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Abstract. Peer-to-peer systems are gaining popularity as a means to effectively share 
huge, massively distributed data collections. In this paper, we consider XML peers, 
that is, peers that store XML documents. We show how an extension of traditional 
Bloom filters, called multi-level Bloom filters, can be used to route path queries in 
such a system. In addition, we propose building content-based overlay networks by 
linking together peers with similar content. The similarity of the content (i.e., the 
local documents) of two peers is defined based on the similarity of their filters. Our 
experimental results show that overlay networks built based on filter similarity are 
very effective in retrieving a large number of relevant documents, since peers with 
similar content tend to be clustered together. 
 

1 Introduction 

Peer-to-peer (p2p) computing refers to a new form of distributed computing that 
involves a large number of autonomous computing nodes (the peers) that cooperate to 
share resources and services [17]. P2p systems are gaining popularity as a way to 
effectively share huge, massively distributed data collections.  

In this paper, motivated by the fact that XML has evolved as the new standard for 
data representation and exchange on the Internet, we assume that peers store XML 
documents: either XML files that they want to share or XML-based descriptions of 
the resources and services that they offer. We extend search in p2p, by considering 
path queries that explore the structure of such hierarchical documents.  

Bloom filters have been proposed for summarizing documents (e.g., in [3]). 
Bloom filters are compact data structures that can be used to support membership 
queries, i.e., whether an element belongs to a set. In [9], we have introduced multi-
level Bloom filters that extend traditional simple Bloom filters for answering path 
queries. 

We show how multi-level Bloom filters can be used to route queries in a p2p 
system. Each peer maintains a summary of its content (i.e., local documents) in the 
form of a multi-level Bloom filter. It also maintains one merged multi-level Bloom 
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filter for each of its links summarizing the content of all peers that can be reached 
through this link. Using such merged filters, each peer decides to direct a query only 
through links that may lead to peers with documents that match the query. For 
scalability reasons, we limit the number of peers that are summarized through the 
concept of horizons. We also propose a heuristic for choosing through which among 
more than one qualifying link to route the query. 

Furthermore, we show how Bloom filters can be used to build content-based 
overlay networks, that is, to link together peers with similar content. The similarity of 
the content (i.e., the local documents) of two peers is defined based on the similarity 
of their filters.  This is cost effective, since a filter for a set of documents is much 
smaller than the documents themselves. Furthermore, the filter comparison operation 
is more efficient than a direct comparison between sets of documents. Our 
experimental results show that overlay networks built based on filter similarity are 
very effective in retrieving a large number of relevant documents, since relevant peers 
tend to be clustered together. 

In summary, this paper makes the following contributions: 
 
• Extends keyword queries  in p2p to path queries by proposing multi-level 

Bloom-based filters, 
• Shows how traditional and multi-level Bloom filters can be used to search in 

a horizon-based distribution and proposes a search heuristic based on the 
characteristics of Bloom  filters, 

• Proposes building content-based overlay network, where a peer connects to 
peers with similar content where similarity is based on the similarity of their 
filters. Such networks are shown to be very effective in retrieving a large 
number of relevant documents. 

 
The remainder of this paper is structured as follows. Section 2 describes the 

system model, our multi-level Bloom filters and filter distribution using horizons. 
Section 3 introduces the two different overlay network organizations based on 
proximity and content-similarity criteria and our similarity metric. Section 4 presents 
our experimental results. In Section 5, we compare our work with related research and 
we conclude in Section 6 with directions for future work.  
 
2 Multi-Level Bloom Filters as P2P Routers 
 
2.1 System Model  
 
We consider a system of peers where each peer ni maintains a set of documents Di (a 
particular document may be stored in more than one peer).  Each peer is logically 
linked to a relatively small set of other peers called its neighbors. Motivated by the 
fact that XML has evolved as the new standard for data representation and exchange 
on the Internet, we assume that peers store XML files: XML documents that they 
want to share or XML-based descriptions of the available local services and 
resources. 

