
device CAS

Concept-Based Discovery of Mobile Services
Chara Skouteli

Department of Computer Science,
University of Cyprus

CY-1678 Nicosia, Cyprus

chara@ucy.ac.cy

George Samaras
Department of Computer Science,

University of Cyprus
CY-1678 Nicosia, Cyprus

cssamara@ucy.ac.cy

Evaggelia Pitoura
Department of Computer Science,

University of Ioannina
GR 45110, Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
In this paper, we consider semantic service discovery in a global
computing environment. We propose creating a dynamic overlay
network by grouping together semantically related services. Each
such group of services is termed a community. Communities are
organized in a global taxonomy whose nodes are related
contextually. The taxonomy can be seen as an expandable
distributed semantic index over the system services, which aims at
improving service discovery. Our performance results indicate
that in certain cases, our service discovery mechanism
outperforms even the case in which service indexes are fully
replicated at all system sites.

Keywords
Mobile computing, pervasive computing, service discovery.

1. INTRODUCTION
Nowadays, a significant amount of data is stored on a variety of
small devices, such as smart phones, palmtops and personal
computers. These small devices are inter-connected, thus
composing a global network that is characterized by (i) device
heterogeneity, (ii) large-scale data distribution, (iii) data
heterogeneity, (iv) device mobility, and (v) a variety of
communication protocols. Data stored on these small diverse
devices creates what we call a global or universal database. The
goal of our research is to provide both the theoretical foundations
and the system infrastructure for effectively querying this
database [7]. To overcome differences in the communication
protocols used by mobile devices and data and device
heterogeneity, we employ a service oriented approach in that data
are wrapped and accessed through web services. In this paper, we
focus on the fundamental issue of how to efficiently query for
services in such a global database.

We propose creating a dynamic overlay network above the
core system of web services to group together semantically
related services, thus creating a network of communities. Each of
these communities is a set of references to semantically related
services that are distributed over the global mobile environment
(for example, a community of weather services, or a community
of services related to music). Communities are distributed; they

are organized in a global taxonomy whose nodes are related
semantically. This taxonomy can be seen as an expandable,
flexible and distributed semantic index over the system services,
which aims at improving the cost of service discovery. In
addition, we support the notion of context. Context is used to
constraint the number of the semantically related services to those
that are appropriate for a given context. We model context as a set
of (attribute, value) pairs.

Our performance results indicate that community-based
service discovery works well under various workloads. In
particular, in wireless environments and for a service request rate
of 200 requests/second, it provides performance improvements
even over an approach in which each site can satisfy every service
request locally.

The remainder of this paper is organized as follows. Section
2 introduces concept-based discovery and communities. Section 3
describes the community overlay network, while Section 4
highlights query processing. Performance evaluation is presented
in Section 5. Section 6 discusses related work and Section 7
presents conclusions and future work.

2. CONCEPT-BASED DISCOVERY
DBGlobe [7] is a middleware platform for mobile computing, that
provides support for describing indexing and querying services
offered by a large number of geographically dispersed small
mobile devices. DBGlobe employs a service-oriented approach in
that all the data and resources offered or requested by the small
devices are accessed through services. We adopt a hybrid
(partially ad-hoc) architecture where geographical 2-D space is
divided into adjacent administrative areas (similar to GSM cells)
each managed by a Cell Administration Server (CAS) (see Figure
1). In our current design, each cell represents the area of coverage
of a network access point. Each CAS provides low-level
functionality, such as network addressing, session management
and positioning. In addition, it stores a description of all services
provided by the devices in its area of coverage.

Figure 1. CAS distribution: each CAS manages the associate

devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MDM’05 , 5, 2005, Ayia Napa, Cyprus.
(c) 2005 ACM 1-59593-041-8/05/05....$5.00

257

To address the scalability and mobility requirements of our
environment, we introduce communities that group semantically
related services. Communities correspond to an overlay network
that connects such related services. Efficiency comes from the
fact that communities provide a semantic index to similar services
which may reside anywhere in the network.

2.1 Concept-based service queries
Which services belong to a particular community (i.e., which
services are semantically similar) is built around the notion of a
concept. Concept is a semantic notion. It is associated with a
specific property which is described using a set of keywords, for
example, “traveling”, “weather” or “taxi reservation”. To discover
a service, a user specifies a set of appropriate keywords.

Besides concept-based service descriptions, in a mobile
environment, it is critical to provide context-aware queries, that
is, queries that match the current context of a moving user.
Context-aware queries generalize location-aware queries that are
queries that take into account only the user location. We model
context as a set of (attribute, value) pairs. Context is used to limit
the set of matching services returned to those that match also the
specific context values.

