
M A N N I N G

Bruno Lowagie

SECOND EDITION

Covers iText 5

SAMPLE CHAPTER

iText in Action, Second Edition

by Bruno Lowagie

Chapter 2

Copyright 2010 Manning Publications

vii

brief contents
PART 1 CREATING PDF DOCUMENTS FROM SCRATCH1

1 ■ Introducing PDF and iText 3

2 ■ Using iText’s basic building blocks 20

3 ■ Adding content at absolute positions 57

4 ■ Organizing content in tables 93

5 ■ Table, cell, and page events 122

PART 2 MANIPULATING EXISTING PDF DOCUMENTS...............157

6 ■ Working with existing PDFs 159

7 ■ Making documents interactive 194

8 ■ Filling out interactive forms 236

PART 3 ESSENTIAL ITEXT SKILLS..281

9 ■ Integrating iText in your web applications 283

10 ■ Brightening your document with color and images 317

11 ■ Choosing the right font 349

12 ■ Protecting your PDF 380

BRIEF CONTENTSviii

PART 4 UNDER THE HOOD...411

13 ■ PDFs inside-out 413

14 ■ The imaging model 452

15 ■ Page content and structure 493

16 ■ PDF streams 526

20

Using iText’s
 basic building blocks

This chapter describes a series of high-level objects that can be used as basic build-
ing blocks. These objects allow you to generate PDF documents without having to
bother with PDF syntax. Figure 2.1 is a UML diagram that serves as a visual table of
contents, presenting the building blocks discussed in this chapter.

 This class diagram is far from complete. All the methods, as well as a number of
member variables, were omitted for the sake of clarity. The diagram will help you to
understand in one glance how the interfaces and classes relate to each other.

 We’ll discuss a first series of objects in section 2.2: Chunk, Phrase, Paragraph, and
List. In section 2.3, we’ll cover a second series: Anchor, Chapter, Section, and Image.
But before starting to build documents using these building blocks, let’s have a look
at the database you’ll publish to different PDF files in the upcoming examples.

This chapter covers
■ An overview of the database used in the book’s

examples
■ An overview of the basic building blocks: Chunk,

Phrase, Paragraph, List, ListItem, Anchor,
Chapter, Section, and Image

21Illustrating the examples with a real-world database

2.1 Illustrating the examples with a real-world database
The main theme of the examples in this book is movies. I’ve made a selection of 120
movies, 80 directors, and 32 countries, and I’ve put all this information in a database.
The entity relationship diagram (ERD) in figure 2.2 shows how the data is organized.
There are three main tables, consisting of movies, directors, and countries. Further-
more, there are two tables connecting these tables.

 For the examples in this book, we’ll use the HSQL database engine (http://
hsqldb.org/). This is a lightweight database that doesn’t need to be installed. Just add
hsqldb.jar to your classpath and you’re set. You’ll find this JAR in the lib directory. The

Figure 2.1 UML class diagram, presenting the building blocks that will be discussed in this chapter

Figure 2.2 Film database
entity relationship diagram

http://hsqldb.org/
http://hsqldb.org/

22 CHAPTER 2 Using iText’s basic building blocks

HSQL database is in the db subdirectory of the resources folder. When you execute an
example using the movie database, the contents of the filmfestival.script file will be
loaded into memory, and you’ll see temporary files appear in the directory as soon as
you start using the database.

 I wrote a couple of convenience classes to hide the complexity of the database. The
abstract class DatabaseConnection wraps the java.sql.Connection class, and it’s
extended by the HsqldbConnection class.

PrintStream out = new PrintStream(new FileOutputStream(RESULT));
DatabaseConnection connection
 = new HsqldbConnection("filmfestival");
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery(
 "SELECT country FROM film_country ORDER BY country");
while (rs.next()) {
 out.println(rs.getString("country"));
}
stm.close();
connection.close();

This is a small standalone example to test the database connection. It writes the 32
countries from the film_country table to a file named countries.txt.

 I’ve also created a class named PojoFactory, along with a series of plain old Java
objects (POJOs), such as Movie, Director, and Country. These classes hide most of the
database querying. In the examples that follow, you’ll find code that looks like this:

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 document.add(new Paragraph(movie.getTitle()));
}

Each instance of the Movie class corresponds with a record in the film_movietitle table.
 In the following sections and chapters, you’ll create numerous PDF files from a

database, but you’ll hardly ever be confronted with difficult database queries or data-
base-related Java syntax. The database aspects of the examples won’t get any more
complex than in the first examples of the next section.

2.2 Adding Chunk, Phrase, Paragraph, and List objects
The general idea of step E in listing 1.1 in the PDF-creation process using docu-
ment.add() is that you add objects implementing the Element interface to a Document
object. Behind the scenes, a PdfWriter and a PdfDocument object analyze these
objects and translate them into the appropriate PDF syntax, positioning the content
on one or more pages, taking into account the page size and margins.

 In this section, we’ll explore text elements that implement the TextElementArray
interface. As the name of the interface indicates, these objects will be composed of
different pieces of text; most of the time, it will be text wrapped in Chunk objects.

Listing 2.1 DatabaseTest.java

Creates connection
to HSQL database

23Adding Chunk, Phrase, Paragraph, and List objects

2.2.1 The Chunk object: a String, a Font, and some attributes

A Chunk is the smallest significant piece of text that can be added to a Document. The
Chunk object contains a StringBuffer that represents a chunk of text whose charac-
ters all have the same font, font size, font style, and font color. These properties are
defined in the Font object. Other properties of the Chunk, such as the background
color, the text rise—used to simulate subscript and superscript—and the underline
values—used to underline text or strike a line through it—are defined as attributes.
These attributes can be changed with a series of setter methods.

 Listing 2.1 wrote the names of 32 countries to a text file to test the database. Here
you’re creating a PDF document with nothing but Chunks as building blocks.

Document document = new Document();
PdfWriter.getInstance(document, new FileOutputStream(RESULT))
 .setInitialLeading(16);
document.open();
DatabaseConnection connection = new HsqldbConnection("filmfestival");
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery(
 "SELECT country, id FROM film_country ORDER BY country");
while (rs.next()) {
 document.add(new Chunk(rs.getString("country")));
 document.add(new Chunk(" "));
 Font font = new Font(
 FontFamily.HELVETICA, 6, Font.BOLD, BaseColor.WHITE);
 Chunk id = new Chunk(rs.getString("id"), font);
 id.setBackground(BaseColor.BLACK, 1f, 0.5f, 1f, 1.5f);
 id.setTextRise(6);
 document.add(id);
 document.add(Chunk.NEWLINE);
}
stm.close();
connection.close();
document.close();

This example is rather unusual: in normal circumstances you’ll use Chunk objects to
compose other text objects, such as Phrases and Paragraphs. Typically, you won’t add
Chunk objects directly to a Document, except for some special Chunks, such as
Chunk.NEWLINE.

THE SPACE BETWEEN TWO LINES: LEADING

A Chunk isn’t aware of the space that is needed between two lines. That’s why you set
the leading in B. The word leading is pronounced as ledding, and it’s derived from
the word lead (the metal). When type was set by hand for printing presses, strips of
lead were placed between lines of type to add space—the word originally referred to
the thickness of these strips of lead that were placed between the lines. The PDF Ref-
erence redefined the leading as “the vertical distance between the baselines of adja-
cent lines of text” (IS0-32000-1, section 9.3.5). As an exercise, you could remove

Listing 2.2 CountryChunks.java

Sets initial
leading

B

C Adds Chunks
using default Font

D Creates
Chunk using
custom Font

Sets
background
color of ChunkE

Defines text
rise for ChunkF

24 CHAPTER 2 Using iText’s basic building blocks

setInitialLeading(16) from line B.
If you compile and execute the altered
example, you’ll find that all the text is
written on the same line.

THE FONT OBJECT

Figure 2.3 shows the PDF created by list-
ing 2.2. You can see all the fonts that are
present in the document by choosing
File > Properties > Fonts.

 The document properties reveal
that two fonts were used: Helvetica and
Helvetica-Bold. These fonts weren’t
embedded. When I open the file on
Windows, Adobe Reader replaces Hel-
vetica with ArialMT and Helvetica-Bold
with ArialBoldMT. These fonts look
very similar, but nevertheless, there’s
a difference!

 The first font in the list in figure 2.3
is the default font used for the Chunks
created in listing 2.2 C.

FAQ What is the default font used in iText, and can I change it? The default font
in iText is Helvetica with size 12 pt. There’s no way to change this. If you
need objects with another default font, just create a factory class that pro-
duces objects with the font of your choice.

In D, you specify a different font from the same family: Helvetica with style Bold. You
define a different font size (6 pt) and set the font color to white. It would be difficult
to read white text on a white page, so you also change one of the many attributes of
the Chunk object: the background color E. The setBackground() method draws a
colored rectangle behind the text contained in the Chunk. The extra parameters of
the method define extra space (expressed in user units) to the left, bottom, right, and
top of the Chunk. In this case, the ID of each country will be printed as white text on a
black background.

 You use setTextRise() F to print the country ID in superscript. The parameter is
the distance from the baseline in user units. A positive value simulates superscript; a
negative value simulates subscript. You’ll discover more Chunk attributes as you read
on in the book.

