
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

A Game Theoretic Approach to the Formation
of Clustered Overlay Networks

(Supplemental Material)

✦

The material in this addendum is structured as follows.
In Section 1, we define an alternative measure to social
cost for measuring the overall quality of the clustered
overlay. Section 2 presents the derivation of the case
study results, while Section 3 describes the coordinated
protocol in detail. Section 4 presents additional experi-
mental results and Section 5 additional related research.
Finally, the Appendix includes all proofs of the Lemmas
and Propositions in [14].

1 ALTERNATIVE COST MODEL

The social cost defines the quality of a configuration
based on the individual costs of all nodes, i.e., players.
We can also evaluate the overall quality or cost of a
configuration from a query workload perspective. In this
respect, the recall cost for a cluster configuration is the
average recall cost for attaining results for all queries in
Q.

Definition 1 (Workload Cost): The workload cost of a
cluster configuration S is:

WCost(S) = α
∑
ck∈C

|ck|θ(|ck|)
|V | +

∑
q in Q

num(q,Q)

num(Q)

∑
ni s.t. q in Q(ni)

num(q,Q(ni))

num(q,Q)

∑
nj /∈V (si)

r(q, nj)

The first term models the cost for maintaining the
clusters, while the second one models the recall loss for
all queries, i.e., the cost for evaluating them outside the
clusters of their initiator.

The main difference between the social and the work-
load cost lies on how they assign weights to queries.
In the social cost, the weight or importance of each
query is based on its frequency in the local workload
of each node, whereas, in the workload cost the weight
of each query is based on its frequency in the global
query workload. Intuitively, while the social cost regards
all nodes as equals, the workload cost considers more
demanding nodes, i.e. nodes that pose more queries,

as more important than low demanding ones. The fol-
lowing proposition relates the two costs for equally
demanding nodes.

Proposition 1: If for all nodes ni, nj ∈ V , num(Q(ni)) =

num(Q(nj)) = num(Q)
|V | , then improving the social cost

improves the workload cost and vice versa.
Proof. Using the definition of individual cost (Def. 1 in
[14]), the social cost can be written as:

SCost(S) = α
∑
ni∈V

∑
ck∈si

θ(|ck|)
|V |

+
∑
ni∈V

∑
q in Q(ni)

num(q,Q(ni))

num(Q(ni))

∑
nj /∈V (si)

r(q, nj)

The membership cost of SCost is equal to the first term
of WCost. Just consider that each cluster ck appears in
the sum of SCost as many times as the nodes that belong
to it, i.e., its size |ck|. The second term differs from the
second term of SCost only on how much the workload
of each node is taken into account. It is easy to see, that
if nodes get an equal part of the query workload, i.e.,
num(Q(ni)) = num(Q(nj)), for all nodes ni, nj ∈ V , the
recall parts of the two costs are proportional. Thus, we
deduce that improving one of the costs, also improves
the other.�

2 DERIVATION OF CASE STUDY RESULTS

Next, we provide the derivation of the results summa-
rized in Table 1 in [14].

In general, our game is an non-cooperative asymmet-
ric game. A game is asymmetric, if the values of the utility
function or payoff differ, if different players select the
same strategy. However, there are cases in which the
content and query distribution among the nodes is such
that the game is symmetric. For instance, the case where
there is no underlying clustering is a symmetric one. For
symmetric games, the following holds.

Observation 1: Let ni ∈ V be a node and si its optimal
strategy, that is, the strategy that minimizes the value
of its individual cost. If the game is symmetric for the
nodes in V , then si is also optimal for all nodes in V .

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Next, we define formally the three characteristic cases
presented in [14].
CASE I: NO UNDERLYING CLUSTERING. All nodes in V
are considered similar in the following sense:
∀ni, nj ∈ V , num(Q(ni)) = num(Q(nj)) = num(Q)/|V |

and ∀ q in Q, r(q, ni) = r(q, nj) = 1/|V |.
Note that in this case, our game becomes symmetric,
since all players yield the same payoffs when applying
the same strategy.
CASE II: SYMMETRIC SCENARIO. There are g
(g ≥ 1) disjoint groups of nodes of the same
size (|V |/g) such that the members of each group
offer and request content from the same category.
∀ ni nj in the same group, num(Q(ni)) = num(Q(nj))

and
∑

q in Q(nj)
num(q,Q(nj))
num(Q(nj))

r(q, ni) = g/|V |,
whereas

∀ ni, nj in different groups, Q(ni) and Q(nj) have
no queries in common and ∀q in Q(nj), r(q, ni) = 0.

CASE III: ASYMMETRIC SCENARIO. The shared content
again belongs to t (t > 1) different categories. However,
each node has content belonging to one category but
poses queries for content belonging to a single different
category. All categories have the same number of nodes
(i.e., |V |/t each) maintaining their content and querying
their content, i.e., |V |/t nodes are interested in (maintain)
data of type i for all 1 ≤ i ≤ t. Furthermore, all the nodes
that maintain (query) content from a category maintain
(query) the same portion of data of this category (i.e.,
t/|V |).

