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Abstract - Although, concurrency control in database systems is primarily based on serializability, 
many recent applications have rendered traditional serializability-based criteria inefficient or inap- 
propriate. However, non-serializable executions may violate database consistency. In this paper, we 
propose a new approach to ensuring the correctness of non-serializable executions. The approach is 
based on relating transaction views of the database to the integrity constraints of the system. The un- 
derlying concepts of view closure and view consistency are defined. Then, drawing upon this approach, 
we develop a new correctness criterion for multidatabases, which are confederations of pre-existing het- 
erogeneous and autonomous distributed database systems. This criterion, called view-based two-level 
serializability, relaxes serializability while respecting the autonomy of local database systems and pre- 
serving multidatabase consistency. We investigate the application of the criterion to various practical 
multidatabase scenarios and discuss implementation issues. 
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1. INTRODUCTION 

Database concurrency control deals with the maintenance of database consistency in the pres- 
ence of concurrently executing transactions based on the premise that each transaction maintains 
database consistency when executed in isolation. In most database concurrency control methods, 
database consistency is ensured by requiring that the resulting interleaved execution of transactions 
is serializable, that is, equivalent to some serial execution of the transactions. While this approach 
is attractively simple, many recent applications have rendered it inefficient or inapplicable [5, 171. 
For example, in applications where transactions are long-running, such as in computer-aided de- 
sign, maintaining serializability causes unbearable overheads. Besides performance considerations, 
relaxing serializability is also motivated by the interactive nature of many complex applications. In 
cases of applications sharing intermediate results, such as in cooperative environments or in agent- 

based computing, serializable executions are not only expensive but also undesirable. However, 
nonserializable executions may lead to inconsistent database states. 

In this paper, we propose a new approach for ensuring correctness of nonserializable executions. 
The proposed approach draws upon the observation that the view of a transaction, that is the data 
it reads, plays an important role on the maintenance of consistency. The underlying concepts of 
view consistency and view closure of transactions are defined by relating the transaction views to 
the integrity constraints of the system. Intuitively, a transaction view is consistent with respect to a 

set of data items of type D if the data of type D read by the transaction can be part of a consistent 
database state, and is closed with respect to a set of constraints C if, when the transaction reads 
a data item a, it also reads all data items whose values depend on a through a type C constraint. 
This approach is then applied to multidatabase systems. 

A multidatabase system, MDBS, is comprised of multiple distributed and possibly heteroge- 
neous database systems that cooperate in an autonomous fashion [20, 151. Multidatabase systems 
are getting increasingly important with the advance of internetworking and the desire to build 
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world-wide information servers. In an MDBS, concurrency control is performed at two levels, lo- 
cally by the preexisting local transaction managers, LTMs, of the participating database systems, 
and globally by a global transaction manager, GTM. LTMs are responsible for the correct execution 
of all transactions executed at their sites. There are two types of transactions, local and global. 
Local transactions access data at one site only, are submitted to the appropriate LTM, and are 
executed outside the control of the GTM. Global transactions are submitted to the GTM, where 
they are parsed into a number of global subtransactions, each of which accesses data stored in a 
single local database. These subtransactions are then submitted for execution to the appropriate 
LTM. The GTM retains no control over global subtransactions after their submission to the LTMs. 
The only assumption about the execution of transactions at each local site is that it is serializable. 
The autonomous nature of the LTMs greatly complicates the problem of transaction management 
in a multidatabase system. 

Concurrency control in MDBSs has received much attention from multidatabase researchers. In 
particular, maintaining global serializability in the execution of both local and global transactions 
has been well studied [3]. As observed in the proposed approaches, global serializability can be 
retained by ensuring that the serialization orders of global subtransactions at all local sites are 
consistent with each other. The difficulties in this regard center upon the inability of the GTM to 
control the serialization order of global subtransactions at local sites due to possible indirect con- 
flicts with local transactions. In general, all successful attempts for ensuring global serializability 
require the enforcement of conflicting operations among global subtransactions at each local site 
[7, 12, 211. The GTM can thus control the serialization order of global subtransactions by control- 
ling the execution of these conflicting operations. However, enforcing conflicts may result in poor 
performance if most global transactions would not naturally conflict. Relaxing global serializability 
is thus a significant issue for multidatabase concurrency control [4, 16, 141. 

A practical non-serializable criterion, called two-level serializability (2LSR), was introduced 
in [14]. 2LSR, in addition to the assumption of serializability of transactions at each local site 
provided by the LTMs, requires the serialization at the GTM level of the global transactions only. 
Thus, PLSR can be easily enforced without violating local autonomy. However, 2LSR executions of 
local and global transactions do not, in general, guarantee database consistency. In this paper we 
use the view-based approach to ensure the correctness of 2LSR executions. Specifically, we state 
and prove exact closures and consistency conditions that must be imposed on transaction views 
so that 2LSR schedules preserve database consistency. These conditions are then refined for two 
specific multidatabase scenarios. 

The remainder of this paper is organized as follows. Section 2 describes the multidatabase model 
and motivates our approach. Section 3 introduces the concept of view closure and consistency. In 
Section 4, we present the formulation of view-based correctness of 2LSR schedules, and show how 
some of the proposed conditions may be relaxed for practical multidatabase models. Section 5 
discusses some important characteristics of the approach and implementation issues. Section 6 
compares the present work with related nonserializable criteria in terms of the range of acceptable 
schedules and of its applicability to a multidatabase environment. Finally, concluding remarks are 
offered in Section 7. 