 Finally you add Chunk.NEWLINE to make sure that every country name starts on a
new line. In the next subsection, we’ll combine Chunks into a Phrase.

Figure 2.3 Country chunks, produced with listing 2.2

25Adding Chunk, Phrase, Paragraph, and List objects

2.2.2 The Phrase object: a List of Chunks with leading

When I created iText, I chose the word chunk for the atomic text element because of
its first definition in my dictionary: “a solid piece.” A phrase, on the other hand, is
defined as “a string of words.” It’s a composed object. Translated to iText and Java, a
Phrase is an ArrayList of Chunk objects.

A PHRASE WITH DIFFERENT FONTS

When you create methods that compose Phrase objects using different Chunks, you’ll
usually create constants for the different Fonts you’ll use.

public static final Font BOLD_UNDERLINED =
 new Font(FontFamily.TIMES_ROMAN,
 12, Font.BOLD | Font.UNDERLINE);
public static final Font NORMAL =
 new Font(FontFamily.TIMES_ROMAN, 12);
public Phrase createDirectorPhrase(ResultSet rs)
 throws UnsupportedEncodingException, SQLException {
 Phrase director = new Phrase();
 director.add(new Chunk(
 new String(rs.getBytes("name"), "UTF-8"),
 BOLD_UNDERLINED));
 director.add(new Chunk(",", BOLD_UNDERLINED));
 director.add(new Chunk(" ", NORMAL));
 director.add(new Chunk(
 new String(rs.getBytes("given_name"), "UTF-8"),
 NORMAL));
 return director;
}

The createDirectorPhrase() method produces the Phrase exactly the way you want
it. You’ll use it 80 times to list the 80 directors from the movie database. It’s good prac-
tice to create a factory class containing different createObject() methods if you need
to create Chunk, Phrase, or other objects in a standardized way.

THE LEADING OF A PHRASE

The method createDirectorPhrase() from listing 2.3 is used in this listing in which
you’re repeating the five steps in the PDF creation process.

Document document = new Document();
PdfWriter.getInstance(
 document, new FileOutputStream(filename));
document.open();
DatabaseConnection connection = new HsqldbConnection("filmfestival");
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery("SELECT name, given_name"
 + "FROM film_director ORDER BY name, given_name");
while (rs.next()) {
 document.add(createDirectorPhrase(rs));

Listing 2.3 DirectorPhrases1.java

Listing 2.4 DirectorPhrases1.java

Creates different
Font objects

Creates Phrase
object

Adds Chunks
to Phrase

Step 1: Create
DocumentB

C Step 2: Get
instance of
PdfWriter

Step 3: Open
Document D

E Step 4:
Add content

26 CHAPTER 2 Using iText’s basic building blocks

 document.add(Chunk.NEWLINE);
}
stm.close();
connection.close();
document.close();

Observe that you no longer need to set the initial leading in step C. Instead, the
default leading is used.

FAQ What is the default leading in iText? If you don’t define a leading, iText looks
at the font size of the Phrase or Paragraph that is added to the document, and
multiplies it by 1.5. For instance, if you have a Phrase with a font of size 10, the
default leading is 15. For the default font—with a default size of 12—the default
leading is 18.

In the next example, you’ll change the leading with the setLeading() method.

DATABASE ENCODING VERSUS THE DEFAULT CHARSET USED BY THE JVM

In listing 2.3, some Strings were created using the UTF-8 encoding explicitly:

new String(rs.getBytes("given_name"), "UTF-8")

That’s because the database contains different names with special characters. If you
look at the HSQL script filmfestival.script, you’ll find INSERT statements like this:

INSERT INTO FILM_DIRECTOR VALUES(
 41,'I\u00c3\u00b1\u00c3\u00a1rritu','Alejandro Gonz\u00c3\u00a1lez')

That’s the record for the director Alejandro González Iñárritu. The characters á—
(char) 226—and ñ—(char) 241—can be stored as one byte each, using the ANSI char-
acter encoding, which is a superset of ISO-8859-1, aka Latin-1. HSQL stores them in Uni-
code using multiple bytes per character. To make sure that the String is created
correctly, listing 2.3 uses ResultSet.getBytes() instead of ResultSet.getString().

 This isn’t always necessary. In most database systems, you can define the encoding
for each table or for the whole database. The JVM uses the platform’s default charset,
for instance, in the new String(byte[] bytes) constructor.

FAQ Why is the data I retrieve from my database rendered as gibberish? This can be
caused by an encoding mismatch. The records in your database are encoded
using encoding X; but the String objects obtained from your ResultSet
assume that they are encoded using your platform’s charset Y. For instance,
the name González could be rendered as GonzÃ¡lez if the Unicode charac-
ters are interpreted as ANSI characters.

Once you’ve created the PDF document correctly, you no longer have to worry about
encodings. One of the main reasons why people prefer PDF over any other document
format is because PDF, as the name tells us, is a portable document format. A PDF docu-
ment can be viewed and printed on any platform: UNIX, Macintosh, Windows, Linux,
and others, regardless of the encoding or the character set that is used.

E Step 4:
Add content

Step 5: Close
Document

F

27Adding Chunk, Phrase, Paragraph, and List objects

 In theory, a PDF document should look the same on any of these platforms, using
any viewer available on that platform, but there’s a caveat! If you take a close look at
figure 2.4, you can see that this isn’t always true.

FONT SUBSTITUTION FOR NONEMBEDDED FONTS

In figure 2.3, you could see that Helvetica was replaced by ArialMT. Figure 2.4 shows
that the choice of the replacement font is completely up to the document viewer.

 Adobe Reader on Ubuntu (see the left window in figure 2.4) replaces Helvetica
with Adobe Sans MM and Times-Roman with Adobe Serif MM. The MM refers to the
fact that these are Multiple Master fonts. Wikipedia tells us that MM fonts are “an exten-
sion to Adobe Systems’ Type 1 PostScript fonts ... From one MM font, it is conceivable
to create a wide gamut of typeface styles of different widths, weights and proportions,
without losing the integrity or readability of the character glyphs.”

 Adobe Reader for Linux uses a generic font when it encounters a nonembedded
font for which it can’t find an exact match. Looking at the output of File > Properties
> Fonts in Evince (Ubuntu’s default document viewer; see the right window in fig-
ure 2.4), you might have the impression that the actual Times-Bold, Times-Roman,
and Helvetica fonts are used, but that’s just Evince fooling you. Helvetica and Times-
Roman aren’t present on my Linux distribution; Evince is using other fonts instead.
On Ubuntu Linux, you can consult the configuration files in the /etc/fonts direc-
tory. I did, and I discovered that on my Linux installation, Times and Helvetica are
mapped to Nimbus Roman No9 L and Nimbus Sans—free fonts that can be found in
the /usr/share/fonts/type1/gsfonts directory.

 Note that we are looking at the same document, on the same OS (Ubuntu Linux),
yet the names of the directors in the document look slightly different because differ-
ent fonts were used. We were very lucky that the names were legible.

Figure 2.4 A PDF file
opened in Adobe Reader
and Evince on Ubuntu

28 CHAPTER 2 Using iText’s basic building blocks

FAQ Why are the special characters missing in my PDF document? This isn’t an
iText problem. You could be using a character that has a description for the
corresponding glyph on your system, but if you don’t embed the font, that
glyph can be missing on an end user’s system. If the PDF viewer on that sys-
tem can’t find a substitution font, it won’t be able to display the glyph. The
solution is to embed the font. But even if you embed the font, some glyphs
can be missing because they weren’t present in the font you tried to embed.
The solution here is to use a different font that does have the appropriate
glyph descriptions. This will be discussed in great detail in chapter 11.

Not embedding fonts is always a risk, especially if you need special glyphs in your doc-
ument. Not every font has the descriptions for every possible glyph.

NOTE Characters in a file are rendered on screen or on paper as glyphs.
ISO-32000-1, section 9.2.1, states: “A character is an abstract symbol, whereas
a glyph is a specific graphical rendering of a character. For example: The
glyphs A, A, and A are renderings of the abstract ‘A’ character. Glyphs are
organized into fonts. A font defines glyphs for a particular character set.”

In the next example, you’ll see how to avoid possible problems caused by font substi-
tution by embedding the font.

EMBEDDING FONTS

Up until now, you’ve created font objects using nothing but the Font class. The fonts
available in this class are often referred to as the standard Type 1 fonts. These fonts
aren’t embedded by iText.

NOTE The standard Type 1 fonts used to be called built-in fonts or Base 14 fonts.
The font programs for fourteen fonts—four styles of Helvetica, Times-Roman,
and Courier, plus Symbol and ZapfDingbats—used to be shipped with the PDF
viewer. This is no longer the case; most viewers replace these fonts. It’s impor-
tant to understand that these fonts have no support for anything other than
American/Western-European character sets. As soon as you want to add text
with foreign characters, you’ll need to use another font program.