In general, a context-aware query is a query that contains the
results within the boundaries of a specific context.
Definition 1: Context-Aware Queries (Qq) are composed from
concept keywords and context pairs:

Qq = <Concept{keywords},Context{(attribute, value)}>
where Concept keywords are used to identify the concept and
(attribute, value) pairs are used to define the user context.

As an example, consider the case of a service for sports
news. The concept in this example can be sports; the execution of
the query “find me all services which provide sports news” should
return all services which are related with the “sports news”
concept, or a concept that is characterized by both these
keywords. Depending on the query, the size of the result can be
very large. Our goal is to contain the results by using the context
information that characterizes the current environment of the user.
For instance, in this example, if the user carries an iPAQ device,
the discovered services should be suitable for it, that is, an
appropriate context-aware query can be “find me all services
which provide sport news displayable on an iPAQ PDA”. This is
expressed through the following context-aware query: Qq =
<Concept{sports, news}, Context{(device, iPAQ)}>.

In addition to context-aware queries, we are also interested in
keeping the result of a query up-to-date as the result set may
change due to service and user mobility.
Definition 2: Continuous context-aware queries (Qcq) are
context-aware queries that notify the user for changes in the
result set in a continuous fashion.

Qcq=< Concept{keyword }, Frequency{types},
Context{(attribute, value)}>

Frequency types define the frequency by which the user should be
alerted. Currently we support the “onFound” and “near by”
frequency types.

An important issue is how to distribute the service directories
so that both non-continuous and continuous context-aware queries
are efficiently supported. CASs provide a level of distribution for
the service directories, since each CAS maintains a local directory

with the description of the services provided by the mobile
devices in its coverage. However, services matching the concepts
specified in the queries may be located in various CAS. To avoid
the overhead of querying all CASs, communities are used.
Communities are interconnected, creating a semantic overlay
network that can be used for efficient service discovery.

2.2 Taxonomies for Organizing Communities
We need a way to classify and inter-relate communities. To this
end, we use taxonomies whose elements are ontologies [5,6].
Such taxonomies take the form of a tree (see Figure 2). Each
internal node of the tree corresponds to an ontology that describes
a community (see Table 1). The node also refers to its children as
well as to its parent node. Recursively this leads to a hierarchy of
ontologies where each (deeper) level of the hierarchy provides a
more refined and focused description of the concept. Each leaf of
the taxonomy tree contains a subset of the description properties
and functional attributes of the service’s profile that belongs to
the (parent) community. This profile summary is used to
determine whether the service satisfies the query criteria and also
to provide information for accessing the actual service (see Table
2).

Table 1. Community Ontology Properties
Community Name The name of the community
Text Description A brief description summarizing the concept of

the community
Keywords
Description

Keywords used to describe semantically the
community

Parent Reference to the parent community
Children Reference to the children communities

Table 2. Summary Service Profile Properties
Service Name The name of the service
Keywords
Description

A keywords description summarizing semantically
what service offers or what capabilities are being
requested.

Provided By A sub-property of role referring to the service provider
Geographic
Radius

Geographical scope of the service, either at the global
scale (e.g. e-commerce) or at a regional scale (e.g.
pizza delivery)

Pointer An abstract link to the full service ontology.
Community Reference to the community

Figure 2. Global Taxonomy of Communities and Services

3. COMMUNITY OVERLAYS OVER CAS
To support the management of communities, we introduce the
notion of a Community Administrator Server (CoAS). CoASs are

Service
Community Concept

Information

Finance Sports News

Finance Community

Basketball

258

responsible for the creation and management of communities.
Each CoAS maintains a community, which groups similar
services provided by different CASs that can be located anywhere
in the system. As the CoASs represent all communities, the
complete taxonomy of the CoASs can be seen as an overlay
network over the core system of CASs (see Figure 3). This
overlay network instead of grouping services located in the same
geographical domain, it groups services that are semantically
related independently of their location. To create the overlay
network of CoASs, each CAS propagates a summary of
description ontologies of the services that it hosts (see Table 2) to
the appropriate CoASs. Identifying the appropriate CoASs is
achieved by using routing indexes based on Bloom filters
described next.

As an initial global taxonomy tree, we use a basic
classification of services taken from Google (e.g. a subset of
Google’s classification of urls). Using this classification we create
the initial network of CoASs. Registering new services and
matching is enhanced by using Wordnet [10], a lexical reference
system that allows us to extract synonyms of each of the
keywords used to express concepts. This is handled by the CAS
when a service registers or a request for a service is submitted.
We describe next the basic functionality provided by the CoAS.