2. RELAXING SERIALIZABILITY 

In this section, we first introduce the multidatabase model and then discuss the impact of 
relaxing global serializability on multidatabase consistency. 

2.1. Mzlltidatabase Consistency 

A multidatabase is the union of all data items stored at the participating local sites. We denote 
the set of all data items in a local site LSi by Di for i = 1, . . . . m and the set of all data items in 
the multidatabase by D. Thus, D = Uz”=, Di. We assume that local databases are disjoint; that 
is, Din Dj = 0, i # j. Following the traditional approach, a database state is defined as a mapping 
of every data item to a value of its domain, and integrity constraints are formulas in predicate 
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calculus that express relationships of data items that a database must satisfy. The consistency of 
a database state is then defined as follows: 

Definition 1 A database state is consistent if it preserves all integrity constraints defined in the 
MDBS environment. 

A transaction is a sequence of read and write operations resulting from the execution of a 
transaction program. We denote the read and write operations as r(z) and w(z) (possibly sub- 

scripted) or alternatively use ~(2, U) (or w(z, v)) to denote an operation which reads (or writes) 

a value v from (or to) the data item z. Two operations conflict with each other if they access 

the same data item and at least one of them is a write operation. The execution of a transaction 
transfers a database from one consistent state to another. 

The set of data items at a local site is partitioned into local data items, denoted LDi that 
correspond to data items prior to multidatabase integration and global data items, denoted GDi, 
that correspond to data created after the integration such that LDifIGDi = 0 and Di = LDiUGDi. 
The set of all global data items is denoted GD, GD = IJE1 GDi. We distinguish two types of 
transactions local and global transactions. Local transactions access data items at a single local site 
and are outside the control of the GTM. Local transactions model local applications that existed 
prior to the integration and thus access only local data at the corresponding component database. 
Local transactions correspond also to programs written after the integration that are scheduled to 
be executed without any global control for reasons of efficiency, privacy, or autonomy. In this case, 

local transactions may also read global data, however, since they are only under local control, they 
are unable to maintain integrity constraints that span more than one site, and thus are not allowed 

to update global data. A global transaction is submitted to the GTM and reads and writes both 
local and global data at multiple sites. Each global transaction is decomposed by the GTM into a 

set of global subtransactions, each of which accesses data stored in a single local database. After 
the submission of a global subtransaction at the local site, the GTM has no control over it. 

We assume that there are not any integrity constraints that involve remote (i.e., located at 
different sites) local data, or both remote local and global data, since then pre-existing local 

transactions being unaware of them would provide no guarantees for their preservation. To support 
these types of constraints special techniques have been proposed that are orthogonal to this paper 
[19, 91. Thus, three types of integrity constraints are possible: local integrity constraints defined on 
local data items at a single local site; local/global integrity constraints defined between local and 

global data items at a single site; and global integrity constraints defined on global data items that 
may be located at different sites. 

A schedule over a set of transactions is a partial order of all and only the operations of those 
transactions which orders all conflicting operations and which respects the order of operations 
specified by the transactions. In a MDBS environment, a local schedule SDk is a schedule over 

both local transactions and global subtransactions which are executed at the local site LSk, and 
a global schedule S is a schedule over both local and global transactions which are executed in an 
MDBS. A global subschedule Sp is global schedule S restricted to the set G of global transactions 
in 5’. The standard assumption in multidatabase concurrency control is that each LTM ensures 
the serializability of the corresponding local schedule. The correctness of a schedule in terms of 
database consistency is defined as follows (cf. strong correctness [14] and semantic correctness [6]): 

Definition 2 A schedule is correct if it preserves all integrity constraints that are defined in the 
database system and each transaction in S reads a consistent database state. 

A global schedule S is considered to be globally serializable if S is serializable [2] on the execution 
of both local and global transactions. Clearly, if local and global transactions maintain all integrity 
constraints defined in the MDBS environment, then a globally serializable global schedule is correct. 

2.2. Motivation 

To avoid the potential of poor performance which may be caused by serializability, several re- 
searchers have suggested methods of relaxing it. In the case of multidatabases, many researchers 
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[4, 141 have proposed that the GTM, instead of enforcing global serializability, enforces seriahz- 
ability of the global subschedule, that is of only the global transactions. Enforcing serializability 
of the global subschedule is straightforward since global transactions, in contrast to local transac- 
tions, are under the control of the GTM. Specifically, in [14], the following intuitive non-serializable 
criterion, termed two-level serializability is proposed: 

Definition 3 A global schedule is two-level serializable, denoted PLSR, if its global subschedule 
and local schedules are serializable. 

However, as shown by the following example, 2LSR schedules may be incorrect. Note, that 
inconsistencies may result even when there are no local transactions that read global data and no 
local/global integrity constraints. 

Example 1 Consider an MDBS consisting of two local database systems, where data items a, b, 
c are at LSr, and d is at LSz. Let a, b, c, and d be local data items and the integrity constraints 
be a > 0 + b > 0, c > 0 -+ b > 0 and d > 0. The following two global transaction programs pl, p2 
and one local transaction program pi are submitted: 

Pl : c=l 
if d > 0 then b = 1 

p2 : if a > 0 then d = b else d = 1 
pi: a=1 

if c 5 0 then b = 1 
Starting from a consistent database state a = b = c = - 1, d = 1, consider the following execution: 

Sr : wL(a, lh(a, lb-z@, -lh(c, lh(c, I), 
S2 : wa(d, -l)rr(d, -1). 

