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Abstract 

In this paper, we deal with context-aware query processing in ad-hoc peer-to-peer networks. 

Each peer in such an environment has a database over which users want to execute queries. This 

database involves (a) relations which are locally stored and (b) relations which are virtual or 

hybrid. In the case of virtual relations, all the tuples of the relation are collected from peers that 

are present in the network at the time when the query is posed. Hybrid relations involve both 

locally stored tuples and tuples collected from the network. The collaboration among peers is 

performed through web services. The integration of the external data, before they are locally 

collected to a peer's database is performed through a workflow of web service invocations. 

Summarizing the problem, due to the transitive nature of the extent of virtual relations, we 

cannot perform query processing in the traditional way, but rather, we have to involve context-

aware query processing techniques that exploit the neighborhood of each peer and the web 

service infrastructure that deals with the heterogeneity of peers. To deal with the aforementioned 

problem we provide the following contributions. First, we formally define the system model. 

Next, we define SQLP, an extension of traditional SQL on the basis of contextual environment 

requirements that concern the termination of queries, the failure of individual peers and the 

semantic characteristics of the peers of the network. In addition, we precisely define the 

semantics of SQLP. We discuss issues of data integration, performed through workflows of web 

services. Moreover, we present a query execution algorithm as well as the formal definition of all 

the operators which take place in a query execution plan. Finally, we discuss issues of our 

prototype implementation. 
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1 INTRODUCTION 

Nowadays, the synergy between network and database management systems provides 

opportunities for the integration and querying of various heterogeneous sources of information, 

spread over an ad hoc network of peers. The fundamental topic of this paper is the context-

aware processing of queries in ad-hoc networks of peers through web services. We assume 

the existence of a set of peers who communicate with each other, thus forming a time-varying ad 

hoc network of peers. For reasons of interoperability, we also assume that these peers use web 

services for their interactions. Each peer has a database where (a) data can be locally stored, or 

(b) descriptions of data are present, in a form that allows their collection from the appropriate 

peers and their subsequent querying with traditional database mechanisms. The querying and/or 

collection of these data is dependent on the state of the peer network and on the knowledge that 

the peer has about this state; therefore, each time a query is posed, its processing must be adapted 

to this state. In other words, the state of the peer posing a query and, most importantly, the 

state of its surrounding network constitutes the context under which the query is processed. 

Assume the case where several kinds of vehicles are driving in a highway. Each vehicle is a part 

of a global pervasive computing environment where computations can be performed, data can be 

exchanged between computing devices of the environment and information is interactively 

requested and presented to the users. Cars interact with each other through web services, 

providing dynamically changing information regarding the vehicle's location, velocity and fuel 

deposit. Moreover, each vehicle comprises services that offer static information concerning its 

type and technical characteristics. On the highway, there exist exits to parking areas, which may 

include facilities such as gas stations, fast food restaurants, medical help, and shopping centers. 

Each one of these facilities also comprises web services, which range from simple ones, reporting 

the existence of the facility, to more complex ones providing information regarding for instance 

the price lists, the availability of certain goods or the number of patients waiting for medical help. 

The users of the facilities of the pervasive environment, e.g., the drivers of the vehicles, can 

obtain information by posing queries to global information space of the environment. For 

instance, they may be interested in obtaining the information like the closest gas-station with a 

price of gasoline under 2€/gallon, the closest Italian restaurant, or notifications for the average 

speed of all the cars ahead. 

To facilitate the smooth operation of peers within the aforementioned environment, specific 

technical challenges must be addressed. A significant problem is the fact that traditional query 
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processing must be reconsidered, to adapt to the particularities of our computing environment. 

In this paper, we are specifically interested in the problem of formally defining a declarative query 

language that enables the posing of queries over an ad hoc network of peers as well as the 

introduction of a mechanism for the transformation of declarative database queries to query 

execution plans. 

First, we start with the theoretic formulation of the problem. We construct a directed graph of 

peers, where each node corresponds to a peer and each edge to the physical connection among 

two peers. The graph of peers is time-varying, since nodes and edges are added or invalidated as 

time passes. Apart from the possibility of communication, that dictates the structure of the graph, 

peers are further organized in communities, based on their semantic similarity, or classes, based 

on the interface of web services they support. All our deliberations are based on the principle of 

local scope, that dictates that no peer has a global knowledge of the entire graph, and therefore, 

all its decisions must be made depending solely on the knowledge that this node has at a given 

time point. Specifically, the viewpoint of a peer is the subset of the graph known to this peer at 

a given time point and the communities of the peer are sets of peers whose publicized 

characteristics fulfill a logical condition that classifies them into the appropriate community. The 

only classification that is not local is the class of each peer: we assume that a set of finite classes 

exists, each with an interface comprising a set of public web service operations that all class 

instances support. Every peer is created as an instance of one of the globally known classes. 

With respect to the relationships among peers, each peer plays both the role of the server and the 

role of the client in this environment. As a server, the peer implements and exports the interface 

of web service operations prescribed by its class. The other peers of the system can invoke these 

web services at runtime. At the same time, the peer is responsible for answering queries posed by 

its users. In our framework, we discuss traditional database queries and therefore, the peer hosts a 

relational database where query processing takes place. The database includes different categories 

of relations. First, the database includes relations that obey the traditional assumption that a 

database hosts locally stored relations, whose extents are finite sets of locally stored tuples. In this 

paper, we extend this implicit assumption and assume that the extent of a relation can be spread 

among the peers forming the context of a peer. Therefore, only the description of the schema (or 

intention) of such a virtual relation is locally available, along with the description of the 

necessary web services that must be invoked in order to locally collect the relation's extent before 

continuing query processing as usually. This collection procedure practically dictates that a 

workflow of web services has to be executed for each peer of the viewpoint of the querying peer. 
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Finally, a third category of relations involves hybrid relations, whose extent is partly locally stored 

and partly needs to be collected from the other peers. 

The processing of queries in such an environment is inherently different to the traditional one. 