2.1 Stability

To determine whether a cluster configuration constitutes
a Nash equilibrium, we need to ensure that the indi-
vidual cost of each node is not smaller in any possible
configuration that can result from the current one by
changing only the strategy of this node (Ineq. (1) in [14]).
To restrict the number of potential configurations, we
rely on Lemmas 1 and 2 in [14].
CASE I: NO UNDERLYING CLUSTERING. We study the
following cluster configurations.
CASE(I.A) In this case, there is just one cluster and all
nodes belong to it. From Corollary 1 in [14], the only
way a node ni can change its strategy is by leaving this
cluster and forming a cluster of its own, since remaining
in the cluster and forming a cluster of its own does not
improve its individual cost.
CASE(I.B) In this case, there are |V | singleton clusters.
The only way for a node ni to change its strategy is to
leave its own cluster and join k other clusters, where
1 ≤ k ≤ |V | − 1.
CASE(I.C) The nodes form m non-overlapping clusters of
the same size |V |/m. Consider a node ni ∈ cj . The
available options for ni for changing its strategy are to:
(1) form a cluster of its own; (2) additionally to cj , join
k other clusters, where 1 ≤ k < m; or (3) leave cj and
join k other clusters.
CASE II: SYMMETRIC SCENARIO.

CASE(II.A) Same as Case (I.A).
CASE(II.B) The only option for ni is to join k other nodes
nj , 1 ≤ k ≤ |V | − 1 which belong either to the same
group as ni or to different ones. Since joining nodes from
different groups does not reduce its recall or membership
cost, a node only considers joining k nodes from its own
group, thus, k < |V |/g.
CASE(II.C) In this case, we consider m = g and that each
of the m clusters contains nodes of a single group. Then,
the individual node cost for each node ni ∈ V is equal to
its membership cost, since the cost for computing queries
outside its cluster is zero (there are no results for Q(ni)
in nodes not in V (si)). The only option for ni is to move
to a cluster of its own, since joining any other clusters
would not improve its recall or its membership cost.
CASE III: ASYMMETRIC SCENARIO.
CASE(III.A) Same as Case (I.A).
CASE(III.B) Similarly with Case (II.B), a node may join
k other nodes, 1 ≤ k ≤ |V |/t, that maintain content that
belongs to the same category as its queries.
CASE(III.C) In this case, the nodes form m = t(t − 1)/2
non-overlapping clusters of the same size 2|V |/t(t − 1)
such that half of the nodes in each cluster maintain
content belonging to category ti and pose queries for
category tj and the other half content of tj and queries
of ti. The options for a node are to: (1) leave its cluster
and form a cluster of its own, (2) leave its cluster and join
k other clusters or (3) additionally to its own cluster, join
k other clusters. Since from Lemma 2, the only clusters
a node may consider are the ones maintaining content
that it queries, 1 ≤ k < (t− 1)/2.

2.2 Social Optimum

We study whether the stable configurations that we have
previously considered achieve a social cost equal to the
social optimum. We can acquire a rough bound of the
social optimum by considering each node separately and
evaluating its individual cost over all possible configu-
rations. Then, by selecting for each node the minimum
individual cost and adding these values, we obtain a
bound for the minimum value of the social cost, i.e., for
the social optimum. This estimation may be far from the
actual value of the social optimum that can be achieved,
since we are adding together individual costs that may
correspond to different configurations and thus, the esti-
mated social cost may refer to a configuration that cannot
exist.

Lemma 3, in [14], allows us to reduce the number
of possible configurations we need to consider for each
node ni to determine the minimum individual cost it
may achieve. In particular, all configurations in which
ni belongs to more than one cluster do not have the
minimum cost.
No Underlying Clustering. Since the game is symmetric,
based on Observation 1, it suffices to minimize the
individual cost of any node ni. Furthermore, all config-
urations in which node ni belongs to clusters with equal

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

size yield the same individual cost for ni as its recall
loss and membership cost are equal regardless of the
particular subset of nodes that belong to the cluster.

Based on the above, we compare our stable config-
urations with all possible configurations in which a
node ni belongs to one cluster of size |V | − |V0|, where
0 < |V | − |V0| ≤ |V |.

Case (I.A), i.e., all nodes form a single cluster,
is stable for α ≤ |V |−1

θ(|V |)−θ(1) (Table 1 in [14]). We
compare the cost of Case (I.A) with all other possi-
ble configurations by considering a configuration such
that ni belongs to a cluster of size 1 ≤ |V | −
|V0| < |V |. We examine whether the individual cost
for ni for this configuration is larger or equal to
the corresponding cost for Case (I.A), that is whether

α θ(|V |)
|V | ≤ αθ(|V |−|V0|)−|V0|

|V | .
This holds when Case (I.A) is stable, i.e., for α ≤

|V |−1
θ(|V |)−θ(1) . Thus, we determine that when Case (I.A) is
stable, the cost of the configuration is optimal. Analo-
gously, Case (I.B) is stable and has a cost equal to the
social optimum for α ≥ k

kθ(2)−θ(1) . Case (I.C) has a cost
equal to the social optimum when the corresponding
conditions in Table 1 in [14] hold for (I.C) to be stable.
For this α, all three configurations have the same optimal
cost.
Symmetric Scenario. In this case, any configuration that
includes clusters with nodes from more than one group
does not have an optimal cost, since its cost can be
reduced if the cluster is split by separating the nodes
from the different groups. Therefore, in this case we
consider only configurations with 0 < |V | − |V0| ≤ |V |/g.

For all α > 0, Case (II.A) does not have cost equal
to the social optimum, since it includes nodes from
different groups in one cluster, while (II.B) has cost equal
to the social optimum for α ≥ kg

kθ(2)−θ(1) , and (II.C) for

a ≤ |V |−g
θ(|V |/g)−θ(1) .

Asymmetric Scenario. Similarly to the symmetric sce-
nario, we consider configurations with 0 < |V | − |V0| ≤
|V |/t+ 1.