Although the schedule is 2LSR, the resulting database state a = 1, b = -1, c = -1, d = -1 is 
inconsistent. cl 

The question we pose is whether we can enforce any conditions on the data read by global 
transaction so that consistency is maintained. Studying the above example, we see that the global 
transaction resulting from the execution of pz reads inconsistent data (a = 1, and b = -1). Thus, 
we may conclude that enforcing consistency of the readset of global transactions would suffice. In 
fact, as proven in Section 4, this is the case when there are no local transactions that read global 
data. However, this condition proves insufficient, in the presence of such local transactions. The 
following example is illustrative. 

Example 2 Consider an MDBS consisting of two local database systems, where data items a, b, 
c are at L&, and d is at LS2. Let c be a local data item, a, b, d be global data items, and the 
integrity constraints be a > 0 + b > 0 and d > 0 + b > 0 and c > 0. The following two global 
transaction programs pl, pz and one local transaction program pi are submitted: 

pl: d=l 
b=l 

pz: a=1 
if d < 0 then b = 1 

pr,: if a > 0 then c = b else c = 1 
Starting from a consistent database state a = b = d = -1, c = 1, consider the following 2LSR 
execution: 

Sr :~2(a,l)rL(a,l)~L(b,-l)~l(b,l)w~(c,--1), 
S2 : wb-4 lh(d, 1). 

Again, an inconsistent database state a = 1, b = 1, c = -1, d = 1 is produced. 0 

In the above example, both global transactions read consistent data. It turns out, that besides 
consistency of the readset, appropriate closure conditions are also necessary, since transactions 
may make false assumptions about values of data they do not read (as ps above does for the value 
of b). In the following sections, we will formally define and prove exact conditions that must be 
placed on the views of global transactions to ensure that two-level serializable global schedules will 
preserve database consistency. These conditions will be only placed on global transactions, thus 
respecting the autonomy of local transactions and sites. 
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3. TRANSACTION VIEWS 

Let t be a transaction. The read set of t, denoted RS(t), is the combination of the set of 

local data items read by operations in t (denoted RL(t)) and the set of global data items read by 
operations in t (denoted RG(t)). 

3.1. View Closure 

Let ci be an integrity constraint that is defined on a set of data items {di, . . . . dl}. Let O(ci) 
denote the set of data items in ci. Thus, we have D(q) = {di, . . . . dl}. Let In(d) denote the 
set of data items which share a common integrity constraint with data item d. Clearly, if ci is 

the only integrity constraint that is defined in the database, then In(dl) = {dz, . . ..dl}. In(da) = 
{dl,ds, . . . . dl}, and In(di) = {dl, . ..di_i.di+i, . . . . d } for all i = 3, . . ..l. We now introduce the 1 
concepts of the closure of data items and of transactions which are view-closed on a given set of 

data items. 

Definition 4 Let D = {dl, . . . . dl} be a set of data items. The closure of D, denoted cl(O), is the 

smallest set such that the following conditions are satisfied: 

l D c d(D). 
l If d E cl(D), then In(d) c cl(D). 

Definition 5 A transaction t is view-closed with respect to a set of data items D that it reads if, 

for any d E cl(D), d E RS(t). 

A transaction t is global view-closed if it is view-closed with respect to the global data items that 
it reads. A transaction t is site view-closed if, at each local site LSk (1 5 k <_ m), it is view-closed 

with respect to the data items that it reads in D,; that is, for any data d E Dk that it reads and 

all data d’ E cZ({d}) such that d’ E Dk, d’ E RS(t). 
The size of closure sets can be reduced dramatically if a more elaborate definition of closure is 

provided. The definition should be such that the closure cl(a) of a data item a includes only those 

data items whose values are restricted by a. Take, for instance, the constraints a < b and c < b. 
By Definition 4, b E cl(a), c E In(b) thus c E cl(a), although given the value of a we can make no 

assumptions about the value of c. 

A possible way to refine Definition 4 is by takiig into consideration the type of constraints 
when computing closures cl(D), instead of invariantly including in cl(D) all items in In(d) for 
each d E cl(D). To reduce the size of closure sets, we can also utilize our knowledge of the 

value of the data item a. For instance, take a constraint between data items a and b of the form 
a > 0 -+ b > 0. If the value of a read by a transaction t is negative, we do not have to include 
b in t’s view closure. Thus, some data in the view set are only conditionally read based on the 

values of items already read. Finally, many techniques proposed in the context of optimizing the 
processes of constraint evaluation and validation [S] can be applied directly to optimize the size of 

closures. Constraint subsumption [lo] is such a case. Let {Cl, Cz . . . , Cn} be a set of constraints. 
An additional constraint C is subsumed by Ci, Cz . . . , C, if, whenever C is violated then so is at 

1eastoneCi E {Ci,Cs..., Cn}. Thus, given that Ci, Cz . . . , C,, hold, we do not need to check the 

validity of C. Note, that constraint subsumption is independent of data and data modifications. 
Applying this idea to the definition of closures, D(c) is not included in the the closure cl(a) of a 
data item a when c is subsumed by constraints already in cl (a). 

3.2. View Consistency 

Let DS be the database state of 2). The restriction of DS to data items in D C ‘D is denoted by 
DSD. DSD is consistent if there exists a consistent database state DS1, such that DSf = DSD. 
Note, that for the consistency of a restriction DSD of a database state, it does not suffice to require 
that all integrity constraints that can be evaluated by the data in D evaluate to true. Take for 
instance, V = {a, b, c}, the subset D = {a, c} and the constraints a > 0 + b > 0 and b > 0 + c < 0. 
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The restriction DSD, a = 1, c = 1, of a database state is not consistent although given data in 
D no constraint can be evaluated. As another example, take the constraints a = 1 + b = 1 and 
c = 2 + b = 2, and the restriction a = 1, c = 2 of a database state to D = {a, c}. 