In our data model, an XML document is represented by an unordered-labeled tree, 
where tree nodes correspond to document elements, while edges represent direct 



     

element-subelement relationships. Although, most p2p systems support only queries 
for documents that contain one or more keywords, we want also to query the structure 
of documents. Thus, we consider path queries that are simple path expressions in an 
XPath-like query language.  

 
Definition 1 (path query): A simple path expression query of length p has the form 
“s1 l1 s2 l2 . . . sp lp” where each li is an element name and each si is either / or // 
denoting respectively parent-child and ancestor-descendant traversal. 
 

A keyword query searching for documents containing keyword k is just the path 
query //k. For a query q and a document d, we say that q is satisfied by d, or match(d, 
q) is true, if the path expression forming the query exists in the document. Otherwise 
we have a miss. 

A given query may be matched by documents at various peers. To locate peers 
with matching documents, we maintain at each peer specialized data structures called 
filters that summarize large collections of documents reachable from this peer. The 
aim is to be able to deduce whether there is a matching document along a particular 
link by just looking at the filter. To this end, each filter F(D) that summarizes a set of 
documents D should support an efficient filter-match operation, filter-match(F(D), q),  
that for each query q, if  there is a document d ∈ D such that match(d, q) is true then 
filter-match(F(D), q) is also true. If the filter-match returns false, then we have a miss 
and we can conclude that there is no matching document in D. The reverse does not 
necessarily hold. That is, filter-match(F(D), q) may be true but there may be no 
document d ∈ D for which match(d, q) is true. This is called a false positive and may 
lead to following paths to peers with no matching documents. However, no matching 
documents are lost. We are looking for filters for which the probability of false 
positive is low.  

Bloom filters are appropriate as summarizing filters in this context in terms of 
scalability, extensibility and distribution. However, they do not support path queries. 
To this end, we have proposed an extension called multi-level Bloom filters [9].   
 
2.2 Multi-Level Bloom Filters 
 
Bloom filters are compact data structures for probabilistic representation of a set that 
supports membership queries (“Is element a  in set A?”). Since their introduction [1], 
Bloom filters have been used in many contexts including web cache sharing [2], 
query filtering and routing [3, 4] and free text searching [5].  

Consider a set A = {a1, a2, …, an} of n elements. The idea (Figure 1) is to allocate a 
vector v of m bits, initially all set to 0, and then choose k independent hash functions, 
h1, h2, …, hk, each with range 1 to m. For each element a ∈ A, the bits at positions 
h1(a), h2(a), ..., hk(a) in v are set to 1. A particular bit may be set to 1 many times. 
Given a query for b, we check the bits at positions h1(b), h2(b), ..., hk(b). If any of 
them is 0, then certainly b is not in the set A. Otherwise, we conjecture that b is in the 
set although there is a certain probability that we are wrong, i.e., we may have a false 
positive. This is the payoff for Bloom filters compactness. The parameters k and m 
should be chosen such that the probability P of a false positive is acceptable. It has 
been shown [1] that: P = (1 - e-kn/m)k. 



     

To support updates of the set A, we maintain for each location l in the bit array a 
count c(l) of the number of times that the bit is set to 1 (the number of elements that 
hashed to l under any of the hash functions). All counters are initially set to 0. When a 
key a is inserted or deleted, the counters c(h1(a)), c(h2(a)), ..., c(hk(a)) are incremented 
or decremented accordingly. When a counter changes from 0 to 1, the corresponding 
bit is turned on. When a counter changes from 1 to 0, the corresponding bit is turned 
off.  
 
 
 
 
  
 

 
 

Fig. 1. A Bloom filter with k = 4 hash functions. 

For processing a path query using Bloom filters, we check whether each element of 
the path is matched by the filter. If there is a match for every element, then we 
conjecture that the path may exist, not taking structure into account. 