We have already mentioned the context-aware aspect of data collection for the population of 

virtual relations. Moreover, due to the volatile character of the state of the peer's graph, it is quite 

probable that the viewpoint of a peer is an inaccurate reflection of the state of the peer 

 graph. In other words, it is quite possible that the graph has changed since the last refreshment 

of the viewpoint of a peer. In fact, the graph can possibly change also during the execution of a 

query; therefore, the processing of a query must be inherently designed to tolerate failures (i.e., 

web service invocations that do not respond) and continue operating regularly. Also, due to the 

possible vastness of the graph, it is necessary to be able to stop collecting answers after a certain, 

satisfactory amount of information has been collected. Based on these fundamental differences 

with traditional query processing, we introduce an extension of SQL, SQLP that allows the user 

to exploit the context-dependent nature of the environment, by specifying the peers of interest 

though abstract criteria that involve their location in the graph, their community, their class, or 

QoS characteristics, like e.g., their availability. The usage of virtual tables is transparent in SQLP. 

We exploit the previously introduced model to formally specify the semantics of SQLP. 

The processing of the queries in this extended version of SQL requires also an extension of the 

mechanism of query execution. Traditional relational database management systems translate the 

declarative SQL queries to procedural, executable plans that are expressed in the form of left-

deep trees of relational operators. Therefore, we introduce novel operators specifically tailored 

for the support of web service invocation and composition, in order to populate the virtual 

tables. Then, query processing can continue as usually. We have also implemented a mechanism 

that allows us to determine the necessary set of peers that are supposed to participate in a query 

and to visually display the produced plans to the user. 

This paper is organized as follows: In Section 2, we propose SQLP, an extension of SQL for ad-

hoc P2P systems. To this end, we define a system model, we investigate language requirements 

and propose the syntax and semantics of SQLP. In Section 3, we extend the relational algebra 

with novel operators and algorithms in order to map SQLP queries to query plans. In Section 4, 

we discuss implementation issues. Finally, in Section 5, we discuss related work and in Section 6, 

we conclude our results and discuss topics for future work. 
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2 SQL FOR PEERS: SYSTEM MODEL, REQUIREMENTS, SYNTAX 

AND SEMANTICS 

In this section, we formally define the system model. Then, we move on to formally define SQLP, 

an extension of SQL for ad-hoc P2P systems. 

 

2.1 System Model 

A bird's eye view of the system infrastructure is modeled by a graph G(V,E), comprising a set of 

nodes V and a set of edges E (Fig. 1). Each node in our system graph is a peer and each edge e = 

<u,v> stands for the fact that node u can communicate with node v. The notion 'can 

communicate' means that peer u can send data or make a request for data to v - in other words, 

the edge <u,v> implies that peer u assumes (a) knowledge of existence and (b) network 

connectivity with node v. The edges are directed, in the sense that although node u can 

communicate with v, the inverse does not hold (an edge <v,u> would be required to demonstrate 

such a fact). This is quite frequent in modern ad-hoc networks and deeply affects the design of 

efficient routing protocols (Abolhasan, Wysocki, & Dutkiewicz, 2004). In the sequel, we will also 

refer to an edge between two nodes as a direct link. To discriminate between different nodes, 

each node is characterized by a globally unique identifier, peer id. 

 

 

 

Fig. 1. A system's graph G(V,E) 

 

As usually, a path between two nodes, say u1 and u2, is an acyclic sequence of consecutive edges 

belonging to E that connects these two nodes. The distance of two nodes, say u1 and u2, is the 

cardinality of the minimum set of edges required to reach node u2 through a path starting at u1. In 
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other words, the distance of two nodes is defined by the number of hops involved in the 

connecting path, which is a typical assumption in ad hoc networks research. We will denote the 

distance of two nodes as distance(u1, u2). 

It is quite important, here, to stress the following properties of the system's graph:  

• The graph is time-varying. In other words, nodes leave or enter the system as time passes. 

Furthermore, nodes move randomly, causing the destruction of existent links and the 

establishment of new ones.  

• No node has a full knowledge of the system's graph, at any time point. On the contrary, it is 

important to design a system where each node has only a personal, restricted viewpoint of the 

graph. A fundamental principle in our deliberations is the locality of peer scope: each peer 

must be designed to operate by exploiting its own knowledge of a subset of the system, 

without counting on some higher-level authority to provide a global viewpoint of the system.  

• It is also important that each node is designed to operate under the assumption that its 

knowledge of the graph is both incomplete and (possibly) inaccurate. This is a disadvantage 

related to the current networking technology for ad hoc networks (Chlamtac, Conti, & Liu, 

2003).  

• The overall graph is not fully connected. In other words, it is not always possible to reach any 

node v of V, starting from another node u.  

 

Context = Viewpoint of a node. At every time instant T, a node u is aware of a subset of the 

system's graph, as it was configured at a previous time point T'≤T. This subset of the graph is 

called viewpoint of node v at time T and denoted by viewpoint(v,T). The subgraph viewpoint(v,T) is 

connected. This property is recursively defined as follows:  

1. v є viewpoint(v,T) 

2. All nodes u that are connected to a node x, x є viewpoint(v,T) through an edge (x,u) belong to 

viewpoint(v,T). In other words, first, all nodes u that are connected to v through an edge (v,u) 

belong to viewpoint(v,T). Then, the nodes that can be reached from these ones are also added. 

This is recursively continued.  

Inaccuracy is inherent in this definition. Firstly, all the knowledge about direct links refers to a 

time point T' in the past. This means that whatever changes have happened between T and T' are 

obscure to v. The exact determination of time T' depends on the implemented routing protocol. 

Second, it is obvious that even if the overall set of nodes is finite (which, is not an assumption 

that we have made so far), it is clear that it is impractical or even impossible to maintain all the 
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knowledge for the graph, for each node v. In fact this is the approach taken a large category of 

routing protocols known as on-demand routing protocols (Abolhasan et al., 2004). 

 

Community. Apart from the physical connectivity among nodes, we can devise logical schemes 

for the connectivity of peers. In P2P terminology, the network of peers that share similar 

semantical properties is called an overlay network (Androutsellis-Theotokis & Spinellis, 2004). In 

our setting, a community of nodes is a subset of V who shares the same semantical properties. 