Let read(t) denote the database state seen as a result of the read operations in t and read(tD) 
denote the database state of D seen as a result of the read operations in transaction t. 

Definition 6 The view of a transaction t is consistent if read(t) is consistent. 

In the MDBS environment, the consistency of various views of transactions is defined as follows: 
A transaction t is local view consistent at LSi if read(tLDi) is consistent. A transaction t is global 
view consistent if read(tGD) is consistent. 

4. VIEW-BASED CORRECTNESS OF 2LSR SCHEDULES 

In this section, we impose conditions on the view of global transactions so that 2LSR schedules 
maintain database consistency. The resulting schedules are called view-based two-level serializable 
global schedules. We will first define conditions for the general case that provides more autonomy, 
that is for the case where autonomous local transactions are allowed to read global data and also 
read and write local data related through integrity constraints with global data at the same site. 
Then, we will show how these conditions can be relaxed for other practical database models. 

4.1. Background 

To develop our criteria we will use the theory advanced in [18]. For completeness we include 
here the basic lemmas that we subsequently use. Let {DSl}t{D&} denote that, when transaction 
t executes from a database state DS1, it results in a database state D&. Without loss of generality, 
whenever we say {D&}t{DS 2 , we assume that it is possible for t to be executed from DS1. The } 
conditions required to ensure that the execution of a transaction preserves the consistency of the 
state of a set of data items are specified as follows [14]: 

Lemma 1 Let t be a transaction and D C V. Let {DS~}t{DS~} and DS1 be the database state 
in which t can be executed. If DSf U read(t) is consistent, then 0S.f is consistent. 

We may now relate the consistency of a database state to the execution of transactions. The 
state associated with a transaction in a schedule is a possible state of the data items that the 
transaction may have seen. Let T~(D, S) denote the set of transactions in a schedule S that have 
at least one write operation on some data item in D E ‘D. Let S be a schedule and D s 23 such 
that (ST)D is serializable, where T~(D, S) C T. Let t 1, . . . . t, be a serialization order of transactions 
in (S7)0 and DS1 be a database state from which S starts. The state of the database before the 
execution of each transaction, with respect to data items in D, is defined as follows: 

state(ti, D, S, DSI) = “” 
ifi=l 

state(ti_1, D, S, DS1)D-WS(tf-~) U write(tE’_,), if i > 1 

Note that read(tf) C state(ti, D, S, OS). Lemma 1 is used to develop the conditions under which 
each transaction in a schedule reads a database state that is consistent with respect to a set of 
data items [13]: 

Lemma 2 Let D G 73, S be a schedule, and {DS~}S{DSZ}. If, 

l (Sr)D is serializable with serialization order tl , . . . . t,, where ~~(0, S) s T, 
l if state(t, D, S, DSI) is consistent, then read(t) U state(t, D, S, D&) is consistent for all 

t, t E T~(D, S), and 
l DSf is consistent, 

then state(ti, D, S, DSI) is consistent for all ti,i = 1, . . . . n. 
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The above lemma can be modified for the special case where the data items over which integrity 

constraints are defined are disjoint. To do so we use the following lemma that relates the consistency 

of the database state to the consistency of its disjoint subsets [18]: 

Lemma 3 Let Cl, . . . . CL be the conjunction (A) of integrity constraints, where Ci is defined over 
the set of data items in Qi C 2) for all i = 1, . . . . 1 and Qi n Qj = 8 for all i # j. Let &I C Qi and 

DS be a database state of V. DSQ:, for all i,i = 1 , . . . . 1, is consistent if and only if Ui=, DSQ: is 
consistent. 

Using the above lemma, we get from Lemma 2 the following corollary [13]: 

Corollary 1 Let Cl, . . . . Cl be the conjunction (A) of integrity constraints, where Ck is defined over 
the set of data items in QS 5 D for all k = 1, . . . . landQ~nQ~=0foralti#j. LetSbea 
schedule and {D&}S{DS2}. For any k = 1, . . ..I. if 

0 (F)Qk is serializable with serialization order tl, . . . . t,, where r,(Qk, S) c r, 

l read(t”-” is consistent for all t, t E T~(QIE, S), and 

l DSpk is co:sistent 

then state(ti, Qk, S, D&) is consistent for all ti, i = 1, . . . . n. 

4.2. Restricting Transaction Views in the General Case 

A transaction is called an update transaction if it has at least one write operation. The following 
lemma shows that for global transactions to maintain consistency of global data, they must be site 

view-closed and view consistent. 

Lemma 4 Let S be a ZLSR schedule. Let {DSl}S{DS2} and {DSI} be consistent. Let tl, . . . . t, 
be the serialization order of the global transactions in (S g ) GD. If all update global transactions are 
site view-closed and view consistent then state(ti, GD, S, DSl) t 2s consistent for alt ti, i = 1, _.., n. 

Proof. Since only global transactions write global data, from Lemma 2, it suffices to prove that 

read(t) u state(t, GD, S, DS1) is consistent for all update global transactions when 

state(t, GD, S, DS1) is consistent, We must show that there is a consistent database state DSo 

such that DS,R”(t) = read(t) and DS 2” = state(t, GD, S, 0,151). Since read(t) is consistent, there 

is a consistent database state OS,,, such that DSistt) = DSRStt), and since state(t, GD, S, DS1) 
is consistent, there is a consistent database state DSl such that DSfD = state(t, GD, S, DSL). 