Case (III.A) does not have a cost equal to the social
optimum for any α > 0, because as in (II.A), separating
the different groups results in a configuration with lower
social cost. Case (III.B) has cost equal to the social
optimum for α ≥ kt

kθ(2)−θ(1) . Finally, Case (III.C) does
not have a cost equal to the social optimum for any
α > 0, since, if, we remove from the cluster of node
ni the |V |

t(t−1) − 1 nodes that maintain content of the
same category as the content of ni, its individual cost
is improved.

2.3 Load Balance

All three cases are by their definition (0)-size balanced,
since all clusters contain the same number of nodes.
No Underlying Clustering. From Observation 1 in [14],
Case I is also (0, 0)-load balanced, since the content and
the query workload is distributed uniformly among all
nodes. Let us study whether a configuration with non

equal sized clusters is stable. To this end, we consider
Case (I.D), that extends Case (I.C), by assuming a con-
figuration of m non-overlapping clusters each with a
different size |ck|, 1 < |ck| < |V |, 1 ≤ k ≤ m. For this case
to correspond to a Nash equilibrium, we have ∀ni ∈ ck,
∀k′ �= k:

α(θ(|ck|) − θ(|ck′ |)) ≤ |ck| − |ck′ | (1)

Since θ is increasing monotonously, it also holds that:
θ(|ck|)−θ(|ck′ |)
|ck|−|ck′ | = 1/α

In the general case, there may be stable configurations
with non equal sized clusters depending on θ and the
value of α. Thus, all stable configurations are not neces-
sarily size or load balanced. According to Ineq. (1), we
can evaluate the appropriate δ, δq and δr.
Symmetric and Asymmetric Scenario. Case (II.C) and
(III.C) are (0)-size balanced but not (0, 0)-load balanced,
unless the total amount of query workload and content
of each of the g and t categories respectively is the same.
For Case (II.C), since each cluster maintains content from
a single category and queries content only of the same
category, we may consider each cluster separately. By
partitioning each cluster to m non-overlapping clusters,
we obtain results similar to Case (I.D). For Case (III.C),
we derive the same results, if we split each of the t(t−
1)/2 clusters in m sub-clusters, so that in each of the
created sub-clusters half of the nodes maintain content
belonging to category ti and pose queries for category
tj and the other half content of tj and queries of ti.

Algorithm 1 Coordinated Protocol
|V |: number of nodes, C = {c1, . . . , cn}: cluster set, R =
{r1, . . . , rn}: cluster representatives

1: for all global events do
2: for all ri ∈ R do
3: send a game initialize request to all nj ∈ ci
4: for all nj ∈ V do
5: evaluate gain(nj)
6: select randomly one of the representatives r′j , nj

has received a request from
7: send to r′j an update request with gain(nj) for Snew
8: end for
9: send all update requests to all other rk ∈ R

10: sort update requests in non-increasing order of gain
11: end for
12: for all gain(nj) within K% of the list do
13: nj updates its strategy from scur to snew
14: end for
15: end for

3 THE COORDINATED PROTOCOL IN DETAIL

We now describe in detail the coordinated protocol where
one node ri at each cluster ci serves as a cluster repre-
sentative.

The protocol is presented in Alg. 1. Unlike the basic
uncoordinated protocol, the coordinated one is triggered
by any global event. In particular, the representatives are
the ones that initiate the game after becoming aware of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

some event (line 1), by sending initialization requests
to the nodes in their clusters (lines 2-3). Each node nj
re-evaluates its gain by considering all possible configu-
rations Sj that differ only in sj (line 5). Let Snew be the
configuration with the best gain for nj . Node nj sends
an update request to one representative r′j along with
the corresponding gain. The representative r′j is selected
randomly from the cluster representatives from which
nj has received an initialization request (lines 6-7). All
update requests made by individual nodes are gathered
by the representatives and exchanged among them so
that each representative has all the requests (line 9). All
requests are ordered by non-increasing value of gain
(line 10) and the overall top-K percentage of them is
granted (lines 11-13).

4 ADDITIONAL EXPERIMENTS

In this section, we present a number of additional ex-
periments. First, let us present in detail our model. Each
node is associated with a data category j and maintains
documents belonging to it. The local query workload of
each node is generated by first selecting a data category
with probability P (j) following a zipf distribution, and
then a document d from this category with probability
P (d, j) following another zipf distribution within each
category. The use of the zipf distribution in both cases
assures that the derived query workload is such that
popular data categories have more nodes interested
in them and also popular documents also have more
queries directed at them. We define Pni∈l(d, j) as the
probability of node ni associated with category l posing
a query about document d of category j as:

Pni∈l(d, j) =

{
(1 − L)P (d, j), l �= j

((1 − L) + L/P (j))P (d, j), l = j

The use of Pni∈l(d, j) enables us to favor the data
category l node ni belongs to when generating its query
workload, that is, increase the probability that a query is
directed to a document of its own category by a factor
of (L/P (j)) ∗ P (d, j). Parameter L which controls this
factor is the measure of interest-based locality [25]. When
L = 0 the category of the node is independent of the
category of its query workload, i.e., there is no locality
in its interests. Whereas, when L = 1 all queries belong
to the same category as the node’s content.