Each peer defines its own communities. Formally, semantical proximity is captured by a formula 

in a first-order predicate calculus. The principle of locality of a peer's scope imposes a design 

where each peer comprises a local set of communities, each defined as a subset of its viewpoint, 

upon fulfillment of the appropriate formula. Therefore, a community comm_name of a peer u is 

defined as:  

communitycomm_name(u)={ v | v є viewpoint(u,T) and  φcomm_name(v)=true} 

with φ being a formula in a first-order predicate calculus that returns true or false given the 

properties of a node v. 

Clearly, a node u can have many communities and each node v in the viewpoint of u can belong 

to more than one communities of u. Moreover, assuming a simple community Unclassified that 

comprises all nodes that do not belong to any other community, the union of all communities of 

node u returns viewpoint(u,T), at a time point T. An interesting observation here is that if two or 

more nodes agree for a correspondence of communities, a P2P overlay is formed. 

 

Web Services. Each node is equipped with a set of web service operations that it publishes, 

therefore giving the possibility to the rest of the nodes to invoke them. Formally, each node u є 

V possesses a finite set of web service operations WSu={wsu1, wsu2,…..,wsum} that are made public 

to the rest of the peers. In the sequel, we will not discriminate between the terms web service 

operations and web services. 

 

Peer classes. In the context of the integration of peers at a large scale, each peer has to resolve 

the problem of mapping the external interface of the other peers to its internal state. In other 

words, if a peer u is to invoke a web service operation of another peer v, how does u decide the 

mapping of the operation's parameters or the operation's result to its internal state? Typically, 

there are two well-known extremes from the database community to handle this problem, as well 

as intermediate solutions. 
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• In the first extreme, a global schema is assumed. In distributed database systems (Ozsu & 

Valduriez, 1991), a global schema is assumed for the whole environment and each local 

database comprises a subset of the global schema. This approach requires a universal 

common agreement over a global schema (and the implicit semantics hidden behind it). We 

find this requirement too restrictive for a large scale P2P environment that needs to be 

dynamically readjusted to novel peers that appear.  

• An intermediate approach would be to hardcode all mappings among all peers. Still, this 

approach is to labor-intensive and clearly unable to scale up to the full extent of a P2P 

environment.  

• In the second extreme, semi-automated techniques for schema matching have recently 

appeared in the literature. In the context of the schema mapping problem, where the 

mapping among two schemata must be discovered, semi-automated techniques have been 

proposed (Madhavan, Bernstein, Doan, & Halevy, 2005). Nevertheless, a certain degree of 

training and supervision is required for a mapping to be derived and --to the best of our 

knowledge-- there is no fully automated, fast method for this purpose. Therefore, although 

this technology would resolve the scalability problem and the ad-hoc nature of the P2P 

environment, we cannot rely on its effectiveness for the moment.  

To resolve the aforementioned problems of (a) scalability, (b) ad-hoc nature of the environment 

and (c) schema mapping discovery, we resort to an intermediate solution that provides a 

reasonable balance to all the aforementioned issues. We classify peers to peer classes, with the 

members of each class exporting the same web service operations. In other words, we assume a 

factory for each class, specifying the interface for each deployed instance. 

We assume a traditional tree-based hierarchy of classes. Each subclass has a single superclass, 

whose interface it extends. All instances of the subclass are also instances of the superclass. Each 

node (a) directly belongs to exactly one class and (b) indirectly belongs to all the classes of the 

path that starts in the root and ends in its containing class in the tree of the class hierarchy. We 

call the set of nodes that directly belong to a class, immediate extent and the set of nodes that 

indirectly belong to a class (due to its subclasses) the extended extent. Classes that do not have 

any descendants are called base, or leaf classes. We denote the interface of a class C by 

interface(C) and its immediate and extended extents as extent
i
(C) and extent

e
(C). 

In Fig. 2 we can see the base classes VW, BMW, TOYOTA, SHELL, BP, HOTEL, 

RESTAURANT with their respective nodes. In Fig. 3 we can also observe the superclass CARS 
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on top of the classes VW, BMW and TOYOTA and a class GAS STATION as a superclass of 

SHELL and BP. 

 

VW

BMW

TOYOTA SHELL

HOTEL RESTAURANT

BP

  

Fig. 2. Base classes with their corresponding nodes 

 

HOTEL

VW

BMW

TOYOTA

CARS

SHELL

BP

RESTAURANT

GAS STATION

 

Fig. 3. A hierarchy of classes with their corresponding nodes 

 

The aforementioned problems of integration are resolved in a balanced fashion. With respect to 

the scale-up of the environment, the integration problem is only dependent on the number of 

peer classes and not on the number of their instances. Although we anticipate a reasonably small 

number of peer classes, still the problem of integration is present. We assume a hard-coded, 

intermediate solution between pairs of classes. This does not necessarily require that all classes 

are mapped to each other; the only effect of the absence of a mapping would be that two 

instances belonging to non-reconciled classes cannot query each other, without a total failure of 

the system. Moreover, it is straightforward to devise mechanisms for incremental updates of class 

mappings for the deployed instances, so that, as new classes are added and the interfaces of old 

classes are updated, the deployed instances are informed on the new situation. With respect to 

the ad-hoc nature of the P2P environment, the problem of class integration is orthogonal and not 

affected. The last problem, discovery of schema mappings is resolved at the factory level 
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(although we recognize that we still need the same amount of coding effort as in traditional 

mediator-wrapper environments). 

 

Difference between classes and communities. The class of a node is an inherent property of 

the node, determined once and for all at the creation of the node, mainly for integration 

purposes, whereas the community (or communities) to which it belongs is a potentially time-

varying property that is determined individually by the other peers and is mainly used for 

querying purposes. 

 

Clock. Each peer has its own clock. The clocks of the peers are not necessarily synchronized. 

 

Peer database. Each peer has a database, which comprises a set of relations. Each relation has a 

schema or intention comprised of a finite set of distinct attribute names. Also, each relation has 

an extension which is a finite subset of the Cartesian product of the domains of the attributes of 

the relation's schema. The relations of a peer's database are classified in the following categories: 

 

• Locally stored (or local) relations: Local relations are relations whose extension involves 

tuples that are locally stored at the peer that carries the relations' database. In other words, 

local relations are exactly the same as in traditional relational databases. 