Define DSzS(t) = DSzs(t) and DSr-RS(t) = DS, DD-RS(t) For the purposes of contradiction, as- . 

sume that DSo is not consistent, then there must be an integrity constraint between RS(t) and 
Z? - RS(t), say involving data items di E RS(t) and d2 # RS(t) which does not hold. We have the 
following two cases. Case (1): both dl and dz belong to GD, then dl and dz must be consistent, 
which is a contradiction. Case (2): at least one of them is a local data item, then, since there 
are no remote constraints involving local data, both dl and dz must belong to the same local site. 
Thus, since RS(t) is site view-closed, dz E RS(t), which is a contradiction. 0 

The following lemma investigates the conditions that must be imposed on the views of global 
transaction so that local and global transactions maintain the integrity constraints at each database 

site. 

Lemma 5 Let S be a 2LSR schedule. For a site k, let S Dk be serializable with serialization order 

t1,. . . , t,. Let {D&}S{DS2} and {DSl} b e consistent. If all update global transactions are global 
view-closed and view consistent, then state(ti, Dk, S, 04) is consistent for all ti, i = 1, ,.., n. 

Proof. The proof proceeds as in the previous lemma. From Lemma 2, we must show that 

read(t) U state(t, Dk, S, DS1) is consistent for all update global and local transactions, when 

state(t, Dk, S, DS1) is consistent. If t is a local transaction, this holds, since 
read(t) C stute(t, Dk, S, D&). We will now prove the formula when t is a global transaction. 
IS 22-S/I-C 
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As above, we define DSfiS(t) = DSRStt), OS:’ = state(t, Dk, S, DSl), and prove that there is 

a consistent database state DSo such that DSyCt) = read(t) and DSfb = state(t, Dk, S, DS1). 
Define DSP = DSP and DSFmDk = DSvmDk. For the purposes of contradiction, let assume 
that DSo is not consistent, then there mus? be an integrity constraint involving dl E Dk and 
ds $! Dk. Since, there are no remote constraints involving local data both dl and d2 must be 
global data. We have the following three cases. Case (1): both dr and dz E RS(t) then they must 
be consistent, which is a contradiction. Case(2): both dl and d2 6 RS(t), then assume, for the 
purposes of contradiction, that the values for dl, d2 in DS, violate those in DSl; dl and dz can 
take any value in DS,, (and thus those in DSl) unless one of them, say dl E cl({d}), for some d 
in RS(t). Then, d must be a global data, otherwise we would have a remote constraint between 
da and d. Since M(t) is global view-closed then dl E RS(t), which is a contradiction. Case (3): 
exactly one of dl, da belongs to RS(t), then since RS(t) is global view-closed the other one must 
also belong to RS(t), which is a contradiction. cl 

The following corollary illustrates the conditions that must be imposed on the views of global 
constraints so that local transactions read consistent data. 

Corollary 2 Let S be a 2LSR schedule. Let S Dk be serializable with serialization order tl , . . . , t,. 
Let {D&}S{D&} and {DSl} b e consistent. If all update global transactions are global view-closed 
and view consistent, then all local transactions read consistent data. 

Proof. Directly from Lemma 5, since read(t) E state(t, Dk, S, DS1). 0 

Now we are ready to prove the conditions under which a 2LSR schedule is correct. 

Theorem 3 Let S be a BLSR schedule. If all update global transactions are site and global view- 
closed, and view-consistent then S is correct. 

Proof Let DS1 be a consistent database state and {DSl}S{D,‘$}. We need to show that 
all transactions in S read consistent data and that DSs is consistent. By the assumption, all 
global transactions read consistent data and by Corollary 2 all local transactions read consistent 
data. Thus, for all transaction ti in S, read(ti) is consistent. Now, let SD” be serializable with 
serialization order tl , . . . . t,. Since, from Lemma 5, state(t,, Dk, S, DS) is consistent, there exists a 

consistent database state DSs such that DSf’ = state(t,, Dk, S, DS and DSfS(t”’ = read(t,). 
Thus, t, can be executed in DSs. Let {DSs b 

by Lemma 1, DSDk d 
tn{DS4}. Since DS, k U read(t,) is consistent, 

b 
is consistent. Since DS, k = DSfk, DSf” is consistent. Hence, for all 

k, k = 1, . . . . m, DS, k is consistent. Similarly, DSFD is consistent from Lemma 4. For the purposes 
of contradiction, assume that DSs is not consistent. Then there must be an integrity constraint 
involving two data items di and d2 that is violated. If both di and ds belong to the same site, 
say in LSk, then they belong to Dk and thus are consistent. Otherwise, since there are no remote 
constraints involving local data, both di and da must belong to GD and thus be consistent. Hence, 
S is correct. 0 

4.3. Restricting tinsaction Views in the Absence of Local/Global Constraints 

In this section, we restrict our model such that no local/global integrity constraints exist. We 
will show that in this case we can drop the site-closure condition of the views of global transactions 
and also reduce the view consistency condition to local view consistency. 