We consider two ways of extending Bloom filters for hierarchical documents. Let 
an XML tree T with j levels, and let the level of the root be level 1. The Breadth 
Bloom Filter (BBF) for an XML tree T with j levels is a set of i +1 Bloom filters 
{BBF0, BBF1, BBF2, …, BBFi}, i ≤  j. In BBF0, we insert all elements that appear in 
any level of the tree. Then, there is one Bloom filter, denoted BBFi, for the level i of 
the XML tree, in which we insert the elements of all nodes at level i. Depth Bloom 
filters provide an alternative way to summarize XML trees. We use different Bloom 
filters to hash paths of different lengths. The Depth Bloom Filter (DBF) for an XML 
tree T with j levels is a set of i Bloom filters {DBF0, DBF1, DBF2, …, DBFi-1}, i ≤ j. 
There is one Bloom filter, denoted DBFi, corresponding to the paths of the tree of 
length i, (i.e., having  i + 1 nodes), where we insert all paths of length i. Note that we 
insert paths as a whole, we do not hash each element of the path separately; instead, 
we hash their concatenation. 

To implement the filter match for a path query, in the case of BBFs, we first check, 
whether all elements in the path expression appear in BBF0. Then, the first element of 
the path query is checked at BBF1. If there is a match, the next element is checked at 
the next level of the filter and the procedure continues until either the whole path is 
matched or there is a miss. For paths with the ancestor-descendant axis //, the path is 
split at the //, and the sub-paths are processed at all the appropriate levels. All matches 
are stored and compared to determine whether there is a match for the whole path.  

The procedure that checks whether a DBF matches a path query, first checks 
whether all elements in the path expression appear in DBF0.  If this is the case, for a 
query of length p, every sub-path of the query from length 2 to p is checked at the 
filter of the corresponding level. If any of the sub-paths does not exist then the 
algorithm returns a miss. For paths that include the ancestor-descendant axis //, the 
path is split at the // and the resulting sub-paths are checked. If we have a match for 
all sub-paths the algorithm succeeds, else we have a miss.  
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2.3  Filter Distribution Based on Horizons 

A query may originate at any peer of the network, whereas documents matching the 
query may reside in numerous other peers. To direct the query to the appropriate 
peers, each peer maintains a number of filters. In particular, each peer ni maintains a 
local filter F(Di) that summarizes all documents Di stored locally at ni and one filter, 
called merged filter, for each of its links. The merged filter for a link e of ni 
summarizes the documents that reside at peers reachable from ni through any path 
starting from link e. Merged filters are used to direct the query only to peers that have 
a large probability to contain documents matching the query.  

Ideally, the merged filter for each link should summarize the documents of all 
peers reachable through this link. However, this introduces scalability problems. In 
this case, an update of the content of a peer must be propagated to a huge number of 
other peers. The same holds for the filters of peers joining or leaving the network. By 
introducing horizons, a peer bounds the number of neighbors whose documents it 
summarizes. The horizon of a peer ni includes all peers that can be reached with at 
most R hops starting from ni. We call R the radius of the horizon.  
 
Definition 2 (Distance): The distance between two peers ni and nj, d(ni ,nj) is the 
number of hops on the shortest path from ni to nj  in the overlay network. 
Definition 3 (Horizon): A peer ni  has a horizon of R, if it stores summaries for all 
peers nj    for which the distance d(ni, nj) ≤  R, where R is the radius of the horizon. 
 

In horizon-based distribution, the merged filter for a link e of ni summarizes (i.e., 
merges the local filters) of all peers that are reachable from ni by a path of length R or 
smaller starting from e. Figure 2 shows for each link of peer 5, the local filters of 
which peers are merged at the corresponding merged filter, when R = 2. In the case of 
cycles, the documents of some peers (peer 8 in this example) may be included in more 
than one merged filter. We describe later, why and how this may be avoided.  

In order to calculate the merged Bloom filter of a set of Bloom filters we take the 
bitwise OR of these Bloom filters. In particular, the merged Bloom filter BFm of a set 
{BF1, BF2,…, BFn} of Bloom filters is equal to BF1 OR BF2 OR …OR BFn. Similarly, 
for multi-level Blooms, we take the bitwise OR for each of their levels. Apart from 
the merged filter, merged counters are also stored, to support updates. Merged 
counters are produced by adding together the corresponding counters of the set of 
Bloom filters. 