• Virtual relations: Virtual relations are relations whose schema is fixed and locally known, 

but whose extension is not locally stored in the database of the peer. On the contrary, the 

extension of a virtual relation is collected from the appropriate peers at query time. 

Practically, this means that each time a user poses a query involving a virtual relation, the peer 

determines the set of peers who are to be contacted (along with the appropriate sequence of 

web service operations of these peers that are to be invoked), collects the respective tuples, 

transforms them to the schema of the virtual relations, and, finally, stores (or "materializes") 

them. Then, query processing can be performed as usual. 

• Hybrid relations: Hybrid relations are variants whose extension includes both locally stored 

tuples and tuples to be collected from other peers.  

Each tuple collected for a relation belonging to the last two categories is tagged with a 

timestamp, produced by the clock of the node that receives the incoming tuple. The timestamp 

corresponds to the transaction time of the tuple, i.e., the exact time point of its entrance to the 

receiver's database. A tuple's timestamp will be used for caching purposes. 
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Peer Characteristics. Each peer is characterized by several properties that can either be 

determined by the peer itself or by the class to which it belongs. Specifically, the characteristics 

that we adopt are:  

•  (Average) Availability, i.e., the probability that the peer is operational at a given time 

instant.  

• (Average) Response Time, i.e., the average time needed for a web service operation of the 

peer to execute.  

 

Peer's System Catalog. Each node u needs a system catalog for its proper operation. The 

catalog includes useful information about the nodes known to u. Specifically, this information 

refers to:  

• Class of the other nodes.  

• Communities of the other nodes.  

• Distance from other nodes.  

• Node characteristics, like availability, and response time. 

2.2 Results Collection from Other Peers 

In this subsection we discuss issues of tuple collection for the virtual and hybrid relations. First, 

we formally introduce workflows of web service operations. Next we discuss how the mapping 

of the workflow's result to a peer's relation is performed and finally, we formalize issues of result 

materialization. 

 

Workflow wfu.R(ui). Assume a peer u that poses a query and invokes web service operations 

from a set of peers u1, u2,….., uz in order to collect their tuples. In principle, it is quite possible 

that the requested information from a certain peer can only be obtained after the invocation of a 

workflow of web service operations (rather than a single operation). For example, assume that a 

peer using the European metric system collects the velocities of other peers of class CAR, and a 

certain class of cars returns miles instead of kilometers. The conversion can be performed 

through a simple BPEL workflow. We denote each of these workflows as wfu.R(ui), with 1 ≤ i ≤ z. 

Each such workflow w is an acyclic directed graph Gw(Vw,Ew), with operations being modeled as 

nodes and edges being the representatives of control passing. Edges are tagged with the 

conditions under which they are fired at runtime. Each workflow has also a flat relational schema, 

comprising a set of attributes that result from the possible un-nesting of the XML elements of 
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the final message delivered by the workflow. Finally, the workflow has an extension, dynamically 

created at runtime, that instantiates the aforementioned schema. 

Mapping of other peers' web services to virtual relations. In this paragraph, we formally 

discuss the mechanism that allows peers to collect tuples from the peers of their viewpoint. 

Assume a peer u that poses a query and invokes web service operations from a set of peers u1, 

u2,….,uz in order to collect their tuples. The application of the workflow wfu.R(ui) results to a set of 

tuples under the schema (B1, B2, …., Bm), possibly after a set of XML un-nesting operations. 

Assume R(A1, A2,…., An) to be the schema of R, the mapping between the two schemata is a 

function fmap, with fmap: (A1, A2,…., An) × (B1, B2, …., Bm) � {true, false}. We impose the constraint 

that for each Ai, 1 ≤ i ≤ n, there exists at most one Bj, 1 ≤ j ≤ m, to which Ai is mapped. As 

usually, all attributes of the workflow schema that are not mapped to the schema of the target 

relation are projected-out, whereas all the relation's attributes that are not populated by the 

workflow are filled with NULL values. The following example clarifies the aforementioned 

process. Assume the relation R(E_ID, E_SALARY, E_AGE) in the database of node u and let 

the workflow that is mapped to R for node v have the schema (ID,AGE,NAME). The workflow 

provides no information on salaries and the database does not store any data on names. 

Therefore, our mappings resulting to true are: 

 fmap(E_ID,ID)=true, 

 fmap (E_AGE,AGE)=true, 

 with the rest of all the other possible mappings of the Cartesian product of the two schema 

being evaluated to false. The transformation at an instance level is simple: (a) we project-out all 

unnecessary workflow attributes, (b) we introduce NULL-valued attributes for the relation's 

attributes for which no workflow attribute exists, (c) we appropriately re-order the attributes of 

the workflow schema to match the relations attributes and (d) we populate the target table. 

Full-Partial materialization. Whenever a workflow is executed for a certain peer and the 

produced results are successfully stored at the extent of the target virtual relation, we say that we 

have materialized these results. The fact that the results of a certain workflow for peer u
i
 have 

been materialized at the relation R of peer u is denoted as (wfu.R(ui)). Full materialization for a 

relation R of a peer u is the state of a query when all workflows for all the peers that have been 

selected to populate R have been successfully executed. We denote full materialization by M(u.R). 

Assuming Vall be the set of these identified peers, we can formally define full materialization as 

M(u.R)= U (wfu.R(ui)), with ui є V
all.  

Partial materialization for a relation R of a peer u is the state of a query when the workflows 

for a clean subset of the peers that have been selected to populate R have been successfully 
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executed. We denote partial materialization by Mp(u.R). Assuming Vall be the set of the peers that 

have been selected to participate in the population of R, and Vi be the set of the peers whose 

results have been successfully materialized, we can formally define partial materialization as 

M(u.R)= U (wfu.R(ui)), with ui є V
i, Vi ⊂ Vall. 

 

2.3 SQLP: an Extension of SQL for Ad-Hoc P2P Networks 

 

In this section, we discuss the extension of SQL that we introduce. The proposed language SQLP 

(SQL for Peers) implements all the aforementioned requirements. Figure 4 presents the general 

structure of an SQLP query. We use [...] to refer to optional parts of the language and the 

expression *AND / OR* to signify that different clauses can be connected through one of these 

logical connectors.  