Since no integrity constraints are present between local and global data items, the integrity 
constraints can be viewed as Ci, . . . . Cm+i. Here, Ci for i = 1, . . . . m are the conjuncts (A) of 
integrity constraints that are defined over the sets of data items in LDi for i = 1, . ..m. respectively, 
and Cm+1 is the conjunct of integrity constraints that are defined over the set of data items in 
GD. We now apply Corollary 1 and show that, when global transactions are local view consistent, 
global transactions read consistent data. 
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Lemma 6 Let S be a 2LSR schedule with no integrity constraints present between local and global 
data items. Let DS1 be a consistent database state from which S starts. If all update global 
transactions in S are local view consistent, then, 
(a) for all global t ransactions ti in S, read(ti) is consistent (e.g., local view consistency implies 
view consistency) 

0) if, in addition all update global transactions in S are global view-closed, then 
state(ti, Dk, S, DS1) is consistent for all ti, i = 1, . . . . n. 

Proof. (a) Let tl , . . . . t, be the serialization order of the global transactions in (Sg)GD. 
Since the global transactions are local view consistent, read(tFmGD) is consistent for all 
i = l,...,n. By Corollary 1, state(ti,GD, S, 04) is consistent for all i = 1, . . ..n. Since 
read(tfD) E state(ti, GD, S, DSl), read(tcD) is consistent. Thus, by Lemma 3, read(&) is con- 
sistent for all i = 1, . . . . n. Then (b) holds from (a) and Lemma 5. 0 

The following theorem based upon Corollary 2 and Lemma 6 illustrates the conditions un- 
der which 2LSR schedules preserve database consistency when there are no integrity constraints 
between local and global data items. 

Theorem 4 Let S be a 2LSR schedule with no integrity constraints present between local and global 
data items. If all update global transactions in S are local view consistent and global view-closed, 
then S is correct. 

Proof. The proof is similar to that of Theorem 3. Let DS1 be a consistent database state and 

{DSr}S{DS2}. W e need to show that all transactions in S read consistent data and that DSa 
is consistent. By Lemma 6, all global transactions read consistent data. Following Lemma 6(b) 
and Corollary 2, all local transactions also read consistent data. Thus, for all transaction ti in 
S, read(ti) is consistent. Now, let SD” be serializable with serialization order tl, . . . . t,. Since, 
from Lemma 6(b), state(t,, Dk, S, DS) is consistent, state(t,, LDk, S, DS) is then consistent. 
Hence, there exists a consistent database state D& such that DStDk = state(t,, LDk, S, DS) 

and DS~S(t”) = read(t,). Thus, t, can be executed in DSs. Let {DSs}tnbDS4}. Since 
DSLDk U read(t,) is consistent, by Lemma 1, DSfDk is consistent. Since DS: ’ = DS4LDk, 

E DS, Dk is consistent. Hence, for all i,i = 1, . . ..m. DStDi is consistent. Similarly, DSgD is 
consistent. By Lemma 3, DSz is consistent. Hence, S is correct. 0 

To illustrate the above theorem, let’s consider Example 2, where there are no local/global 
integrity constraints. Since ri (d) in global transaction tl in the given global schedule is not global 
view closed, Theorem 4 cannot be applied. Suppose that we now require the view of tl to be closed 
as rl(d)rl(b)rl(a) and tl to be serialized after tz in S,. In this example, tl and t2 do not read and 
write local data, and each global transaction would therefore transfer global data items from one 
consistent state to another. Hence, the local transaction tL would read consistent global data and 
result in a consistent local database state. 

4.3.1. Special Case: Local Transactions do not Read Global Data 

We now consider the case where local transactions are not allowed to read global data. Thus, 
any transaction that wants to access global data is treated as a global transaction and is under the 
control of the GTM. We prove that in this case, we do not need to impose any closure conditions 
upon the view set of global transactions. 

It follows from Corollary 1 and Lemma 6 that, given that global transactions are local view 
consistent, local transactions read consistent data: 

Lemma 7 Let S be a 2LSR schedule where local transactions do not read global data and there 
are no integrity constraints present between local and global data items. Let DS1 be a consistent 
database state from which S starts. If all update global transactions in S are local view consistent, 
then, for all local transactions ti in S, read(&) is consistent. 
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Proof. Since SD* is serializable, SLDb is serializable for all k = 1, . . . . m. Let tr, . . . . t, be the 
serialization order of the transactions in SLDk. By Lemma 6, ~-ead(t~-~~~) is consistent for all 
i = 1, . . . . n. By Corollary 1, state(ti, LDk, S, DSI) is consistent for all i = 1, . . . . n. For any local 
transaction ti in SLDk, since read(ti) G state(ti, LDk, S, D&), read(ti) is consistent. cl 

We now are able to demonstrate that, if global transactions are local view consistent, then 
2LSR global schedules preserve database consistency. 

Theorem 5 Let S be a 2LSR schedule where local transactions do not read global data and there are 
no integrity constraints present between local and global data items. If all update global transactions 
in S are local view consistent, then S is correct. 

Proof. The proof is similar to that of Theorem 3. Let DS1 be a consistent database state 
and {DSI}S{D&}. W e need to show that all transactions in S read consistent data and that 
DSz is consistent. By Lemma 6(a) and Lemma 7, for all transactions ti in S, read(&) is 
consistent. Now, let SLDk be serializable with serialization order tl, . . . . t,. From Corollary 1, 
state(t,, LDk, S, DS) is consistent. Hence, there exists a consistent database state D& such that 

DSLDk = state(t,, LDk, S, DS) and DS~(t”) 
Let3{DS32t,{DSd}. Since DSkDk 

= read(t,). Thus, t, can be executed in D&. 