We consider three scenarios which correspond to the
case studies we have studied theoretically. In the sym-
metric scenario, corresponding to CASE II, L = 1 and
both queries and documents of each node belong to
the same category. In the asymmetric scenario correspond-
ing to CASE III, L = 1 but for a j �= l which is
selected randomly from the remaining categories. That
is, each node has documents from one category but poses
queries for a single different category. The symmetric
scenario exhibits maximum interest-based locality, while
the asymmetric none. Finally, in the random scenario (no
underlying clustering) corresponding to CASE I, L = 0.

TABLE 1: Workload cost for cluster formation
WCost

FK SSR FSR
Symmetric Scenario

i 10.04 10.14 10.12
ii 10.34 10.46 10.51
iii(a) 10.19 11.21 11.26
iii(b) 11.09 11.41 11.53
iii(c) 10.21 10.78 11.08
iv 10.09 10.09 10.09
v 10.09 10.09 10.09

Asymmetric Scenario
i 914.05 978.45 976.12
ii 919.35 1015.91 927.32
iii(a) 918.2 1002.20 1050.10
iii(b) 922.25 1018.46 998.01
iii(c) 918.95 1014.12 1023.75
iv 924.25 1048.07 1043.25
v 918.75 1022.25 1018.16

Random Scenario
i 11.33 11.33 11.33
ii 11.33 11.33 11.33

In this case, there is no interest-based locality and for
each node, both its documents and queries are uniformly
distributed from all categories.

4.1 Sensitivity Analysis

We first present experiments evaluating the behavior of
the protocol with respect to the other tuning parameters
besides the stopping condition ε, i.e., the threshold gain
value lower than which a node does not issue any cluster
update requests. To achieve a fair comparison between
all protocols, we set for the experiments in this set
ε = 10−2, since, as depicted in Fig. 2a and Fig. 2b in
[14], the uncoordinated protocol with monitoring does
not converge for smaller values.

For both protocols with FK, a smaller Pu reduces the
number of moves, but increases the time it takes to reach
stability since each node does not move every time it
plays (Fig. 1a). In general, with partial knowledge, a
larger Pu is required for ensuring that stable states are
discovered within a reasonable amount of moves. Also,
decreasing the update probability does not always guar-
antee that the number of moves is reduced. For example,
both FSR and SSR require more moves for Pu = 0.1 than
for 0.2. This is because if a node misses the opportunity
to move to an appropriate cluster when it becomes aware
of it, it may move to other suboptimal clusters many
times before finding again the appropriate one. A similar
behavior is achieved by tuning the batch size. Using quota
in combination with the update probability reduces the
overhead further (Fig. 1b).

An advantage of the tuning parameters is that they
can be set on a per node basis. Observing the processing
and communication overhead caused by its moves along
with the associated fluctuations in its utility function,
each node can tune the values of the parameters in-
dependently of the other nodes. For example, a high
individual cost may cause the node to decrease its value
of ε, while a large overhead to increase it. Similarly, if a
node notices too many moves, it may decrease its update
probability or quota, or if the node wants to react faster
to changes, it may increase either or both of them.

The values reported in Fig. 2a and Fig. 2c in [14]
comparing the uncoordinated with the coordinated pro-
tocol correspond to the value of the social cost, when

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ov

es
 p

er
 n

od
e

probability

(a)

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0 2 4 6 8 10 12 14 16

m
ov

es
 p

er
 n

od
e

quota

 unc-FK
 unc-FSR
 unc-SSR
 mon-FK

 mon-FSR
 mon-SSR

(b)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 0.5 1 1.5 2 2.5 3 3.5

co
st

moves per node

SCost-FK
SCost-FSR
SCost-SSR
WCost-FK

WCost-FSR
WCost-SSR

(c)

Fig. 1: (a) Varying update probability, (b) varying quota and (c) workload cost vs social cost.

900

1000

1100

1200

1300

1400

1500

1600

1700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

so
ci

al
 c

os
t

Κ

mech-FK
no-mech-FK

mech-FSR
no-mech-FSR

mech-SSR
no-mech-SSR

Fig. 2: Coordinated protocol: effect of mechanism.

the system stabilizes. We have also studied how the
value of the social cost changes as the game progresses
(Fig. 2). At the first steps of the game, the coordinated
protocol reduces the social cost more drastically than the
uncoordinated ones. The reason is that the coordinated
protocol uses a mechanism by which the update requests
of all nodes are ordered according by non increasing
value of gain before granting the top-K percentage of
them. This mechanism (mech) favors the most cost influ-
encing nodes by granting their requests first, while the
uncoordinated protocols treat all nodes as equals. Com-
pared to not using this mechanism with the coordinated
protocol (no-mech), and instead selecting randomly the
K percentage of all requests that are granted, the use of
the mechanism reduces the average social cost per step
up to 10% (Fig. 2c in [14]).

4.2 Cluster Formation

We extend the evaluation of the cluster formation by
including the workload cost in our measures (Table 1).

For the asymmetric scenario, since queries are not
uniformly distributed among nodes, the social and the
workload cost exhibit the larger differences. We consider
how the two measures progress as the nodes make more
moves. By adjusting the update probability Pu according
to the node’s demand levels, the workload cost (WCost)
is reduced faster, while the social cost (SCost) that
considers all nodes as equals decreases linearly (Fig. 1c)
with the number of moves.

4.3 Updates

We first consider additional query workload update sce-
narios. In WSc2, k existing categories become popular,
and in WSc3, k categories cease to be popular, i.e.,

are not queried anymore. In general, update scenarios
that tend to form non uniform clusters, such as WSc1
where all update requests target the cluster(s) containing
one specific data category, perform slightly worse than
scenarios with requests evenly distributed among more
clusters (WSc2).