2.4 Join and Update 

When a new peer nk joins the system, it must inform the other peers at distance R 
about its documents. To this end, nk sends a message New(F(Dk), Counter) to all its 
neighbors, where F(Dk) is its local filter (i.e., the filter summarizing its documents) 
and Counter is set to R. Upon receipt of a New message, each peer ni  merges the 
received F(Dk) filter with the merged filter of the corresponding link. Then, it reduces 
Counter by one, and if Counter is nonzero, it sends a New(F(Dk), Counter-1) message 



     

to all other of its neighbors. This way, the summary of the documents of the new node 
is propagated to the existing peers.  
 In addition, the new node must construct its own merged filters. This is achieved 
through a sequence of FW(Filter, Counter, Flag) messages. In particular, each node ni 
upon receipt of a New message from a node nj, it replies to nj with a FW(F(Di), R, 
False) message where F(Di) is ni’s local filter and  Counter is set to R. The use of the 
Flag parameter will be explained shortly. Upon receipt of a FW(F(Di), Counter, 
False) message, each peer nj, decrements Counter by one, and if Counter is nonzero, 
it sends a FW(F(Di), Counter-1, False)  message back to the peer that has sent the 
New message to it. This way, the local summaries reach the new peer nk. Peer nk 
creates its merged filters by merging the corresponding local filters received by the 
various FW messages. 

 

 
 

Fig. 2.  Horizon-based distribution. 
 

We now explain the use of the Flag parameter. Flag is used because the insertion 
of a new peer may change further the horizons of existing peers. Take for example the 
network of Figure 2 with R = 2. Say a new peer, peer 13, enters the network and links 
to both peers 1 and 3. The local filter of 13 must be propagated to 1, 2 and 3, 4; this is 
achieved through the New messages. Peer 13 must also construct its own merged 
filters; this is achieved through the FW messages with Flag equal to False. However, 
note that the insertion of 13 has changed the relative distance of some peers. In 
particular, now peer 3 (1) belongs to the horizon of 1 (3) since their distance (through 
the new peer 13) is now 2. Thus, the local filter of 3 (1) must now be merged with the 
corresponding filter of 1 (3). 

Flag is used as follows. Flag is initially set to False. When the new node nk 
receives a FW(Filter, Counter, False)  message, it changes Flag to True, decrements 
Counter by one, and if Counter is nonzero, it  propagates a message FW(Filter, 
Counter-1, True) to all of its other neighbors.  Upon receipt of a FW(Filter, Counter, 
True) message, each peer merges the Filter with its corresponding merged filter, 
decrements Counter by one, and if Counter is nonzero, it sends a FW(Filter, Counter-
1, True) message to its neighbors. This way, summaries of peers whose horizons 
change by the introduction of the new peer are propagated to each other. 

When a peer wishes to leave the system, it sends an update message to all of its 
neighbours with a counter set to the radius R. When the message reaches a peer, the 
peer performs the update at its merged filter and propagates the message further until 
the counter reaches 0.  Furthermore, it sends it own local filter through the same link 
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with a counter set to R to inform the peers that are now included in its horizon, since 
the departure of the peer has resulted in the decrease of its distance with other peers.  

Note that, as indicated in Figure 2, it is possible that the local filter of a peer ni is 
included in more than one merged filter of some other peer nj. However, we may want 
to avoid this, because during search, two different paths will lead us to the same peer. 
This problem can be overcome by using peer identifiers. Each peer stores the 
identifiers of the peers that are included in each of its merged filters. When a local 
filter reaches a peer during the join procedure, the peer first checks whether it has 
already stored this filter at the merged filter of some other link. 
 
2.5 Query Routing  
 
We now discuss in detail how a query q posed at a peer n is processed. Our goal is to 
locate all peers that contain documents matching the query. 

Peer n first checks it own local filter to see whether it matches the query. Then, it 
propagates the query only through one or more of those links whose merged filters 
match the query. Analogously, each peer that receives the query first check its own 
local filter and propagates the query only to links whose merged filters match the 
query. This procedure ends when a maximum number of peers has been visited or 
when the desired number of matching documents (results) has been attained. 