The next example is a variation on the previous one. You don’t have to change list-
ing 2.4; you only have to replace listing 2.3 with this one.

public static final Font BOLD;
public static final Font NORMAL;

static {
 BaseFont timesbd = null;
 BaseFont times = null;
 try {
 timesbd = BaseFont.createFont(
 "c:/windows/fonts/timesbd.ttf",
 BaseFont.WINANSI, BaseFont.EMBEDDED);

Listing 2.5 DirectorPhrases2.java

Declares Font objects

Creates BaseFont
objects

29Adding Chunk, Phrase, Paragraph, and List objects

 times = BaseFont.createFont(
 "c:/windows/fonts/times.ttf",
 BaseFont.WINANSI, BaseFont.EMBEDDED);
 } catch (DocumentException e) {
 e.printStackTrace();
 System.exit(1);
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 BOLD = new Font(timesbd, 12);
 NORMAL = new Font(times, 12);
 }

 public Phrase createDirectorPhrase(ResultSet rs)
 throws UnsupportedEncodingException, SQLException {
 Phrase director = new Phrase();
 Chunk name =
 new Chunk(new String(rs.getBytes("name"), "UTF-8"), BOLD);
 name.setUnderline(0.2f, -2f);
 director.add(name);
 director.add(new Chunk(",", BOLD));
 director.add(new Chunk(" ", NORMAL));
 director.add(new Chunk(new String(
 rs.getBytes("given_name"), "UTF-8"), NORMAL));
 director.setLeading(24);
 return director;
 }

You tell iText where to find the font programs for Times New Roman (times.ttf) and
Times New Roman Bold (timesbd.ttf) by creating a BaseFont object. You ask iText to
embed the characters (BaseFont.EMBEDDED versus BaseFont.NOT_EMBEDDED) using
the ANSI character set (BaseFont.WINANSI). You’ll learn more about the BaseFont
object in chapter 11. For now, it’s sufficient to know that you can create a Font
instance using a BaseFont object and a float value for the font size.

 Figure 2.5 looks very similar to figure 2.4; only now the PDF file is rendered the
same way in both viewers.

Creates BaseFont
objects

Creates Font using
BaseFont and size

Underlines
Chunk

Defines custom
leading

Figure 2.5 A PDF file
opened in Adobe Reader
and Evince on Ubuntu

30 CHAPTER 2 Using iText’s basic building blocks

Observe that there’s more space between the names in this version because listing 2.5
used setLeading() to change the leading. The names of the directors are also under-
lined differently compared to the previous example, because you don’t define the
underlining as a property of the Font, but as an attribute of the Chunk.

 With the Chunk.setUnderline() method, you can set the line thickness (in the
example, 0.2 pt) and a Y position (in the example, 2 pt below the baseline). The
parameter that sets the Y position allows you to use the same method to strike a line
through a Chunk. There’s also a variant of the method that accepts six parameters:

■ A BaseColor, which makes the line a different color than the text.
■ The absolute thickness.
■ A thickness multiplication factor that will adapt the line width based on the font

size.
■ An absolute Y position.
■ A position multiplication factor that will adapt the Y position based on the font

size.
■ The end line cap, defining what the extremities of the line should look like.

Allowed values are PdfContentByte.LINE_CAP_BUTT (the default value), Pdf-
ContentByte.LINE_CAP_ROUND, and PdfContentByte.LINE_CAP_PROJECTING_
SQUARE. The meaning of these options will be explained in table 14.6.

One thing may look peculiar when you look at figure 2.5. Why do both viewers still list
Helvetica? You won’t find any explicit reference to it in listings 2.4 and 2.5, but it’s
added implicitly in this line:

document.add(Chunk.NEWLINE);

Chunk.NEWLINE contains a newline character in the default font; and the default font
is Helvetica. You could have avoided this by replacing that line with this one:

document.add(new Chunk("\n", NORMAL));

But an even better solution would be to use a Paragraph object instead of a Phrase.

2.2.3 Paragraph object: a Phrase with extra properties and a newline

Although the analogy isn’t entirely correct, I often compare the difference between a
Phrase and a Paragraph in iText with the difference between and <div> in
HTML. If you had used a Paragraph instead of a Phrase in the previous examples, it
wouldn’t have been necessary to add a newline.

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 document.add(new Paragraph(movie.getTitle()));
}

Listing 2.6 MovieTitles.java

31Adding Chunk, Phrase, Paragraph, and List objects

The Paragraph class is derived from the Phrase class. You can create instances of
Paragraph exactly the same way as you’ve been creating Phrase objects, but there’s
more: you can also define the alignment of the text, different indentations, and the
spacing before and after the paragraph.

EXPERIMENTING WITH PARAGRAPHS

Let’s experiment with these Paragraph features in some examples. Listing 2.7 shows
two helper methods that create Paragraphs:

■ createYearAndDuration() creates a Paragraph that is composed of Chunk
objects.

■ createMovieInformation() does the same using Phrase objects and one Para-
graph object that is treated as if it were a Phrase.

These methods are convenience methods that will be reused in different examples.

public Paragraph createYearAndDuration(Movie movie) {
 Paragraph info = new Paragraph();
 info.setFont(FilmFonts.NORMAL);
 info.add(new Chunk("Year: ", FilmFonts.BOLDITALIC));
 info.add(new Chunk(String.valueOf(movie.getYear()),
 FilmFonts.NORMAL));
 info.add(new Chunk(" Duration: ", FilmFonts.BOLDITALIC));
 info.add(new Chunk(String.valueOf(movie.getDuration()),
 FilmFonts.NORMAL));
 info.add(new Chunk(" minutes", FilmFonts.NORMAL));
 return info;
}

public Paragraph createMovieInformation(Movie movie) {
 Paragraph p = new Paragraph();
 p.setFont(FilmFonts.NORMAL);
 p.add(new Phrase("Title: ", FilmFonts.BOLDITALIC));
 p.add(
 PojoToElementFactory.getMovieTitlePhrase(movie));
 p.add(" ");
 if (movie.getOriginalTitle() != null) {
 p.add(new Phrase(
 "Original title: ", FilmFonts.BOLDITALIC));
 p.add(PojoToElementFactory
 .getOriginalTitlePhrase(movie));
 p.add(" ");
 }
 p.add(new Phrase("Country: ", FilmFonts.BOLDITALIC));
 for (Country country : movie.getCountries()) {
 p.add(
 PojoToElementFactory.getCountryPhrase(country));
 p.add(" ");
 }
 p.add(new Phrase("Director: ", FilmFonts.BOLDITALIC));
 for (Director director : movie.getDirectors()) {

Listing 2.7 MovieParagraphs1

Fonts grouped in
FilmFonts class

get() methods
grouped in Pojo-

ToElementFactory

32 CHAPTER 2 Using iText’s basic building blocks

 p.add(
 PojoToElementFactory.getDirectorPhrase(director));
 p.add(" ");
 }
 p.add(createYearAndDuration(movie));
 return p;
}

Note that you’re already introducing rationalizations that will keep your code main-
tainable as the application grows.

RATIONALIZATIONS

You’re using Font objects that are grouped in the FilmFonts class. Generic names
NORMAL, BOLD, ITALIC, and BOLDITALIC are chosen, so that you don’t need to refactor
the names if your employer doesn’t like the font family you’ve chosen. If he wants you
to switch from Helvetica to Times, you have to change your code in only one place.

 The createMovieInformation() method from listing 2.7 is used here.

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 Paragraph p = createMovieInformation(movie);
 p.setAlignment(Element.ALIGN_JUSTIFIED);
 p.setIndentationLeft(18);
 p.setFirstLineIndent(-18);
 document.add(p);
}

Next, you’ll convert POJOs into Phrase objects using a PojoToElementFactory. As
your application grows, you’ll benefit from reusing methods such as getMovieTitle-
Phrase() and getDirectorPhrase() that are grouped in such a separate factory.

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 Paragraph title = new

Paragraph(PojoToElementFactory.getMovieTitlePhrase(movie));
 title.setAlignment(Element.ALIGN_LEFT);
 document.add(title);
 if (movie.getOriginalTitle() != null) {
 Paragraph dummy = new Paragraph("\u00a0", FilmFonts.NORMAL);
 dummy.setLeading(-18);
 document.add(dummy);
 Paragraph originalTitle = new Paragraph(
 PojoToElementFactory.getOriginalTitlePhrase(movie));
 originalTitle.setAlignment(Element.ALIGN_RIGHT);
 document.add(originalTitle);
 }
 Paragraph director;
 float indent = 20;
 for (Director pojo : movie.getDirectors()) {
 director = new Paragraph(PojoToElementFactory.getDirectorPhrase(pojo));

Listing 2.8 MovieParagraphs1

Listing 2.9 MovieParagraphs2

get() methods grouped
in PojoToElementFactory

33Adding Chunk, Phrase, Paragraph, and List objects

 director.setIndentationLeft(indent);
 document.add(director);
 indent += 20;
 }
 Paragraph country;
 indent = 20;
 for (Country pojo : movie.getCountries()) {
 country = new Paragraph(PojoToElementFactory.getCountryPhrase(pojo));
 country.setAlignment(Element.ALIGN_RIGHT);
 country.setIndentationRight(indent);
 document.add(country);
 indent += 20;
 }
 Paragraph info = createYearAndDuration(movie);
 info.setAlignment(Element.ALIGN_CENTER);
 info.setSpacingAfter(36);
 document.add(info);
}

The resulting PDFs list all the movie titles in the database, including their original title
(if any), director, countries where they were produced, production year, and run
length. These documents probably won’t win an Oscar for best layout, but the exam-
ples illustrate a series of interesting Paragraph methods.