We also consider updates of both the workload and the
content. Such updates are common, since changes in the
workload of a node, often entail changes in its content,
i.e., if a node becomes interested in a new data category,
then it will gradually acquire data of this category. At
first, such an update increases the social cost as there
are not enough data to satisfy the query workload of
the updated nodes (Fig. 3c). Gradually, as they change
more of their data, the updated nodes form a new cluster,
thus, reducing the social cost.

We now consider topology updates, i.e., nodes joining
and leaving the system. When new nodes join the sys-
tem, they initially increase the social cost. New nodes
that enter the system pose queries by contacting a few
random nodes of the system they have become aware of
while entering. As they acquire results for their queries,
the new nodes are gradually informed about the clusters
in the system. Thus, by re-evaluating their individual
cost based on the new knowledge they acquire with
time, they select an appropriate cluster to join (Fig. 3d).
The lack of knowledge does not significantly affect this
scenario as all nodes operate with partial knowledge in
the beginning regardless of the protocol variation used;
FK is only marginally faster.

When nodes leave the system, the social cost is re-
duced as the number of nodes is reduced. The individual
node cost is not affected significantly in this case, i.e.,
the average individual node cost remains around the
same, as results that belonged to nodes that have left the
system are not considered as recall loss. No immediate
adaptation is required but if a large percentage of the
members of a specific cluster leave then the individual
cost of its members may be more drastically affected.
The remaining members may move to improve recall,
or nodes from other clusters may move to this cluster
due to its low membership cost.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0 1 2 3 4 5 6 7 8

so
ci

al
 c

os
t

moves per node

FK
FSR
SSR

(a)

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8

so
ci

al
 c

os
t

moves per node

 FK
 FSR
 SSR

(b)

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

moves per node

FK
FSR
SSR

(c)

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

moves per node

 10%-FK
 25%-FK
 50%-FK

 10%-FSR
 25%-FSR
 50%-FSR
 10%-SSR
 25%-SSR
 50%-SSR

(d)

Fig. 3: Updates: (a) WSc2 and (b) WSc3 with moves, (c) workload and content and (d) nodes joining.

2
3
4
5
6
7
8
9

10
11

0 0.05 0.1 0.15 0.2 0.25 0.3

m
ov

es
 p

er
 n

od
e

ε

FSR-20
FSR-50
FSR-80

(a)

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2 0.25 0.3

m
ov

es
 p

er
 n

od
e

ε

SSR-20
SSR-50
SSR-80

(b)

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

m
ov

es
 p

er
 n

od
e

refresh period

FSR-20
FSR-50
FSR-80

(c)

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 50 100 150 200 250 300 350

so
ci

al
 c

os
t

turns

SSR-rand
SSR-biased

(d)

Fig. 4: (a) FSR, (b) SSR, (c) varying refresh period and (d) biased routing.

4.4 Degree of Local Knowledge

In the last set of experiments, we study the influence
of the lack of full knowledge further by considering
different degrees of knowledge for FSR and SSR. We
use the setting of the first set of experiments, i.e., an
asymmetric scenario with an initial configuration where
each node forms a cluster of its own.

We first consider FSR protocols with C(ni) corre-
sponding to 20%, 50% and 80% of Ccur, while we fix the
refresh period at 10 queries and measure the overhead
in terms of moves for varying ε (Fig. 4a). The larger
percentage C(ni) covers, the less moves are required to
reach stability. Thus, lower ε values are appropriate that
also reduce the social cost for the same number of moves.

Similarly for SSR, we consider protocols such that
C(ni) and RC(q, ni) for each query q and each node ni
vary from 100%-20%, 100%-50% and 100%-80%. Figure
4b illustrates the social cost for each protocol. C(ni) is
fixed to 100% of Ccur to attain a fair comparison with
FSR so that the corresponding protocols entail the same
routing overheads. SSR reaches a stable state with less
moves than FSR, but the social cost is slightly higher for
the same ε. By selecting for SSR lower values for ε, we
may achieve a social cost similar to the one in FSR, but
with an increased number of moves. If we also decrease
the percentage of clusters C(ni) covers, the performance
of SSR becomes worse compared to FSR, but the routing
cost for each query is reduced.

We also study how the refresh period affects FSR by
varying it from 1 to 20 queries. For small periods (< 5),
the protocols behave similarly to a corresponding SSR,
while for a period equal to 1, FSR becomes the corre-
sponding SSR (Fig. 4c). With respect to the social cost,
as the period increases, we have a slight improvement

as the protocols evaluate more representative values for
each cluster they are aware of.

Finally, we study using bias in SSR when selecting
R(ni, q). We utilize a zipf distribution based on previous
query results to select R(ni, q) (SSR-biased) and compare
it to a protocol with randomly selected R(ni, q) (SSR-
rand). We consider a 100%-50% SSR variation and mea-
sure the social cost for progressing turns (Fig. 4d). The
social cost is improved compared to a random selection
but the turns required are almost 10 times more.

4.5 Confidence Intervals

In all experiments, we report the average value of 100
runs with different initial configurations so as to cope
with statistical errors. To gain a better understanding
of the variance our results exhibit, we also measured
confidence intervals for the mean values of our runs with
95% confidence.