When a query reaches a peer that has no link with a merged filter that matches the 
query, backtracking is used. This state can be reached either by a false positive or 
when we are interested in locating more than one matching document.  In this case, 
the query is returned to the peer previously visited that checks whether there are any 
other links that match the query that have not been followed yet, and propagates it 
through one or more of them. If there are no such matching links, it sends the query to 
its previous peer and so on. Thus, each peer should store the peer that propagated the 
query to it. In addition, we may store an identifier for each query to avoid cycles. 

We now describe a heuristic that can be used to choose which of the links that 
match a query to follow. The heuristic uses the counters of the matching merged 
filters to select the link through which we expect to find more matching documents. 
We describe first the idea for simple (single-level) Bloom filters.  

Assume we have a query q with p element names: α1, α2, …, αp. For each matching 
merged filter, we compute a value, called MIN, as follows. For each element αi, the 
counters at the corresponding positions are checked and the minimum value min(αi) = 
min(c(h1(αi)),…, c(hk(αi))) is stored. Then, we take the overall minimum for all 
elements: MIN = min{mini(αi)}, for i = 1,…, p. This is the maximum number of 
results (matching documents) for q that can be found following the link with this 
merged filter. The query is propagated through the link whose merged filter has the 
largest value for MIN, because it is expected that the peers that can be reached 
through this link maintain the most results.  

For multi-level filters, the procedure is slightly altered. For every element in the 
query, the counters of the corresponding level that gives a match are checked and the 
minimum value is selected. The minimum values of every element are added together 
(SUM = min(ai) + .. + min(ap)) and the link chosen is the link whose filter produces 
the largest such sum. If a path matches more than once in a single filter (the path 



     

exists at different levels), the largest of the SUMs produced is chosen to be compared 
with the SUMs of the other filters. 

3 Content-Based Overlay Networks  

In this section, we discuss how the overlay network is created. The approaches refer 
to the way a peer chooses its neighbors in the overlay network when it joins the 
system. 

3.1 Proximity-Based vs Content-Based Organization 

We propose two approaches for organizing the peers. The first approach is based on 
network proximity, and the second one on filter similarity.   

The network proximity based approach organizes the peers based on their 
proximity in the physical network. The motivation behind this organization is an 
effort to satisfy queries locally and minimize response time. Whenever a new peer ni 
wants to join the system, it broadcasts a message to all the peers in the system. Peer ni 
selects to be linked to those peers from which a response came first, since it is 
assumed that these are the closest ones. Using this organization it is expected that 
peers that are topologically close in the underlying physical network are going to be 
linked together in the overlay network. 

The second approach organizes the peers based on the similarity of their content, 
that is, based on the similarity of their local documents. This approach attempts to 
group relevant peers together. The motivation for this organization is to minimize the 
number of irrelevant peers that are visited when processing a query.  

Instead of checking the similarity of documents, we rely on the similarity of their 
filters. This is more cost effective, since a filter for a set of documents is much 
smaller than the documents themselves. Furthermore, the filter comparison operation 
is more efficient than a direct comparison between two sets of documents.  
Documents with similar filters are expected to match similar queries. 

In this organization, a peer ni  that joins the system broadcasts its local filter F(Di). 
A peer nj receiving the message replies with the distance of its own local filter from 
ni’s filter, distance(F(Di), F(Dj)). Peer ni chooses to attach to the peers that returned 
the smallest distances, i.e., the most similar ones.  

This way peers with relevant content are expected to be grouped together so as to 
form content-based clusters of peers.  With this organization, once a query enters the 
relevant cluster, peers with matching documents are expected to be within reach.  
 
3.2 Filter-Based Similarity Metric 
 

For Bloom-based filters the distance function used to evaluate the degree of 
similarity between two filters BF1 and BF2, distance(BF1, BF2), is computed using the 
Hamming distance. This distance corresponds to the number of bits at which the two 
Bloom filters differ. The more similar the two documents are, the smaller their 
Hamming distance is. An example is shown in Figure 3(a). For multi-level Blooms, to 



     

compute their distance, the distance of each level is calculated the same way as for a 
simple Bloom, and the results are added together. 