 You can tune the layout by changing several Paragraph properties.

CHANGING THE ALIGNMENT

In listing 2.8, the alignment was set to Element.ALIGN_JUSTIFIED with the setAlign-
ment() method. This causes iText to change the spaces between words and characters—
depending on the space/character ratio—in order to make the text align with both the
left and right margins. Listing 2.9 shows the alternative alignments: Element.LEFT, Ele-
ment.ALIGN_CENTER, and Element.RIGHT. Element.ALIGN_JUSTIFIED_ALL is similar to
Element.ALIGN_JUSTIFIED; the difference is that the last line is aligned too. If you don’t
define an alignment, the text is left aligned.

CHANGING THE INDENTATION

There are three methods for changing the indentation:

■ setIndentationLeft()—Changes the indentation to the left. A positive value
will be added to the left margin of the document; a negative value will be
subtracted.

■ setIndentationRight()—Does the same as setIndentationLeft(), but with
the right margin.

■ setFirstLineIndent()—Changes the left indentation of the first line, which is
interesting if you want to provide an extra visual hint to the reader that a new
Paragraph has started.

In listing 2.8, a positive indentation of 18 pt (valid for the whole paragraph) was
defined. The negative indentation of 18 pt for the first line will be subtracted from the
left indentation, causing the first line of each paragraph to start at the left margin.
Every extra line in the same Paragraph will be indented a quarter of an inch.

34 CHAPTER 2 Using iText’s basic building blocks

SPACING BETWEEN PARAGRAPHS

Another way to distinguish different paragraphs is to add extra spacing before or after
the paragraph. In listing 2.9, you used setSpacingAfter() to separate the details of
two different movies with a blank line that is half an inch high. There’s also a set-
SpacingBefore() method that can produce similar results.

 Finally, listing 2.9 does something it shouldn’t: it uses a workaround to write the Eng-
lish and the original title on the same line, with the English title aligned to the left and
the original title aligned to the right. It achieves this by introducing a dummy Para-
graph with a negative leading, causing the current position on the page to move one
line up. While this works out more or less fine in this example, it will fail in other exam-
ples. For instance, if the previous line causes a page break, you won’t be able to move
back to the previous page. Also, if the English and the original title don’t fit on one line,
the text will overlap. You’ll learn how to fix these layout problems in section 2.2.6.

 In the next section, we’ll have a look at what happens when the end of a line is
reached.

2.2.4 Distributing text over different lines

In the movie_paragraphs_1.pdf document (listing 2.8), all the information about a
movie is in one Paragraph. For most of the movies, the content of this Paragraph
doesn’t fit on one line, and iText splits the string, distributing the content over differ-
ent lines. The default behavior of iText is to put as many complete words to a line as
possible. iText splits sentences when a space or a hyphen is encountered, but you can
change this behavior by redefining the split character.

THE SPLIT CHARACTER

If you want to keep two words separated by a space character on the same line, you
shouldn’t use the normal space character, (char)32; you should use the nonbreaking
space character (char)160.

 Next you’ll create a StringBuffer containing all the movies by Stanley Kubrick,
and you’ll concatenate them into one long String, separated with pipe symbols (|).
In the movie titles, you’ll replace the ordinary space character with a nonbreaking
space character.

StringBuffer buf1 = new StringBuffer();
for (Movie movie : kubrick) {
 buf1.append(movie.getMovieTitle()
 .replace(' ', '\u00a0'));
 buf1.append('|');
}
Chunk chunk1 = new Chunk(buf1.toString());

Paragraph paragraph = new Paragraph("A:\u00a0");
paragraph.add(chunk1);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);

Listing 2.10 MovieChain.java

Adds content without
SplitCharacter

35Adding Chunk, Phrase, Paragraph, and List objects

document.add(Chunk.NEWLINE);

chunk1.setSplitCharacter(new PipeSplitCharacter());
paragraph = new Paragraph("B:\u00a0");
paragraph.add(chunk1);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.add(Chunk.NEWLINE);

Because you’ve replaced the space characters, iText can’t find any of the default split
characters in chunk1. The text will be split into different lines, cutting words in two
just before the first character that no longer fits on the line. Then you add the same
content a second time, but you define the pipe symbol (|) as a split character.

 Next is a possible implementation of the SplitCharacter interface. You can add an
instance of this custom-made class to a Chunk with the method setSplitCharacter().

import com.lowagie.text.SplitCharacter;
import com.lowagie.text.pdf.PdfChunk;

public class PipeSplitCharacter implements SplitCharacter {

 @Override
 public boolean isSplitCharacter(
 int start, int current, int end, char[] cc,
 PdfChunk[] ck) {
 char c;
 if (ck == null)
 c = cc[current];
 else
 c = (char)ck[Math.min(current, ck.length - 1)]
 .getUnicodeEquivalent(cc[current]);
 return (c == '|' || c <= ' ' || c == '-');
 }
}

The method that needs to be implemented looks complicated, but in most cases it’s
sufficient to copy the method shown in the previous listing and change the return
line. If you’re working with Asian glyphs, you may also add these ranges of Unicode
characters:

(c >= 0x2e80 && c < 0xd7a0) || (c >= 0xf900 && c < 0xfb00)
|| (c >= 0xfe30 && c < 0xfe50) || (c >= 0xff61 && c < 0xffa0)

The result is shown in the upper part of figure 2.6.
 In Paragraph A, the content is split at unusual places. The word “Love” is split

into “Lo” and “ve,” and the final “s” in the word “Paths” is orphaned. For the Chunks
in Paragraph B, a split character was defined: the pipe character (|). Paragraph C
shows what the content looks like if you don’t replace the normal spaces with non-
breaking spaces.

Listing 2.11 PipeSplitCharacter.java

Adds content with
SplitCharacter '|'

36 CHAPTER 2 Using iText’s basic building blocks

HYPHENATION

This listing is similar to listing 2.10, except it doesn’t replace the ordinary space char-
acters. Another Chunk attribute is introduced: hyphenation.

StringBuffer buf2 = new StringBuffer();
for (Movie movie : kubrick) {
 buf2.append(movie.getMovieTitle());
 buf2.append('|');
}
Chunk chunk2 = new Chunk(buf2.toString());

paragraph = new Paragraph("C:\u00a0");
paragraph.add(chunk2);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.newPage();

chunk2.setHyphenation(
 new HyphenationAuto("en", "US", 2, 2));
paragraph = new Paragraph("D:\u00a0");
paragraph.add(chunk2);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.newPage();

Listing 2.12 MovieChain.java (continued)

Figure 2.6 Splitting paragraphs

Adds content that
will split on a space

Adds content using
hyphenation
(American English)

37Adding Chunk, Phrase, Paragraph, and List objects

writer.setSpaceCharRatio(PdfWriter.NO_SPACE_CHAR_RATIO);
paragraph = new Paragraph("E:\u00a0");
paragraph.add(chunk2);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);

In this listing, you create a HyphenationAuto object using four parameters. iText uses
hyphenation rules found in XML files named en_US.xml, en_GB.xml, and so on. The
first two parameters refer to these filenames. The third and fourth parameters specify
how many characters may be orphaned at the start or at the end of a word. For
instance, you wouldn’t want to split the word elephant like this: e-lephant. It doesn’t look
right if a single letter gets cut off from the rest of the word.

FAQ I use setHyphenation(), but my text isn’t hyphenated. Where do I find the
XML file I need? If you try the example in listing 2.12, and not one word is
hyphenated, you’ve probably forgotten to add the itext-hyph-xml.jar to your
classpath. In this JAR, you’ll find files such as es.xml, fr.xml, de_DR.xml, and
so on. These XML files weren’t written by iText developers; they were cre-
ated for Apache’s Formatting Objects Processor (FOP). The XML files bun-
dled in itext-hyph-xml.jar are a limited set, and your code won’t work if
you’re using a language for which no XML file was provided in this JAR. In
that case, you’ll have to find the appropriate file on the internet and add it
to a JAR in your classpath. Don’t forget to read the license before you start
using a hyphenation file; some of those files can’t be used for free.

The hyphenated text is added twice: once with the default space/character ratio, and
once with a custom space/character ratio.

THE SPACE/CHARACTER RATIO

The Paragraph objects D and E from listing 2.12, have a justified alignment. This
alignment is achieved by adding extra space between the words and between the char-
acters. In Paragraph D, you see the default spacing. The ratio is 2.5, meaning that
iText has been adding 2.5 times more space between the words than between the char-
acters to match the exact length of each line.

 You can change this ratio with the PdfWriter.setSpaceCharRatio() method. This
is done for Paragraph E. On the lower-right side of figure 2.6, you can see that no extra
space is added between the characters, only between the words, because the ratio was
changed to NO_SPACE_CHAR_RATIO (which is in reality a very high float value).

2.2.5 The List object: a sequence of Paragraphs called ListItem

In the previous examples, you’ve listed movies, directors, and countries. In the next
example you’ll repeat this exercise, but instead of presenting the data as an alphabeti-
cally sorted series of movie titles, you’ll create a list of countries, along with the num-
ber of movies in the database that were produced in that country. You’ll list those
movies, and for every movie you’ll list its director(s).