 

 

Fig. 4 The generic syntax of a query in SQLP 

 

Querying the graph of peers. Assume a query Q submitted at node u at the time point T. Let 

{R1, R2, …, Rn} be the relations that participate in the FROM clause of the query. Then, we can 

write the query as: Q(R1, R2, …, Rn). Without loss of generality, we can assume that the first k 

relations R1, R2, …, Rk, k ≤ n, are virtual or hybrid. In order to be able to define the semantics of 

the query properly we need to materialize these relations and then, execute the query over their 
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collected extent as usually. Nevertheless, before specifying this semantics, we need to define the 

following concepts. 

 

Peers of Interest. The query Q, posed over peer u is divided in three parts. The first part is 

composed of the traditional SQL clauses, the second part comprises the clauses of our extension 

that occur after the keyword WITH that have the purpose of determining which peers are to be 

contacted, and the third part concerns the timing of the query. 

 The second part of the query depends on criteria like the horizon of the query of the graph of 

the viewpoint of peer u (HORIZON), QoS characteristics (AVAILABILITY, 

RESPONSE_TIME), the class of the peers (CLASS) and the age of the stored tuples in the 

virtual relations (i.e., if a peer has been recently contacted, as specified by the AGE clause, it is 

not necessary to contact it again). Remember that due to the nature of the interaction among 

peers, it is not feasible to simply broadcast a request for tuples; on the contrary, specific web 

service operations must be invoked on the specific port types of the peers. 

 In terms of semantics, we divide the second part into atomic conditions, logically connected 

through the connectors AND and OR. Assuming that these atomic conditions are C1, C2, …, Cr, 

the non-traditional part of the query can be rewritten in a disjunctive normal form, i.e., a 

disjunction of conjunctive conditions. 

The interesting aspect of this part is that a preparatory query must be performed over the system 

catalog to determine specifically which peers must be contacted in order to materialize the virtual 

relations. Contacting a peer means that for each virtual/hybrid relation in the FROM clause of 

the query the execution of the appropriate workflow must be initiated. In terms of semantics, 

each atomic condition specifies a set of peers of the viewpoint of u that qualify to be contacted. 

Given an atomic condition C, we define the set of peers of interest Vu(C) to be the set of peers 

that belong to the catalog of peer u that fulfill C. Specifically, given a time point T for a query Q 

containing C, 

 Vu(C) = { v | v є viewpoint(u,T): C(v) = true } 

 We do not involve timepoint T to avoid overloading the notation. Having defined the peers of 

interest for an atomic condition, it is straightforward to obtain the set of peers of a composite 

condition in disjunctive normal form: The intersection of the peers of interest of the atomic 

conditions produces the peer sets of each conjunct; these sets are subsequently ORed to produce 

the final set of peers of interest of the query, which are to be contacted. 

Now, we are ready to define the semantics of each individual clause concerning the 

determination of the peers of interest. 
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HORIZON: The condition of the HORIZON clause determines the peers of interest on the 

basis of the position in the graph, or their semantical characteristics. The clause allows several 

possibilities to the users. Assuming that the condition of the HORIZON clause is C1, and 

VHu(C1) is the resulting set of peers of interest, we can specify VHu(C1) for each of the following 

possibilities that SQLP offers:  

1. The only peer of interest is the local querying peer (C1: LOCAL) 

VHu(C1)= { u } 

2. The peers of interest are the ones of a certain community of the peer (C1: COMMUNITY 

<C_NAME>) 

VHu(C1)= { v | v є viewpoint(u,T): v є community(C_NAME,u) } 

3. A radius of a certain number of hops dictates the peers of interest (C1: HOPS θ value, with θ є 

{ = ,<,≤,>,≥ })  

VHu(C1)= { v | v є viewpoint(u,T): distance(u,v) θ value, with θ є { = ,<,≤,>,≥ }}  

4. A set of peer id's, i.e., a set of specifically requested peers, determines the peers of interest 

(C1: PEERS={peer1, peer2, …., peern })  

VHu(C1)= { v | v є viewpoint(u,T): v є {peer1, peer2, …., peern }} 

All the necessary information for the evaluation of any of the aforementioned atomic conditions 

is found in the system catalog of u. 

 

Quality of Service: The clauses concerning the AVAILABILITY and RESPONSE TIME of the 

peers of interest aim to guarantee a certain level of quality of service for the peer posing a query.  

 

CLASS: It is possible that we only need to query the peers of a certain class. Classes carry both 

structural typing information (as they statically define the interface of their instances), but also 

semantic information (as collections of semantically -therefore structurally- similar instances). In 

SQLP, it is easy to specify an atomic condition that restricts the peers of interest to a certain class, 

by giving a condition of the form C4: CLASS = class_name. Assuming VCu(C4) the result set of 

peers of interest, and class(v) a function that returns the class of each peer from the system catalog 

of the querying peer, the resulting set of peers of interest is formally defined as:  

VCu(C4) = { v | v viewpoint(u,T): class(v) = class_name } 

 

AGE. Apart from the constraining of peers where their properties are taken as criteria for their 

inclusion in the resulting set of peers of interest, we can perform some form of caching in the 
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extents of the collected tuples for virtual or hybrid relations. In other words, assuming that a peer 

is frequently queried, it is not obligatory to pay the price of invoking its web service operations, 

executing the data transformation workflow and materializing the same results again and again, 

but rather, it is resource efficient to cache its previous results. The AGE clause of SQLP provides 

the possibility of specifying a maximum caching age for incoming tuples in a virtual/hybrid 

relation.  

 

Query timing. Having clarified the general mechanism for the determination of peers of interest, 

we move on to provide the specification for the timing of queries. Fundamentally, we have two 

modes of operation: ad hoc or continuous. Each mode has its own tuning parameters.  

 

• If the query is continuous, this means that the user is continuously notified on the status of 

the query result.  