Figure 3(b) illustrates an experiment that confirms the validity of the metric. We 
used different percentage of elements repetition between documents and measured 
their distance.  The distance decreases linearly with the increase of the repetition 
between the documents. The same holds for the similarity between multi-level 
Blooms, although in this case, the metric depends on the structure of the documents as 
well.  
 
 

 
 

BF1 
BF2 

 
 

distance(BF1, BF2) = 
0 + 0 + 1 + 1 + 1 = 3  

 

Fig. 3. (a) Similarity metric (b) Document and filter similarity. 

4 Performance Evaluation 

4.1 Simulation Model 
 
We simulated the peer-to-peer network as a graph where each node corresponds to a 
peer. A number of XML documents are associated with each node.  We simulated the 
organization of the peers using horizons both with and without the use of filters and 
compared both the proximity and the content-based organizations. For the first two 
experiments we used simple Bloom filters as summaries and queries of length 1. In 
the last two experiments, we show how multi-level filters outperform simple ones in 
this distributed setting when evaluating queries with length greater than 1. We used 
only Breadth Bloom filters in our experiments; Depth Bloom filters are expected to 
perform similarly with Breadth Bloom filters [9]. 

For the hash functions, we used MD5 [13] that is a cryptographic message digest 
algorithm that hashes arbitrarily length strings to 128 bits. The k hash functions are 
built by first calculating the MD5 signature of the input string, which yields 128 bits, 
and then taking k groups of 128/k bits from it. We select MD5 because of its well-
known properties and relatively fast implementation. For the generation of the XML 
documents, we used the Niagara generator [14] that generates tree-structured XML 
documents of arbitrary complexity. It allows the user to specify a wide range of 
characteristics for the generated data by varying a number of input parameters that 
control the structure of the documents and the repetition between the element names.  
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The structure of the network depends on: the diameter of the graph (the maximum 
distance between any two nodes through the shortest available path), the number of 
nodes (peers), the number of edges (links), the maximum fanout for a peer and the 
radius of the horizon. In our experiments, the size of the network was set to 100 peers 
and its diameter to 30 hops, the filter size was fixed to 2000bits with 4 hash functions. 
XML documents have 5 levels and 80 elements and different structure. Every 10% of 
the documents are 50% similar to each other in terms of element names. Query 
routing stops when a maximum number of hops is traversed. The maximum number 
of hops should be large enough to cover a sufficient proportion of the network 
without producing excessive delays to a query. Our performance metrics are the 
percentage of successful queries (i.e., queries that found at least one matching node) 
and recall (i.e., the percentage of results found). 

 
Table 1.  Summary of performance parameters. 

 
Parameter Default Value Range 

Filter size 2000 bits  
Number of  hash functions 4  
Number of queries 200  
Number of elements per document 80  
Number of levels per document 5  
Length of query 1 1-3 
Number of nodes 100  
Percentage of hits (matching nodes per 
query) in the network 

 
7% 

 

Radius of horizon 5 3-11 
Diameter 30  
Max fanout 5  
Max number of hops 30  
Number of hits per node 1 1-50 

 
 
4.2 Experimental Results 
 
Experiment 1: Radius (R) 
At this first experiment, we examine the influence of the radius. The network 
structure was fixed to 100 nodes with diameter 30 and we varied the radius from 3 to 
11. We measured the percentage of successful queries and the percentage of results 
found (recall), with and without the use of Bloom Filters.  

Bloom filters improve the performance of search for any value of the Radius (R). 
Radius 3 gives the smallest number of results and the smallest percentage of 
successful queries. This is expected because search for matching documents is limited 
to peers within distance 3 from the peer issuing the query, thus matching peers 
furthest away are never visited. Radius 5 gives the most results and the best 
percentage of successful queries. Increasing the Radius further does not improve 
performance. There are two reasons for this. First, as the radius increases, the number 
of peers that correspond to each merged Bloom filter also increases. This leads to 
more false positives for a same size filter. Second, when the radius becomes relatively 
large, the merged filter of each link summarizes the content of a very large number of 



     

peers reached through this link. Thus, a path may be followed to a matching peer 
located  very far away from the peer issuing the query instead of a path to a near-by 
matching peer. In the rest of our experiments we set R = 5. 
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Fig. 4. Influence of the radius. 