Figure 3. Distribution of CASs and CoASs (a) Geographical

Distribution, (b) the Overlay Network of Communities

Service discovery: Querying for a service takes place when a
CAS forwards a query to the CoAS that manages the community
that serves the concept of the query. The CoAS is responsible for
finding all services which satisfy the contextual condition posted
in the query by the user.

New service registration: This operation takes place when a
device registers its services to the CAS. The CAS stores locally
the service ontology provided by the user, and propagates the
service description to the communities (it could be more than one)
which share the same concept with the service.

Service unavailability: A service provided by a device may
become unavailable at any given time either voluntarily by its
owner or because the device becomes unreachable due, for
example, to network disconnections. In such cases, we do not
delete the service from the community, but during service
discovery we check for the actual service availability. The CAS is
responsible to detect unavailability or availability and inform the
appropriate CoAS. In case that a user already uses a service,
which becomes unavailable, the user can extract the service
community from the service profile, and use it to search directly

to the community that groups similar services, bypassing the
CASs.

Service update: An update operation at the community level
takes place only when the semantic description of the service
changes. In such cases, when the service profile changes, the CAS
will propagate the changes only to the communities which store a
summary of the service and only if this summary must be
updated. Note that service mobility does not affect the community
taxonomy. This is because location based queries are handled by
the CASs, thus we do not have to update the communities
whenever the device that owns the service changes location.

Using Bloom Filters to Locate a Community: To identify which
CoAS match a given query, we use indexes based on Bloom
filters. Bloom filters are compact data structures for probabilistic
representation of a set that supports membership queries, that is
queries on whether a given element belongs to a set. Bloom filters
are used to determine which CoAS are relevant to a given query.
At each CAS, there is one Bloom filter for each CoAS; we call
this filter a community Bloom filter. The communities that match
a service are the communities whose community Bloom Filters
match all keywords describing the service.

In case there is an order among the keywords that follows the
ontology schemas, we may use a query language (e.g., XPath-
based [1]) that takes advantage of this order. To this end, we have
introduced multi-level Bloom filters [2] that extend Bloom filters
for supporting the efficient evaluation of path expressions
including partial match and containment queries.

Continuous Context-Aware Queries: These types of queries are
stored into the associated CoAS. Depending on the frequency
condition, the CoAS will periodically push the results to the
issuing device. There is an overhead for supporting continuous
context-aware queries, since we need to check whether a new
service matches any continuous queries registered at the
corresponding CoAS. However, this overhead is small
considering the overhead to provide this capability in the absence
of the CoASs. In this case, all CAS would have to be checked
whenever a new service is registered.

4. SERVING A QUERY VIA THE CoAS
NETWORK
In this section, we present how the system supports continuous
and non-continuous context-aware queries in more detail.
Context-aware Queries: The query execution steps are
performed in collaboration between the CAS and the CoAS
components.
1. A query for a service is formed by providing the concept

keywords and submitted to the associated CAS. The order of
the keywords corresponds to the concept hierarchy. The CAS
enhances the query by appending the context keywords which
define the user current environment. As an example, consider
the following request: “Find a service providing pop music
clips for an iPAQ media player”. This request is formulated as
follows: Qcq=<Concept{music, pop, clip}, Context{(device,
iPAQ)}>. If the receiving CAS can satisfy the query, then it
returns the results and the process terminates (location-based
queries might be satisfied this way). If the request cannot be
satisfied locally by the CAS, the CAS uses the Bloom Filters
to identify which community (i.e., CoAS) serves the query

CAS
CoAS

 (b) (a)

259

concept, in this example, the community “music clips”. We
assume that the community taxonomy contains such a
community. In this case, the concept hierarchy is music | pop |
clips; this hierarchy is used to direct the query to the
appropriate community. In case that there is no community to
serve the exact concept, we search for a community that serves
the more general concept, in our example, this is “music pop”.
Upon finding the appropriate CoAS, the CAS forwards the
query to it.

2. A CoAS upon receiving a query identifies all matching
services. Matching is performed at a semantics level. The list
of matching services includes all services that provide pop
music clips currently registered in the CoAS unless other
constraints are also imposed.