• If the query is ad-hoc, the query eventually has to terminate. Differently from traditional 

query processing (which operates on finite sets of always available, locally stored tuples), we 

need to tune the conditions that signify termination of a query that has been late to complete 

its operation, either due to peer failures, or the size of the peers graph. To capture these 

exceptions, we can terminate a query upon (a) the completion of a timeout period of 

execution, (b) the materialization of a certain amount of tuples, that the user judges as 

satisfactory for his information, or (c) the collection of responses from a certain percentage 

of peers that were initially contacted. In all these cases, the execution of the workflows whose 

results have not been materialized is interrupted, the rest of the query is executed as usually 

and the user is presented with a partial --still, non-empty-- answer.  

 

Query Execution. At this point we can describe the exact set of steps for executing a query. 

Suppose that at random time T, a query Q is performed by node u. Let {R1, R2, …., Rn} be the 

relations involved in query Q. Then the query can be written in the form: Q(R1, R2, …., Rn). We 

can assume that the relations R1, R2, …., Rk, with k ≤n are virtual or hybrid, without any impact 

on the generality. All tables R1, R2, …., Rk must be filled with tuples. The procedure is the same 

for all tables, therefore we will present it only for table R1. 

The first step is to determine the set of target peers for node u that performs the query (Vu(C)), 

by evaluating C over the set of peers belonging the viewpoint of u (viewpoint(u)). C comprises of 

the conditions located at the clauses AGE, HORIZON, AVAILABILITY, RESPONSE_TIME 

and CLASS. 
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Let Vu(C) = { u
1
, u

2
, ...., u

m
 }. For each node Vu(C) the appropriate web services are invoked in 

order to require the appropriate tuples. Let also wfu.R1(u1), wfu.R1(u2), …., wfu.R1(um), be the 

appropriate workflows of the peers belonging to Vu(C). 

The schema of each workflow is matched to the schema of relation R1, which is the target 

relation. In the following, the clause TIMING is evaluated to determine the execution mode of 

the query (continuous or ad-hoc) and the completion condition of the query. The next step is to 

attempt the execution of wfu.R1(ui)· ((wfu.R1(ui))) and then perform a full or partial materialization of 

R1which is located in u, according to the query completion condition which was mentioned 

before. Table R1 is populated with the appropriate tuples and is ready to be queried. The same 

procedure is performed for all other virtual or hybrid tables. Therefore all tables of u are ready to 

be queried. At this point the query of u is performed over tables R1, R2, …., Rn based on 

traditional database methodology. 

 

2.4 Examples 

In the rest of this section, we will present examples of SQLP. Assume a peer network of the 

topology of Fig. 5, consisting of 5 peers, each representing a car in the highway. Queries are 

posed to peer p1, that classifies the rest of the peers in two communities, (a) the community of 

dark shaded close peers (Distance_Under_5km) and (b) the community of light-shaded, distant 

peers (Distance_Over_5km). Peer p
1
 is informed on the existence and connectivity of the rest of 

the peers through the underlying routing protocol that operates as a black box in our setting. 

 

 

Fig. 5. Graph configuration for query posing 

 

Peer p
1
 carries a database consisting of two relations with the following schemata:  

CARS(ID, PLATE, BRAND, VEL)  

BRANDS(BRAND, COUNTRY, METRIC_SYSTEM) 
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The first relation describes the information collected from the peers contacted (and mainly serves 

queries about the velocity of the cars in the context of the querying peer). This relation CARS is 

virtual: each time a query is posed, tuples must be collected from the context of peer p
1
 to 

populate it. The attribute BRAND is a foreign key to the relation BRANDS that is static and 

locally stored. Primary keys are underlined and the semantics of the attributes are the obvious 

ones. In the sequel, we give examples of SQLP queries over the abovementioned environment. 

 

Example 1. By this example we illustrate different situations where we can determine the peer 

nodes to which the query is addressed. Different strategies may be used for choosing the peers to 

query. In any case the decision is based on characteristics of the peers such as availability, 

response time, class of web services implemented, etc. Peer p
1
 wishes to know the license 

number, velocity and manufacturing country of all cars belonging to its community. Furthermore, 

the peer that poses the query wishes to limit it to those peers that: (a) are located no more than 5 

Km away (Distance_Under_5km), (b) their availability is more than 60%, (c) their response 

time is less than 4 secs and finally, (d) implement the European class of Web Services. The syntax 

of the examined query is depicted in Fig. 6. 

 

Example 2. Peer p
1
 wishes to know the license number, velocity and manufacturing country of 

all cars. The peer also wishes to complete the query when more than 70% percent of the target 

peers have replies successfully (Fig. 7). To determine the target peers, the requesting peer selects 

the peers based on its catalog and according to their response time. The execution of the query 

stops when the requested percentage of 70% in our case is satisfied. 

 

Example 3. Peer p
1
 wishes to know the license number, velocity and manufacturing country of 

all cars. The peer also wishes to complete the query when more than 5 tuples have been collected 

for the relation CARS (Fig. 8). The requesting peer contacts each peer that appears in its catalog. 

This procedure ends when the count of currently collected tuples becomes greater or equal to the 

posed limit. 

 

Example 4. Peer p
1
 wishes to know the license number, velocity and manufacturing country of 

all cars. The peer also wishes to complete the query within a timeout of 7 sec (Fig. 9). The 

requesting peer contacts each peer that appears in its catalog. This procedure ends when the 

timeout is reached.  
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Fig. 6. Query 1 

 

 

Fig. 7. Query 2 

 

 

Fig. 8. Query 3 

 

 

Fig. 9. Query 4 

 

3 QUERY PROCESSING FOR SQLP QUERIES 

In this section, we deal with the problem of mapping the declarative SQLP queries to executable 

query plans. As already mentioned, the execution of traditional SQL queries relies on their 

mapping to left-deep trees whose leaves are database relations, internal nodes are operators of the 

relational algebra and edges signify pipeline of the results of a node to another. Clearly, since we 

raise fundamental assumptions of traditional database querying, such as the finiteness and locality 

of tuples as well as the conditions under which a query terminates, we need to extend both the 

set of operators that take part in a query and the way the query tree is constructed. In this section, 
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we start by introducing the novel operators for query processing. Next, we discuss how we 

algorithmically determine the set of peers of interest and finally, we discuss the execution of a 

query. 