Experiment 2: Proximity-Based vs Content-Based 
At the second set of experiments, we study content-based distribution. The 
performance of content-based distribution depends on whether, for a given query, we 
are able to locate the cluster with peers that have results similar to it. Once in the right 
cluster, we are able to find all results nearby, since the matching peers are linked 
together. To model this, we varied the percentage of queries issued from a peer that 
matches the query from 0 to 100% (that is, the percentage of queries that start from 
the correct cluster). As shown in Figure 5(left), once in the right cluster (100% query 
distribution), we are able to locate all matching documents, whereas with the 
proximity-based distribution less than 30% of the matching nodes are identified. On 
the other hand, proximity-based organization has a larger percentage of successful 
queries, since the matching peers for each query are distributed randomly across the 
network.  On the contrary, in the content-based organization, all peers with similar 
documents are clustered together. Thus, if the requesting peer is far from the correct 
cluster, it may not be able to find any matching peer in its cluster. 

0

50

100

150

0 20 40 60 80 100
query distribution

re
ca

ll

proximity-based content-based
No Bloom

  

0

50

100

150

0 20 40 60 80 100
query distribution

pe
rc

en
ta

ge
 o

f 
su

cc
es

sf
ul

 
qu

er
ie

s

proximity-based content-based
No Bloom

 
Fig. 5. Varying query distribution. 

Figure 6 shows the effectiveness of our content-based join procedure. It depicts 
for a query and a matching node n, the percentage of matching nodes within distance 



     

R from n. For R larger than 5, all matching nodes are within the horizon, that is, they 
are within this distance and thus they can be located efficiently. 
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 Fig. 6. Quality of clustering (percentage of matching nodes with respect to R). 

 
Experiment 3: Breadth vs Simple Bloom Filters 
In this set of experiments, we used Simple and Breadth Bloom filters to demonstrate 
that our distribution mechanisms can also be used with multi-level filters. Our queries 
in this example are path queries of length 3. We denote with P the percentage of 
documents that contain the element names that appear in the path query but without 
them forming the actual path. In the first experiment (Figure 7 (left)), we vary the 
radius R setting P = 75%, while in the second experiment (Figure 7(right)), we vary P 
setting R = 5.  The results of the first experiment for the multi-level are analogous to 
those of Experiment 1 (Figure 4(left)), but the percentage of results for the simple 
Bloom Filter is nearly constant. This happens because the number of false positives is 
very large for any value of the radius for path queries. Figure 7(right) shows that for P 
= 0 both filters perform nearly the same, but as P increases the performance of the 
simple Bloom Filter reduces due to the increase of  false positives. 
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Fig. 7. Simple and multi-level Bloom filters. 

Experiment 4: Use of Counters 
At this last experiment, we examine how the use of the counters heuristic improves 
performance, both for Simple and Breadth Blooms. We varied the number of hits 
(matching documents) per peer and measured the percentage of results found and the 
percentage of successful queries. The variance of the results is a value that shows the 
average difference between the number of hits to each peer (that maintains results) 
and the average number of hits of all that peers at square power. More specifically, 



     

variance = ∑i=1,..,k(xi-µ)2/k,  where k is the number of peers that have results, xi is the 
number of hits for peer ni and µ = (∑i=1,..,k xi) / k   (average hits per peer that has 
results). 
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Fig. 8. Use of counters. 

 
 Figure 8 shows that in both cases (simple (BF) and multi-level (BBF) Bloom 
filters) for zero variance (which means that all peers have the same number of results) 
using or not counters results in the same performance. For non-zero variance, the use 
of counters gives better performance since the query is propagated to links through 
which we expect more results to be found. 