Since DS, Dk = DSfDk, DS.fDk 
U read(t,) is consistent, by Lemma 1, DSfDk is consistent. 

is consistent. Hence, for all i,i = 1, . . ..m. DStDi is consistent. 
Similarly, DSFD is consistent. By Lemma 3, DSz is consistent. Hence, S is correct. 0 

To illustrate the above theorem we will use Example 1, where all data items are local and no 
integrity constraints exist between different local sites. However, since both global transactions 
in the given global schedule have inconsistent local views, Theorem 5 cannot be applied. If we 
require that rl(a)rl(b) and rz(d) be consistent, then both WI(~) and wz(c) would be consistent. 
As a result, the local transaction would not read inconsistent data, thus resulting in a consistent 
local database state. 

5. DISCUSSION 

In this paper, we have advanced a number of criteria to ensure that 2LSR schedules maintain 
database integrity constraints. In addition, our approach offers an interesting theoretical result that 
relates consistency and closure properties of transactions to database consistency. The conditions 
advanced define precisely the size of the readset of a global transaction that suffices to ensure the 
consistency of the multidatabase. We have developed a range of conditions depending on the type 
of data and constraints. The more general local transactions are, the more strict the conditions 
we have to enforce on the view set of global transactions. At one extreme, if local transactions 
(e.g., transactions outside the control of the GTM) are allowed to access local data related with 
global data through integrity constraints and also read global data, then we must enforce both 
consistency and site and global closure of the view set of update global transactions. At the other 
extreme, if local transactions are allowed to access only local data that have no relation with any 
global data, then local consistency of the view set of update global transactions suffices. 

5.1. Applicability 

We have advanced two types of conditions on the view set of update global transactions, closure 
and consistency conditions. Since both conditions are imposed only upon global transactions, the 
autonomy of local sites is being respected. Furthermore, as the concepts of view consistency and 
view closure rest solely upon the structural properties of the integrity constraints rather than their 
semantics, such restrictions can be enforced systematically. Closure conditions can be enforced 
by appending to the beginning of the global transaction read operations on data items which are 
included in the closure but not read by the global transaction. 

The detection of inconsistency is a classical problem to which much attention has been directed 
[l, 111. When an update u is executed, it may cause a change of database state ST to ST,. By 
applying tests derived from the constraints, the enforcement algorithm verifies that all relevant 
constraints hold in state ST,. Note that in the proposed approach, only a subset, and not the 
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whole database, is tested for consistency. Testing consistency is necessary to ensure that global 

transactions produce consistent data. However, this test can be reduced to testing appropriately 

defined weaker notions of consistency by taking advantage of the semantics of global transactions. 

In particular, this test can be relaxed for those global transactions that still produce consistent 
data even if they do not read exactly consistent data. This notion is similar to the notion of 

sensitive transactions defined by Garcia-Molina [6] as transactions whose output must be based 
on consistent data and as transactions whose output is seen by users. We do not have to check 
for exact view consistency of non-sensitive transactions. Our approach can be used in conjunction 

with methods with relaxed consistency requirements such as epsilon-serializability, and temporal 
inconsistency [17] to replace the test of view-consistency with less strict tests. 

One criticism of the applicability of the method may be that it is based on the premise that the 
integrity constraints are explicit. We can counter this argument by noting that even in conventional 
approaches, application programmers must know the integrity constraints for writing consistent 

transaction programs. In particular, for multidatabases, in most cases, it is safe to ensure that the 
integrity constraints are made explicit during the integration of the component databases along 

with other information on the semantics of local systems. Thus, by exploiting knowledge about 
the constraints we avoid the overheads associated with global serializability. Furthermore, we 

must note that the enforcement of the above conditions may not require exact knowledge of the 
constraints. Specifically, for the closure conditions we do not need to know the exact integrity 
constraints, rather it suffices to know only the set of related data items, for instance that the data 
item a is constrained by b and c but not necessarily how it is constrained. 

As an alternative to system-initiated run-time tests of consistency, the proposed criterion can 
be realized by writing more safe global transaction programs. Transaction programmers should 
incorporate into their code the possibility of reading inconsistent local data, and for instance, block 
or exit in such cases. The proposed criterion offers the theoretical basis for the correctness of these 
tests and defines the exact amount of data that must be considered. For instance from Theorem 2, 

to ensure correctness, a global transaction program needs to be global-view closed and local-view 

consistent. 

5.2. Isolation 

View-based two-level serializability ensures the preservation of database consistency, however, it 
does not ensure the isolation property for global transactions. In particular, global transactions may 
read partial results of other global transactions through indirect conflicts with local transactions. 
Although this may be undesirable for some applications, it may applicable to others such as 
cooperative transactions. 

For transactions that require isolation, we can use the presented criteria in conjunction with 
methods that enforce global serializability, such as the ticket method [7]. We sketch briefly such an 

approach. Transactions are divided in two classes, class I and class NI. Class I includes transactions 
that must be isolated and NI transactions for which isolation may be relaxed. Following the ticket 
method, all transactions at each local site must read and increment the value of a specific data 
item, called a ticket. For transactions in NI we also use the view-based approach. Let’s assume 
that optimistic concurrency control is used, where a global serialization graph is build based on the 
ticket value. Specifically, an edge is added from transaction ti to transaction tj, if the ticket value 
of ti at a local site is smaller than that of the ticket of tj at that site. A transaction is validated 
only if no cycles occur. Using our method, we can ignore cycles among transactions in NI and still 
maintain database consistency. 

5.3. Performance 

Closures are computed once at compile, e.g., constraint definition, time. The run time overhead 
is that of reading closures and testing for consistency. One drawback of the proposed criterion is 
that it may result in very large readsets for update global transactions as a consequence of imposing 
closure conditions. The size of closure sets can be reduced if a more elaborate definition of closure 
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is provided as suggested in Section 3, and the time for testing consistency can be minimized if 
advanced methods for testing consistency are employed [8]. 