Continuous Context-Aware Queries: These types of queries
differ from the previous ones in that they are stored into the
CoAS. Depending on the frequency condition, the CoAS will
periodically push the results to the issuing device. As an example,
consider the following request: “Find all services providing music
clips for an iPAQ device and alert me when a new one is
available”. This request is formulated as follows:
<Concept{music, clip}, Frequency{ onFound}, Context{(device,

iPAQ)}>.
1. The device submits the query to its current CAS. The CAS

forwards the query to all appropriate CoASs, using the
mechanism described earlier.

2. Each CoAS registers the query locally. Whenever a new
service is registered to the CoAS, the CoAS checks whether
there is any continuous query whose conditions may be
satisfied by the new service. If this is the case, the query
results are updated and the issuing device is notified.

5. PERFORMANCE EVALUATION
The core system infrastructure is composed from a set of CASs.
These CASs are distributed across the network and independently
manage the devices under their area of coverage. The CAS
interface includes methods for (i) registering a new service, (ii)
locating a service and (iii) retrieving context information (e.g.
location). We implemented the Community Administrator Servers
(CoASs) on top of the core system infrastructure [8]. CoASs are
also distributed across the network. The interface provided by a
CoAS consists of the following methods: (i) register a new
service, (ii) locate a service, and (iii) get the results of a
continuous query. The components that comprise a CoAS are:
1. Service Ontology Directory: lists all the service ontologies

summaries currently handled by the specific CoAS.
2. CoAS directory: lists children CoASs.
3. Query executor: is responsible for matching an incoming

query with service ontologies.
4. Concept Alerts Directory: is used to support continuous

queries by providing triggers.
5. CAS Directory: lists all the CAS of the system.

We compare the communities approach with a centralized
and flooding search approach. With flooding, each site searches
locally for a service satisfying the query, if no service is found
locally; the query is forwarded to the next site. The algorithm we
use for the communities approach is: locate the best matching
community (via bloom filters) and forward the query to it. We

consider the total time that is required for a wireless client to send
the request via a web-browser until getting the response in
relation to the number of registered mobile services, the
frequency and the number of arriving requests.

For the centralized and the flooding approaches, we only
install the CASs (one at each machine) and adapt the searching
mechanism accordingly, i.e., one service directory at a central
location and one service directory at each site respectively. For
the communities approach, the nodes of the CoAS taxonomy tree
are stored randomly on the various nodes. The testbed
configuration consists of 20 Pentium 4 2.000GHz workstations
with 512 MB RAM running MS Windows 2000. This cluster
remains the same for all tests. The total number of mobile services
registered in the system is 20000. For the communities approach,
the taxonomy tree is created randomly based on the keywords that
characterize the 20000 registered services.

We perform two types of tests; the first one aims at testing
the response type of the system under a somewhat normal load.
We run a number of tests and for each test increment the number
of service requests from 1 to 301 using an incremental step of 10
(i.e., we run 31 tests). Each test is repeated a number of times and
the average response times are reported. In the second test, we test
the scalability of the various approaches by performing a stress
type of test. For each test, we increment the number of service
requests from 1 per second to 301 per second using an
incremental step of 5. That is, each test requires 60 seconds to
submit all 301 requests. Again we perform a number of runs and
the average times are reported. Each request is created randomly
and again randomly submitted to a CAS.

5.1 Normal load
For the flooding approach, we performed three different tests. In
the first test, every request is satisfied by the local CAS while in
the other tests 25% and 50% of the requests respectively must be
forward to the other CASs. In each such test, we assume on
average a maximum of 3 hops per service request. For the
communities approach, we test the system with taxonomy trees of
10 and 20 communities.

Figure 4. Comparison of centralized, flooding and
communities

Figure 4 illustrates the performance results of the centralized,

flooding and communities approaches. For the flooding
approaches, the average response time to execute a query (i.e.,
locate a service) is quite large, especially when the number of
requests is over 50. The best performance is depicted by the

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350

number of requests per second

flooding 50% forwarding
flooding no forwarding
centralized
with 20 communities
flooding 25% forwarding
with 10 communities

av
er

ag
e

re
sp

on
ce

 ti
m

e
in

 m
se

c

260

“communities” approach. In fact, with both 10 and 20
communities, for a large number of requests, it performs better
than the “flooding without forwarding”, which is the optimal case
for flooding, because the overall number of requests is distributed
to a large number of community servers which have a small
number of services to match.