 

3.1 Novel Operators 

In this subsection, we start with the operators that participate in SQLP query plans. We directly 

adopt the Project, Select, Group, Order, Union, Intersection, Difference and Join operators 

from traditional relational algebra and move on to define new operators. First, we discuss 

operators that are used to construct the set of peers of interest. Then, we present the operators 

that actually take part in a query plan.  

 

Operators applicable to the catalog of a peer:  

• Check_Tables: operator Check_Tables determines whether the tables belonging to the 

FROM clause of a query are virtual, hybrid or local. The input to the operator is the FROM 

clause of the query and the output is the same list of tables, each annotated with the category 

to which it belongs.  

• Check_Peers: This is a composite operator that applies the procedure mentioned in Section 

2  for the determination of a set of peers out of a condition in disjunctive normal form. All 

clauses of the form HORIZON, AVAILABILITY, RESPONSE_TIME and CLASS are 

evaluated over the catalog through a Check_Peers operator and the set of peers of interest is 

determined by combining the results of these operators through the appropriate Unions and 

Intersections.  

• Check_Age: The Check_Age operator is also an operator used to determine the set of peers 

of interest. For each relation that hosts transaction time and producing peer attributes, an 

invocation of the Check_Age operator scans the extent of the relation, and identifies the 

appropriate tuples and their peers. The output is passed to the appropriate Difference 

operator that subtracts the identified peers from the previously determined set of peers of 

interest.  

 

Operators that participate in query plans:  

• Call_WS: This operator is responsible for dynamically determining which web service 

operation, over which port type of a specific peer must be invoked. Each web service of a 
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peer to be invoked is practically wrapped by this operator. The result is collected and 

forwarded to the operator managing the execution of a workflow of web services.  

• Wrapper_Pop: This operator is used in order to support the monitoring and execution of 

the workflow of web services that populate a virtual or hybrid table. For each peer contacted 

in order to populate a certain virtual/hybrid relation, a Wrapper_Pop operator is 

introduced. Once the final XML result has been computed, its tuples are transformed to the 

schema of the target relation.  

• Fill: A Fill operator is introduced for each virtual relation. The operator takes as input all the 

results of the underlying Wrapper_Pop operators (one for each peer of interest) and 

coordinates their materialization. Also, Fill checks the necessary conditions concerning the 

timing and termination of the query and, whenever termination is required, it signals its 

populating operators appropriately.  

• ExAg (Execute Again): This operator is useful only in continuous queries and practically 

restarts query execution whenever the query period is completed.  

 

3.2 Construction of the Query Tree 

In this paragraph we discuss a simple algorithm to generate the tree of the query plan. Assume 

that a query is posed to peer p
1
 and its viewpoint comprises n peers, specifically p

1
, p

2
, ..., p

n
. The 

algorithm for the construction of the query tree is a bottom up algorithm that builds the tree 

from the leaves to the top and is described as follows:  

1. We discover the virtual or hybrid relations that participate in the query. A specific sub-tree 

will be constructed for each of them.  

2. We determine the set of peers of interest. For each peer that participates in the population of 

a certain relation, the leaves of the respective sub-tree are nodes representing the peer to be 

contacted. To keep the tree-like form of the plan, each peer can be replicated in each sub-tree 

to which it participates; nevertheless, each peer can also be modeled by a single node without 

any significant impact to the execution of the query.  

3. We introduce a Wrapper_Pop for each peer that coordinates all the Call_WS operators 

that pertain to the operations of the peer. Between the peer node and the Wrapper_Pop, we 

introduce the appropriate Call_WS operators.  

4. For each virtual or hybrid relations we introduce a Fill operator that combines the output of 

all the respective Wrapper_Pop operators; therefore it is their immediate anscestor.  
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5. Having introduced the Fill operators, the virtual or hybrid relations can be materialized and 

act as local ones. Therefore, the rest of the query tree is built as in traditional query 

processing.  

6. If the query is continuous, we add an appropriate ExAg operator at the top. 

 

3.3 Execution of a Query though the Query Tree 

The execution of the query follows a simple strategy. First, we materialize the virtual / hybrid 

relations. Then, we execute the query as usual. Clearly, although this is not the best possible 

strategy for all cases (esp., when only non-blocking operators are involved), we find that 

performing further optimizations is an orthogonal problem, already dealt in the context of 

blocking operators for streaming data (Babcock et al., 2002). Therefore, in this paper we consider 

only this baseline strategy since all relevant results can directly be introduced in the optimizer 

module of a peer. Specifically, the set of steps to follow for the execution of the query are:  

 

1. All the Call_WS operators are activated and the appropriate services are invoked.  

2. The Wrapper_Pop operators collect the incoming XML results and queue them towards the 

appropriate Fill operators that further push them towards the extents of the relations in the 

hard disk. This is performed in a pipelined fashion.  

3. Once all virtual/hybrid relations have been materialized, the rest of the query plan is a 

traditional left-deep tree that executes as usually.  

  

3.4 Example 

In the following, we discuss the construction of the query plan for the query of Fig. 10. 
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Fig. 10. Query for which the plan is to be constructed 

 

1. Step 1: The query involves two tables, CARS and BRANDS. The application of the operator 

CHECK_TABLES over the two relations results in the determination that the first is a 

hybrid one and the second a locally stored one. 

2. Step 2: The operator CHECK_PEERS is applied to the catalog of peer p
1
, in order to 

determine the peers of interest of the query. Taking into consideration the age of tuples 

found in relation CARS and the system catalog, the peer p
1
 decides that the peers of interest 

are peers 2 and 8. 

3. Step 3: The operator CALL_WS is applied over each peer of interest.  

4. Step 4: For each peer over which a CALL_WS is applied, we apply the operator 

WRAPPER_POP to coordinate the execution of its operations. 

5. Step 5: The operator FILL is applied for the result of each WRAPPER_POP. 

6. Step 6: The rest of the query plan is constructed as usual, with the only difference that the 

subtree of relation CARS is the one constructed in the previous steps.  

