftware.com/.

[43] DataMirror Corporation, Transformation Server, Avail-

able at http://www.datamirror.com.

[44] P.A. Bernstein, T. Bergstraesser, Meta-data support for

data transformations using microsoft repository, Bull.

Tech. Committee Data Eng. 22 (1) (1999) 9–14.

[45] Evolutionary Technologies Intl., ETI*EXTRACT, Avail-

able at http://www.eti.com/.

[46] F. Casati, S. Ceri, B. Pemici, G. Pozzi, Conceptual

modeling of workflows, Proceedings of the 14th Interna-

tional Conference on Object-Oriented and Entity-Rela-

tionship Modelling (ER’95), Gold Coast, Australia, 1995,

pp. 341–354.

[47] F. Casati, M. Fugini, I. Mirbel, An environment for

designing exceptions in workflows, Inform. Systems 24 (3)

(1999) 255–273.

[48] F. Casati, S. Ceri, B. Pernici, B. Pozzi, Workflow

Evolution, DKE 24 (3) (1998) 211–238.

[49] D. Kuo, M. Lawley, C. Liu, M. Orlowska, A general

model for nested transactional workflows, Proceedings of

the International Workshop on Advanced Transaction

Models and Architecture, India, 1996.

[50] P. Dadam, M. Reichert (Eds.). Enterprise-wide and cross-

enterprise workflow management: concepts, systems,

applications, GI Workshop Informatik’99, 1999, Available

at http://www.informatik.uniulm.de/dbis/veranstaltungen/

Workshop-Infomatik99-Procecdings.pdf.

[51] R. Klamma, Readings in Workflow Management: Anno-

tated and Linked Internet Bibliography, RWTH, Aachen,

http://sunsite.informatik.rwth-aachen.de/WFBib.

[52] C. Rolland, A comprehensive view of process engineering,

Proceedings of the 10th International Conference on

Advanced Information Systems Engineering, (CAiSE’98),

Pisa, Italy, 1998, pp. 1–25.

[53] Y. Wand, R.Y. Wang, Anchoring data quality dimensions

in ontological foundations, Comm. ACM 39 (11) (1996)

86–95.

[54] R.N. Wang, H.B. Kon, S.E. Madnick, Data quality

requirements analysis and modeling, Proceedings of the

9th International Conference on Data Engineering, IEEE

Computer Society, Vienna, Austria, 1993, pp. 670–677.

[55] R.Y. Wang, A product perspective on total data quality

management, Comm. ACM 41 (2) (1998) 58–65.

[56] G.K. Tayi, D.P. Ballou, Examining data quality, Com-

mun. ACM 41 (2) (1998) 54–57.

[57] J.A. McCall, P.K. Richards, G.F. Walters, Factors in

software quality, Technical Report, Rome Air Develop-

ment Center, 1978.

[58] B. Boehm, Software Risk Management, IEEE Computer

Society Press, Los Akmitos, CA, 1989.

[59] L. Hyatt, L. Rosenberg, A software quality model and

metrics for identifying project risks and assessing software

quality, Proceedings of the 8th Annual Software Technol-

ogy Conference, Utah, 1996.

[60] D. Georgakopoulos, M. Rusinkiewicz, Workflow manage-

ment: from business process automation to inter-organiza-

tional collaboration, Tutorials 23rd International

Conference on Very Large Data Bases (VLDB), Athens,

Greece, 1997.

[61] M. Jarke, K. Pohl, Information systems quality and

quality information systems, in: Kendall, Lyytinen, De-

Gross (Eds.), Proceedings of the IFIP 8.2 Working

Conference on the Impact of Computer-Supported Tech-

nologies on Information Systems Development, North

Holland, Minneapolis, 1992, pp. 345–375.

[62] H. Galhardas, D. Florescu, D. Shasha, E. Simon, Ajax: an

extensible data cleaning tool, Proceedings of the ACM

SIGMOD International Conference on the Management

of Data, Dallas, TX, 2000, 590 pp.

[63] B. Ramesh, V. Dhar, Supporting systems development by

capturing deliberations during requirements engineering,

IEEE Trans. Software Eng. 18 (6) (1992) 498–510.

[64] D. Georgakopoulos, M. Hornick, A. Sheth, An overview

of workflow management: from process modeling to

workflow automation infrastructure, Distributed Parallel

Databases 3 (1995) 119–153.

[65] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,

R. Rosati, A principled approach to data integration and

reconciliation in data warehousing, Proceedings of the

International Workshop on Design and Management of

Data Warehouses (DMDW’99), Heidelberg, Germany,

1999.

[66] The Data Warehouse Information Center, An (Informal)

Taxonomy of Data Warehouse Data Errors, Available at

http://www.dwinfocenter.org/errors.html.

[67] ViaSoft, Visual recap quality measurements. Viasoft White

Papers, 1996, Available at http://www.viaoft.com/down-

load/white papers/.

P. Vassiliadis et al. / Information Systems 26 (2001) 205–236236