Adds content
without extra
spacing
between glyphs

38 CHAPTER 2 Using iText’s basic building blocks

ORDERED AND UNORDERED LISTS

To achieve this, you’ll use the List object and a number of ListItem objects. As you
can see in the UML diagram (figure 2.1), ListItem extends Paragraph. The main dif-
ference is that every ListItem has an extra Chunk variable that acts as a list symbol.

 A first version of this report was created using ordered and unordered lists. The list
symbol for ordered lists can be numbers—which is the default—or letters. The letters
can be lowercase or uppercase—uppercase is the default. The default list symbol for
unordered lists is a hyphen.

List list = new List(List.ORDERED);
while (rs.next()) {
 ListItem item = new ListItem(
 String.format(
 "%s: %d movies",
 rs.getString("country"), rs.getInt("c")),
 FilmFonts.BOLDITALIC);
 List movielist
 = new List(List.ORDERED, List.ALPHABETICAL);
 movielist.setLowercase(List.LOWERCASE);
 for(Movie movie :
 PojoFactory.getMovies(connection, rs.getString("country_id"))) {
 ListItem movieitem
 = new ListItem(movie.getMovieTitle());
 List directorlist = new List(List.UNORDERED);
 for (Director director : movie.getDirectors()) {
 directorlist.add(String.format("%s, %s",
 director.getName(), director.getGivenName()));
 }
 movieitem.add(directorlist);
 movielist.add(movieitem);
 }
 item.add(movielist);
 list.add(item);
}
document.add(list);

Note that it’s not always necessary to create a ListItem instance. You can also add
String items directly to a List; a ListItem will be created internally for you.

CHANGING THE LIST SYMBOL

Next is a variation on the same theme.

List list = new List();
list.setAutoindent(false);
list.setSymbolIndent(36);
while (rs.next()) {
 ListItem item = new ListItem(String.format(
 "%s: %d movies",
 rs.getString("country"), rs.getInt("c")));

Listing 2.13 MovieLists1.java

Listing 2.14 MovieLists2.java

Creates ordered
List (numbers)

Creates
ListItem

Creates ordered List
(lowercase letters)

Creates ListItem

Adds String
directly to List

Creates
unordered List

Unordered List,
fixed indentation

ListItem with
custom list symbol

39Adding Chunk, Phrase, Paragraph, and List objects

 item.setListSymbol(
 new Chunk(rs.getString("country_id")));
 List movielist
 = new List(List.ORDERED, List.ALPHABETICAL);
 movielist.setAlignindent(false);
 for(Movie movie :
 PojoFactory.getMovies(connection, rs.getString("country_id"))) {
 ListItem movieitem = new ListItem(movie.getMovieTitle());
 List directorlist = new List(List.ORDERED);
 directorlist.setPreSymbol("Director ");
 directorlist.setPostSymbol(": ");
 for (Director director : movie.getDirectors()) {
 directorlist.add(String.format("%s, %s",
 director.getName(), director.getGivenName()));
 }
 movieitem.add(directorlist);
 movielist.add(movieitem);
 }
 item.add(movielist);
 list.add(item);
}
document.add(list);

For the list with countries, you now define an indentation of half an inch for the list
symbol. You also define a different list symbol for every item, namely the database ID
of the country. The difference for the movie list is subtler: you tell iText that it
shouldn’t realign the list items. In listing 2.13, iText looks at all the items in the List
and uses the maximum indentation for all the items. By adding the line mov-
ielist.setAlignindent(false) in listing 2.14, every list item now has its own list
indentation based on the space taken by the list symbol. That is, unless you’ve added
the line list.setAutoindent(false), in which case the indentation specified with
setSymbolIndent() is used.

 As you can see in figure 2.7, a period (.) symbol is added to each list symbol for
ordered lists. You can override this behavior with the methods setPreSymbol() and
setPostSymbol(). In listing 2.14, the pre- and postsymbols are defined in such a way
that you get “Director 1:”, “Director 2:”, and so on, as list symbols (shown at the top-
right in figure 2.7).

SPECIAL TYPES OF LISTS

Four more variations are shown in figure 2.7. First, in listing 2.15, you’ll create List
objects of type RomanList, GreekList, and ZapfDingbatsNumberList. In listing 2.16,
you’ll create a ZapfDingbatsList.

List list = new RomanList();
...
List movielist = new GreekList();
movielist.setLowercase(List.LOWERCASE);
..
List directorlist = new ZapfDingbatsNumberList(0);

Listing 2.15 MovieLists3.java

ListItem with
custom list symbol

Ordered List (lowercase
letters), no realignment

Ordered List
with special
list symbol

String added
directly to List

40 CHAPTER 2 Using iText’s basic building blocks

Be careful not to use ZapfDingbatsNumberList for long lists. This list variation comes
in four different types defined with a parameter in the constructor that can be 0, 1, 2,
or 3, corresponding to specific types of numbered bullets. Note that the output will
only be correct for items 1 to 10, because there are no bullets for numbers 11 and
higher in the font that is used to draw the bullets.

 ZapfDingbats is one of the 14 standard Type 1 fonts. It contains a number of spe-
cial symbols, such as a hand with the index finger pointing to the right: (char)42.
This symbol is used in listing 2.16 for the director list. The special list class for this type
of list is called ZapfDingbatsList. This is the superclass of ZapfDingbatsNumberList.

 Listing 2.16 also shows how to change the first index of an ordered list using set-
First(), and how to set a custom list symbol for the entire list with setListSymbol().

List list = new List(List.ORDERED);
list.setFirst(9);
..
List movielist = new List();
movielist.setListSymbol(new Chunk("Movie: ", FilmFonts.BOLD));
..
List directorlist = new ZapfDingbatsList(42);

Listing 2.16 MovieLists4.java

Figure 2.7 List and ListItem variations

41Adding Chunk, Phrase, Paragraph, and List objects

We’ll conclude this section with a number of objects that aren’t shown on the class
diagram in figure 2.1: vertical position marks and separator Chunks.

2.2.6 The DrawInterface: vertical position marks, separators, and tabs

In section 1.3.4, you learned that there are different ways to add content to a page
using iText. In this chapter, you’ve been using document.add(), trusting iText to put
the content at the correct position in a page. But in some cases, you might want to add
something extra. For instance, you might want to add a mark at the current position
in the page (for example, an arrow); or you might want to draw a line from the left
margin to the right margin (which is different from underlining a Chunk).

 This can be achieved using DrawInterface. If you want to benefit from all the pos-
sibilities of this interface and its VerticalPositionMark implementation, you’ll need
some techniques that will be explained in the next chapter. For now, figure 2.8 shows
classes that can be used without any further programming work.

VERTICAL POSITION MARKS

Suppose that you want to create an alphabetical list of directors, and to list the movies
directed by these filmmakers that are present in the database. To this list, you want to
add an arrow that indicates which directors have more than two movies in the data-
base. You also want to indicate all the movies that were made in the year 2000 or later.
See figure 2.9 for an example.

Figure 2.8 Class diagram of DrawInterface implementations

Figure 2.9 Vertical position marks

42 CHAPTER 2 Using iText’s basic building blocks

You can achieve this by subclassing VerticalPositionMark.

public class PositionedArrow extends VerticalPositionMark {

 protected boolean left;
 ...
 public static final PositionedArrow LEFT =
 new PositionedArrow(true);
 public static final PositionedArrow RIGHT =
 new PositionedArrow(false);
 ...
 public void draw(PdfContentByte canvas,
 float llx, float lly, float urx, float ury,
 float y) {
 canvas.beginText();
 canvas.setFontAndSize(zapfdingbats, 12);
 if (left) {
 canvas.showTextAligned(Element.ALIGN_CENTER,
 String.valueOf((char)220), llx - 10, y, 0);
 }
 else {
 canvas.showTextAligned(Element.ALIGN_CENTER,
 String.valueOf((char)220), urx + 10, y + 8,
 180);
 }
 canvas.endText();
 }
}

You could use Document.add() to add instances of this PositionedArrow class to the
Document because it extends VerticalPositionMark, which means it also implements
the Element interface. When this Element is encountered, the custom draw() method
will be invoked, and this method has access to the canvas to which content is added. It
also knows the coordinates defining the margins of the page, (llx, lly) and (urx,
ury), as well as the current y position on the page. In the draw() method of the Posi-
tionedArrow class, listing 2.17 uses llx and urx to draw an arrow in the left or right
margin of the page, and it uses the y value to position the arrow.

 Observe that in this example PositionedArrow is not added directly to the Document.