In general, we do not observe large intervals, while
the most variation is exhibited with partial knowledge
where the initial configuration influences our results
more. The worst case for the measured social cost ap-
pears in the cluster formation experiment when using
random clustered topologies as our initial configuration
(case iii) and partial knowledge (Table 2 in [14] and
Table 1). In this case, the social cost varies between a
[1031.205, 1031.265] with 95% confidence. The number
of clusters in the same experiment is the measure that
exhibits the greatest variance within an [41, 46] interval.
The other measures behave similar to the social cost, i.e.,
the worst case for the number of moves per node is an
[2.693, 3.112] interval and similarly for the workload cost
the length of the interval does not exceed 0.5. For δs,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

we observe even smaller fluctuations, with intervals of
length in the order of 10−2.

5 ADDITIONAL RELATED WORK

There has been a lot of research regarding network
creation games. In [19], the authors show that allowing
nodes to act completely freely performs much worse
than collaboration, and prove that even a static p2p
system of selfish nodes may never reach convergence.
This result agrees with our findings that show that only
in specific scenarios, we reach stability. [6] considers
the optimal topology in terms of the social cost for a
variation of the game where the cost includes: (a) the
cost to locate an item expressed in number of hops, (b)
a constant cost of servicing a request, (c) the cost to route
a request as the number of paths to the servicing node
and (d) the cost to maintain the overlay in terms of the
number of neighbors of the node.

On another note, in this paper, we have studied
partial knowledge experimentally. There has been some
very recent work on modeling partial knowledge using
Bayesian games [1]. In a Bayesian game, agents have
only a local view of the system and cannot coordinate
their actions on the global state of the system. The lack
of the global view is referred to as Bayesian ignorance.
An interesting direction would be to define our cluster
game as a Bayesian one and use Bayesian ignorance to
quantify the effect of partial knowledge theoretically. An
importance difference is that in our case, the local view
of an agent (i.e., node) includes some partial knowledge
of the strategies of the other agents in its cluster.

There has been also a large body of research on the
formation of clustered overlays in p2p systems towards
efficient query processing. In most cases, the focus is on
cluster formation, while the adaptation of the overlay is
not addressed. None of the proposed clustering methods
takes a game-theoretic approach.

In [2], nodes are partitioned into topic segments based
on their content. A fixed set of M clusters with cen-
troids that are globally known is assumed, each one
corresponding to a topic segment. Clusters are formed in
[27] based on the semantic categories of the data of the
nodes; the semantic categories are predefined. Similarly,
[8] assumes predefined classification hierarchies based
on which queries and data are categorized. Instead of
predefined categories, [11] uses a learning approach that
by generalizing the shared data, learns the semantic cat-
egories they belong to and then uses those for clustering.
In [4] the clustering process takes into account besides
predefined semantic categories also the proximity of
the nodes in the physical network to improve routing
efficiency inside a cluster, but relies on the use of super-
peers that act as cluster leaders.

In [15], clustering is based on data schemas and pre-
defined policies provided by human experts. Clustering
based on the similarity of schemas globally known is also
used in [21], in which a two step approach incrementally

forms semantic clusters by first appointing new peers
to the most similar clusters and then enabling them to
choose the most similar neighbors. In [9], clustering is
first applied on the documents of each node, and then re-
cursively on the derived feature vectors by selected node
representatives. While this approach does not assume
predefined categories, it still requires the use of cluster
representatives unlike our uncoordinated protocol.

Besides clustering based on the content of nodes,
clustering based on other common features, such as the
interests of nodes [13], is possible. In [7], nodes maintain
sets of guide rules, which are formed by the users
either explicitly based on their interests, or implicitly
through query history, thus defining semantic clusters.
A somewhat different approach to clustering is taken
in pSearch [26] that maps node documents on a DHT,
based on their term vectors and exploiting only the most
important terms. Thus, semantically related documents
are “clustered” in the DHT, limiting the search space.

In [12], a supernode-based architecture is proposed in
which nodes with common interests are organized based
on their caches. The paper exploits the idea of [25], and
since it is based on caches it implicitly addresses the
issue of cluster adaptation, but does not focus on it.
Cache sharing in conjunction with methods for summa-
rizing the cache content for efficient searching have been
shown to improve performance in many distributed
settings [10]. A work that focuses on adaptation issues is
presented in [22], in which different rewiring techniques
for the adaptation of semantic links are investigated. The
work is complementary to our own as it focuses on the
routing protocols utilized to discover new peers, which
is an issue orthogonal to our game protocol.

Yet another example of clustering in p2p systems
is that induced by the tit-for-tat of choking algorithm
used as the peer selection algorithm in the BitTorrent
protocol [16]. The BitTorrent protocol has established
swarming, i.e., parallel download of a file from mul-
tiple peers with concurrent upload to other requesting
peers. Experimental results have demonstrated that the
choking algorithm leads to the formation of clusters of
peers that have similar upload capacities among the
torrents, i.e., those peers cooperating to load the same
content. The properties of BitTorrent are used in [24] to
support n-way broadcasting where each one of n overlay
nodes must push a file to all other n-1 peers, as well
as pull the n-1 files pushed by these other peers. An
optimized overlay is constructed upon which swarming
is performed. Each node selects other nodes to be in its
peer-set and establishes connections to them so that to
maximize either the available bandwidth to the slowest
destination (max-min) or the aggregate output rate (max-
sum).