5 Related Work 

In the context of peer-to-peer computing, many methods for resource discovery have 
been proposed. These methods construct indexes that store summaries of other nodes 
and additionally provide routing protocols to propagate the query to the relevant 
nodes.   

Bloom filters have been used as summaries in such a context. The resource 
discovery protocol in [4] uses simple Bloom filters as summaries. Servers are 
organized into a hierarchy modified based on the query workload to achieve load 
balance. Each server stores summaries, which are used for query routing. Summaries 
are a single filter with all the subset hashes of the XML documents up to a certain 
threshold. To evaluate a query, the query is split to all possible subsets and each one 
is checked in the index.  Another method based on Bloom filters for routing queries in 
peer-to-peer networks is presented in [7]. It is based on a new structure, called 
attenuated Bloom filter, residing in every node of the system. The filter stores 
information about nodes within a range of the local node and uses a probabilistic 
algorithm in order to direct a query. The algorithm either finds results quickly, or fails 
quickly and exhaustive searching is then deployed. Another use of Bloom filters as 
routing mechanisms is proposed in [11]. Local and Merged Blooms are used, but 
there is no horizon to limit the information a node stores about other nodes, and thus 
scalability is an issue. Also the filters are constructed based on file names and not on 
file content. A similar approach is followed in [6], where routing indices (other than 



     

Blooms), placed at each node, are used for efficient routing of queries. By keeping 
such an index for each outgoing edge, a node can choose the best neighbor for 
forwarding the query. The choice is based on summarized information about the 
documents along that path, which is stored in the index. 

However, all these methods do not provide any grouping of the nodes according 
to their content, and use summaries only for routing and not for building the overlay 
network. Also they are limited in answering membership queries and not path queries.  

Content-based distribution was recently proposed in [8] which introduced 
Semantic Overlay Networks (SONs) [8]. With SONs, nodes with semantically similar 
content are “clustered” together, based on a classification hierarchy of their 
documents. Queries are processed by identifying which SONs are better suited to 
answer it. However, there is no description of how queries are routed or how the 
clusters are created and no use of filter or indexes to efficiently locate the node that 
stores a particular data item. Schema-based peer-to-peer networks provide an 
approach that supports more complex metadata clustering than previous work and 
thus can support more complex queries. An RDF-based peer-to-peer network is 
presented in [15]. The system can support heterogeneous metadata schemes and 
ontologies, but it requires a strict topology with hypercubes and the use of super-
peers, limiting the dynamic nature of the network. In [16], attribute-based 
communities are introduced. Each peer is described by attributes representing its 
interests; the emphasis is on the formation and discovery of communities. Since the 
communities are attribute-based they are less expressive than schema-based or 
content-based networks and support less complex queries.  In [10], documents are 
classified into categories based on keywords and metadata. Nodes are then clustered 
based on these categories. Focus is given on load-balancing.  

Chord [12] is a representative of structured p2p networks that uses a distributed 
lookup protocol designed so that documents can be found with a very small number 
of messages. It maps keys and nodes together to improve search efficiency. However, 
this approach lacks node autonomy and provides no grouping between nodes with 
similar content. 

Our work relates also to distributed processing of XML queries. Recent work in 
this context includes [18], where a cost-model for the distribution of XML documents 
and a query decomposition technique are presented for querying distributed and 
(partially) replicated XML data. 

 
6 Conclusions  

 
In this paper, we have presented multi-level Bloom filters that are hash-based 
indexing structures that can be used for the representation of hierarchical data and 
support the evaluation of path queries. We showed how such filters can be distributed 
using a horizon-based organization to support the efficient routing of queries in a p2p 
network. In addition, we described how content-based overlay networks can be built 
using a procedure that clusters together peers with similar content. Similarity of peer 
content is based on the similarity of their filters. Our performance results show that 
content-based overlay networks built by this procedure are very efficient in locating a 
large number of peers with matching documents. 



     

Future work includes dynamic updates of “clusters” when the content of peers is 
modified. In addition, we plan to experiment with p2p configurations with properties 
that match those of popular p2p networks as indicated by current measurement studies 
(e.g. [19], [20]). 
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