LineSeparator line = new LineSeparator(
 1, 100, null, Element.ALIGN_CENTER, -2);
Paragraph stars = new Paragraph(20);
stars.add(new Chunk(StarSeparator.LINE));
stars.setSpacingAfter(30);

while (rs.next()) {
 director = PojoFactory.getDirector(rs);
 Paragraph p = new Paragraph(
 PojoToElementFactory.getDirectorPhrase(director));

Listing 2.17 PositionedArrow.java

Listing 2.18 DirectorOverview1.java

Instance to draw
arrow to the left

Instance to draw
arrow to the right

Custom
implementation
of draw() method

B Creates
LineSeparator

43Adding Chunk, Phrase, Paragraph, and List objects

 if (rs.getInt("c") > 2)
 p.add(PositionedArrow.LEFT);
 p.add(line);
 document.add(p);

 TreeSet<Movie> movies = new TreeSet<Movie>(
 new MovieComparator(MovieComparator.BY_YEAR));
 movies.addAll(
 PojoFactory.getMovies(connection, rs.getInt("id")));
 for (Movie movie : movies) {
 p = new Paragraph(movie.getMovieTitle());
 p.add(": ");
 p.add(new Chunk(String.valueOf(movie.getYear())));
 if (movie.getYear() > 1999)
 p.add(PositionedArrow.RIGHT);
 document.add(p);
 }
 document.add(stars);
}

The arrow refers to the content of a Paragraph, and it’s better to add it to the corre-
sponding object, as is done in C and D. Otherwise a page break could cause the text
to be on one page and the arrow on the next; that could be your intention in some sit-
uations, but that’s not the case here.

LINE SEPARATORS

When you need to draw a line, you want to know the current vertical position of the
text of a page. In that situation, you can get a long way using the LineSeparator class.
In B of listing 2.18, you create a line separator with the following parameters:

■ The line width—In this case, a line with a thickness of 1 pt.
■ The percentage that needs to be covered—In this case, 100 percent of the available

width.
■ A color—In this case, null, meaning that the default color will be used.
■ The alignment—This only makes sense if the percentage isn’t 100 percent.
■ The offset—In this case, 2 pt below the baseline.

If this object isn’t sufficient for your needs, you can write your own subclass of Verti-
calPositionMark, or your own (custom) implementation of the DrawInterface.

public class StarSeparator implements DrawInterface {
 ...
 public void draw(PdfContentByte canvas,
 float llx, float lly, float urx, float ury, float y) {
 float middle = (llx + urx) / 2;
 canvas.beginText();
 canvas.setFontAndSize(bf, 10);
 canvas.showTextAligned(Element.ALIGN_CENTER,
 "*", middle, y, 0);
 canvas.showTextAligned(Element.ALIGN_CENTER,
 "* *", middle, y -10, 0);

Listing 2.19 StarSeparator.java

C Adds left-positioned arrow
next to director name

D Adds right-
positioned arrow
next to movie title

44 CHAPTER 2 Using iText’s basic building blocks

 canvas.endText();
 }
}

Observe that the StarSeparator object doesn’t implement the Element interface.
This means you can’t add it directly to the Document. You need to wrap it in a Chunk
object first.

SEPARATOR CHUNKS

Listing 2.9 applied a dirty hack using negative leading to create a line layout with a
Paragraph to the left (the English movie title) and a Paragraph to the right (the orig-
inal movie title). I told you that’s not the way it’s should be done. Now let’s have a look
at the proper way to achieve this.

director = PojoFactory.getDirector(rs);
Paragraph p = new Paragraph(
 PojoToElementFactory.getDirectorPhrase(director));
p.add(new Chunk(new DottedLineSeparator()));
p.add(String.format("movies: %d", rs.getInt("c")));
document.add(p);

List list = new List(List.ORDERED);
list.setIndentationLeft(36);
list.setIndentationRight(36);
TreeSet<Movie> movies = new TreeSet<Movie>(
 new MovieComparator(MovieComparator.BY_YEAR));
movies.addAll(
 PojoFactory.getMovies(connection, rs.getInt("id")));
ListItem movieitem;
for (Movie movie : movies) {
 movieitem = new ListItem(movie.getMovieTitle());
 movieitem.add(new Chunk(new VerticalPositionMark()));
 movieitem.add(
 new Chunk(String.valueOf(movie.getYear())));
 if (movie.getYear() > 1999) {
 movieitem.add(PositionedArrow.RIGHT);
 }
 list.add(movieitem);
}
document.add(list);

Listing 2.20 wraps a DottedLineSeparator in a Chunk and uses it to separate the name
of a filmmaker from the number of movies they have directed. The DottedLineSepa-
rator is a subclass of the LineSeparator, with the main difference being that it draws
a dotted line instead of a solid line. You can also set the gap between the dots using
the setGap() method.

 Some of the VerticalPositionMarks in figure 2.10 act as separators to distribute
content over a line. The name of the class no longer applies—you aren’t adding
a mark at a vertical position anymore. Instead you’re using the object to separate the
movie title from the year when the movie was produced. You could use multiple

Listing 2.20 DirectorOverview2.java

DottedLineSeparator
wrapped in Chunk

VerticalPositionMark
wrapped in Chunk

45Adding Chunk, Phrase, Paragraph, and List objects

separators to distribute the title, the run length, and the production year: iText will
look at the remaining white space for every line and distribute it equally over the
number of separator Chunks.

 Another way to distribute the content of a line is to use tabs.

TAB CHUNKS

Figure 2.11 shows how you can distribute the English movie title, the original title, the
run length, and the year the movie was produced over one or more lines using tabs. If
ordinary separator Chunks were used, the content wouldn’t have been aligned in
columns.

 One English movie title and its corresponding original title don’t fit in the avail-
able space. A new line is used because of the way you’ve defined the tab Chunk. If you

Figure 2.10 Dotted line and other separators

Figure 2.11 Chunks acting as tab positions

46 CHAPTER 2 Using iText’s basic building blocks

change true into false in the tab Chunk constructors, no line break will occur; the
text will overlap instead.

Chunk CONNECT = new Chunk(new LineSeparator(
 0.5f, 95, BaseColor.BLUE, Element.ALIGN_CENTER, 3.5f));
LineSeparator UNDERLINE = new LineSeparator(
 1, 100, null, Element.ALIGN_CENTER, -2);
Chunk tab1 =
 new Chunk(new VerticalPositionMark(), 200, true);
Chunk tab2 =
 new Chunk(new VerticalPositionMark(), 350, true);
Chunk tab3 =
 new Chunk(new DottedLineSeparator(), 450, true);
...
director = PojoFactory.getDirector(rs);
Paragraph p = new Paragraph(
 PojoToElementFactory.getDirectorPhrase(director));
p.add(CONNECT);
p.add(String.format("movies: %d", rs.getInt("c")));
p.add(UNDERLINE);
document.add(p);
TreeSet<Movie> movies = new TreeSet<Movie>(
 new MovieComparator(MovieComparator.BY_YEAR));
movies.addAll(
 PojoFactory.getMovies(connection, rs.getInt("id")));
for (Movie movie : movies) {
 p = new Paragraph(movie.getMovieTitle());
 p.add(new Chunk(tab1));
 if (movie.getOriginalTitle() != null)
 p.add(new Chunk(movie.getOriginalTitle()));
 p.add(new Chunk(tab2));
 p.add(new Chunk(
 String.valueOf(movie.getDuration()) + " minutes"));
 p.add(new Chunk(tab3));
 p.add(new Chunk(String.valueOf(movie.getYear())));
 document.add(p);
}
document.add(Chunk.NEWLINE);

You can use any DrawInterface to create a separator or tab Chunk, and you can use
these Chunks to separate content horizontally (within a paragraph) or vertically (lines
between paragraphs). Now it’s time to discuss the other building blocks shown in the
class diagram in figure 2.1.

2.3 Adding Anchor, Image, Chapter, and Section objects
In the previous examples, you’ve used every field shown in the ERD in figure 2.2,
except for one: the field named imdb. This field contains the ID for the movie on
imdb.com, which is the Internet Movie Database (IMDB).

 Wouldn’t it be nice to link to this external site from your documents? And what
kind of internal links could you add to a document? If you browse the resources that

Listing 2.21 DirectorOverview3.java

Tab at
position
350 for

duration

Tab at
position
450 for

year

Tab at
position
200 for
original

title

47Adding Anchor, Image, Chapter, and Section objects

come with the book, you’ll see that the imdb field is also used as part of the filename
for the movie poster of each movie. The movie Superman Returns has the ID 0348150 at
IMDB. This means that you’ll find a 0348150.jpg file in the posters directory, which is a
subdirectory of the resources folder.

 In this section, you’ll work with different types of links: internal and external.
You’ll create a table of contents automatically and get bookmarks for free, using the
Chapter and Section objects. Finally, you’ll learn how to add images.

2.3.1 The Anchor object: internal and external links

What would the internet be without hypertext? How would you browse the web with-
out hyperlinks? It’s almost impossible to imagine a web page without <a> tags. But
what about PDF documents?

 There are different ways to add a link to a PDF file using iText. In this section,
you’ll add references and destinations using the Anchor object, as well as by setting
the reference and anchor attributes of a Chunk. You’ll discover more alternatives in
chapter 7.

ADDING ANCHOR OBJECTS

In listing 2.22, three Anchor objects are created. The first Anchor, with a country name
as its text, will act as a destination. It’s the equivalent of in HTML,
where US is the id of a country in the database. The third anchor, with the text “Go
back to the first page.” will be an internal link acting as . It will allow
the reader to jump to the destination with name “US” (located on the first page). iText
recognizes this reference as a local destination because you’re adding a number sign
(#) to the name, just as you would do in HTML.