Comparing these overheads to proposed methods of enforcing global serializability [7, 12, 211, 
our method still avoids creating direct conflicts between global transactions as global serializability 
methods do by enforcing them to update the same data items. Thus, although readsets may 
be large, readsets of different transactions may be disjoint, and thus may not cause conflicts. 
Furthermore, in contrast to global serializability methods, the additional operations appended to 
global transactions are read operations, which in general allow for more concurrency than write 
operations. In this respect, the proposed method avoids bottlenecks and long lock waits that may 
result from forcing conflicting operation in order to achieve global serializability. 

Roughly speaking, our method is expected to outperform global serializability when global 
transactions are independent to each other, in the sense that they read unrelated data. This 
is exactly the case at which global serializability methods incur their worst overhead by forcing 
unrelated transactions to conflict although they naturally do not. 

6. RELATED WORK 

In the previous sections we advanced certain prerequisites to the correctness of 2LSR global 
schedules. In this section, these conditions will be compared with those advanced in the literature. 
The correctness of 2LSR global schedules has been examined by Mehrotra et al [13] when no 
local/global integrity constraints are present and for two multidatabase models, the G,, model, 
where local transactions are not allowed to read global data and the G,, L, where local transactions 
are allowed to read global data. In the G rw model, to avoid inconsistencies, both local and global 
transaction programs are required to be fixed-structured. A transaction program is fixed-structured 
if its execution from every database state results in transactions with a common structure. In the 
G,,L,, to avoid inconsistencies, global transaction programs must possess no value dependencies 
among their global subtransactions. A global subtransaction tj is value dependent on a set of global 
subtransactions ti , . . . . tj-1 if the execution of one or more operations in tj is determined by the 
values read by tl, “‘9 tj-1 s 

It is illuminating to compare the range of acceptable schedules generated by the present work 
with those encompassed by the above method. Let ST-2LSR denote the set of 2LSR global 
schedules in which all transactions are fixed-structured; ND_2LSR denote the set of 2LSR global 
schedules with no value dependencies permitted in global transactions; LV_2LSR denote the set of 
2LSR global schedules in which the local views of global transactions are consistent; and LG-2LSR 
denote the set of 2LSR global schedules in which the local views of global transactions are consistent 
and the global view of global transactions is closed. Within the G,, model, since ST-2LSR global 
schedules are correct, the fact that both local and global transactions are fixed-structured implies 
that their retrievals from local sites will be consistent. However, the possession of consistent local 
views by global transactions does not imply that both local and global transactions are fixed- 
structured. Thus, LV-2LSR is a superset of ST-2LSR. Within the G,,L, model, the fact that a 
global transaction has no value dependencies does not imply that its retrieval of global data items is 
closed; nor does the converse hold true. Thus, there is no inclusive relationship between ND_2LSR 
and LG_2LSR. We now compare further the above conditions in terms of their applicability in the 
multidatabase environment. As pointed out by Mehrotra et al [13] it may be impractical to assume 
the presence of fixed structured programs, since local transaction programs are pre-existing and 
may not satisfy these restrictions. Similarly, the prohibition of value dependencies is excessively 
restrictive, as many applications involve data transfer among different local database sites, resulting 
in value dependencies among the subtransactions of a global transaction. In contrast, our approach 
is more practical, since it affects only global transactions and the testing of local view consistency 
as well as the specifications of global view closures in global transactions can be easily implemented. 

Rastogi et al [18] presented additional findings relevant to the present research. That work 
presented a non-serializable criterion, termed predicatewise setializability (PWSR), to be applied 
in a database environment in which the integrity constraints can be grouped into Ci A . . . A Cl, 
where Ci is defined over a set of data items di C D and di n dj = 8, i # j. A schedule is said to 
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be PWSR if, for all i, i = 1 , . . . . I, S*’ is serializable. That research demonstrated that a PWSR 
schedule S is correct, either if all transaction programs have a fixed-structure or if S is a delayed 
read schedule. A schedule S is delayed read if each transaction ti in S cannot read a data item 
written by transaction tj until the completion of all tj’s operations. This theory may be applied 
to an MDBS environment in which all local schedules are serializable and either both local and 
global transactions are fixed-structured or all local schedules are delayed read. Clearly, the present 
work has advantages over the application of PWSR in the MDBS environment, since PWSR is 
applicable only if local transactions have a fixed structure or local schedules are delayed-read and 
there are no local/global integrity constraints. 

7. CONCLUSIONS 

Enforcing serializability of transaction executions may be restrictive in terms of performance or 
even inappropriate for some applications. However, by relaxing serializability, the correctness of the 
database is no longer ensured. The contribution of this paper is twofold. First, we have introduced 
the concept of view consistency and view closure of transactions. We believe that the relation of 
these properties of transaction views to integrity constraints provides an innovative approach to 
maintaining database consistency in the absence of serializability. Second, we have developed a 
new correctness criterion for multidatabase systems. This new criterion uses the concept of view 
consistency and view closure, to specify conditions that permit 2LSR global schedules to ensure 
database consistency. The criterion respects local autonomy, since no restrictions other than 
serializability need to be imposed on local schedules. We have demonstrated how this criterion 
can be relaxed for special types of integrity constraints and data access patterns. Finally, we have 
discussed the feasibility and applicability of the proposed criterion. 
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