An interesting approach where peers in unstructured
p2p use erasure coding is presented in [18]. Files are split
into equally sized pieces (chunks). Peers are responsible
for establishing bi-directorial links to the peers storing
chunks of their data. A peer that needs to store chunks

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

is required to offer storage space of similar size. There
is a global rank of peers based on their quality (on
line availability and bandwidth capacity) and amount of
resources they provide, called profile. A non-cooperative
game introduced where peers selfishly choose to estab-
lish links with remote peers with good quality and also
minimize the cost they bear for storing copies. Again,
it is proved that the system reaches an equilibrium
when it is stratified, i.e., clustered in the following sense:
peers with similar profiles cooperate by building bi-
lateral links with each other. Similarly, data availability
is studied in [23], in a distributed data storage system
where instead of erasure coding, whole files are repli-
cated among the peers. The problem is studied for both
a centralized and a decentralized scenario by modeling
selfish peers that aim to maximize their data availability,
while minimizing the amount of others data they store.
The results for the decentralized case show the formation
of implicit clusters as peers replicate only with similarly
available peers.

Besides clustering, other approaches to improve search
in unstructured p2p systems include replication as well
as more efficient searching than flooding such as random
walks; which are issues not addressed in this paper.
In this context, various approaches have been proposed
(e.g., [5], [17]).

Finally, another interesting form of overlay networks
are those formed to connect publishers and subscribers
in publish/subscribe systems. In publish/subscribe sys-
tems, subscribers express their interests in specific pieces
of information often described as topics and get noti-
fied when publishers produce items that match their
interests. Clustered overlays have been proposed to im-
prove the performance of such systems. For example, [3]
proposes a distributed clustering algorithm that utilizes
correlations between user subscriptions to dynamically
group topics together into virtual topics or topics clus-
ters. It would be interesting to apply a game theoretic
approach to clustered overlays in this setting as well.

Besides modeling clustered overlays, a game-theoretic
approach could be applied to consider other types of
publish/subscribe overlay networks as well. For in-
stance, [20] considers the following problem in this area:
given a collection of nodes and their topic subscriptions,
connect the nodes into a network with low average and
maximum degree such that for each topic, the network
induced by the nodes (i.e., subscribers) interested in this
topic is connected. A polynomial time parameterized
sublinear approximation algorithm is proposed for this
problem.

APPENDIX

Lemma 1 in [14]: In any stable cluster configuration, there
are no clusters ci, cj such that ci ⊆ cj , i �= j.
Proof. Let S be a cluster configuration and ci, cj two
clusters in C such that ci ⊆ cj . Consider a node nk,
nk ∈ ci. Clearly, nk ∈ cj . Let the individual cost of

nk be: icost(nk, S) = αγ + δ, where γ is the mem-
bership cost for nk when following strategy sk ∈ S
and δ the respective recall it loses from the nodes that
do not belong to V (sk). Assume for the purposes of
contradiction that S is a stable configuration, then nk
can not select a strategy that would reduce its cost. Let
us examine the strategy s′k = sk − {ci}. Let S ′ be the
configuration resulting by replacing sk with s′k in S.
Then, icost(nk, S′) = α(γ − θ(|ci|)

|V | + δ) < icost(nk, S).
The recall part of the cost function remains the same,
because V (sk) = V (s′k). Thus, nk can reduce its cost by
selecting the strategy s′k, and therefore S is not stable,
which contradicts our assumption.�

Lemma 2 in [14]: For any strictly increasing function
θ, there is no stable configuration in which ∃ci, |ci| > 1,
ci ∈ sj and

∑
q in Q(nj)

∑
nk∈ci r(q, nk) = 0.

Proof. Let S be a cluster configuration, nj a node and
ci a cluster of size |ci| > 1, such that ci ∈ sj and∑

q in Q(nj)

∑
nk∈ci r(q, nk) = 0. If sj={ci}, ni can improve

icost(ni, S) by moving to a cluster of its own, since
θ(|ci|) > θ(1) and the recall loss remains the same. If
ci ⊂ sj , ni can improve icost(ni, S) by selecting strategy
s′j = sj − {ci}, which reduces its membership cost
without affecting its recall loss. Thus, S is not stable.�

Proposition 1 in [14]: A pure Nash equilibrium does not
always exist for the cluster formation game.
Proof. Let us consider a simple scenario of two nodes
n1 and n2. Let us denote as r21 the results of Q(n1)
maintained by n2, and r12 the results of Q(n2) main-
tained by n1, 0 ≤ r21, r12 ≤ 1. Let C = {c1, c2} be the
clusters in the system. Using Lemma 1, the following
cluster configurations are possible: n1 ∈ c1 and n2 ∈ c2,
described by S1 = {{c1}, {c2}}, n1 ∈ c2 and n2 ∈ c1,
described by S2 = {{c2}, {c1}} and both n1, n2 ∈ c1 or
c2 described by S3 = {{c1}, {c1}} and S4 = {{c2}, {c2}},
respectively. Table 2 summarizes the payoff (cost) table
for this two-player game. Since configurations S1 and S2

are symmetric, let us examine the first one. If n1 moves
to cluster c2, then the system configuration becomes
{{c2}, {c2}}, that is, configuration S4, and the cost for
both n1 and n2 becomes αθ(2)

2 . Therefore, if αθ(2)
2 <

αθ(1)+2r21
2 , or αθ(2)

2 < αθ(1)+2r12
2 , then configuration S1

is not a Nash equilibrium. Let us consider now the con-
figuration S3 (S4 is symmetric) where both nodes belong
to the same cluster. If n1 moves to an empty cluster then
its cost becomes αθ(1)+2r21

2 . Thus, as with S1, S3 is not
a Nash equilibrium if αθ(1)+2r21

2 < αθ(2)
2 or αθ(1)+2r12

2 <
αθ(2)