Paragraph country = new Paragraph();
Anchor dest =
 new Anchor(rs.getString("country"), FilmFonts.BOLD);
dest.setName(rs.getString("country_id"));
country.add(dest);
country.add(String.format(": %d movies", rs.getInt("c")));
document.add(country);
for(Movie movie : PojoFactory.getMovies(
 connection, rs.getString("country_id"))) {
 imdb = new Anchor(movie.getMovieTitle());
 imdb.setReference(String.format(
 "http://www.imdb.com/title/tt%s/", movie.getImdb()));
 document.add(imdb);
 document.add(Chunk.NEWLINE);
}
document.newPage();
...
Anchor toUS = new Anchor("Go to first page.");
toUS.setReference("#US");
document.add(toUS);

Listing 2.22 MovieLinks1.java

Creates named
Anchor

Creates external
reference

Creates Anchor with
internal reference

48 CHAPTER 2 Using iText’s basic building blocks

The second Anchor is a link to an external resource. In this case, to a specific page on
the IMDB website. http://www.imdb.com/title/tt0348150/ refers to a page with infor-
mation about the movie Superman Returns.

 There’s also another way to achieve the same result.

REMOTE GOTO, LOCAL DESTINATION, AND LOCAL GOTO CHUNKS

Listing 2.23 creates a PDF document with an opening paragraph, a list of countries,
and a closing paragraph. The closing paragraph contains a link to jump to the top of
the page. The other links are external.

Paragraph p = new Paragraph();
Chunk top = new Chunk("Country List", FilmFonts.BOLD);
top.setLocalDestination("top");
p.add(top);
document.add(p);

Chunk imdb =
 new Chunk("Internet Movie Database", FilmFonts.ITALIC);
imdb.setAnchor(new URL("http://www.imdb.com/"));
p = new Paragraph("Click on a country, and you'll get a list of movies,"
 + " containing links to the ");
p.add(imdb);
p.add(".");
document.add(p);

p = new Paragraph("This list can be found in a ");
Chunk page1 = new Chunk("separate document");
page1.setRemoteGoto("movie_links_1.pdf", 1);
p.add(page1);
p.add(".");
document.add(p);
...
Paragraph country = new Paragraph(rs.getString("country"));
country.add(": ");
 Chunk link = new Chunk(
 String.format("%d movies", rs.getInt("c")));
link.setRemoteGoto(
 "movie_links_1.pdf", rs.getString("country_id"));
country.add(link);
document.add(country);
...
p = new Paragraph("Go to ");
top = new Chunk("top");
top.setLocalGoto("top");
p.add(top);
p.add(".");
document.add(p);

In previous examples, you’ve set attributes of the Chunk object to underline text, to
change the background color, and so on. You can also set attributes that provide even
more functionality than the Anchor class:

Listing 2.23 MovieLinks2.java

Creates
destination

Creates
external link

Creates link to page
in another PDF

Creates link to
destination in
another PDF

Creates link to
destination in this PDF

http://www.imdb.com/title/tt0348150/

49Adding Anchor, Image, Chapter, and Section objects

■ Chunk.setLocalDestination()—Corresponds to Anchor.setName(). You can
use it to create a destination that can be referenced from within the document,
or from another document.

■ Chunk.setLocalGoto()—Corresponds to Anchor.setReference(), where the
reference is a local destination. You don’t need to add a # sign when using this
method.

■ Chunk.setRemoteGoto()—Can refer to any of the following:
– An external URL—Defined by a String or a java.net.URL object; this corre-

sponds to Anchor.setReference().
– A page in another PDF document—The document created in the MovieLinks2

example refers to page 1 in the file movie_links_1.pdf, a file generated by
MovieLinks1.

– A destination in another PDF document—Listing 2.23 refers to the country code
in movie_links_1.pdf.

You can use the movie_links_2.pdf file, which lists 32 countries, as a clickable table of
contents (TOC) for the movie_links_1.pdf file, which lists the movies that were pro-
duced in these countries.

 The next example will explain how to create a different type of TOC: the book-
marks panel in Adobe Reader. Note that bookmarks are often referred to as outlines in
the context of PDF.

2.3.2 Chapter and Section: get bookmarks for free

If you scroll in the bookmarks panel shown in figure 2.12, you’ll see entries numbered
from 1 to 7: Forties, Fifties, Sixties, Seventies, Eighties, Nineties, and Twenty-first cen-
tury. You can create these entries by organizing the content in chapters. Every Chap-
ter in this PDF document contains one or more Section objects. In this case, years
that belong to the forties, fifties, and so on. In figure 2.12, there are also subsections
with titles of movies.

 Let’s compare listing 2.24 and figure 2.12. The chapter number is passed as a param-
eter when constructing the Chapter object. By default, a dot is added to the number, but
you can change this with the setNumberStyle() method. Sections are created using the
addSection() method. The title passed as a parameter when constructing a Chapter or
Section is shown on the page and is used as the title for the bookmark. If you want to
use a different title in the outline tree, you can use setBookmarkTitle(). You can
change the indentation of a Chapter or Section by using different methods: setInden-
tation() changes the indentation of the content but doesn’t affect the title; setInden-
tationLeft() and setIndentationRight() apply to the content and the title. Observe
that the subsections aren’t numbered 5.4.1., 5.4.2, 5.4.3 ... but 1., 2., 3. ... because the
number depth has been reduced to 1 with setNumberDepth().

50 CHAPTER 2 Using iText’s basic building blocks

title = new Paragraph(EPOCH[epoch], FONT[0]);
chapter = new Chapter(title, epoch + 1);
...
title = new Paragraph(String.format(
 "The year %d", movie.getYear()), FONT[1]);
section = chapter.addSection(title);
section.setBookmarkTitle(String.valueOf(movie.getYear()));
section.setIndentation(30);
section.setBookmarkOpen(false);
section.setNumberStyle(
 Section.NUMBERSTYLE_DOTTED_WITHOUT_FINAL_DOT);
section.add(...);
...
title = new Paragraph(movie.getMovieTitle(), FONT[2]);
subsection = section.addSection(title);
subsection.setIndentationLeft(20
subsection.setNumberDepth(1);
subsection.add(...);

As shown in the class diagram in figure 2.1, Section also implements an interface
named LargeElement. In chapter 1, you learned that iText tries to write PDF syntax to
the OutputStream, freeing memory as soon as possible. But with objects such as Chap-
ter, you’re creating content in memory that can only be rendered to PDF when you
add them to the Document object. This means that the content of several pages can be
kept in memory until iText gets the chance to generate the PDF syntax.

 There are two ways to work around this:

Listing 2.24 MovieHistory.java

Figure 2.12
A PDF with bookmarks

Creates
Chapter object

Creates
Section object

Creates
Section object

51Adding Anchor, Image, Chapter, and Section objects

■ Define the Chapter as incomplete, and add it to the Document in different pieces;
you’ll see how to do this in chapter 4, after we discuss another LargeElement,
PdfPTable.

■ Create the outline tree using PdfOutline instead of putting content in Chapter
or Section objects. This will be discussed in chapter 7, where you’ll discover
that PdfOutline offers much more flexibility.

We’ve covered almost all the objects in the class diagram. Only two objects remain:
Rectangle and Image.

2.3.3 The Image object: adding raster format illustrations

You created Rectangle objects in chapter 1 to define the page size, but there’s very lit-
tle chance you’ll ever need to add a Rectangle object with Document.add(). We’ll find
better ways to draw shapes in chapter 3, but let’s take a look at a simple example for
the sake of completeness.

Rectangle rect = new Rectangle(0, 806, 36, 842);
rect.setBackgroundColor(BaseColor.RED);
document.add(rect);

The code draws a small red square in the upper-left corner of the first page.

ADDING AN IMAGE

To add an Image to a PDF document, do this:

document.add(new Paragraph(movie.getMovieTitle()));
document.add(
 Image.getInstance(String.format(RESOURCE, movie.getImdb())));

iText comes with different classes for different image types: Jpeg, PngImage, GifImage,
TiffImage, and so on. All these classes are discussed in detail in chapter 10. They
either extend the Image class, or they are able to create an instance of the Image class.

 You could use these separate classes to create a new Image, but it’s easier to let the
Image class inspect the binary image and decide which class should be used, based on
the contents of the file. That’s one thing less to worry about.

THE IMAGE SEQUENCE

The result of the code in listing 2.26 is shown to the left in figure 2.13. Observe that
the poster of the movie Betty Blue didn’t fit on page 3. As a result, the title of the next
movie, The Breakfast Club, is added on page 3, and the poster is added on page 4.
This is the default behavior: iText tries to add as much information as possible on
each page.

 This may be considered undesired behavior in some projects. If that’s the case, you
can use this method:

Listing 2.25 MoviePosters1.java

Listing 2.26 MoviePosters1.java (continued)

52 CHAPTER 2 Using iText’s basic building blocks

PdfWriter.getInstance(document,
 new FileOutputStream(filename)).setStrictImageSequence(true);

The resulting PDF is shown on the right in figure 2.13. The method setStrictImage-
Sequence() allows you to force iText to respect the order in which content is added.

CHANGING THE IMAGE POSITION

In figure 2.14, the alignment of the image is changed so that the film information is
put next to the movie poster.

 This is done with the setAlignment() method. Possible values for this method are:

■ Image.LEFT, Image.CENTER, or Image.RIGHT—These define the position on the
page.