 

 

Fig. 11 Query plan for the aforementioned query of Fig. 10 
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4 IMPLEMENTATION 

 

Figure 12 shows the full-blown architecture required to support our approach for context-aware 

query processing in Ad-Hoc environments of peers. The elements shown in the figure are 

divided with respect to the client and the server roles played by peers. To play the client role, a 

peer comprises a traditional query processing architecture, involving a parser, an optimizer and a 

query processor. A local database and the system catalog complement the ingredients of the 

client part of a peer. Playing the server role amounts in publishing a set of web services, hosted 

by an application server which is responsible for their proper execution. As usually, whenever a 

query is posed, the parser is the first module that is fired. The optimizer produces alternative 

plans out of which the best, with respect to a given cost model, is chosen. The query execution 

engine executes the query over the local database and returns the results. 

Our first prototype implementation does not currently support the query optimizer subsystem. 

Instead, standard query plans are produced after parsing the user queries. The query execution 

subsystem includes a mechanism that allows visualizing the aforementioned plans. Figure 11, 

gives a visualized execution plan through the Yed tool that graphically presents graphs.  

 

 

Fig. 12. System Architecture 
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Populating and updating the contents of the system catalog is done either statically, or 

dynamically. In the former case, the peer is responsible for updating the catalog through a 

catalog-specific API. The static update of the catalog takes advantage of the possible availability 

of peer-specific dynamic service discovery mechanisms. Such mechanisms may be exploited by 

the peer itself which takes further charge of updating the catalog accordingly. 

The dynamic catalog update is realized by the catalog update subsystem, which relies on WSAMI, 

a middleware platform for mobile web services (Issarny et al., 2005). WSAMI provides the 

Naming & Directory service that allows the dynamic discovery of web services provided in 

mobile computing environments. Specifically, WSAMI is based on an SLP server –i.e., an 

implementation of the standard SLP (http://www.openslp.com) protocol-- for the discovery of 

networked entities in mobile computing environments.  

 

5 RELATED WORK 

The work that is closely related with the proposed approach for context-aware query processing 

over ad-hoc environments of peers can be categorized into work concerning the fundamentals of 

heterogeneous database systems, context-aware computing and approaches that specifically focus 

on context-aware service-oriented computing. The prominent approaches that fall in the 

aforementioned categories are briefly summarized in the remainder of this section.  

5.1 Heterogeneous Database Systems 

Our approach for querying of ad-hoc environments of peers bares some similarity with the 

traditional wrapper-mediator architectures used in heterogeneous database systems (Roth & 

Schwarz, 1997), (Haas et al., 1997). Such systems consist of a number of heterogeneous data 

sources. The user of the system has the illusion of a homogeneous data schema which is actually 

realized by the wrapper-mediator architecture. In particular, each data source is associated with a 

wrapper. The wrapper encapsulates the data source under a well-defined interface that allows 

executing queries. Each user query is translated by the mediator into data source specific queries, 

executed by corresponding wrappers. As opposed to traditional heterogeneous database systems 

in the environments we examine the roles of users and data sources are not discrete. Each peer is 

a heterogeneous data source offering information to other peers that play the role of the user. 

Therefore, each peer may eventually serve as a data source and a user issuing queries. The 

analogous to the wrapper elements in our case is the web services that give access to peers 

playing the role of data sources. The analogous to the mediator element is the hybrid relation 

mapping procedure that executes workflows on web services. In simple words a traditional 
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heterogeneous database system is a "1 mediator to N wrappers architecture". An ad-hoc 

environment of peers in our case is an "N mediator to N wrappers architecture". 

Another fundamental difference between the environments we examine and traditional 

heterogeneous data base systems is that in our case the cardinality and the contents of the set of 

data sources may constantly change.  

5.2 Context-Aware Computing and Infrastructures 

In (Dey, 2001) context is defined as any information that can be used to characterize the 

interaction between a user and an application, including the user and the application. Several 

middleware infrastructures follow this definition toward enabling context-reasoning and 

management (Fahy & Clarke, 2004), (Chen, Finin, & Joshi, 2003), (Chan & Chuang, 2003), 

(Capra, Emmerich, & Mascolo, 2003), (Gu, Pung, & Zhang, 2005), (Roman et al., 2002). 

Amongst these approaches CASS (Fahy & Clarke, 2004) bares some similarity with our approach 

since context is modeled in terms of a relational data model. However, in our approach we do 

not assume centralized information management and virtual relations are dynamically compiled.   

5.3 Context-Aware Service-Oriented Computing 

In general, the integration of context-awareness and service-orientation just began to gain the 

attention of the corresponding research communities. In (Keidl & Kemper, 2004), for instance, 

the authors introduce ways for associating context to web service invocations. In (Maamar, 

Mostefaoui, & Mahmoud, 2005) the authors go one step further by examining the problem of 

customizing web service compositions with respect to contextual information. Web service 

execution is customized according to different types of context. Similarly, in (Zahreddine & 

Mahmoud, 2005) the authors propose a framework for dynamic context-aware service discovery 

and composition. Specifically, contextual information regarding the technical characteristics of 

user devices is used towards discovering services that match these characteristics. 

6 CONCLUSIONS AND FUTURE WORK 

In this paper, we have dealt with context-aware query processing in ad-hoc peer-to-peer 

networks. Each peer in such an environment has a database over which users want to execute 

queries. This database involves (a) relations which are locally stored and (b) relations which are 

virtual or hybrid. In the case of virtual relations, all the tuples of the relation are collected from 

peers that are present in the network at the time when the query is posed. Hybrid relations 

involve both locally stored tuples and tuples collected from the network. The collaboration 

among peers is performed through web services. The integration of the external data, before they 
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are locally collected to a peer's database is performed though a workflow of operations. To 

perform query processing in the traditional way, but rather, we involve context-aware query 

processing techniques that exploit the neighborhood of each peer and the web service 

infrastructure that deals with the heterogeneity of peers. In this setting, we have formally defined 

the system model for SQLP, an extension of traditional SQL on the basis of contextual 

environment requirements that concern the termination of queries, the failure of individual peers 

and the semantic characteristics of the peers of the network. We have precisely defined the 

semantics of the language SQLP. We have also discussed issues of data integration, performed 

through workflows of web services. Moreover, we have presented an initial query execution 

algorithm as well as the typical definition of all the operators which can take place in a query 

execution plan. A prototype implementation that is implemented is also discussed.  
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