2 . Based on these observations we can deduce that
for min (r12, r21) <

a
2 (θ(2) − θ(1)) ≤ max (r12, r21) none

of the four possible configurations is stable, and thus, a
Nash equilibrium does not exist.
For instance, if we consider the worst case for the θ
function is the linear function, in which case, we have
that for α such that min (r12, r21) <

a
2 < max (r12, r21),

the two player game has no Nash equilibrium. �
Lemma 3 in [14]: Let θ be a function such that for any x,

xj ∈ N , 1 ≤ j ≤ k, if x <
∑k

j=1 xj ⇒ θ(x) <
∑k

j=1 θ(xj),

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TABLE 2: Payoff table

n2 joins c1 n2 joins c2
n1 joins c1 αθ(2)

2
,αθ(2)

2
αθ(1)+2r21

2
,αθ(1)+2r12

2

n1 joins c2 αθ(1)+2r21
2

,αθ(1)+2r12
2

αθ(2)
2

,αθ(2)
2

then for any node ni, a configuration S with minimum
icost(ni, S) is such that ni belongs to just one cluster.
Proof. Let S be a configuration where a node ni belongs
to l > 1 clusters of sizes |c1|, |c2|, . . . , |cl| and θ a function
such that if x <

∑k
j=1 xj ⇒ θ(x) <

∑k
j=1 θ(xj). In this

case, the membership cost of ni for S is always larger
than the membership cost for a configuration S′ where
ni belongs to a single cluster that includes the union of
the nodes of clusters c1 to cl. Since the recall cost of ni
for S′ is the same as for S, icost(ni, S′) < icost(ni, S). �
REFERENCES

[1] N. Alon, Y. Emek, M. Feldman, M. Tennenholtz. Bayesian igno-
rance. In PODC, 2010.

[2] M. Bawa, G. Manku, and P. Raghavan. SETS: Search enhanced
by topic segmentation. In SIGIR, 2003.

[3] R. Boim and T. Milo. Enriching topic-based publish-subscribe
systems with related content. In SIGMOD, 2008.

[4] J. Bo. Heterogeneity-Aware Group-Based Semantic Overlay Net-
work for P2P Systems. In WISM, 2009.

[5] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker.
Making gnutella-like P2P systems scalable In SIGCOMM, 2003.

[6] N. Christin and J. Chuang. On the cost of participating in a peer-
to-peer network. In IPTPS, 2004.

[7] E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer to
peer networks: Harnessing latent semantics. In INFOCOM, 2003.

[8] A. Crespo and H. Garcia-Molina. Semantic overlay networks for
p2p systems, Technical Report, Computer Science Department,
Stanford University, 2002.

[9] C. Doulkeridis, K. Norvag, and M. Vazirgiannis. Desent: de-
centralized and distributed semantic overlay generation in p2p
networks. JSAC, 25(1):25–34, 2007.

[10] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache:
a scalable wide-area web cache sharing protocol. In IEEE/ACM
Trans. Netw. 8(3): 281-293, 2000.

[11] A. Fast, D. Jensen, and B. N. Levine. Creating social networks to
improve peer-to-peer networking. In KDD, 2005.

[12] P. Garbacki, D. H. J. Epema, and M. van Steen. Optimizing peer
relationships in a super-peer network. In ICDCS, 2007.

[13] M. Khambatti, K. Ryu, and P. Dasgupta. Efficient discovery of
implicitly formed peer-to-peer communities. IJPDSN, 5(4):155–
164, 2002.

[14] G. Koloniari and E. Pitoura. A game theoretic approach to the
formation of clustered overlay networks. Main paper.

[15] A. Loser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Se-
mantic overlay clusters within super-peer networks. In DBISP2P,
2003.

[16] A. Legout, N. Liogkas, E. Kohler and L. Zhang. Clustering and
sharing incentives in BitTorrent systems. In SIGMETRICS, 2007.

[17] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In ICS, 2002.

[18] P. Michiardi and L. Toka. Selfish neighbor selection in peer-to-
peer backup and storage applications. In Euro-Par, 2009.
endthebibliography

[19] T. Moscibroda, S. Schmid, and R. Wattenhofer. On the topologies
formed by selfish peers. In PODC, 2006.

[20] M. Onus and A. W. Richa. Parameterized maximum and average
degree approximation in topic-based publish-subscribe overlay
network design. In ICDCS, 2010.

[21] W. Penzo, S. Lodi, F. Mandreoli, R. Martoglia, and S. Sassatelli.
Semantic peer, here are the neighbors you want! In EDBT, 2008.

[22] P. Raftopoulou, E.G.M. Petrakis, and C. Tryfonopoulos. Rewiring
strategies for semantic overlay networks. JDPD 26: 181-205, 2009.

[23] K. Rzadca, A. Datta, and S. Buchegger. Replica placement in p2p
storage: complexity and game theoretic analyses. In ICDCS, 2010.

[24] G. Smaragdakis, A. Bestavros, N. Laoutaris, J. W. Byers, P.
Michiardi and M. Roussopoulos. Swarming on optimized graphs
for n-way broadcast. In INFOCOM, 2008.

[25] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content
location using interest-based locality in peer-to-peer systems. In
INFOCOM, 2003.

[26] C. Tang and Z. Xu and M. Mahalingam. pSearch: information
retrieval in structured overlays. Computer Communication Review,
33(1):89–94, 2003.

[27] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos.
Towards high performance peer-to-peer content and resource
sharing systems. In CIDR, 2003.