■ Image.TEXTWRAP or Image.UNDERLYING—By default, iText doesn’t wrap images.
When you add an Image followed by text to a Document, the text will be added
under the image, as shown in figure 2.13. With TEXTWRAP, you can add text next
to the Image, except when you’re using Image.CENTER. With UNDERLYING, the
text will be added on top of the Image (text and image will overlap).

All of this doesn’t apply if you use the method setAbsolutePosition(). With this
method, you can define coordinates (X, Y) that will be used to position the lower-left
corner of the image. The image will not follow the flow of the other objects.

Listing 2.27 MoviePosters2.java

Figure 2.13
Adding images to
a PDF document

53Adding Anchor, Image, Chapter, and Section objects

CHANGING THE BORDER

The PDF shown in figure 2.14 was generated using methods that are inherited from
the Rectangle object. Listing 2.28 shows how to define a border, and how to change
its width and color.

Image img = Image.getInstance(
 String.format(RESOURCE, movie.getImdb()));
img.setAlignment(Image.LEFT | Image.TEXTWRAP);
img.setBorder(Image.BOX);
img.setBorderWidth(10);
img.setBorderColor(BaseColor.WHITE);
img.scaleToFit(1000, 72);
document.add(img);

The Image.BOX value is shorthand for Rectangle.LEFT | Rectangle.RIGHT | Rectan-
gle.TOP | Rectangle.BOTTOM, meaning that the image should have a border on all
sides. You’ll learn more about drawing Rectangle objects in chapters 3 and 14.

RESIZING IMAGES

In listing 2.28, you’re also using scaleToFit(). You’re passing an unusually high
width value (1000 pt) compared to the height value (72 pt). This ensures that all the
images will have a height of one inch. The width will vary depending on the aspect
ratio of the image.

FAQ What is the relationship between the size and the resolution of an image in iText?
Suppose you have a paper image that measures 5 in. x 5 in. You scan this image
at 300 dpi. The resulting image is 1500 pixels x 1500 pixels, so if you get an iText
Image instance, the width and the height will be 1500 user units. Taking into
account that 1 in. equals 72 user units, the image will be about 20.83 in. x 20.83
in. when added to the PDF document. If you want to display the object as
an image of 5 in. x 5 in., you’ll need to scale it. The best way to do this is with
scalePercent(100 * 72 / 300).

Listing 2.28 MoviePosters3.java

Figure 2.14
Resized images

Sets
alignment

Sets
border

Scales
image

54 CHAPTER 2 Using iText’s basic building blocks

There are different ways to change the dimensions of an image:

■ The width and height parameters of scaleToFit() define the maximum
dimensions of the image. If the width/height ratio differs from the aspect ratio
of the image, either the width, or the height, will be smaller than the corre-
sponding parameter of this method.

■ The width and height parameters will be respected when using scaleAbso-
lute(). The resulting image risks being stretched in the X or Y direction if you
don’t choose the parameters wisely. You can also use scaleAbsoluteWidth()
and scaleAbsoluteHeight().

■ scalePercent() comes in two versions: one with two parameters, a percentage
for the width and a percentage for the height; and another with only one param-
eter, a percentage that will be applied equally to the width and the height.

It’s a common misconception that resizing images in iText also changes the quality of
the image. It’s important to understand that iText takes the image as is: iText doesn’t
change the number of pixels in the image.

FAQ IText is adding the same image more than once to the same document. How can I
avoid this? Suppose that you have an image.jpg file with a size of 100 KB. If you
create ten different Image objects from this file, and add these objects to your
Document, these different instances referring to image.jpg will consume at
least 1000 KB, because the image bytes will be added 10 times to the PDF file. If
you create only one Image instance referring to image.jpg, and you add this sin-
gle object 10 times to your Document, the image bytes will be added to the PDF
file only once. In short, you can save plenty of disk space if you reuse Image
objects for images that need to be repeated multiple times in your document.
For example, a logo that needs to be added to the header of each page.

When creating an Image instance from a file, you won’t always know its dimensions
before or even after scaling it. You can get the width and height of the image with
these methods:

■ getWidth() and getHeight() are inherited from the Rectangle object. They
return the original height and width of the image.

■ getPlainWidth() and getPlainHeight() return the width and height after
scaling. These are the dimensions of the image used to print it on a page.

■ getScaledWidth() and getScaledHeight() return the width and height
needed to print the image. These dimensions are equal to the plain width and
height, except in cases where the image is rotated.

The difference between scaled width/height and plain width/height is shown in the
next example.

CHANGING THE ROTATION

The rotation for images is defined counterclockwise. Listing 2.29 uses the setRota-
tionDegrees() method to rotate an image –30 degrees; that’s 30 degrees to the right.

55Adding Anchor, Image, Chapter, and Section objects

Using setRotation() with a rotation value of (float) -Math.PI / 6 would have had
the same effect.

Paragraph p = new Paragraph(text);
Image img = Image.getInstance(
 String.format("resources/posters/%s.jpg", imdb));
img.scaleToFit(1000, 72);
img.setRotationDegrees(-30);
p.add(new Chunk(img, 0, -15, true));

If you look at the poster for the movie Stand by Me, you’ll find out that it’s made up
of 100 pixels x 140 pixels. These values are returned by getWidth() and get-
Height(). When scaled to fit a rectangle of 1000 pixels x 72 pixels, the dimensions
are changed into 51.42857 x 72—those are the values returned by getPlainWidth()
and getPlainHeight().

 In figure 2.15, you can see that the image needs more space. Due to the rotation,
the horizontal distance between the lower-right corner and the upper-left corner of
the image is 80.53845. The vertical distance between the upper-right corner and the
lower-left corner is 88.068115. These values are returned by getScaledWidth() and
getScaledHeight().

 Something else is different in figure 2.15: each Image has been added to a Para-
graph object, wrapped in a Chunk.

Listing 2.29 RiverPhoenix.java

Figure 2.15 Rotated images, wrapped in Chunk objects

56 CHAPTER 2 Using iText’s basic building blocks

WRAPPING IMAGES IN CHUNKS

This is yet another example of setting attributes for a Chunk. By creating a Chunk using
an Image as the parameter, you can add the Image to other building blocks as if it were
an ordinary chunk of text. The extra parameters in this Chunk constructor define an
offset in the X and Y directions. The negative value in listing 2.29 causes the image to
be added 15 pt below the baseline. You can also indicate whether the leading should
be adapted to accommodate the image. If you don’t set the final parameter to true,
the image risks overlapping with the other text (if the height of the image is greater
than the leading).

 This isn’t a definitive overview of what you can do with images. You’ve learned
enough to change the properties of an image, but there’s more to learn about the bits
and bytes of specific image types (TIFF, animated GIF, and so on), about using
java.awt.Image, and about using image masks. All of this will be covered in chapter 10;
now it’s time to round up what we’ve covered in chapter 2.

2.3.4 Summary

We’ve covered a lot of ground in this chapter. You learned about Chunk objects and
several—not all—of a Chunk’s attributes; you’ll discover more attributes as you read on
in part 1 of this book. You’ve worked with Phrases and Paragraphs, and you’ve been
introduced to the Font and BaseFont classes. You’ve made Lists containing List-
Items, and you’ve discovered different ways to use separator Chunks.

 With the Anchor object and its alternatives, you’ve created internal and external
links and destinations. The Chapter and Section classes were used to create book-
marks, but you’ll learn more about the outline tree and the LargeElement object in
the chapters that follow. That’s also true for the Image object: you’ve learned how to
use the most common methods, but you’ll learn more about the bits and bytes of
images in chapter 10.

 Up until now, you’ve worked with the building blocks of iText, which are often
referred to as high-level objects. In the next chapter, you’ll discover the world of low-
level PDF creation.

S
earch for “Java PDF” and what do you think you’ll fi nd in
the #1 position? Why, iText, of course. Ever since its launch
in 2000, this open source Java library has been the most

popular and most broadly used tool for programmatic creation
and manipulation of PDF. With it you too can easily transform
static PDF into live, interactive applications.

iText in Action, Second Edition is an entirely revised new version
of the popular fi rst edition. It introduces the latest version of
iText, and it lowers the learning curve to its advanced features.
Following its innovative, practical examples, you’ll master new
form types, including AcroForm, explore the XML Forms Archi-
tecture (XFA), and discover techniques for linking documents,
creating a PDF based on records in a database, and much more.

What’s Inside
Automate static and dynamic XFA forms
How to generate dynamic PDF from XML or a database
How to add digital signatures
Covers iText 5

Written by the creator of iText, this new edition covers the latest
version of iText and Java 5. Th e examples can be easily adapted to
.NET using iTextSharp or iText.NET.

Bruno Lowagie is the original developer and current maintainer
of iText.

For a free ebook for owners of this book, go to
manning.com/iTextinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

iText IN ACTION Second Edition

JAVA/PDF

Bruno Lowagie

“Deep coverage of both iText
 and PDF—indispensable.”
 —Kevin Day, Trumpet, Inc.

“Th e classic, revised with
 practical code everyone
 can use.”
 —John S. Griffi n
 Overstock.com

“Masterful, comprehensive.”
 —Saicharan Manga
 Services and Solutions

“Invaluable examples...
 what you need is here.”
 —Paulo Soares
 Glintt Business Solutions

“Th e canonical source on
 iText.”
 —Michael Klink
 AuthentiDate International AG

M A N N I N G

SEE INSERT