5.2 Scalability test
In this test, we compare the performance of the three approaches
over an over-loaded configuration. Again, we run a number of
tests. In each test, we increment the frequency of the arrival of
service discovery requests starting from 1 per second and
incrementing it by 5 until 301 requests per second are reached.
We keep track of the second at which each request is submitted
and measure the average response time for each “second” cluster.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90
frequency of requests per second

av
er

ag
e

re
sp

on
se

 ti
m

e
in

 m
se

c

with 10 communities

with 20 communities

flooding no forwarding

flooding with 25% query
forwarding
flooding with 50% query
forwarding

Figure 5. Comparison of centralized, flooding and

communities

In Figure 5, we limit the rate up to 90, for clarity. Each CAS

server allows a maximum number of 75 open connections, which
is rather common in web servers. Even for relatively high
frequencies, both the flooding without forwarding and the
community approaches perform rather well. The flooding with
forwarding approaches, however, reach very soon the allowed
number of maximum connections, creating a significant
congestion to the system and resulting in high response times.

6. RELATED WORK
Various service discovery mechanisms have been proposed in the
literature. GloServ [1] uses a hierarchical schema similar to DNS
to classify the registered services. The SLM system [3] adopts a
distributed hierarchical tree structure to organize the SLM servers
which may physically be located in wide-area networks. The GSD
protocol [2] is based on the concept of peer-to-peer caching of
service advertisements and group-based forwarding of service
requests. The main difference of the above systems with our
approach is that our work is based on a two-layer architecture: an
overlay network on top of local servers. The SCAM [9] context
model is based on an ontology which provides a vocabulary for
representing and sharing context knowledge in a pervasive
computing domain,, however, SCAM uses a centralized
architecture.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose creating a dynamic overlay network of
related services where similar services form a community. In
particular, each community is a set of pointers to semantically or
contextually related services (for example, a community of
weather services). Communities are organized in a global

taxonomy whose nodes are related contextually. This taxonomy
can be seen as an expandable, flexible and distributed semantic
index over the core system, which aims at improving service
discovery. We also presented a distributed service discovery
mechanism that utilizes these communities for context-based
service discovery. Our performance results indicate that service
discovery works well under various workloads. As future work,
we plan to explore the effectiveness of a query language for
managing context. We also plan to study load-balancing by
relocating communities close to their most frequent requestors.

ACKNOWLEDGMENTS: Work supported in part by the
IST programme of the European Commission FET under the IST-
2001-32645 DBGlobe project, IST-2001-32645 and a Bilateral
research agreement between Cyprus and Greece (SemaNet
project).

8. REFERENCES

[1] Arabshian, K., Schulzrinne H. GloServ: Global Service
Discovery Architecture, In Proceedings of the 1st First
Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous'04),
Boston, USA, 2004.

[2] Chakraborty, D., Joshi, A., et. Al. GSD: A Novel Group-
based Service Discovery Protocol for MANETS, In
Proceedings of International Workshop on Mobile and
Wireless Communications Networks , Sweden, 2002.

[3] Gu, T., Qian, H. C. ,Yao, J. K. An Architecture for Flexible
Service Discovery in OCTOPUS", In Proceedings of the
12th International Conference on Computer
Communications and Networks (ICCCN), Dallas, Texas,
2003.

[4] Koloniari, G., Pitoura, E. Content-Based Routing of Path
Queries in Peer-to-Peer Systems. EDBT 2004: 29-47.

[5] Levy, A., Srivastava, D., Kirk., T. Data model and query
evaluation in global information systems. In Proceedings of
the Intelligent Information Systems, 5(2), September 1996.

[6] Ouzzani, M., Benatallah, B., Bouguettaya, A. Ontological
Approach for Information Discovery in Internet Databases.
Distributed and Parallel Databases Journal, 8:367-392,
2000.

[7] Pitoura, E., Abiteboul, S., Pfoser, D., Samaras, G.,
Vazirgiannis, M., et. al. DBGlobe: a Service-Oriented P2P
System for Global Computing, SIGMOD Record
32(3): 77-82 (2003).

[8] Skouteli, C., Panagiotoy, C., Samaras, G., Pitoura, E.
Communities: Creating and Quering Ad-hoc Databases
based on Concepts, In Proceedings of the International
Workshop on Global Computing, Italy, 2004

[9] Tao G., Xiao H. W., Hung K., P., Da, Q., Z. A Middleware
for Context-Aware Mobile Services, In Proceedings of the
IEEE Vehicular Technology Conference (VTC Spring 2004),
May 2004, Milan, Italy.

[10] Word Net: http://www.cogsci.princeton.edu/~wn/
[11] XML Path Language (XPath). World Wide Web

Consortium, http://www.w3.org/TR/xpath

261

